

ENERGY AND ENVIRONMENT CABINET OFFICE OF THE SECRETARY

500 MERO STREET

12TH FLOOR, CAPITAL PLAZA TOWER
FRANKFORT, KY 40601
TELEPHONE: 502-564-3350

FACSIMILE: 502-564-3354

March 5, 2012

Ms. Gwendolyn Keyes Fleming Regional Administrator U.S. EPA, Region 4 Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Atlanta, Georgia 30303

RE: Redesignation of Kentucky portion of the Louisville KY-IN fine particulate nonattainment area

Dear Ms. Fleming:

Enclosed for your consideration is the final revision to Kentucky's State Implementation Plan to redesignate the Kentucky portion of the Louisville KY-IN PM_{2.5} nonattainment area (Bullitt and Jefferson Counties) as attainment for the 1997 PM_{2.5} National Ambient Air Quality Standard.

A public hearing to receive comments on this revision was held on February 3, 2012 at 10:00 a.m. in the Conference Room of the Louisville Metro Air Pollution Control District, 850 Barret Avenue, Louisville, Kentucky. Comments were received during the 30-day comment period. A copy of the public hearing notice and the statement of consideration are included in this submittal.

Indiana has made a separate redesignation request for their portion of the metropolitan area and has submitted their demonstration to U.S. EPA, Region 5.

Your prompt consideration of this request is appreciated. If you have any questions or comments concerning this matter, please contact Andrea Smith with the Division for Air Quality at (502) 564-3999.

Sincerely

Leonard K. Peters

Secretary

Enclosures

c: Beverly Banister

R. Scott Davis

REDESIGNATION REQUEST AND MAINTENANCE PLAN FOR THE KENTUCKY PORTION OF THE LOUISVILLE, KY-IN 1997 ANNUAL PM_{2.5} NONATTAINMENT AREA

Bullitt and Jefferson Counties, Kentucky

Prepared by:
Energy and Environment Cabinet
Division for Air Quality

February 2012

This page left intentionally blank

TABLE OF CONTENTS

Chapter One - Introduction	
Geographical description	
Status of air quality	2
Chantan Two Decripoments for redesignation	6
Chapter Two - Requirements for redesignation	
Chapter Three - PM _{2.5} monitoring	
Ambient data quality assured	
Data handling guidelines	
Commitment to continue monitoring	
Chapter Four - Emission inventory	12
Base year emission inventory	
Emission projections	
Demonstration of maintenance	
Permanent and enforceable emissions reductions	
Provisions for future inventory updates	32
Chapter Five - Control measures and regulations	33
Nonattainment areas to implement RACM and RACT	
Reasonable further progress	
Emission inventory	
Implementation of previous SIP revisions	
New source review provisions	40
Assurance of continued controls	
Chapter Six - Contingency measures	41
Commitment to review maintenance plan	
Commitment for contingency measures	
Potential contingency measures	
List of PM _{2.5} , SO ₂ , and NO _x sources	
Chapter Seven - Public participation	43
Chapter Eight - Conclusions	44

FIGURES

Figure 1 Figure 2	Map of the Louisville, KY-IN nonattainment area and monitor locations	
	TABLES	
Table 1	Monitoring Data for Louisville, KY-IN area for 2008 – 2010	0
Table 2	Bullitt County, Kentucky Emission Estimations for On-road Mobile Sources1	9
Table 3	Jefferson County, Kentucky Emission Estimations for On-road Mobile Sources1	9
Table 4	Summary of Kentucky Emission Estimations for On-road Mobile Sources	9
Table 5	Clark County, Indiana Emission Estimations for On-road Mobile Sources	
Table 6	Floyd County, Indiana Emission Estimations for On-road Mobile Sources1	9
Table 7	Jefferson County, Indiana Emission Estimation for On-road Mobile Sources1	9
Table 8	Summary of Indiana Emission Estimations for On-road Mobile Sources	9
Table 9	Emission Estimation Totals for On-Road Mobile Sources for Louisville, KY-IN Area1	9
Table 10	Entire Nonattainment Area PM _{2.5} Emissions	
Table 11	Entire Nonattainment Area NO _x Emissions	
Table 12	Motor Vehicle Emission Budgets for the Louisville Area	
Table 13	Annual Reductions in SO ₂ and NO _x EGU Emissions Between 1990 and 20102	
Table 14	Bullitt County, Kentucky PM _{2.5} Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR	
Table 15	Jefferson County, Kentucky PM _{2.5} Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR	
Table 16	Clark County, Indiana PM _{2.5} Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR.	
Table 17	Floyd County, Indiana PM _{2.5} Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR.	
Table 18	Jefferson County, Indiana PM _{2.5} Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR	
Table 19	Louisville, KY-IN Area PM _{2.5} Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR.	
Table 20	Bullitt County, Kentucky NO _x Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR	
Table 21	Jefferson County, Kentucky NO _x Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR	
Table 22	Clark County, Indiana NO _x Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR.	
Table 23	Floyd County, Indiana NO _x Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR.	
Table 24	Jefferson County, Indiana NO _x Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR.	
Table 25	Louisville, KY-IN Area NO _x Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR.	
Table 26	Bullitt County, Kentucky SO ₂ Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR	
Table 27	Jefferson County, Kentucky SO ₂ Emission Inventory Total for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR	

Table 28	Clark County, Indiana SO ₂ Emission Inventory Total for Base Year 2005, Estimated 2008,
	and Projected 2015 and 2025 (tpy) – With CAIR
Table 29	Floyd County, Indiana SO ₂ Emission Inventory Total for Base Year 2005, Estimated 2008,
	and Projected 2015 and 2025 (tpy) – With CAIR
Table 30	Jefferson County, Indiana SO ₂ Emission Inventory Total for Base Year 2005, Estimated
	2008, and Projected 2015 and 2025 (tpy) – With CAIR
Table 31	Louisville, KY-IN Area SO ₂ Emission Inventory Total for Base Year 2005, Estimated 2008,
	and Projected 2015 and 2025 (tpy) – With CAIR
Table 32	Louisville, KY-IN Area Comparison of 2008 attainment year and 2015 and 2025 projected
	emission estimates (tpy)
Table 33	Louisville, KY-IN Area Combined Comparison of 2005 base year and 2008 attainment year
	on-road and EGU reductions

APPENDICES

- Α
- В
- Air Quality System (AQS) Data Kentucky 2005 SIP Base Year Inventory Discussion Mobile Source Emissions Inventory for the Cincinnati Ozone Nonattainment Area \mathbf{C}
- VISTAS and LADCO Technical Support Documents D
- Kentucky's PM_{2.5} Attainment Demonstration (disc) submitted December 31, 2008 Public Participation Documentation E
- F

This page left intentionally blank

REDESIGNATION REQUEST AND MAINTENANCE PLAN FOR THE KENTUCKY PORTION OF THE LOUISVILLE, KY-IN 1997 ANNUAL PM_{2.5} NONATTAINMENT AREA

Bullitt and Jefferson Counties, Kentucky

CHAPTER ONE - INTRODUCTION

The Clean Air Act (CAA) requires areas failing to meet the National Ambient Air Quality Standard (NAAQS) for the annual $PM_{2.5}$ to develop State Implementation Plans (SIP's) to expeditiously attain and maintain the standard. The United States Environmental Protection Agency (U.S. EPA) revised the NAAQS for particulate matter in July 1997. It replaced the existing PM_{10} standard with a health based $PM_{2.5}$ standard and retained the PM_{10} standard as a "coarse" standard protecting welfare. The standards include an annual standard set at 15.0 micrograms per cubic meter ($\mu g/m^3$), based on the 3-year average of annual mean $PM_{2.5}$ concentrations and a 24-hour standard of 65 $\mu g/m^3$, based on the 3-year average of the 98th percentile of 24-hour concentrations.

The revised NAAQS was legally challenged in the U.S. Court of Appeals for the District of Columbia Circuit (The D.C. Circuit). On May 14, 1999, the D.C. Circuit remanded, without vacatur, the standard back to U.S. EPA. The remand did not question the level at which U.S. EPA set the standards but rather the constitutionality of the CAA provision that authorizes U.S. EPA to set national air quality standards. U.S. EPA requested a rehearing which the D.C. Circuit denied. Therefore, in December 1999, U.S. EPA appealed the D.C. Circuit decision to the U.S. Supreme Court. The U.S. Supreme Court issued a decision on February 27, 2001 that unanimously affirmed the constitutionality of the CAA provision but did remand several other issues back to the D.C. Circuit, including the issue of whether U.S. EPA acted arbitrarily and capriciously in establishing the specific levels of the standards.

The D.C. Circuit heard arguments in this remanded case in December 2001, and issued its decision on March 26, 2002. The D.C. Circuit rejected the claims that the U.S. EPA had acted arbitrarily and capriciously in setting the levels of the standards.

On December 17, 2004, U.S. EPA promulgated the initial $PM_{2.5}$ nonattainment areas designations for the $PM_{2.5}$ standards across the country. Modifications to those designations were made and an effective date was set at April 5, 2005. Unlike Subpart 2 of the CAA Amendments of 1990 which defined five ozone nonattainment classifications for the areas that exceed the NAAQS based on the severity of the ozone levels, $PM_{2.5}$ nonattainment designations are simply labeled "nonattainment." The CAA Amendments require states with $PM_{2.5}$ nonattainment areas to submit a plan within three years of the effective date of the designations (April 5, 2008) detailing how the $PM_{2.5}$ standards will be attained by April 5, 2010. Kentucky Division for Air Quality (KYDAQ) submitted its attainment demonstration for the annual $PM_{2.5}$ nonattainment areas on December 3, 2008.

¹ Particle pollution is a mixture of microscopic solids and liquid droplets suspended in air. This pollution, also known as particulate matter, is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, soil or dust particles, and allergens (such as fragments of pollen or mold spores). Fine particle pollution of PM2.5 describes particulate matter that is 2.5 micrometers in diameter and smaller – 1/30th the diameter of a human hair. Fine particle pollution can be emitted directly or formed secondarily in the atmosphere.

Section 107(d)(3)(E) of the CAA allows states to request nonattainment areas to be redesignated to attainment provided certain criteria are met. The following are the criteria that must be met in order for an area to be redesignated from nonattainment to attainment:

- i) A determination that the area has attained the $PM_{2.5}$ standard.
- ii) An approved State Implementation Plan (SIP) for the area under Section 110(k).
- iii) A determination that the improvement in air quality is due to permanent and enforceable reductions in emissions resulting from implementation of the SIP and other federal requirements.
- iv) A fully approved maintenance plan under Section 175(A).
- v) A determination that all Section 110 and Part D requirements have been met.

This document addresses each of these requirements, and provides additional information to support continued compliance with the annual PM_{2.5} standard.

Geographical Description and Background

The current Louisville, KY-IN nonattainment area is located in northwest Kentucky and includes the following counties: Bullitt and Jefferson in Kentucky; and Clark, Floyd, and Jefferson County (partial nonattainment of Madison Township only) in Indiana. This area is shown in Figure 1 under Chapter Three.

As a result of the 2005 $PM_{2.5}$ designations, U.S. EPA designated the Louisville, KY-IN area nonattainment for the 15.0 μ g/m³ annual standard², and KYDAQ was required to develop a plan to reduce oxides of nitrogen (NO_x), sulfur dioxide (SO₂) and direct $PM_{2.5}$ emissions and to demonstrate that the area will meet the federal annual air quality standard by April 5, 2010. Kentucky's main $PM_{2.5}$ components are primary particles (organic carbon, crustal material, and elemental carbon), SO₂ and NO_x, which were included in the attainment demonstration analysis. Volatile organic compounds (VOCs) and ammonia (NH₃) were not included in the analysis since they were not part of Kentucky's current attainment strategy for $PM_{2.5}$ (although controls for VOCs have been implemented for ozone nonattainment). This is consistent with U.S. EPA's Clean Air Particle Implementation Rule [72 FR 20586] (hereafter referred to as "Implementation Rule"). In the Implementation Rule, U.S. EPA presumes NH₃ emissions are not a $PM_{2.5}$ attainment plan precursor and that States are not required to address VOC unless the State or U.S. EPA makes technical demonstration that emissions of VOCs significantly contribute to nonattainment of the annual $PM_{2.5}$ standard.

This document is intended to support Kentucky's request that the Kentucky portion of the Louisville, KY-IN area be redesignated from nonattainment to attainment for the annual PM_{2.5} standard. In addition, Indiana also intends to submit a request for their respective portion of the Louisville, KY-IN area.

Status of Air Quality

PM_{2.5} complete quality-assured ambient air quality monitoring data for the most recent three (3) years, 2008 through 2010, demonstrate that the air quality has met the NAAQS for annual PM_{2.5} in this nonattainment area. The NAAQS attainment, accompanied by decreases in emission levels discussed in Chapter Four, supports a redesignation to attainment for the Kentucky portion of the Louisville, KY-IN area based on the requirements in Section 107(d)(3)(E) of the CAA.

² There were no monitors in Kentucky that violated the 1997 24-hour PM_{2.5} standard of 65μg/m³.

CHAPTER TWO – REQUIREMENTS FOR REDESIGNATION

U.S. EPA has published detailed guidance in a document entitled *Procedures for Processing Requests to Redesignate Areas to Attainment* (redesignation guidance), issued September 4, 1992, to Regional Air Directors. The redesignation request and maintenance plan are based on the redesignation guidance, supplemented with additional guidance received from staff of U.S. EPA Region IV.

Below is a summary of each redesignation criterion as it applies to the Louisville, KY-IN area.

i.) Attainment of the standard (CAA Section 107(d)(3)(E)(i))

There are two components involved in making this demonstration. The first component relies on ambient air quality data. The data that are used to demonstrate attainment should be the product of ambient monitoring that is representative of the area of highest concentration. The data should be collected and quality-assured in accordance with 40 CFR 58 and recorded in the Air Quality System (AQS) in order for it to be available to the public for review.

The second component relies upon supplemental U.S. EPA-approved air quality modeling, but is not required. Therefore no modeling was included in this redesignation request.

ii.) Permanent and enforceable improvement in air quality (CAA Section 107(d)(3)(E)(iii))

The state must be able to reasonably attribute the improvement in air quality to emission reductions which are permanent and enforceable. The state should estimate the percent reduction achieved from federal measures as well as control measures that have been adopted and implemented by the state.

For this PM_{2.5} redesignation, it was not necessary for Kentucky to adopt or implement control measures for these counties beyond the federal measures.

KYDAQ adopted several rules that will have an impact Statewide on PM_{2.5} emissions in the future:

- Clean Air Interstate Rule (CAIR)
- NO_x SIP Call Rules

In addition, since the initial $PM_{2.5}$ designations were made, federally enforceable consent decrees have resulted in reductions in emissions from utilities across the state, including this area.

Chapter Four discusses these reductions in more detail in the demonstration of maintenance portion, Requirement 3 of 5 (page 24).

iii.) Section 110 and Part D requirements (CAA Section 107(d)(3)(E)(v))

For purposes of redesignation, a state must meet all requirements of Section 110 and Part D that were applicable prior to submittal of the complete redesignation request.

Subpart 1 of Part D consists of general requirements applicable to all areas which are designated nonattainment based on a violation of the NAAQS. Subpart 4 of Part D consists of more specific requirements applicable to particulate matter (specifically to address PM₁₀). However, for the purpose of implementing the 1997 PM_{2.5} standard, U.S. EPA's Implementation Rule stated Subpart 1, rather than Subpart 4, is appropriate for the purpose of implementing PM_{2.5} [72 FR 20589].

i.) Section 110(a) requirements

Section 110(a) of Title I of the CAA contains the general requirements for a SIP. Section 110(a)(2) provides that the implementation plan submitted by a state must have been adopted by the state after reasonable public notice and hearing, and that, among other things, it must include enforceable emission limitations and other control measures, means or techniques necessary to meet the requirements of the CAA; provide for establishment and operation of appropriate devices, methods, systems and procedures necessary to monitor ambient air quality; provide for implementation of a source permit program to regulate the modification and construction of any stationary source within the areas covered by the plan; include provisions for the implementation of Part C, prevention of significant deterioration (PSD) and Part D, New Source Review (NSR) permit programs; include criteria for stationary source emission control measures, monitoring, and reporting; include provisions for air quality modeling; and provide for public and local agency participation in planning and emission control rule development. In Kentucky's September 8, 2009 infrastructure SIP submissions, Kentucky verified that the State fulfills the requirements of Section 110(a)(2) of the Act.

Section 110(a)(2)(D) also requires State plans to prohibit emissions from within the State which contribute significantly to nonattainment or maintenance areas in any other State, or which interfere with programs under Part C to prevent significant deterioration of air quality or to achieve reasonable progress toward the national visibility goal for Federal class I areas (national parks and wilderness areas). In order to assist States in addressing their obligations regarding regionally transported pollution, U.S. EPA finalized CAIR to reduce SO₂ and NO_x emissions from large electric generating units (EGU). Kentucky has met the requirements of the federal CAIR to reduce NO_x and SO₂ emissions contributing to downwind states. On February 2, 2007, Kentucky regulations 401 KAR 51:210, 401 KAR 51:220, and 401 KAR 51:230 became effective. The CAIR replacement rule was finalized on July 6, 2011, as the Cross-State Air Pollution Rule (CSAPR) and will further assist States in addressing their obligations regarding regionally transported pollution by providing reductions in NO_x and SO₂ emissions in 2012 and 2014.

In the interim, the Kentucky regulations are still providing reductions. According to U.S. EPA in the *National Program & Grant Guidance* (Draft, February 25, 2011, Publication EPA-440-11-001) page 12, states:

"2009 was the first compliance season for the CAIR seasonal NOx program. There were 3,279 affected units: 3,071 electricity generating units (EGUs) and 208 industrial units. Through a wide range of pollution control strategies and an active seasonal NOx allowance trading market, emissions by the affected sources have continued to decrease. Between 2008 and 2009, ozone season NOx emissions fell in DC and every state of the 25 states participating in the CAIR NOx seasonal program. Units in the program reduced their overall NOx emissions from 689,000 tons to 495,000 tons."

Thus, the overall NOx emissions of 495,000 in 2009 is a 28% reduction from the previous level of 689,000 tons per year in 2008.

ii.) Section 172(c) requirements

This Section contains general requirements for nonattainment plans. The requirements for reasonable further progress, identification of certain emissions increases, and other measures needed for attainment will not apply for redesignations because they only have meaning for areas not attaining the standard. The requirements for an emission inventory will be satisfied by the inventory requirements of the maintenance plan. Chapters Four and Five discuss this requirement in more detail.

iii.) Conformity

The state must work with U.S. EPA to show that its SIP provisions are consistent with the Section 176(c)(4) conformity requirements. The redesignation request should include conformity procedures, if the state already has these procedures in place. If a state does not have conformity procedures in place at the time that it submits a redesignation request, the state must commit to follow U.S. EPA's conformity regulation upon issuance, as applicable.

iv.) Maintenance plans (CAA Section 107(d)(3)(E)(iv))

Section 107(d)(3)(E) stipulates that for an area to be redesignated, U.S. EPA must fully approve a maintenance plan that meets the requirements of Section 175(A). The maintenance plan will constitute a SIP revision and must provide for maintenance of the relevant NAAQS in the area for at least 10 years after redesignation. Section 175 (A) further states that the plan shall contain such additional measures, if any, as may be necessary to ensure such maintenance.

In addition, the maintenance plan shall contain such contingency measures as the Administrator deems necessary to ensure prompt correction of any violation of the NAAQS. At a minimum, the contingency measures must include a requirement that the state will implement all measures contained in the nonattainment SIP prior to redesignation.

States seeking redesignation of a nonattainment area should consider the following provisions:

- a.) attainment inventory;
- b.) maintenance demonstration;
- c.) monitoring network;
- d.) verification of continued attainment; and
- e.) contingency plan.

Chapter Six discusses this requirement in more detail.

CHAPTER THREE - PM_{2.5} MONITORING

CAA Section 107(d)(3)(E)(i)

PM_{2.5} Monitoring, Requirement 1 of 4

A demonstration that the NAAQS for annual PM_{2.5}, as published in 40 CFR 50.7, has been attained.

Background

There are currently eight Federal Reference Method monitors measuring $PM_{2.5}$ concentrations in the Louisville KY-IN nonattainment area. Three monitors are located in Indiana and five monitors are located in Kentucky. The highest levels of $PM_{2.5}$ concentrations have been typically monitored at the Jeffersonville – Walnut Street monitor (18-0019-0006) in Clark County, Indiana. The locations of the monitoring sites for the Louisville KY-IN area are shown in Figure 1. A listing of the design values based on the three-year average of the annual mean concentrations from 2008-2010 is shown in Table 1. Monitor readings for 2008-2010 were retrieved from AQS and are located in Appendix A. The Barret Avenue monitoring site in Jefferson County, Kentucky was discontinued on December 31, 2008.

Demonstration

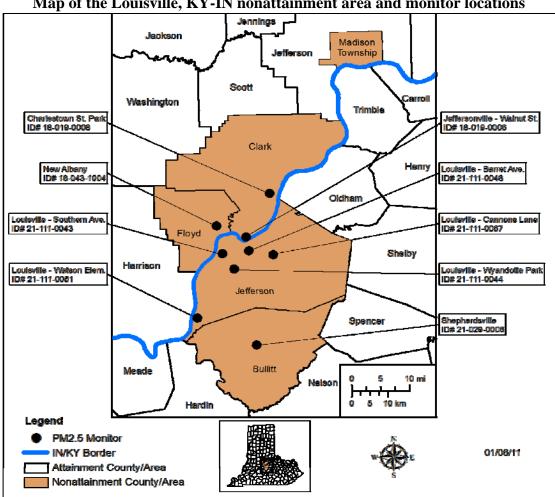


Figure 1
Map of the Louisville, KY-IN nonattainment area and monitor locations

Ambient Data Quality Assured, Requirement 2 of 4

Ambient monitoring data quality assured in accordance with 40 CFR 58.10, recorded in the AQS database, and available for public view.

Demonstration

KYDAQ has quality assured all data shown in Appendix A in accordance with 40 CFR 58.10 and all other federal requirements. KYDAQ has recorded the data in the AQS database and, therefore, the data are available to the public.

Data Handling Guidelines and Annual PM_{2.5} NAAQS, Requirement 3 of 4

A showing that the three-year average of the annual mean values, based on data from all monitoring sites in the area or its affected downwind environs, are below 15.0 μ g/m³. (This showing must rely on three complete, consecutive calendar years of quality assured data.)

Background

The following information is taken from U.S. EPA's *Guideline on Data Handling Conventions for the PM NAAQS*, U.S. EPA-454/R-99-008, April 1999.

In accordance with the CAA Amendments, three complete years of monitoring data are required to demonstrate attainment at a monitoring site. The annual PM_{2.5} primary and secondary ambient air quality standards are met at an ambient air quality monitoring site when the three-year average of the annual average is less than $15.0 \,\mu\text{g/m}^3$. While calculating design values, three significant digits must be carried in the computations, with final values rounded to the nearest $0.1 \,\mu\text{g/m}^3$. Decimals 0.05 or greater are rounded up, and those less than 0.05 are rounded down, so that $15.049 \,\mu\text{g/m}^3$ is the largest concentration that is less than, or equal to $15.0 \,\mu\text{g/m}^3$. Values at or below $15.0 \,\mu\text{g/m}^3$ meet the standard; values equal to or greater than $15.1 \,\mu\text{g/m}^3$ exceed the standard. An area is in compliance with the annual PM_{2.5} NAAQS only if every monitoring site in the area meets the NAAQS. An individual site's 3-year average of the annual average concentrations is also called the site's design value. The air quality design value for the area is the highest design value among all sites in the area. Table 1 shows the monitoring data for 2008 - 2010 that were retrieved from AQS.

Demonstration

Table 1 Monitoring Data for the Louisville, KY-IN area for 2008 – 2010

				Annua	l Standar	·d
Cita ID	Cita Nama	County,		Year		Average
Site ID	Site Name	State	2008	2009	2010	2008-2010
21-029-0006	Shepherdsville	Bullitt, KY	12.84	11.81	13.43	12.69
21-111-0043	Southern Avenue		13.17	12.21	13.47	12.95
21-111-0044	Wyandotte Park	Jefferson, KY	13.41	12.45	13.74	13.20
21-111-0048	Barret Avenue		13.44			13.44 ¹
21-111-0051	Watson Elementary		12.78	11.59	14.83	13.07
21-111-0067	Cannons Lane			11.67	13.27	12.47 ²
18-019-0006	Walnut Street	Clark, IN	14.48	13.01	14.67	14.10
18-019-0008	Charlestown State Park	Clark, IIV	13.44	10.84	12.45	12.20
18-043-1004	New Albany	Floyd, IN	12.70	11.91	13.80	12.80

¹ Based on One Year of Data

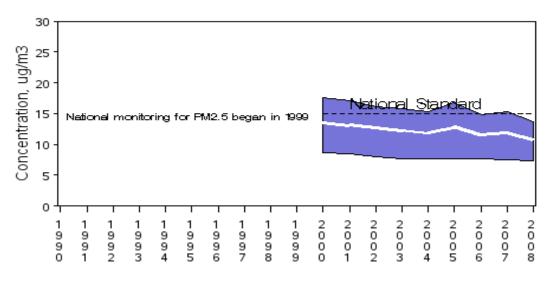
The Barrett Avenue monitor discontinued operation on December 31, 2008.

The Cannons Lane monitor began operation on January 1, 2009.

The Charlestown State Park Monitor began operation on July 2, 2008.

On March 9, 2011, EPA published a final rule which determined that Louisville has attained the 1997 annual average PM_{2.5} NAAQS [76 FR 12860].

Source: U.S. EPA Air Quality System (AQS); http://www.epa.gov/ttn/airs/airsaqs/index.htm


The design values calculated for the Louisville, KY-IN area demonstrates that the annual PM_{2.5} NAAQS has been attained. The area's design values have trended downward as emissions have declined due to such factors as cleaner automobiles and fuels, and controls for EGUs, at the national, regional and local level. On March 9, 2011, EPA published a final rule which determined that Louisville has attained the 1997 annual average PM_{2.5} NAAQS [76 FR 12860]. Further, national monitoring for PM_{2.5} began in 1999 and there has been a clear downward trend in design values (Figure 2).

² Based on Two Years of Data

Figure 2 – PM_{2.5} Annual Mean National Trends

PM2.5 Air Quality, 2000 - 2008

(Based on Seasonally-Weighted Annual Average) National Trend based on 728 Sites

2000 to 2008: 19% decrease in National Average

Source: http://www.epa.gov/airtrends/pm.html

Commitment to Continue Monitoring, Requirement 4 of 4

A commitment that once redesignated, the state will continue to operate an appropriate monitoring network to verify the maintenance of the attainment status.

Demonstration

Kentucky commits to continue monitoring PM_{2.5} levels at the Kentucky sites indicated in Figure 1 and Table 1. KYDAQ will consult with U.S. EPA Region IV prior to making changes to the existing monitoring network, should changes become necessary in the future. KYDAQ will continue to quality assure the monitoring data to meet the requirements of 40 CFR 58 and all other federal requirements. KYDAQ will enter all data into AQS on a timely basis in accordance with federal guidelines.

CHAPTER FOUR – EMISSION INVENTORY

CAA Section 107(d)(3)(E)(iii) and 107(d)(3)(E)(iv)

Introduction

U.S. EPA's redesignation guidance requires the submittal of a comprehensive inventory of $PM_{2.5}$ precursor emissions. The precursors³ consists of primary particles (organic carbon, crustal matter, and elemental carbon), SO_2 and NO_x representative of the year when the area achieves attainment of the annual $PM_{2.5}$ air quality standard. Kentucky also must demonstrate that the improvement in air quality between the year that violations occurred and the year that attainment was achieved is based on permanent and enforceable emission reductions. Other emission inventory related requirements include a projection of the emission inventory to a year at least 10 years following redesignation; a demonstration that the projected level of emissions is sufficient to maintain the annual $PM_{2.5}$ standard; and a commitment to provide future updates of the inventory to enable tracking of emission levels during the 10-year maintenance period.

The emissions inventory development and emissions projection discussion below, with the exception of the mobile (on-road) emissions inventory and projections, identifies procedures used by KYDAQ, Visibility Improvement State and Tribal Association of the Southeast (VISTAS) and LADCO regarding emissions from Kentucky's portion of the counties in the Louisville, KY-IN area. Specific emissions data are provided for all counties, including those in Kentucky and Indiana. Indiana and Kentucky emissions data were also obtained though the LADCO emissions inventory and projections. All of these inventories and emissions projections were prepared using similar methodologies. Kentucky recognizes that revisions to the emissions data below may be necessary once Indiana prepares a redesignation request and maintenance plan for their portion of the nonattainment area. Mobile emissions inventories and projections for all counties were prepared by the Louisville Metro Air Pollution Control District (LMAPCD).

Base Year Emission Inventory, Requirement 1 of 5

A comprehensive emission inventory of PM_{2.5}, SO₂ and NO_x completed for the base year.

Background

The point source data for Bullitt County is from Kentucky's emissions inventory system (KyEIS). The 2005 periodic inventory has been identified as one of the preferred databases for SIP development and coincides with nonattainment air quality in Bullitt County. The point source inventory for Jefferson County was provided by LMAPCD. Periodic inventories, which include emissions from all sectors - mobile, area, non-road, and point sources - are prepared every three years. KYDAQ has a Quality Assurance Project Plan (QAPP) that was reviewed and approved by U.S. EPA in a letter dated August 18, 2010 by the Chief of the Air Quality Modeling and Transportation Section, R. Scott Davis. (Appendix B)

Demonstration

The Stationary source inventory for the Kentucky portion used 2005 and 2008 point source emissions from the KyEIS database. The years 2015 and 2025 were interpolated and extrapolated

³ VOC and NH3 are not addressed.

from those KyEIS years.

VISTAS provided 2009 and 2018 inventory numbers for the nonroad and area sources, upon which Kentucky interpolated and extrapolated for the 2005 base year, the 2008 attainment year, the 2015 interim year, and the 2025 maintenance year.

All mobile numbers were generated by MOVES 2010 with input from LMAPCD, KYDAQ, and the Kentucky Transportation Cabinet.

The detailed emission inventory information for the Kentucky portion of the Louisville, KY-IN area is provided in Appendix B. Emissions of $PM_{2.5}$, SO_2 and NO_x for 2005 are identified in the demonstration of maintenance portion of this chapter, requirement 3 of 5.

Emission Projections, Requirement 2 of 5

A projection of the emission inventory to a year at least 10 years following redesignation.

Background

KYDAQ and LMAPCD prepared a comprehensive inventory for the Kentucky portion of the Louisville, KY-IN area including area, mobile, and point sources for PM_{2.5}, SO₂ and NO_x for base year 2005. The 2005 inventory was submitted to U.S. EPA on December 3, 2008 as part of Kentucky's PM_{2.5} attainment demonstration SIP for this area (Appendix E). The information below describes the procedures KYDAQ used to generate the 2005 base year inventory and to develop SIP-ready modeling inventories and future year projections (Pechan report located in Appendix B) based on a 2005 base year inventory. The report by Pechan generated future year estimates of annual emissions for each source sector using accepted growth surrogates. These inventories were provided to the LADCO and have been processed to develop average daily emissions for use in the air quality analyses. These processed modeling inventories have been identified as the correct iteration of the inventory for use in the redesignation. In this document, references to LADCO include the Midwest Regional Planning Organization. Note, the on-road mobile source sector was addressed by specific PM_{2.5} and NO_x modeling as discussed below.

- Bullitt County's area sources and non-road emissions were interpolated for 2005-2008-2015-2025 from the inventory emissions provided by VISTAS (2002-2009-2025). Jefferson County's area sources and non-road emissions were interpolated using inventory emissions provided by LMAPCD. See Appendix B.
- Mobile source emissions were calculated from MOVES2010-produced emission factors. Only PM_{2.5} and NO_x necessitate emissions inventory analysis. As documented in Kentucky's December 3, 2008 PM_{2.5} attainment demonstration SIP, KYDAQ in consultation with U.S. EPA determined mobile sources are insignificant contributors for SO₂. Consistent with Kentucky's attainment demonstration, Kentucky continues to consider mobile source SO₂ to be an insignificant contributor to fine particles for this nonattainment area. Based on the demonstration section, SO₂ constitutes less than one percent (<1%) of the area's total SO₂ emissions in 2005, 2008, 2015 and 2025 (ranging between 0.01% and 0.02%).

- Point Source emissions for Kentucky for 2009, 2015 and 2025 were interpolated and extrapolated from the 2005 and 2008 emissions in the Kentucky EIS inventory.
- Biogenic emissions are not included in these summaries.

EGU Emission Inventory

The LADCO emissions, reviewed by the LMAPCD, indicates essentially no growth in SO₂. Therefore the EGU emissions were flat-lined for the projected years of 2015 and 2025. The LADCO emission numbers showed some growth in NO_x for EGU's, and although Jefferson County, Kentucky is very unlikely to see growth in coal combustion, it is possible that there may be growth in natural gas EGU's. Consequently those numbers weren't adjusted. The LADCO inventory projected a sizeable increase in PM_{2.5} which is unlikely. Rather, power plants will reduce emissions of PM_{2.5} from the CSAPR and the EGU NESHAP. Power plants in Jefferson County, KY are well controlled (7 of 7 units have ESP's and Scrubbers; 2 of 7 have NO_x SNCR control). This level of control will not decrease. It is also very unlikely that any new coal combustion units will be constructed in the county. Emissions are likely to decrease, but it was assumed that there is no change in EGU PM_{2.5} emissions in the future.

Primary PM_{2.5} emissions were calculated by adding LMAPCD's filterable PM inventory to condensable PM estimates from EPA PM Augmentation (rounded).

Change in other sectors

Trends in $PM_{2.5}$, SO_2 and NO_x for non-EGU point, nonroad, and area sources were estimated by adding together each sector's individual emissions by pollutant. The resulting changes in reported emissions between 2005 and 2008 were then carried out to 2015 and 2025.

Additional refinements were calculated for nonroad and area sources. Nonroad sources included not only the nonroad calculations using NONROAD2008 with local data, but also commercial marine, locomotive (including switchyards), and airport sectors. Area sources were calculated using LMAPCD's Area Source Model with local data inputs. Future years for area source and nonroad emissions were projected to be consistent with non-EGU sources, which would trend with local demographics, and more specific calculated onroad data points (2005, 2008, 2015 and 2025 were interpolated from 2009, 2020, and 2030 calculation years).

Demonstration

On-Road Emission Estimations

KIPDA supplied LMAPCD Vehicle Miles Traveled (VMT) data for Jefferson and Bullitt Counties, Kentucky, and Clark and Floyd Counties, Indiana, using its Travel Demand Forecasting Model (TDFM). LMAPCD then input this data, along with other local data, into the MOVES model to produce the data for development of the SIP Motor Vehicle Emission Budgets (MVEB's). Emissions for the small area of Madison Township in Jefferson County, Indiana were calculated separately with MOVES by Indiana Department of Transportation (INDOT) and were included in the final emission totals.

MOVES

U.S.EPA published a *Federal Register* notice of availability on March 2, 2010, to approve MOVES2010 (Motor Vehicle Emissions Simulator), hereafter referred to as MOVES. Upon publication of the *Federal Register* notice, MOVES became U.S. EPA's approved motor vehicle emission factor model for estimating VOCs, NO_x, CO, PM₁₀ and PM_{2.5} and other pollutants and precursors from cars, trucks, motorcycles, and buses by state and local agencies. MOVES is a computer program designed by the U.S. EPA to estimate air pollution emissions from mobile sources. MOVES replaces U.S. EPA's previous emissions model for on-road mobile sources, MOBILE6.2. MOVES can be used to estimate exhaust and evaporative emissions as well as brake and tire wear emissions from all types of on-road vehicles.

An updated version of this software, MOVES2010a, was used for the purposes of this analysis. MOVES2010a is a minor update to MOVES2010. MOVES2010a includes general performance improvements from MOVES2010, and also allows users to account for emissions under new car and light truck energy and greenhouse gas standards.

The CAA requires U.S. EPA to regularly update its mobile source emission models. U.S. EPA continuously collects data and measures vehicle emissions to make sure the Agency has the best possible understanding of mobile source emissions. This assessment, in turn, informs the development of U.S. EPA's mobile source emission models. MOVES represents the Agency's most up-to-date assessment of on-road mobile source emissions. MOVES also incorporates several changes to the U.S. EPA's approach to mobile source emission modeling based upon recommendations made to the Agency by the National Academy of Sciences.

U.S.EPA requires that MOVES should be used in VOC, CO, PM, and NO_x SIP development. The CAA requires that SIP inventories and control measures be based on the most current information and applicable models that are available when a SIP is developed.

Regarding transportation conformity, U.S. EPA and U.S. DOT established a two-year grace period before MOVES is required for new transportation conformity analyses.

The MOVES more detailed approach (when compared with the previous MOBILE model) to modeling allows U.S. EPA to easily incorporate large amounts of in-use data from a wide variety of sources, such as data from vehicle inspection and maintenance (I/M) programs, remote sensing device (RSD) testing, and certification testing, portable emission measurement systems (PEMS), etc. This approach also allows users to incorporate a variety of activity data to better estimate emission differences such as those resulting from changes to vehicle speed and acceleration patterns. MOVES has a graphical user interface which allows users to more easily set up and run the model. MOVES database-centered design provides users much greater flexibility regarding output choices. Unlike earlier models which provided emission factors in grams-per-mile in fixed output formats, MOVES output can be expressed as total mass (in tons, pounds, kilograms, or grams) or as emission factors (grams-per-mile and in some cases grams-per-vehicle). Output can be easily aggregated or disaggregated to examine emissions in a range of scales, from national emissions impacts down to the emissions impacts of individual transportation projects. The database-centered design also allows U.S. EPA to update emissions data incorporated in MOVES more easily and will allow users

to incorporate a much wider array of activity data to improve estimation of local emissions. For example, the improvements in MOVES will allow project-level PM_{2.5} emissions to be estimated.

KIPDA Travel Demand Model

The KIPDA travel demand model is a mathematical model which relates travel to the transportation system and basic socioeconomic information. The domain of the model is a study area which includes the Louisville (KY-IN) Metropolitan Planning Area. The Louisville (KY-IN) Metropolitan Planning Area consists of Clark and Floyd counties, and 0.1 square miles in Harrison County, IN, and Bullitt, Jefferson, and Oldham counties, KY. This area is divided into 807 smaller units called traffic analysis zones.

SIP MVEB development was initiated in January, 2010. As of that date, the KIPDA regional travel demand model had been last updated and calibrated during 2005. This update established 2000 as the new base year for the model. The model update utilized the information incorporated into the travel model during previous updates, in particular, information from the 2000 Census and the 2000 KIPDA Household Travel Survey. During the update, the model parameters were adjusted such that the model output matched within reason, three main calibration criteria based on measured data. These criteria were daily VMT for all highway facilities except local roads for the region; distribution of trip lengths (duration in time); and highway traffic volumes crossing the Ohio River screen-line. The result of the update was a travel model that replicated travel in the Louisville area for 2000. The subsequent 2011 update and calibration of the TDFM (setting 2007 as a base year) was initiated after work for the $PM_{2.5}$ redesignation SIP had begun and, therefore, could not be incorporated into the MOVES model runs.

The KIPDA travel demand model uses the standard four steps of modeling: trip generation, trip distribution, mode choice, and trip assignment. In addition, it considers travel by vehicles entering, leaving, and crossing the study area. These types of trips are known as external-internal, internal-external, and external-external, respectively. The internal ends of these trips are determined by the methods described below for internal-internal travel. The external ends are determined from the volume of traffic crossing the study area boundary at any of the 48 external stations.

Trip generation is the process of determining the number of unlinked trip ends - called productions and attractions - and their spatial distribution based on socioeconomic variables such as households and employment. Trip rates used to define these relationships were derived from the travel data collection efforts described above. This information was supplemented by use of the *National Cooperative Highway Research Program Report #365* and the Institute of Transportation Engineers' *Trip Generation Report*. The KIPDA travel demand model uses three internal-internal trip purposes and uses different trip rates for each. Internal-internal trips are those that have both ends inside the modeling domain. The three purposes are home-based work, home-based other, and non home-based. Trip distribution is the process of linking the trip ends thereby creating trips that traverse the area.

The KIPDA travel model uses a gravity model to link all trips except the external-external ones. The gravity model is based on the principle that productions are linked to attractions as a direct function of the number of attractions of a zone and as an inverse function of the travel time between zones. This inverse function of travel time is used to generate parameters called friction factors that, in

turn, direct the gravity model. The friction factors used in the gravity model were developed as part of the calibration effort performed during the model update.

Mode choice is the process used to separate the trips that use transit from those which use automobiles. It is also used to separate the auto drive-alone trips from auto shared-ride trips. In some previous KIPDA travel demand models, mode choice was based primarily on information provided by the *TARC Travel Forecasting Study*. In that model, the user's benefit or utility was calculated for each mode based on zonal socioeconomic characteristics and the cost and time of the trip using the various modes. A nested *Logit* model was used to determine the probability of the trip being made by each of the modes. This probability was then multiplied by the number of trips between zones to determine the number of trips by each mode.

For transit data the results of the 2004 TARC on-board survey was used to supplement the previous information. This was deemed acceptable for several reasons. The primary reason was that the transit network envisioned by *Horizon 2030* is essentially the same as the existing one. In addition, the number of total trips from the two models was similar. Therefore, the use of the transit trip information from previous travel models did not change significantly the proportion of trips allocated to transit. Finally, the proportion of trips utilizing transit is less than 2% of the total trips. So small differences in the number of transit trips should provide a negligible effect on overall travel.

Trip assignment is the process used to determine which links of the network a trip will use. Several assignment schemes may be used. Two of the more common schemes are All-or-Nothing (AON)--in which all trips between two zones follow the shortest time path--and Stochastic--in which trips between two zones may be assigned to several paths based on their impedances or travel times. It is not uncommon for travel models to use several assignment schemes in sequence to converge to a better assignment. A sequence commonly used involves using several AONs with the traffic volumes reported at the end of each scheme being a weighted average of the volumes from the most recent scheme and the volumes from the previous schemes. A capacity restraint provision is used to adjust travel times between assignment schemes. This sequence is called an equilibrium assignment. The KIPDA travel model uses an equilibrium assignment which converges when the change in system-wide travel time over successive iterations is estimated to be within 0.1 percent of the minimum (optimal) value or less.

The output from the KIPDA travel model is in the form of a series of links with each link having certain associated data such as number of lanes, capacity, facility type, area type, functional class, and volume. This data allows for the calculation of other link information such as VMT. The VMT can be calculated as the product of the volume of traffic using a link times the distance of the link. The resulting information was summarized by pollutant type for each full or partial county being analyzed to generate the overall emissions in tons per year.

Appendix C provides additional detail on the data sources gathered, modeling assumptions, and post-processing steps. All mobile inventory years were developed using MOVES 2010 as specified in Appendix C.

On-Road Mobile Emission Estimations

Tables 2 through 9 contain the results of the emissions analysis for the appropriate years. All emissions estimations are expressed in tons per year (tpy).

Table 2 – Bullitt County, Kentucky Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2025
PM _{2.5} (tpy)	84.08	85.40	55.96	29.89
NO_{x} (tpy)	2952.07	2820.80	1782.71	948.69
SO ₂ (tpy)	12.11	13.28	15.01	16.33

Table 3 – Jefferson County, Kentucky Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2025
PM _{2.5} (tpy)	721.30	627.06	339.41	187.95
NO_{x} (tpy)	22,241.72	19,094.05	10,259.60	5,336.69
SO ₂ (tpy)	95.26	101.00	102.55	101.81

Table 4 – Summary of Kentucky Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2025
PM _{2.5} (tpy)	805.38	712.46	395.37	217.84
$NO_{x}(tpy)$	25,193.79	21,914.85	12,042.31	6,285.38
SO ₂ (tpy)	107.37	114.28	117.56	118.14

Table 5 - Clark County, Indiana Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2025
PM _{2.5} (tpy)	135.49	117.07	61.03	34.92
$NO_{x}(tpy)$	4,106.81	3,444.07	1,843.80	975.12
SO ₂ (tpy)	20.72	22.22	22.83	21.70

Table 6 - Floyd County, Indiana Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2025
PM _{2.5} (tpy)	99.63	82.61	43.67	26.36
NO _x (tpy)	2,922.90	2,397.70	1,306.71	726.78
SO ₂ (tpy)	14.03	14.58	15.38	15.30

Table 7 – Jefferson County, Indiana Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2025
PM _{2.5} (tpy)	15.11	11.23	4.88	2.65
$NO_{x}(tpy)$	521.05	403.83	199.31	109.90
SO ₂ (tpy)	2.10	2.09	1.97	2.01

Table 8 – Summary of Indiana Emissions Estimations for On-Road Mobile Sources

	2005	2008	2015	2025
PM _{2.5} (tpy)	250.23	210.91	109.58	63.93
NO _x (tpy)	7,550.76	6,245.60	3,349.82	1,811.80
SO ₂ (tpy)	36.85	38.89	40.18	39.01

Table 9 – Emissions Estimations Totals for On-Road Mobile Sources for the Louisville, KY-IN Area

	2005	2008	2015	2025
PM _{2.5} (tpy)	1,055.61	923.37	504.95	281.77
NO_{x} (tpy)	32,744.55	28,160.45	15,392.13	8,097.18
SO ₂ (tpy)	144.22	153.17	157.74	157.15

Consistent with the federal implementation rule for fine particles, DAQ does not consider mobile source SO_2 emissions to be a significant contributor to fine particles for this nonattainment area, as SO_2 from mobile sources constitutes less than 0.2% of the area's total anthropogenic SO_2 emissions for the years 2005, 2008, 2015, and 2025.

This document creates an interim year budget for 2015 and a horizon year budget for 2025 for the entire nonattainment area. These budgets are based on the 2008 onroad source emission inventory used to support photochemical modeling for the same year, and has incorporated an appropriate safety margin as described below.

In an effort to accommodate future variations in Travel Demand Models (TDM) and the VMT forecast when no change to the network is planned, DAQ consulted with the interagency consultation group, including U.S. EPA Regions IV and V, to determine a reasonable approach to address this variation. The interagency consultation group approved a 15% safety margin for direct $PM_{2.5}$ mobile source emission estimates for the years 2015 and 2025, and a 15% safety margin for NO_x mobile source emission estimates for the years 2015 and 2025.

The safety margins are appropriate since there is an acknowledged potential variation in the VMT forecast and potential estimated mobile source emissions due to expected modifications to TDM and mobile emissions models and, the total decrease in emissions from all sources is sufficient to accommodate the safety margin allocations detailed above to mobile sources while still continuing to maintain total emissions in the Louisville Area well below the 2008 attainment level of emissions. These safety margins were calculated by increasing the mobile source emission estimates by 15% for the years 2015 and 2025. Safety margin, as defined by the conformity rule, looks at the total emissions from all sources in the nonattainment area. The resulting 2015 and 2025 MVEBs for direct $PM_{2.5}$ and NO_x emissions remain well below the 2008 base year emissions referenced in Tables 10 and 11.

Table 10
Entire Nonattainment Area PM_{2.5} Emissions

Sector	2005 Base	2008 Attainment	2015 Interim	2015 Safety Margin	2025 Maintenance	2025 Safety Margin
EGU Point	3,443.00	3,078.56	2,794.90	283.66	2,794.90	283.66
Non-EGU	680.31	1,226.41	1,214.24	12.17	1,162.96	63.45
Non-road	780.54	739.88	326.36	413.52	185.24	554.64
Area	810.13	755.80	699.84	55.96	630.75	125.05
On-road	1,055.60	923.36	504.95	418.41	281.77	641.59
TOTAL	6,769.58	6,724.01	5,540.29	1,183.72	5,055.62	1,668.39

Table 11
Entire Nonattainment Area NO_x Emissions

Sector	2005 Base	2008 Attainment	2015 Interim	2015 Safety Margin	2025 Maintenance	2025 Safety Margin
EGU Point	48,103.47	48,237.74	37,161.85	11,075.89	37,787.35	10,450.40
Non-EGU	3,922.83	4,629.61	3,368.80	1,260.81	2,330.85	2,298.76
Non-road	14,370.95	14,256.76	11,936.10	2,320.66	9,362.60	4,894.16
Area	2,123.83	2,249.37	2,077.78	171.60	1,877.19	372.19
On-road	32,744.56	28,160.45	15,392.13	12,768.32	8,097.18	20,063.27
TOTAL	101,265.64	97,533.94	69,936.66	27,597.27	59,455.16	38,078.77

In summary, for Kentucky and Indiana combined, the mobile budget safety margin allocation translates into:

An allocation of 75.74 tons/year for $PM_{2.5}$ and 2,308.82 tons/year for NO_x for 2015. An allocation of 42.27 tons/year for $PM_{2.5}$ and 1,214.58 tons/year for NO_x for 2025.

The federal rule at 40 CFR 93.101 defines safety margin as the amount by which the total projected emissions from all sources of a given pollutant are less than the total emissions that would satisfy the applicable requirement for reasonable further progress, attainment, or maintenance. When compared to the overall safety margin as defined by 40 CFR 93.101, it is evident that this allocation to mobile sources is significantly below the total safety margin for all sources in the Louisville Area as detailed in Table 12.

Table 12 Motor Vehicle Emission Budgets for the Louisville Area

	2015	2025
Direct PM _{2.5} (tons per year)	580.69	324.04
NO _x (tons per year)	17,700.95	9,311.76

Demonstration of Maintenance, Requirement 3 of 5

A demonstration that the projected level of emissions is sufficient to maintain the PM_{2.5} standard.

Background

In consultation with U.S. EPA, Kentucky selected the year 2025 as the maintenance year for this redesignation request. This document contains projected emissions inventories for 2015 and 2025.

Emission projections for the Louisville, KY-IN area were performed using the following approaches:

- As performed by LMAPCD, mobile source emission projections are based on the U.S. EPA MOVES model. The analysis is described in more detail in Appendix C. All projections were made in accordance with *Procedures for Preparing Emissions Projections*, U.S. EPA-45/4-91-019.
- Emissions inventories are required to be projected to future dates to assess the influence growth and future controls will have. VISTAS has developed growth and control files for point, area, and non-road categories. These files were used to develop the future-year emissions estimates used in this document by utilizing VISTAS 2009 and 2018 inventories to interpolate 2015 and extrapolate 2025 projection inventories. This was done so the inventories used for redesignation are consistent with modeling performed in the future. Appendix D contains VISTAS technical support document detailing the analysis used to project emissions.
- Point source emissions for 2005 and 2008 were compiled from KYDAQ's 2005 and 2008 KyEIS database. The 2015 interim year emissions were estimated based on the 2009 and 2018 VISTAS modeling inventory, using a straight line interpolation method. The 2025 maintenance year is based on extrapolating emissions estimates from the VISTAS inventory.

The detailed inventory information for the Kentucky portion of the Louisville, KY-IN area for 2005 is in Appendix B. Emission trends are an important gauge for continued compliance with the PM_{2.5} standard. Therefore, KYDAQ performed an initial comparison of the inventories for the base year and maintenance years. Mobile source emission inventories are described in Appendix C.

Sectors included in the following tables are: Electrical Generating Unit (EGU-Point), Non-Electrical Generating Unit (Non-EGU), Non-road Mobile (Non-road), Other Area (Area), and On-road Mobile (On-road) for Indiana.

Indiana is identifying $PM_{2.5}$ emissions projections for 2015 and 2025 for EGU's without implementation of the CAIR program. KYDAQ is also identifying $PM_{2.5}$ emissions projections for 2015 and 2025 for EGUs without implementation of the CAIR program. This is further discussed in the demonstration of $PM_{2.5}$. Projections for NO_x and SO_2 are with CAIR. U.S. EPA has raised concerns regarding the CAIR program and its remand. However, as discussed below, with the CAIR replacement rule (CSAPR) finalized, these are the most appropriate and accurate future projections.

On March 10, 2004, the U.S. EPA promulgated the CAIR. Beginning in 2009, U.S. EPA's CAIR rule required EGUs in 28 eastern states and the District of Columbia to significantly reduce emissions of NO_x and SO_2 . CAIR replaced the NO_x SIP Call for EGUs. The intent of the CAIR program was for national NO_x emissions to be cut from 4.5 million tons in 2004, to 1.5 million tons by 2009 and 1.3 million tons in 2018.

States were required to submit a CAIR SIP as part of this effort. KYDAQ submitted a CAIR SIP to U.S. EPA on July 19, 2007. The CAIR SIP was approved as a direct final action on October 4, 2007 [72 FR 56623]. The Kentucky administrative regulations developed for the CAIR SIP became effective December 3, 2007 (401 KAR 51:210, 220, 230). As a result of CAIR, U.S. EPA projects that in 2009 emissions of NO_x would decrease from a baseline of 176,000 tons per year (tpy) to 107,000 tpy while in 2010 emissions of SO₂ would decrease from a baseline of 447,000 tpy to 341,000 tpy, within Kentucky. U.S. EPA projects by 2015 NO_x emissions will decrease to 77,000 tpy while emissions of SO₂ will decrease to 270,000 tpy, within Kentucky⁴.

On December 23, 2008, U.S. EPA's CAIR program was remanded without vacatur by the D.C. Circuit Court. As mentioned above, KYDAQ has not incorporated these expected CAIR reductions into this redesignation request. It should also be noted that Kentucky's SIP-approved NO_x SIP Call program and regulations are still in place and reductions in NO_x and SO₂ have occurred. In 2009 and 2010 facilities began preparing for and implementing control programs to address CAIR⁵ and consent decrees.

The following was reported by U.S. EPA's Clean Markets Division: "Based on emissions monitoring data, EPA has observed substantial reductions in SO₂ emissions from 2005 to 2009 and in the first two quarters of 2010 as companies installed more controls, electric demand declined, and low natural gas prices made combined-cycle gas-fired units more competitive in several parts of the country. Thus, even after CAIR's vacatur and subsequent remand in late 2008, the controls in place generally have continued to operate, helping to drive continued progress in reducing emission." The significant emission reductions are illustrated in Table 13.

Table 13 – Annual Reductions in SO₂ and NO_x EGU Emissions Between 1990 and 2010

1990 through 2010 Emission National Comparisons, Annual								
Acid Rain Program Emissions at National Level (All Units). 1990 through 2008 data are final, 2010 are preliminary data submitted to EPA from sources as of February 8, 2011.								
	1990	2000	2005	2008	Preliminary 2010			
SO ₂ (million tons)	15.73	11.20	10.22	7.62	5.11			
NO _x (million tons)	6.66	5.10	3.63	3.00	2.05			
Source: Clean Air Markets Quarterly Emissions Tracking – EPA will update as it receives and verifies data.								

⁴ http://www.epa.gov/CAIR/ky.html

⁵ Under CAIR, NO_x reductions were to occur beginning in 2009 while SO₂ reductions were to occur beginning in 2010.

On July 6, 2011, U.S. EPA finalized the new Air Transport Rule, CSAPR, which include reductions scheduled to begin in 2012. As finalized, CSAPR will preserve those initial reductions achieved under CAIR and provide more reductions in NOx and SO2 emissions in 2012 and 2014 ahead of the 2015, Phase 2 requirements of CAIR.

The emission reductions under the first phase of compliance begins January 1, 2012 for SO_2 and annual NO_x reductions and May 1, 2012 for ozone season NO_x reductions. The second phase of SO_2 reductions begins January 1, 2014. By 2014, CSAPR and other state and U.S. EPA actions will reduce power plant SO_2 emissions by 73% from 2005 levels while power plant NO_x emissions will drop by 54%.

KYDAQ is in agreement with the analysis by U.S.EPA that the CAIR program provided real reductions in emissions. These reductions have assisted with PM_{2.5} attainment in this nonattainment area and throughout Kentucky. Further, CSAPR will continue to provide even greater reductions, for maintenance of the annual PM_{2.5} standard to occur. This was additionally supported in the proposed CSAPR [75 FR 45345] "...the results of the air quality modeling indicate that all but one site⁶ is projected to be in attainment and only one site⁷ is projected to have a maintenance problem for annual PM_{2.5} in 2014 with the emissions reductions expected from this proposal."

Demonstration

$PM_{2.5}$

The 2005 and 2008 PM_{2.5} emissions data below contains particulate fraction emissions and the condensable fractions. Area and nonroad emissions were taken from the U.S. EPA 2008 National Emissions Inventory (NEI). As stated above, Kentucky utilized Point source information using KYDAQ's annual emissions inventory database and the U.S. EPA Air Markets acid rain database.

Maintenance is demonstrated when the future-year (2025) projected emission totals are below the 2008 attainment year totals.

The Kentucky emissions data in the tables below are based on the following data sources:

- All On-Road data source: LMAPCD.
- All other data source: VISTAS.

Tables 14 through 18 provide the $PM_{2.5}$ county emissions for each sector for the 2005 base year to the maintenance year of 2025. Table 19 provides the summary for each county and demonstrates maintenance of the area. Similarly, Tables 20 through 25 illustrates maintenance for NO_x emissions and Tables 26 through 31 illustrates maintenance for SO_2 emissions.

⁶ Allegheny, PA

⁷ Birmingham, AL

$\underline{PM}_{2.5}$

Table 14 - Bullitt County, Kentucky PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	0	0	0	0	0.00
Non-EGU	186.67	259.07	428.02	1,385.39	-1,126.32
Non-road	42.13	39.86	29.09	12.39	27.47
Area	812.93	822.39	855.23	895.91	-73.52
On-road	84.08	85.4	55.96	27.72	57.68
TOTAL	1125.81	1206.72	1368.3	2,321.41	-1,114.69

Table 15 - Jefferson County, Kentucky PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	3,123.24	2,763.06	2,481.90	2,481.90	281.16
Non-EGU	604.24	640.00	568.43	479.96	160.04
Non-road	579.53	571.03	212.51	124.16	446.87
Area	550.70	496.28	440.65	371.92	124.36
On-road	721.30	627.06	339.41	177.60	449.46
TOTAL	5,579.01	5,097.43	4,042.90	3,635.54	1,461.89

Table 16 - Clark County, Indiana PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	0	0	0	0	0.00
Non-EGU	611	520.25	579.58	613.01	-92.76
Non-road	82.06	66.05	44.37	23.57	42.48
Area	5.14	5.17	5.04	4.9	0.27
On-road	135.49	117.07	61.03	35.34	81.73
TOTAL	833.69	708.54	690.02	676.82	31.72

Table 17 - Floyd County, Indiana PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	36.76	31	28	28	3.00
Non-EGU	12.02	3.79	1.02	0.18	3.61
Non-road	47.26	39.48	26.01	13.5	25.98
Area	4.63	4.68	4.59	4.5	0.18
On-road	99.63	82.61	43.67	25.87	56.74
TOTAL	200.30	161.56	103.29	72.05	89.51

Table 18 - Jefferson County, Indiana PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – Without CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	283	284.5	285	285	-0.50
Non-EGU	10.7	8.24	7.37	5.77	2.47
Non-road	31.07	25.88	17.36	9.27	16.61
Area	2.5	2.52	2.45	2.37	0.15
On-road	15.11	11.23	4.88	2.65	8.57
TOTAL	342.38	332.37	317.06	305.06	27.30

Table 19 – Louisville, KY-IN Area PM_{2.5} Emission Inventory Totals for Base Year 2005, Estimated 2008, and projected 2015 and 2025 (tpy) – Without CAIR

PM _{2.5}	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
Bullitt, KY	1125.81	1206.72	1368.3	2,321.41	-1,114.69
Jefferson, KY	5,579.01	5,097.43	4,042.90	3,635.54	1,461.89
Clark, IN	833.69	708.54	690.02	676.82	31.72
Floyd, IN	200.3	161.56	103.29	72.05	89.51
Jefferson, IN	342.38	332.37	317.06	305.06	27.3
COMBINED PM _{2.5} TOTAL	8,081.19	7,506.62	6,521.57	7,010.88	495.74

$\underline{NO}_{\underline{x}}$

Table 20 - Bullitt County, Kentucky NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	0	0	0	0	0.00
Non-EGU	221.7	288.4	444.04	1,325.98	-1,037.58
Non-road	540.19	502.71	385.51	210.99	291.72
Area	29.92	8.72	1.42	1.09	7.63
On-road	2,952.07	2,820.80	1,782.71	866.81	1,953.99
TOTAL	3,743.88	3,620.63	2,613.68	2,404.87	1,215.76

Table 21 - Jefferson County, Kentucky NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	20,176.48	22,749.14	21,595.85	22,221.35	527.80
Non-EGU	1,489.68	1,987.01	1,759.66	1,479.63	507.38
Non-road	10,590.84	11,255.08	9,912.27	8,269.43	2,985.65
Area	1,272.69	1,382.23	1,217.32	1,015.56	366.67
On-road	22,241.72	19,094.05	10,259.60	4,935.49	14,158.56
TOTAL	55,771.41	56,467.51	44,744.70	37,921.46	18,546.05

Table 22 - Clark County, Indiana NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005	2008	2015	2025	Safety
	Base	Attainment	Interim	Maintenance	Margin
EGU Point	0	0	0	0	0.00
Non-EGU	2,220.61	2,419.41	1,360.31	561.03	1,858.38
Non-road	1,971.32	1,519.07	1,039.80	558.76	960.31
Area	358.62	364.36	358.58	354.47	9.89
On-road	4,106.81	3,444.07	1,843.80	989.57	2,454.50
TOTAL	8,657.36	7,746.91	4,602.49	2,463.83	5,283.08

Table 23 - Floyd County, Indiana NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	5,306.09	4,941.90	2,744.00	2,744.00	2,197.90
Non-EGU	0.19	0.19	0.2	0.2	-0.01
Non-road	754.09	611.02	379.02	176.87	434.15
Area	286.78	291.17	286.61	283.29	7.88
On-road	2,922.90	2,397.70	1,306.71	713.12	1,684.58
TOTAL	9,270.05	8,241.98	4,716.54	3,917.48	4,324.50

Table 24 - Jefferson County, Indiana NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005	2008	2015	2025	Safety
	Base	Attainment	Interim	Maintenance	Margin
EGU Point	22,620.90	20,546.70	12,822.00	12,822.00	7,724.70
Non-EGU	7.74	7.88	7.93	8.06	-0.18
Non-road	521.01	423.14	287.45	155.39	267.75
Area	152.26	155.62	153.02	151.57	4.05
On-road	521.05	403.83	199.31	109.9	293.93
TOTAL	23,822.96	21,537.17	13,469.71	13,246.92	8,290.25

Table 25 - Louisville, KY-IN Area NO_x Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2021 (tpy) – With CAIR

NOx	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
Bullitt, KY	3,743.88	3,620.63	2,613.68	2,404.87	1,215.76
Jefferson, KY	55,771.41	56,467.51	44,744.70	37,921.46	18,546.05
Clark, IN	8,657.36	7,746.91	4,602.49	2,463.83	5,283.08
Floyd, IN	9,270.05	8,241.98	4,716.54	3,917.48	4,324.50
Jefferson, IN	23,822.96	21,537.17	13,469.71	13,246.92	8,290.25
COMBINED NOx TOTAL	101,265.66	97,614.20	70,147.12	59,954.56	37,659.64

$\underline{SO_2}$

Table 26 – Bullitt County, Kentucky SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	0	0	0	0	0.00
Non-EGU	365.91	507.16	836.74	2,704.39	-2,197.23
Non-road	32.05	14.28	3.29	0.76	13.52
Area	94.94	96.47	98.41	100.36	-3.89
On-road	12.11	13.28	15.01	15.76	-2.48
TOTAL	505.01	631.19	953.45	2,821.27	-2,190.08

Table 27 - Jefferson County, Kentucky SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	42,852.96	38,684.02	38,684.02	38,684.02	0.00
Non-EGU	1,894.40	2,080.95	2,080.95	2,080.95	0.00
Non-road	714.33	778.68	960.48	1,297.16	-518.48
Area	0.00	0.00	0.00	0.00	0.00
On-road	95.26	101.00	102.55	100.43	0.57
TOTAL	45,556.95	41,644.65	41,828.00	42,162.56	-517.91

Table 28 - Clark County, Indiana SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	0	0	0	0	0.00
Non-EGU	3,190.07	3,493.53	1,349.85	122.3	3,371.23
Non-road	178.06	86.85	25.82	2.63	84.22
Area	138.17	140.18	135.94	131.87	8.31
On-road	20.72	22.22	22.83	23.10	-0.88
TOTAL	3,527.02	3,742.78	1,534.44	279.90	3,462.88

Table 29 - Floyd County, Indiana SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
EGU Point	56,666.70	40,433.40	5,660.62	5,660.62	34,772.78
Non-EGU	0	0	0	0	0.00
Non-road	78.04	33.26	10.68	1.62	31.64
Area	113.26	114.69	111.09	107.49	7.20
On-road	14.03	14.58	15.38	15.81	-1.23
TOTAL	56,872.03	40,595.93	5,797.77	5,785.54	34,810.39

Table 30 - Jefferson County, Indiana SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

Sector	2005	2008	2015	2025	Safety
	Base	Attainment	Interim	Maintenance	Margin
EGU Point	74,658.70	64,934.30	27,203.00	27,203.00	37,731.30
Non-EGU	0.11	0.11	0.11	0.11	0.00
Non-road	49.44	21.86	5.37	0.35	21.51
Area	73.19	75.45	73.37	71.99	3.46
On-road	2.1	2.09	1.97	2.01	0.08
TOTAL	74,783.54	65,033.81	27,283.82	27,277.46	37,756.35

Table 31 - Louisville, KY-IN Area SO₂ Emission Inventory Totals for Base Year 2005, Estimated 2008, and Projected 2015 and 2025 (tpy) – With CAIR

SO ₂	2005 Base	2008 Attainment	2015 Interim	2025 Maintenance	Safety Margin
Bullitt, KY	505.01	631.19	953.45	2,821.27	-2,190.08
Jefferson, KY	45,556.95	41,644.65	41,828.00	42,162.56	-517.91
Clark, IN	3,527.02	3,742.78	1,534.44	279.9	3,462.88
Floyd, IN	56,872.03	40,595.93	5,797.77	5,785.54	34,810.39
Jefferson, IN	74,783.54	65,033.81	27,283.82	27,277.46	37,756.35
COMBINED SO ₂ TOTAL	181,244.55	151,648.36	77,397.48	78,326.73	73,321.63

PM_{2.5}, NO_x, and SO₂

Table 32 - Louisville, KY-IN Area Comparison of 2008 attainment year and 2015 and 2025 projected emission estimates (tpy)

	2008 Base	2015 Interim	2015 Projected Decrease	2025 Maintenance	2025 Projected Decrease
PM _{2.5}	7,506.62	6,521.57	985.05	7,010.88	495.74
NO _x	97,614.20	70,147.12	27,467.08	59,954.56	37,659.64
SO ₂	151,648.36	77,397.48	74,250.88	78,326.73	73,321.63

As shown in Table 32, $PM_{2.5}$ emissions in the nonattainment area are projected to decrease by 985.05 tpy in 2015 and 495.74 tpy in 2025. NO_x emissions in the nonattainment area are projected to decrease by 27,467.08 tpy in 2015 and 37,659.64 tpy in 2025. SO_2 emissions in the nonattainment area are projected to decline by 74,250.88 tpy in 2015 and 73,321.63 in 2025.

Area source emissions and, to a lesser extent, point sources show an increase due to expectations that the population will grow in this area; however, cleaner vehicles and fuels are expected to be in place in 2009 and 2018, and the CSAPR will be implemented in 2012 and 2014. These programs will cause an overall drop in all three pollutants emissions. Additional decreases resulted from U.S. EPA rules covering Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulfur Control Requirements, Highway Heavy-Duty Engine Rule, and the Non-Road Diesel Engine Rule.

In addition to the above rules, KYDAQ also is anticipating the approval of Regional Haze/BART SIPs by the spring of 2012 and regional area reductions to NO_x, SO₂, and PM_{2.5}.

Permanent and Enforceable Emission Reductions, Requirement 4 of 5

A demonstration that improvement in air quality between the year violations occurred and the year attainment was achieved is based on permanent and enforceable emission reductions and not on temporary adverse economic conditions or unusually favorable meteorology.

Background

Ambient air quality data from all monitoring sites indicate that air quality met the NAAQS for PM_{2.5} in 2008-2010. U.S. EPA's redesignation guidance (p 9) states: "A state may generally demonstrate maintenance of the NAAQS by either showing that future emissions of a pollutant or its precursors will not exceed the level of the attainment inventory, or by modeling to show that the future mix of sources and emissions rates will not cause a violation of the NAAQS."

Demonstration

Permanent and enforceable reductions of $PM_{2.5}$, NO_x , and SO_2 emissions have contributed to the attainment of the annual $PM_{2.5}$ standard. Some of these reductions were due to the application of tighter federal standards on non-road diesel vehicles (Clean Air Non-road Diesel Rule, the application of tighter federal standards on new vehicles, Title IV of the CAA, the NO_x SIP Call, CAIR/CSAPR, and federal consent decrees which required the reductions of SO_2 and NO_x emissions from utility sources. These reductions are compared in Table 33. Reductions achieved are discussed in greater detail under Chapter Five.

Table 33 - Louisville, KY-IN Area Combined Comparison of 2005 base year and 2008 attainment year on-road and EGU reductions

	2005	2008
On-road PM _{2.5}	1,055.61	923.37
On-road NO _x	32,744.55	28,160.45
On-road SO ₂	144.22	153.17
Non-road PM _{2.5}	782.05	742.30
Non-road NO _x	14,377.45	14,311.02
Non-road SO ₂	1051.92	934.93
$\mathbf{EGU}\mathbf{PM}_{2.5}$	3,443.00	3,078.56
EGU NO _x	48,103.47	48,237.74
$\mathbf{EGU}\mathbf{SO}_2$	174,178.36	144,051.72

Provisions for Future Inventory Updates, Requirement 5 of 5

Provisions for future annual updates of the inventory to enable tracking of the emission levels, including an annual emission statement from major sources.

Demonstration

In Kentucky, major point sources in all counties are required to submit air emissions information annually, in accordance with U.S. EPA's Consolidated Emissions Reporting Rule (CERR). KYDAQ prepares a new periodic inventory for all PM_{2.5} precursor emission sectors every three years. These PM_{2.5} precursor inventories will be prepared for future years as necessary to comply with the inventory reporting requirements established in the CFR. Emissions information will be compared to the 2008 attainment year and the 2025 projected maintenance year inventories to assess emission trends, as necessary, and to assure continued compliance with the annual PM_{2.5} standard.

CHAPTER FIVE – CONTROL MEASURES AND REGULATIONS

CAA Section 107(d)(3)(E)(v)

Nonattainment Areas to Implement RACM and RACT, Requirement 1 of 6

Section 172(c)(1) of the 1990 CAA Amendments requires states with nonattainment areas to implement Reasonable Available Control Measures (RACM) and Reasonable Available Control Technology (RACT).

Background

Section 172(c)(1) of the 1990 CAA Amendments requires states with nonattainment areas to submit a SIP providing for implementation of all RACM and expeditiously as practicable (including such reductions in emissions from existing sources in the area as may be obtained through the adoption, at a minimum, of RACT).

U.S. EPA's Implementation Rule interprets this requirement in great detail. U.S. EPA determined RACT is as part of the broader RACM analysis and identification of all measures (for stationary, mobile, and area sources) that are technically and economically feasible, and that would collectively contribute to advancing the attainment date (i.e. by one year or more). States are required to use a combined approach to RACT and RACM that identifies potential measures that are reasonable; uses modeling to identify the attainment date that is as expeditious as practicable; and selects the appropriate RACT and RACM. The Implementation Rule also established that EGU compliance with CAIR is equivalent to RACM/RACT for a state that fulfills the CAIR emission reduction requirements.

Demonstration

In 1979, 1981, and 1998 Kentucky promulgated rules requiring RACM for particulate emissions from stationary sources. Statewide RACT rules have been applied to all new sources locating in Kentucky since that time. RACT requirements are incorporated into permits along with monitoring, recordkeeping, and reporting necessary to ensure ongoing compliance. KYDAQ also has an enforcement program to address violations. The KYDAQ RACT rules are found in 401 KAR Chapter 59'

In addition, KYDAQ promulgated NO_x SIP Call rules (401 KAR 51:150, 51:160, 51:170), CAIR (401 KAR 51:210, 51:220, 51:230), and NO_x RACT rules (401 KAR Chapter 59) over the past several years. Emissions from EGUs make up a significant contribution to Kentucky's inventory. Beginning in 2009, Kentucky implemented CAIR which has, and will, provide for significant reductions in NO_x , $PM_{2.5}$, and SO_2 until CSAPR requirements take place which will provide even greater reductions.

Reasonable Further Progress, Requirement 2 of 6

Section 172(c)(2) of the 1990 CAA Amendments requires attainment demonstration SIPs for nonattainment areas to show reasonable further progress (RFP).

Background

U.S. EPA's Implementation Rule requires RFP only for any area which a state projects an attainment date beyond 2010. The RFP would provide emission reductions showing linear progress between 2002 and 2009. If a state demonstrates attainment will occur by 2010 or earlier, U.S. EPA considers the attainment demonstration to demonstrate achievement of RFP.

Demonstration

In Kentucky's attainment demonstration submitted on December 3, 2008, Kentucky demonstrated (using a weight of evidence approach) that attainment would be achieved in this area by 2009; and therefore, it was not necessary to submit a separate RFP plan.

Emission Inventory, Requirement 3 of 6

Section 172(c)(3) requires a state to submit a comprehensive inventory of actual emissions.

Background

Section 172(c)(3) requires a state to submit a comprehensive inventory of actual emissions in the area, including the requirement for periodic revisions as determined necessary. 40 CFR 51.1008 requires such inventory to be submitted within three years of designation and requires a baseline emission inventory for calendar year 2002 or other suitable year to be used for attainment planning.

Demonstration

The 2002 comprehensive inventory was submitted to U.S. EPA with Kentucky's PM_{2.5} attainment demonstration SIP submitted on December 3, 2008 (Appendix E). Kentucky updates the emissions inventory in accordance with U.S. EPA's CERR rule (i.e. emissions statements). As discussed in Chapter 4, provisions for future inventory updates, KYDAQ submits, and commits to submit, emission inventories every three years.

Implementation of Previous SIP Revisions, Requirement 4 of 6

Evidence that control measures required in previous PM_{2.5} SIP revisions have been fully implemented.

Background

In addition to the historic RACT requirements for PM, the U.S. EPA NO_x SIP Call required 22 states to pass rules that would result in significant emission reductions from large EGUs, industrial boilers, and cement kilns in the eastern United States. Kentucky adopted these rules in 2001. NO_x SIP Call requirements are incorporated into permits along with monitoring, recordkeeping, and reporting necessary to ensure ongoing compliance. KYDAQ also has an enforcement program to address violations. Compliance is tracked through the Clean Air Markets data monitoring program. Beginning in 2004, this rule accounts for a reduction of approximately 31% of all NO_x emissions statewide compared to previous uncontrolled years. The other 21 states also have adopted similar rules.

On March 10, 2004, the U.S. EPA promulgated the CAIR. KYDAQ submitted a CAIR SIP to U.S. EPA on July 19, 2007. The CAIR SIP was approved as a direct final action on October 4, 2007 [74 FR 48857]. The Kentucky administrative regulations developed for the

CAIR SIP became effective December 3, 2007 (401 KAR 51:210, 230). Those regulations are still in place.

Emission reductions required by CSAPR will begin January 2, 2012 under the first phase of compliance for SO₂ and annual NO_x, and May 1, 2012 for ozone season NO_x reductions. The second phase of SO₂ reductions begins January 1, 2014. By 2014, CSAPR will reduce power plant SO₂ emissions by 73% from 2005 levels while power plant NO_x emissions will drop 54%.

Demonstration

Federal Control Measures

NO_x SIP Call Rule

Controls for EGUs under the NO_x SIP Call formally commenced May 31, 2004. Emissions covered by this program have been trending downward since 1998 with larger reductions occurring in 2002 and 2003. Data taken from the U.S. EPA Clean Air Markets web site, quantify the gradual NO_x reductions that have occurred in Kentucky as a result of Title IV, 1990 CAA Amendments and the beginning of the NO_x SIP Call Rule. Kentucky developed the NO_x Budget Trading Program rules in 401 KAR Chapter 51 in response to the SIP Call. 401 KAR Chapter 51 regulates EGUs and certain non-EGUs under a cap and trade program based on an 85% reduction of NO_x emissions from EGUs and a 60% reduction of NO_x emissions from non-EGUs, compared to historical levels. This cap was in place through 2008, at which time the CAIR program superseded it as discussed above. Chapter 4, demonstration of maintenance, discusses the reductions Kentucky has seen as a result of CAIR.

On April 21, 2004, U.S. EPA published Phase II of the NO_x SIP Call that established a budget for large (greater than 1 ton per day emissions) stationary internal combustion engines, and for large utility and industrial boilers. 401 KAR 51:150 regulates stationary internal combustion engines, and 401 KAR 51:160 regulates large utility and industrial boilers, both were effective February 2, 2006. U.S. EPA approved this revision to the SIP on November 23, 2009.

Tier II Emission Standards for Vehicles and Gasoline Sulfur Standards

On February 10, 2000, the U.S. EPA finalized a federal rule [65 FR 6698] to significantly reduce emissions from cars and light trucks, including sport utility vehicles (SUVs). Under this rule, automakers are required to sell cleaner cars, and refineries are required to make cleaner, low-sulfur gasoline. The federal rule was phased in between 2004 and 2009. U.S. EPA has estimated that NO_x emission reductions are approximately 77% for passenger cars, 86% for smaller SUVs, light trucks, and minivans; and 65% to 95% reductions for larger SUVs, vans, and heavier trucks. Emission reductions of VOC are approximately 12% for passenger cars; 18% for smaller SUVs, light trucks, and minivans; and 15% for larger SUVs, vans, and heavier trucks. The Tier II rule also reduced the sulfur content of gasoline to 30 parts per million (ppm) starting in January of 2006. Most gasoline sold in Kentucky prior to January 2006 had a sulfur content of approximately 300 ppm. Sulfur occurs naturally in gasoline, but interferes with the operation of catalytic converters on vehicles resulting in higher NO_x emissions. Low-sulfur gasoline was necessary to achieve the Tier II vehicle emission standards.

Heavy-Duty Gasoline and Diesel Highway Vehicles Standards

On October 6, 2000, the U.S. EPA promulgated a rule [65 FR 59896] to reduce NO_x and VOC emissions from heavy-duty gasoline and diesel highway vehicles that began to take effect in 2004. A second phase of standards and testing procedures, began in 2007 to reduce particulate matter from heavy-duty highway engines, and reduce highway diesel fuel sulfur content to 15 ppm since the sulfur in fuel damages high efficiency catalytic exhaust emission control devices. The total program should achieve a 90% reduction in PM emissions and a 95% reduction in NO_x emissions for new engines using low-sulfur diesel, compared to existing engines using higher-content sulfur diesel.

<u>Large Nonroad Diesel Engines Rule</u>

On May 11, 2004, the U.S. EPA promulgated a rule [69 FR 26222] for large nonroad diesel engines, such as those used in construction, agricultural, and industrial equipment, to be phased in between 2008 and 2014. The nonroad diesel rule also reduced the allowable sulfur in nonroad diesel fuel by over 99% by 2010. The U.S. EPA estimated that affected nonroad diesel engines currently account for 44% of total diesel PM emissions and 12% of total NO_x from mobile sources nationwide. Nonroad diesel fuel currently averages 3,400 ppm sulfur. The rule limited nonroad diesel sulfur content to 500 ppm in 2006 and 15 ppm in 2010. The combined diesel engine rules reduce NO_x and PM emissions from large nonroad diesel engines by over 90%, compared to current nonroad engines using higher-content sulfur diesel.

Nonroad Spark-Ignition Engines and Recreational Engines Standard

On November 8, 2002, the U.S. EPA promulgated a rule [67 FR 68242] that regulate NO_x , hydrocarbons (HC) and carbon monoxide (CO) for groups of previously unregulated nonroad engines. The standard applies to all new engines sold in the United States and imported after these standards began and applies to large spark-ignition engines (forklifts and airport ground service equipment), recreational vehicles (off-highway motorcycles and all-terrain-vehicles), and recreational marine diesel engines. The regulation varies based upon the type of engine or vehicle.

The large spark-ignition engines contribute to ozone formation and ambient CO and PM levels in urban areas. Tier 1 of this standard was implemented in 2004 while Tier 2 began in 2007. Like the large spark-ignition, recreational vehicles contribute to PM levels, as well ozone formation and ambient CO. For the off-highway motorcycles and all-terrain-vehicles, model year 2006, the new exhaust emissions standard was phased-in by 50% and for model years 2007 and later at 100%. Recreational marine diesel engines over 37 kilowatts are used in yachts, cruisers, and other types of pleasure craft. Recreational marine engines contribute to PM levels and ozone formation, especially in marinas. Depending on the size of the engine, the standard began to be phased-in during 2006.

When all of the nonroad spark-ignition engines and recreational engines standards are fully implemented, an overall 72% reduction in HC, 80% reduction in NO_x , and 56% reduction in CO emissions are expected by 2020. These controls will help reduce ambient concentrations of $PM_{2.5}$, CO, and ozone.

Reciprocating Internal Combustion Engine Standard

On May 3, 2010, the U.S. EPA promulgated a rule [75 FR 9648] to regulate emissions of air toxics from existing diesel powered stationary reciprocating internal combustion engines that meet specific site rating, age, and size criteria. These engines are typically used at industrial facilities (e.g. power,

chemical, and manufacturing plants) to generate electricity for compressors and pumps and to produce electricity to pump water for flood and fire control during emergencies.

The standard applies to stationary diesel engines: located at an area source of air toxics and constructed or reconstructed before June 12, 2006; located at a major source of air toxics, having a rating of less than or equal to 500 horsepower, and constructed or reconstructed before June 12, 2006; or located at a major source of air toxics for non-emergency purposes, having a rating of greater than 500 horsepower, and constructed or reconstructed before December 19, 2002.

Operators of existing engines will be required to install emissions control equipment that will limit air toxics up to 70% for stationary non-emergency engines with a rating greater than 300 horsepower; perform emission tests to demonstrate engine performance and compliance with rule requirements; and burn ultra-low sulfur fuel in stationary non-emergency engines with a rating greater than 300 horsepower.

When all of the reciprocating internal combustion engine standards are fully implemented in 2013, U.S. EPA estimates that emissions from these engines will reduce air toxics by approximately 1,000 tpy, PM_{2.5} by 2,800 tpy, CO by 14,000 tpy, and VOC by 27,000 tpy.

Category 3 Marine Diesel Engine Standards

On June 29, 2010, the U.S. EPA promulgated a rule [75 FR 22896] establishing more stringent exhaust emission standards for new large marine diesel engines with per-cylinder displacement at or above 30 liters (commonly referred to as Category 3 compression-ignition marine engines) as part of a coordinated strategy to address emissions from all ships that effect U.S. air quality. These emission standards are equivalent to those adopted in the amendments to Annex VI to the International Convention for the Prevention of Pollution from Ships (MARPOL Annex VI). The emission standards apply in two stages. Near-term standards for newly built engines will apply beginning in 2011 and long-term standards requiring an 80% reduction in NO_x emissions will begin in 2016.

U.S. EPA is adopting changes to the diesel fuel program to allow for the production and sale of diesel fuel with up to 1,000 ppm sulfur for use in Category 3 marine vessels. The regulation forbids production and sale of fuels with more than 1,000 ppm sulfur for use in most U.S. waters, unless operators achieve equivalent emission reductions in other ways. U.S. EPA is also adopting provisions to apply some emission and fuel standards to foreign-flagged and in-use vessels that are covered by MARPOL Annex VI.

When this strategy is fully implemented in 2030, U.S. EPA estimates that NO_x and $PM_{2.5}$ emissions in the U.S. will be reduced by approximately 1.2 million tpy and 143,000 tpy, respectively.

State Control Measures

New Process Operations – 401 KAR 59:010

New Process Operations provides for the control of emissions for affected facilities or sources located in nonattainment areas as well as attainment areas. This regulation will continue to apply to

those affected facilities or sources if the area is redesignated to attainment or unclassified status, unless a state implementation plan which provides for other controls is approved by the U.S. EPA.

RACT/RACM – 401 KAR 50:012

The Kentucky $PM_{2.5}$ nonattainment/maintenance areas will continue to implement the RACT/RACM requirements promulgated by the regulation. The analysis in the previously submitted "Kentucky Fine Particulate Matter ($PM_{2.5}$) Attainment Demonstration for the Louisville, KY-IN, Cincinnati-Middletown, OH-KY-IN, and Huntington-Ashland, WV-KY-OH $PM_{2.5}$ Nonattainment Areas" (December 2008) established that these measures contributed to the region being able to comply with the $PM_{2.5}$ NAAQS (1997).

Open Burning Bans – 401 KAR 63:005

In 2005 Kentucky revised the open burning regulation to prohibit most types of open burning in PM_{2.5} nonattainment/maintenance areas within Kentucky during the period of May-September.

Fugitive Emissions – 401 KAR 63:010

This regulation provides for the control of fugitive emissions in the state.

<u>Clean Air Interstate Rule – 401 KAR 51:210-230</u>

In response to the CAIR, Kentucky developed regulations 401 KAR 51:210, CAIR NO_x annual trading program; 401 KAR 51:220, CAIR NO_x ozone season trading program; and 401 KAR 51:230, CAIR SO₂ trading program. These regulations became effective February 2, 2007.

Under the rules, Kentucky has caps as follows:

• Annual NO_x: 83,205 tons for 2009-2014 and

69,337 tons for 2015 and each year thereafter;

• Ozone season NO_x : 36,109 tons for 2009-2014 and

30,651 tons for 2015 and each year thereafter;

• Annual SO₂: 188,773 tons for 2010-2014 and

132,141 tons for 2015 and each year thereafter.

The State's NO_x allocations have been distributed based on allocation methodologies in regulations 401 KAR 51:210 and 401 KAR 51:220. The U.S. EPA determined the SO₂ allocations, which are based on the acid rain program. This rule does not preclude Kentucky from adopting additional emission reduction requirements for covered sources if necessary to attain or maintain an ambient air quality standard.

The intent of the CAIR program was for national NO_x emissions to be cut from 4.5 million tons in 2004, to a cap of 1.5 million tons by 2009, and 1.3 million tons in 2018 in 28 eastern states. As a result of CAIR, the U.S. EPA projected that in 2009 Kentucky emissions of NO_x would decrease from a baseline of 176,000 tpy without CAIR to 107,000 tpy with CAIR. Projections also demonstrated that in 2010, emissions of SO_2 would decrease from a baseline of 447,000 tpy without CAIR to 341,000 tpy with CAIR. The U.S. EPA projects by 2015, NO_x emissions will decrease

further to 77,000 tpy while emissions of SO₂ will decrease to 270,000 tpy within Kentucky. (Source: http://www.epa.gov/CAIR/ky.html)

As discussed previously, Kentucky incorporated these expected CAIR reductions into the redesignation request inventories and projections regarding SO₂ and NO_x but did not incorporate CAIR reductions into the PM_{2.5} inventory. However, it should also be noted that Kentucky's SIP-approved NO_x SIP Call program and regulations, and the CAIR program and regulations, are still in place and providing reductions. Further, the requirements of CSAPR will ensure additional emission reductions. All controls noted thus far for redesignation are expected to continue into the future. Those control measures will continue providing reduction for particulate precursors and emissions throughout the maintenance period.

In addition to the rules discussed above, various maximum available control technology (MACT) rules have or will be promulgated by U.S. EPA and adopted by KYDAQ, providing additional particulate controls. These include:

MACT Controls

RICE MACT.

The U.S. EPA published a final rule August 10, 2010 [75 FR 51570] that provided national emission standards for hazardous air pollutants (NESHAP) for existing stationary spark ignition (SI) reciprocating internal combustion engines (RICE). This final rule addresses emissions from existing stationary SI engines less than or equal to 500 HP located at major sources and all existing stationary SI engines located at area sources. Emission control technologies that will be installed on stationary RICE units to reduce HAP will also reduce CO and VOC, and for rich burn engines will also reduce NO_X. This final rule is expected to reduce emissions of NO_X from stationary RICE units located at area sources by 96,000 tons per year (tpy) in the year 2013.

Major/Area Boiler MACT

On March 21, 2011, the U. S. EPA finalized a rule [76 FR 15608] that will reduce emissions of HAP from new and existing industrial, commercial, and institutional boilers and process heaters at major source facilities. Additionally the U.S. EPA finalized a similar rule [76 FR 15554] to reduce emissions of HAP from two area source categories: industrial boilers, and commercial and institutional boilers. The effective date of May 20, 2011 for both rules was delayed [76 FR 28662] until such time as judicial review is no longer pending or until final reconsideration of the rules is completed, whichever is earlier.

Utility MACT

On May 3, 2011 the U.S. EPA proposed a rule that will set standards to reduce air pollution from coal and oil-fired power plants [76 FR 24976]. All existing sources must comply in three years, but individual sources can obtain an additional year if technology cannot otherwise be installed in time. The proposed rule establishes emission standards for mercury, acid gases (hydrochloric acid (HCl), as a surrogate), and non-mercury metallic toxic pollutants (PM as a surrogate with alternative surrogate of total metal air toxics). Each year this rule will:

• Prevent 91% of the mercury in coal burned in power plants from being emitted to the air;

- Reduce acid gas emissions from power plants by 91%; and
- Reduce SO₂ emissions from power plants by 55 percent.

New Source Review Provisions, Requirement 5 of 6

Acceptable provisions to provide for new source review.

Background

Kentucky has a longstanding and fully implemented SIP-approved regulation 401 KAR 51:052 that establishes air quality permitting requirements for the construction or modification of major stationary sources located within, or impacting upon, nonattainment areas. The regulation ensures that the construction or modification will not contribute significantly to Kentucky's achievement of reasonable further progress of a NAAQS. Similarly, SIP-approved regulation 401 KAR 51:017 establishes air quality permitting requirements for the construction or modification of major stationary sources located in an area designated attainment or unclassifiable. The regulation ensures that the construction or modification will not significantly deteriorate the air quality of the area.

Demonstration

Any facility that is not listed in the 2005 emission inventory, or for the closing of which credit was taken in demonstrating attainment, will not be allowed to construct, reopen, modify, or reconstruct without meeting all applicable NSR requirements. Once the area is redesignated, KYDAQ will implement NSR through the PSD program.

Assurance of Continued Controls, Requirement 6 of 6

Assure that all existing control measures will remain in effect after redesignation unless the State demonstrates through modeling that the standard can be maintained without one or more control measures.

Demonstration

Kentucky commits to maintaining the aforementioned control measures after redesignation. Kentucky hereby commits that any changes to its rules or emission limits applicable to $PM_{2.5}$, SO_2 , or NO_x as required for maintenance of the annual $PM_{2.5}$ standard in the Louisville, KY-IN area, will be submitted to U.S. EPA for approval as a SIP revision.

Kentucky has the legal authority and necessary resources to actively enforce any violations of its rules or permit provisions. After redesignation, it intends to continue enforcing all rules that relate to the emission of PM_{2.5} precursors in the Louisville, KY-IN area.

CHAPTER SIX - CONTINGENCY MEASURES

CAA Section 107(d)(3)(E)(iv)

Commitment to Review Maintenance Plan, Requirement 1 of 4

A commitment to submit a revised plan eight years after redesignation.

Demonstration

Kentucky hereby commits to review its maintenance plan eight years after redesignation, as required by Section 175(A) of the CAA.

Commitment for Contingency Measures, Requirement 2 of 4

A commitment to expeditiously enact and implement additional contingency control measures in response to exceeding specified predetermined levels (triggers) or in the event that future violations of the ambient standard occur.

Demonstration

Kentucky hereby commits to adopt and expeditiously implement necessary corrective actions in the following circumstances:

In the event that a measured value of the weighted annual mean is $15.5\mu g/m^3$ or greater occurs in a single calendar year in any portion of the maintenance area, the state will evaluate existing control measures to determine if any further emission reduction measures should be implemented at that time.

In the event of a monitored violation of the annual PM_{2.5} NAAQS in the Louisville, KY-IN maintenance area, Kentucky commits to adopt, within nine months, one or more of the following contingency measures to re-attain the standard. All regulatory programs will be implemented within 18 months after the triggering monitored violation.

Control Measure Selection and Implementation

Adoption of any additional control measures is subject to the necessary administrative and legal process. This process will include publication of notices, an opportunity for public hearing, and other measures required by Kentucky law for rulemaking.

If a new measure/control is already promulgated and scheduled to be implemented at the federal or state level, and that measure/control is determined to be sufficient to address the upward trend in air quality, additional local measures may be unnecessary. Furthermore, Kentucky will submit to U.S. EPA an analysis to demonstrate the proposed measures are adequate to return the area to attainment.

Potential Contingency Measures, Requirement 3 of 4

A list of potential contingency measures that would be implemented in such an event.

Demonstration

Contingency measures to be considered will be selected from a comprehensive list of measures deemed appropriate and effective at the time the selection is made. The selection of measures will be based on cost-effectiveness, emission reduction potential, economic and social considerations or

other factors that KYDAQ deems appropriate. KYDAQ will solicit input from all interested and affected persons in the maintenance area prior to selecting appropriate contingency measures. Because it is not possible at this time to determine what control measures will be appropriate at an unspecified time in the future, the list of contingency measures outlined below is not exhaustive.

- Implementation of a program to require additional emission reductions on stationary sources;
- Implementation of fuel programs, including incentives for alternative fuels;
- Restriction of certain roads or lanes, or construction of such roads or lanes for use by passenger buses or high-occupancy vehicles;
- Trip-reduction ordinances;
- Employer-based transportation management plans, including incentives;
- Programs to limit or restrict vehicle use in downtown areas, or other areas of emission congestion, particularly during periods of peak use;
- Programs for new construction and major reconstructions of paths or tracks for use by pedestrians or non-motorized vehicles when economically feasible and in the public interest;
- Diesel reduction emission strategies, including diesel retrofit programs.

Kentucky also reserves the right to implement other contingency measures if new control programs should be developed and deemed more advantageous for the area. No contingency measure shall be implemented without providing the opportunity for full public participation during which the relative costs and benefits of individual measures, at the time they are under consideration, can be fully evaluated.

List of PM_{2.5}, SO₂, and NO_x Sources, Requirement 4 of 4

A list of $P\overline{M_2}_5$, SO_2 , and NO_x sources potentially subject to future additional control requirements.

Demonstration

The following is a list of $PM_{2.5}$, SO_2 , and NO_x sources potentially subject to future controls.

- ICI Boilers
- EGUs;
- process heaters;
- internal combustion engines;
- combustion turbines;
- other sources greater than 100 tons per year;
- fleet vehicles:
- concrete manufacturers;
- aggregate processing plants;

CHAPTER SEVEN - PUBLIC PARTICIPATION

Kentucky conducted a public hearing to receive comments on this proposed SIP revision to redesignate the Kentucky portion of the Louisville KY-IN annual PM_{2.5} Nonattainment Area on February 3, 2012, in the conference room of the Louisville Metro Air Pollution Control District, 850 Barret Street, Louisville, Kentucky. A copy of the Division for Air Quality's response to comments received during that public review period is included in Appendix F.

CHAPTER EIGHT - CONCLUSIONS

The Louisville, KY-IN annual PM_{2.5} nonattainment area has attained the 1997 annual NAAQS for PM_{2.5} and complied with the applicable provisions of the 1990 Amendments to the CAA regarding redesignations of PM_{2.5} nonattainment areas. Documentation to that effect is contained herein. Kentucky has prepared a redesignation request and maintenance plan that meet the requirements of Section 110(a)(1) of the 1990 CAA.

Based on this presentation, the Louisville, KY-IN annual $PM_{2.5}$ nonattainment area meets the requirements for redesignation under the CAA and U.S. EPA guidance. Kentucky has performed an analysis that demonstrates the air quality improvements are due to permanent and enforceable measures. Furthermore, since this area is subject to significant transport of pollutants, significant regional SO_2 and NO_x reductions will ensure continued compliance (maintenance) with the standard with an increasing margin of safety.

The Commonwealth of Kentucky hereby requests that the Louisville, KY-IN annual $PM_{2.5}$ nonattainment area be redesignated to attainment simultaneously with U.S. EPA approval of the maintenance plan provisions contained herein.

This page left intentionally blank

Appendix A

U.S. EPA Air Quality Systems (AQS)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

User ID: NOQ DESIGN VALUE REPORT

Report Request ID: 901294 Report Code: AMP480 Aug. 18, 2011

GEOGRAPHIC SELECTIONS

Tribal

Code State County Site Parameter POC City AQCR UAR CBSA CSA Region Method Duration Begin Date End Date

21 078 18 078

PROTOCOL SELECTIONS

Parameter

Classification Parameter Method Duration

DESIGN VALUE 88101

SELECTED OPTIONS

Option Type Option Value

USER SITE METADATA STREET ADDRESS

MERGE PDF FILES YES

QUARTERLY DATA IN WORKFILE NO

WORKFILE DELIMITER ,

SINGLE EVENT PROCESSING EXCLUDE REGIONALLY CONCURRED EVENTS

GLOBAL DATES

Start Date End Date

2010 2010

APPLICABLE STANDARDS

Standard Description

PM25 24-hour 2006

PM25 Annual 2006

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
AIR QUALITY SYSTEM
PRELIMINARY DESIGN VALUE REPORT

Report Date: Aug. 18, 2011

Notes:

- 1. Warning: Computed design values are a snapshot of the data at the time the report was run (may not be all data for year).
- 2. Annual Values not meeting completeness criteria are marked with an asterisk (' * ').

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM

Report Date: Aug. 18, 2011

PRELIMINARY DESIGN VALUE REPORT

Pollutant: Site-LevelPM2.5 - Local Conditions(88101) Design Value Year: 2010

Standard Units: Micrograms/cubic meter (LC)(105)

REPORT EXCLUDES MEASUREMENTS WITH REGIONALLY CONCURRED EVENT FLAGS.

NAAQS Standard: PM25 24-hour 2006 / PM25 Annual 2006

Statistic: Annual Weighted Mean Level: 15

Statistic: Annual 98th Percentile Level: 35 State Name: Indiana

	1		201	0				200	9		I		200	8		24-н	our	Annu	al
	Cred.	Comp.	98th	Wtd.		Cred.	Comp.	98th	Wtd.		Cred.	Comp.	98th	Wtd.		Design	Valid	Design	Valid
STREET ADDRESS	<u>Days</u>	Qrtrs	<u>Perctil</u>	Mean	<u>Cert.</u>	<u>Days</u>	Qrtrs	<u>Perctil</u>	Mean	Cert.	Days	Qrtrs	<u>Perctil</u>	Mean	<u>Cert.</u>	<u>Value</u>	Ind.	<u>Value</u>	Ind.
18-019-0006	344	4	29.2	14.7	N	348	4	26.1	13.0	\underline{N}	335	4	33.1	14.5	N	29	Y	14.1	Y
JEFFERSONVILLE PFAU- 719 WA	ALNUT S	ST																	
18-019-0008	117	4	24.8	12.5	N	112	4	22.0	10.8	\underline{N}	51	2	27.5*	13.4*	Y	25	N	12.2	N
12500 St. Rd. 62-Charlestow	wn Stat	te Parl	k/ India	na Armory	7														
18-043-1004	115	4	29.7	13.8	N	118	4	23.6	11.9	\underline{N}	112	4	26.8	12.7	Y	27	Y	12.8	Y
2230 GREEN VALLEY ROAD/GREE	EN VALI	LEY ELE	EMENTARY	SCHOOL															

Notes:

^{1.} Warning: Computed design values are a snapshot of the data at the time the report was run (may not be all data for year).

^{2.} Annual Values not meeting completeness criteria are marked with an asterisk ('*').

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM

PRELIMINARY DESIGN VALUE REPORT

Pollutant: Site-LevelPM2.5 - Local Conditions (88101)

Design Value Year: 2010

Standard Units: Micrograms/cubic meter (LC) (105)

REPORT EXCLUDES MEASUREMENTS WITH REGIONALLY CONCURRED EVENT FLAGS.

Report Date: Aug. 18, 2011

NAAQS Standard: PM25 24-hour 2006 / PM25 Annual 2006

Statistic: Annual Weighted Mean Level: 15

Statistic: Annual 98th Percentile Level: 35 State Name: Kentucky

	1		201	0		I		200	9		1		200	8		24-H	our	Annu	al
Site_ID /	Cred.	Comp.	98th	Wtd.		Cred.	Comp.	98th	Wtd.		Cred.	Comp.	98th	Wtd.		Design	Valid	Design	Valid
STREET ADDRESS	Days	Qrtrs	<u>Perctil</u>	Mean	Cert.	<u>Days</u>	Qrtrs	<u>Perctil</u>	Mean	Cert.	Days	Qrtrs	<u>Perctil</u>	Mean	_ <u>Cert.</u>	<u>Value</u>	Ind.	<u>Value</u>	Ind.
21-111-0043	353	4	27.5	13.5	N	352	4	24.3	12.2	<u>Y</u>	345	4	28.7	13.2	Y	27	Y	13.0	Y
37TH & SOUTHERN AVENUE																			
21-111-0044	348	4	28.8	13.7	N	353	4	25.7	12.5	<u>Y</u>	342	4	29.5	13.4	Y	28	Y	13.2	Y
1032 BEECHER AVE, WYANDOTT	E PARK																		
21-111-0048				*					*		116	4	30.7	13.4	Y	31	N	13.4	N
850 BARRET AVENUE																			
21-111-0051	61	4	26.1	14.8	N	61	4	24.7	11.6	<u>Y</u>	57	4	28.6	12.8	Y	26	Y	13.1	Y
7201 WATSON LN, WATSON LN	ELEMENT	TARY SO	CH																
21-111-0067	119	4	25.8	13.3	N	121	4	24.1	11.7	<u>Y</u>				*		25	N	12.5	N
2730 CANNONS LANE, BOWMAN	FIELD																		

Notes:

^{1.} Warning: Computed design values are a snapshot of the data at the time the report was run (may not be all data for year).

^{2.} Annual Values not meeting completeness criteria are marked with an asterisk ('*').

			TABLE T	WO					
Vessel	Number	Masthead lights, dis- tance to stbd of keel in me- ters; Rule 21(a)	Forward anchor light, dis- tance below flight dk in meters; § 2(K), Annex I	Forward anchor light, num- ber of; Rule 30(a) (i)	AFT an- chor light, distance below flight dk in me- ters; Rule 21(e), Rule 30(a)(ii)	AFT an- chor light, number of; Rule 30(a) (ii)	Side lights, distance below flight dk in meters; § 2 (g), Annex I	Side lights, distance forward of forward masthead light in meters; § 3(b), Annex I	Side lights, distance inboard of ship's sides in meters; § 3(b), Annex I
*	*	*	*		*	*		*	
	SSN 714	0.41							
USS CHICAGOUSS KEY WEST	SSN 721	0.41 0.41							
000 KET WEST	JOIN 722	0.41						•••••	
*	*	*	*		*	*		*	
USS HELENA	SSN 725	0.41							
*	*	*	*		*	*		*	

Approved: February 23, 2011.

M. Robb Hyde,

Commander, JAGC, U.S. Navy, Deputy Assistant Judge Advocate General (Admiralty and Maritime Law).

Dated: March 1, 2011.

D.J. Werner,

Lieutenant Commander, Judge Advocate General's Corps, U.S. Navy, Federal Register Liaison Officer.

[FR Doc. 2011-5168 Filed 3-8-11; 8:45 am]

BILLING CODE 3810-FF-P

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 52

[EPA-R05-OAR-2010-0210; FRL-9277-2]

Approval and Promulgation of Air Quality Implementation Plans; Indiana; Kentucky; Louisville Nonattainment Area; Determination of Attainment of the 1997 Annual Fine Particle Standard

AGENCY: Environmental Protection

Agency (EPA). **ACTION:** Final rule.

SUMMARY: EPA is determining that the bi-state Louisville (Indiana and Kentucky) fine particle (PM_{2.5}) nonattainment area has attained the 1997 annual average PM_{2.5} National Ambient Air Quality Standard (NAAQS). This determination is based upon complete, quality-assured, and certified ambient air monitoring data for the 2007–2009 period showing that the area has monitored attainment of the annual PM_{2.5} NAAQS. Preliminary data for 2010 available to date are consistent with continued attainment. As a result of this determination, the requirements for the area to submit an attainment demonstration and associated reasonably available control measures

(RACM), a reasonable further progress (RFP) plan, contingency measures, and other planning State Implementation Plan (SIP) revisions related to attainment of the standards shall be suspended for so long as the area continues to attain the annual PM_{2.5} NAAQS.

DATES: This final rule is effective on March 9, 2011.

ADDRESSES: EPA has established a docket for this action under Docket ID No. EPA-R05-OAR-2010-0210. All documents in the docket are listed on the http://www.regulations.gov Web site. Although listed in the index, some information is not publicly available, i.e., Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either electronically through http://www.regulations.gov or in hard copy at the Environmental Protection Agency, Region 5 office, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604, or in Region 4 at the Environmental Protection Agency, Air, Pesticides and Toxics Management Division, 61 Forsyth Street, SW., Atlanta, Georgia. These facilities are open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding Federal holidays. We recommend that you telephone John Summerhays, Environmental Scientist, at (312) 886-6067 before visiting the Region 5 office or Joel Huev, Environmental Scientist, at (404) 562-9104 before visiting the Region 4 office.

FOR FURTHER INFORMATION CONTACT: John Summerhays, Environmental Scientist, Attainment Planning and Maintenance Section, Air Programs Branch (AR–18J),

Environmental Protection Agency, Region 5, 77 West Jackson Boulevard, Chicago, Illinois 60604, (312) 886–6067, summerhays.john@epa.gov. In Region 4, contact Joel Huey, Environmental Scientist, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, Georgia 30303–8960, (404) 562–9104, huey.joel@epa.gov.

SUPPLEMENTARY INFORMATION:

Throughout this document whenever "we," "us," or "our" is used, we mean EPA.

This **SUPPLEMENTARY INFORMATION** section is arranged as follows:

I. What action is EPA taking?

II. What is the background for this action? III. What did EPA propose?

II. What did EPA propose!

IV. What does the most recent monitoring data show?

V. What is the effect of this action? VI. When is this action effective? VII. Statutory and Executive Order Reviews

I. What action is EPA taking?

EPA is determining that the Louisville PM_{2.5} annual NAAQS nonattainment area (which includes Jefferson and Bullitt Counties in Kentucky and Clark and Floyd Counties and the Madison Township of Jefferson County in Indiana) has attained the 1997 annual PM_{2.5} NAAQS. This determination is based upon complete, quality-assured, and certified ambient air monitoring data for the 2007-2009 monitoring period that show that the area has monitored attainment of the 1997 annual PM_{2.5} NAAQS. Preliminary data available for 2010 are consistent with continued attainment.

II. What is the background for this action?

On July 18, 1997 (62 FR 36852), EPA established an annual $PM_{2.5}$ NAAQS at 15.0 micrograms per cubic meter (μg /

m³) based on a three-year average of annual mean PM_{2.5} concentrations. At that time, EPA also established a 24hour standard of 65 µg/m³ (today's action does not address the 24-hour standard). See 40 CFR 50.7. On January 5, 2005 (70 FR 944), EPA published its air quality designations and classifications for the 1997 $PM_{2.5}$ NAAQS based upon air quality monitoring data from those monitors for calendar years 2001-2003. These designations became effective on April 5, 2005. The Louisville area was designated nonattainment for the 1997 PM_{2.5} NAAQS. See 40 CFR 81.315 (Indiana) and 40 CFR 81.318 (Kentucky).

On October 17, 2006 (71 FR 61144), EPA retained the 1997 annual PM_{2.5} NAAQS at 15.0 µg/m3 based on a threeyear average of annual mean PM_{2.5} concentrations, and promulgated a 24hour standard of 35 µg/m³ based on a three-year average of the 98th percentile of 24-hour concentrations. On November 13, 2009, EPA designated the Louisville area as attainment for the 2006 24-hour standard (74 FR 58688). In that action, EPA also clarified the designations for the NAAQS promulgated in 1997, stating that the Louisville area was designated as nonattainment for the annual standards but attainment for the 24-hour standards. Thus, today's action does not address attainment of either the 1997 or the 2006 24-hour standards.

In response to legal challenges of the annual standards promulgated in 2006, the U.S. Court of Appeals for the District of Columbia Circuit (DC Circuit) remanded these standards to EPA for further consideration. See American Farm Bureau Federation and National Pork Producers Council, et al. v. EPA, 559 F.3d 512 (D.C. Cir. 2009). However, given that the 1997 and 2006 annual standards are essentially identical, attainment of the 1997 annual standards would also indicate attainment of the remanded 2006 annual standards.

On April 25, 2007 (72 FR 20664), EPA promulgated its PM_{2.5} implementation rule, codified at 40 CFR part 51, subpart Z, in which the Agency provided guidance for state and tribal plans to implement the 1997 PM_{2.5} standards. This rule, at 40 CFR 51.1004(c), specifies some of the regulatory consequences of attaining the standards, as discussed below.

III. What did EPA propose?

EPA proposed that the Louisville area (including portions in Indiana and Kentucky) has attained the 1997 PM_{2.5} NAAQS. EPA published this proposed determination on September 14, 2010, at

75 FR 55725. Further details regarding the proposal are available in the proposed rule. EPA's proposed action provided a 30-day public comment period. We did not receive any comments.

IV. What does the most recent monitoring data show?

EPA examined monitoring data for 2010 that are available to date in the EPA Air Quality System (AQS) database, but not yet certified. While these data are insufficient to represent full year average concentrations, all sites within the area average below 15.0 μ g/m³ and thus the available data suggest that this area continues to attain the 1997 annual PM_{2.5} NAAQS.

V. What is the effect of this action?

On the basis of this review, EPA has determined that the Louisville area has attained the 1997 annual PM2 5 NAAQS based on complete, quality-assured and certified 2007-2009 data. Data available for 2010 that are in the EPA AQS database but not yet certified suggest that the area continues to attain the 1997 annual PM_{2.5} NAAQS. As a result of this determination, under the provisions of EPA's PM_{2.5} implementation rule (see 40 CFR 51.1004(c)), the requirements for Indiana and Kentucky to submit attainment demonstrations and associated RACM, RFP plans, contingency measures, and any other planning SIPs related to attainment of the 1997 annual PM_{2.5} NAAQS for the Louisville PM_{2.5} nonattainment area are suspended for so long as the area continues to attain the 1997 annual PM_{2.5} NAAQS. This suspension will continue until such time, if any, that EPA subsequently determines that the area has violated the 1997 annual PM_{2.5} NAAQS.

If EPA subsequently determines, after notice-and-comment rulemaking in the **Federal Register**, that the area has violated the 1997 annual PM_{2.5} NAAQS, the basis for the suspension of the specific requirements, set forth at 40 CFR 51.1004(c), would no longer exist for the pertinent area, and EPA would take action to withdraw the determination and direct the pertinent area to address the suspended requirements.

The determination that the air quality data show attainment of the 1997 annual PM_{2.5} NAAQS is not equivalent to the redesignation of the area to attainment for the 1997 annual PM_{2.5} NAAQS under section 107(d)(3) of the Clean Air Act (CAA). Further, finalizing this action does not involve approving maintenance plans for the area as

required under section 175A of the CAA, nor does it involve a determination that the area has met all requirements for a redesignation. The designation status of the area will remain nonattainment for the 1997 annual $PM_{2.5}$ NAAQS until such time as EPA determines that the area meets the CAA requirements for redesignation to attainment for that standard.

VI. When is this action effective?

EPA finds that there is good cause for this determination to become effective on the date of publication of this action in the Federal Register, because a delayed effective date is unnecessary due to the nature of the action. The expedited effective date for this action is authorized under both 5 U.S.C. 553(d)(1), which provides that rule actions may become effective less than 30 days after publication if the rule "grants or recognizes an exemption or relieves a restriction," and 5 U.S.C. 553(d)(3), which allows an effective date less than 30 days after publication "as otherwise provided by the agency for good cause found and published with the rule." As noted above, this determination of attainment will result in a suspension of the requirements for the Louisville area to submit an attainment demonstration, a RFP plan, section 172(c)(9) contingency measures, and any other planning SIPs related to attainment of the 1997 annual PM_{2.5} NAAQS for so long as the area continues to attain the PM_{2.5} NAAQS. The suspension of these requirements is sufficient reason to allow an expedited effective date of this rule under 5 U.S.C. 553(d)(1). In addition, the suspension of the obligations of Indiana and Kentucky to make submissions for these requirements provides good cause to make this rule effective on the date of publication of this action in the Federal Register, pursuant to 5 U.S.C. 553(d)(3). The purpose of the 30-day waiting period prescribed in 5 U.S.C. 553(d) is to give affected parties a reasonable time to adjust their behavior and prepare before the final rule takes effect. Where, as here, the final rule suspends requirements rather than imposing obligations, affected parties, such as the Louisville area, do not need time to adjust and prepare before the rule takes effect.

VII. Statutory and Executive Order Reviews

Under Executive Order 12866 (58 FR 51735, October 4, 1993), this action is not a "significant regulatory action" and therefore is not subject to review by the Office of Management and Budget. For this reason, this action is not subject to

Executive Order 13211, "Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use" (66 FR 28355, May 22, 2001). This action makes a determination based on air quality data and results in the suspension of certain Federal requirements. Accordingly, the Administrator certifies that this rule will not have a significant economic impact on a substantial number of small entities under the Regulatory Flexibility Act (5 U.S.C. 601 et seq.). Because this rule makes a determination based on air quality data, and results in the suspension of certain Federal requirements, it does not contain any unfunded mandate or significantly or uniquely affect small governments, as described in the Unfunded Mandates Reform Act of 1995 (Pub. L. 104-4).

This rule also does not have tribal applications because it will not have a substantial direct effect on one or more Indian tribes, on the relationship between the Federal Government and Indian tribes, or on the distribution of power and responsibilities between the Federal Government and Indian tribes, as specified by Executive Order 13175 (65 FR 67249, November 9, 2000). This action also does not have Federalism implications because it does not have substantial direct effects on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government, as specified in Executive Order 13132 (64 FR 43255, August 10, 1999), because it merely makes a determination based on air quality data and results in the suspension of certain Federal requirements, and does not alter the relationship or the distribution of power and responsibilities established in the CAA. This rule also is not subject to Executive Order 13045 "Protection of Children from Environmental Health Risks" (62 FR 19885, April 23, 1997) because it determines that air quality in the affected area is meeting Federal standards.

The requirements of 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) do not apply because it would be inconsistent with applicable law for EPA, when determining the attainment status of an area, to use voluntary consensus standards in place of promulgated air quality standards and monitoring procedures to otherwise satisfy the provisions of the CAA. This rule does not impose an information collection burden under the provisions of the Paper Reduction Act of 1995 (44 U.S.C. 3501 et seq.).

Under Executive Order 12898, EPA finds that this rule, pertaining to the determination of attainment of the fine particle standards for the Louisville (Indiana and Kentucky) area, involves determination of attainment based on air quality data and will not have disproportionately high and adverse human health or environmental effects on any communities in the area, including minority and low-income communities.

In addition, this rule does not have tribal implications as specified by Executive Order 13175 (65 FR 67249, November 9, 2000), because there is no federally recognized Indian country located in the states, and EPA notes that it will not impose substantial direct costs on tribal governments or preempt tribal law.

The Congressional Review Act, 5 U.S.C. 801 et seq., as added by the Small **Business Regulatory Enforcement** Fairness Act of 1996, generally provides that before a rule may take effect, the agency promulgating the rule must submit a rule report, which includes a copy of the rule, to each House of the Congress and to the Comptroller General of the United States. EPA will submit a report containing these actions and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of the rules in the Federal Register. A major rule cannot take effect until 60 days after it is published in the Federal Register. These actions are not "major rules" as defined by 5 U.S.C. 804(2).

Under section 307(b)(1) of the CAA, petitions for judicial review of these actions must be filed in the United States Court of Appeals for the appropriate circuit by May 9, 2011. Filing a petition for reconsideration by the Administrator of these final rules does not affect the finality of this action for the purposes of judicial review nor does it extend the time within which a petition for judicial review may be filed, and shall not postpone the effectiveness of such rule or action. These actions may not be challenged later in proceedings to enforce its requirements. (See section 307(b)(2).)

List of Subjects in 40 CFR Part 52

Environmental protection, Air pollution control, Incorporation by reference, Particulate matter, Intergovernmental relations, Reporting and recordkeeping requirements.

Dated: January 12, 2011.

Susan Hedman,

Regional Administrator, Region 5.
Dated: February 25, 2011.

Gwendolyn Keyes Fleming,

Regional Administrator, Region 4.

40 CFR part 52 is amended as follows:

PART 52—[AMENDED]

■ 1. The authority citation for part 52 continues to read as follows:

Authority: 42 U.S.C. 7401 et seq.

Subpart P—Indiana

■ 2. Section 52.776 is amended by adding paragraph (t) to read as follows:

§ 52.776 Control strategy: Particulate matter.

* * * * *

(t) Determination of Attainment. EPA has determined, as of March 9, 2011, that the Louisville, IN-KY PM_{2.5} nonattainment area has attained the 1997 PM_{2.5} NAAQS. These determinations, in accordance with 40 CFR 51.1004(c), suspend the requirements for this area to submit an attainment demonstration, associated reasonably available control measures, reasonable further progress, contingency measures, and other plan elements related to attainment of the standards for as long as the area continues to meet the 1997 PM_{2.5} NAAQS.

Subpart S—Kentucky

■ 3. Section 52.933 is amended by designating the existing text as paragraph (a) and by adding paragraph (b) to read as follows:

§ 52.933 Control strategy: Sulfur oxides and particulate matter.

* * * *

(b) Determination of Attainment. EPA has determined, as of March 9, 2011, that the Louisville, IN-KY PM_{2.5} nonattainment area has attained the 1997 PM_{2.5} NAAQS. These determinations, in accordance with 40 CFR 51.1004(c), suspend the requirements for this area to submit an attainment demonstration, associated reasonably available control measures, reasonable further progress, contingency measures, and other plan elements related to attainment of the standards for as long as the area continues to meet the 1997 PM_{2.5} NAAQS.

[FR Doc. 2011-5214 Filed 3-8-11; 8:45 am]

BILLING CODE 6560-50-P

55544

(d) Determination of Attainment. EPA has determined, as of September 7, 2011, that based upon 2007-2009 air quality data, the Huntington-Ashland, West Virginia-Kentucky-Ohio, nonattainment Area has attained the 1997 annual PM_{2.5} NAAQS. This determination, in accordance with 40 CFR 52.1004(c), suspends the requirements for this Area to submit an attainment demonstration, associated reasonably available control measures, a reasonable further progress plan, contingency measures, and other planning SIPs related to attainment of the standard for as long as this Area continues to meet the 1997 annual PM_{2.5} NAAQS.

Subpart KK—Ohio

■ 4. Section 52.1880 is amended by adding paragraph (m) to read as follows:

§ 52.1880 Control Strategy: Particulate matter.

(m) Determination of Attainment. EPA has determined, as of September 7, 2011, that based upon 2007-2009 air quality data, the Huntington-Ashland, West Virginia-Kentucky-Ohio, nonattainment Area has attained the 1997 annual PM_{2.5} NAAQS. This determination, in accordance with 40 CFR 52.1004(c), suspends the requirements for this Area to submit an attainment demonstration, associated reasonably available control measures, a reasonable further progress plan, contingency measures, and other planning SIPs related to attainment of the standard for as long as this Area

■ 5. Section 52.1892 is added to read as follows:

continues to meet the 1997 annual PM_{2.5}

§ 52.1892 Determination of attainment.

NAAQS.

Based upon EPA's review of the air quality data for the 3-year period 2007-2009, EPA determined that the Huntington-Ashland, West Virginia-Kentucky-Ohio PM_{2.5} nonattainment Area attained the 1997 annual PM_{2.5} NAAQS by the applicable attainment date of April 5, 2010. Therefore, EPA has met the requirement pursuant to CAA section 179(c) to determine, based on the Area's air quality as of the attainment date, whether the Area attained the standard. EPA also determined that the Huntington-Ashland PM_{2.5} nonattainment Area is not subject to the consequences of failing to attain pursuant to section 179(d).

Subpart XX—West Virginia

■ 6. Section 52.2526 is amended by adding paragraph (c) to read as follows:

§ 52.2526 Control strategy: Particulate matter.

* * * * *

- (c) Determination of Attainment. EPA has determined, as of September 7, 2011, that based upon 2007-2009 air quality data, the Huntington-Ashland, West Virginia-Kentucky-Ohio, nonattainment Area has attained the 1997 annual PM_{2.5} NAAQS. This determination, in accordance with 40 CFR 52.1004(c), suspends the requirements for this Area to submit an attainment demonstration, associated reasonably available control measures, a reasonable further progress plan, contingency measures, and other planning SIPs related to attainment of the standard for as long as this Area continues to meet the 1997 annual $PM_{2.5}$ NAAOS.
- 7. Section 52.2527 is added to read as follows:

§ 52.2527 Determination of attainment.

Based upon EPA's review of the air quality data for the 3-year period 2007-2009, EPA determined that the Huntington-Ashland, West Virginia-Kentucky-Ohio PM_{2.5} nonattainment Area attained the 1997 annual PM_{2.5} NAAQS by the applicable attainment date of April 5, 2010. Therefore, EPA has met the requirement pursuant to CAA section 179(c) to determine, based on the Area's air quality as of the attainment date, whether the Area attained the standard. EPA also determined that the Huntington-Ashland PM_{2.5} nonattainment Area is not subject to the consequences of failing to attain pursuant to section 179(d).

[FR Doc. 2011–22653 Filed 9–6–11; 8:45 am] **BILLING CODE 6560–50–P**

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 52

[EPA-R04-OAR-2011-0414-201145; FRL-9459-5]

Approval and Promulgation of Implementation Plans and Designations of Areas for Air Quality Planning Purposes; Kentucky and Indiana; Louisville; Determination of Attainment by Applicable Attainment Date for the 1997 Annual Fine Particulate Standards

AGENCY: Environmental Protection Agency (EPA).

ACTION: Final rule.

SUMMARY: EPA is determining that the bi-state Louisville, Kentucky-Indiana, fine particulate (PM_{2.5}) nonattainment Area (hereafter referred to as "the Louisville Area") has attained the 1997 annual PM_{2.5} national ambient air quality standards (NAAQS) by the applicable attainment date of April 5. 2010. The determination of attainment was previously finalized by EPA on March 9, 2011, and was based on quality-assured and certified monitoring data for the 2007-2009 monitoring period. The Louisville Area is comprised of Jefferson County in Kentucky, and Clark, Floyd and a portion of Jefferson Counties in Indiana. EPA is determining to find that the above-identified Area attained the 1997 annual PM_{2.5} NAAQS by its applicable attainment date. EPA is finalizing this action because it is consistent with the Clean Air Act (CAA) and its implementing regulations.

DATES: Effective Date: This final rule is effective on October 7, 2011.

ADDRESSES: EPA has established a docket for this action under Docket ID Number EPA-R04-OAR-2010-0414. All documents in the docket are listed in the http://www.regulations.gov Web site. Although listed in the electronic docket, some information is not publicly available, i.e., confidential business information (CBI) or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either electronically through http://www.regulations.gov or in hard copy for public inspection during normal business hours at the Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, Georgia 30303-8960.

FOR FURTHER INFORMATION CONTACT: Joel Huey or Sara Waterson, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street, SW., Atlanta, Georgia 30303—8960. Mr. Huey's telephone number is (404) 562—9104. Mr. Huey can also be reached via electronic mail at huey.joel@epa.gov. Ms. Waterson may be reached by phone at (404) 562—9061 or via electronic mail at waterson.sara@epa.gov.

SUPPLEMENTARY INFORMATION:

I. What action is EPA taking?II. What is the effect of this action?III. What is EPA's final action?IV. Statutory and Executive Order Reviews

I. What action is EPA taking?

Based on EPA's review of the quality-assured and certified monitoring data for 2007–2009, and in accordance with section 179(c)(1) of the CAA and EPA's regulations, EPA is determining that the Louisville Area attained the 1997 annual PM_{2.5} NAAQS by the applicable attainment date of April 5, 2010.

On March 9, 2011, EPA published a final rulemaking to make a determination of attainment to suspend the requirements for the Louisville Area to submit an attainment demonstration and associated reasonably available control measures (RACM), reasonable further progress (RFP) plan, contingency measures, and other planning State Implementation Plan (SIP) revisions related to attainment of the 1997 annual PM_{2.5} NAAQS so long as the Area continues to attain the 1997 annual PM_{2.5} NAAOS. See 76 FR 12860. This final rulemaking also includes useful background information on the PM_{2.5} NAAQS relevant to the Louisville Area. Today's action makes a determination that the Louisville Area attained the 1997 annual PM_{2.5} NAAQS by the applicable attainment date of April 5, 2010. Today's action is simply focused on the date by which the Area had attaining data.

Other specific requirements of the determination and the rationale for EPA's action are explained in the notice of proposed rulemaking (NPR) published on June 15, 2011 (76 FR 34935). The comment period closed on July 15, 2011. No comments were received in response to the NPR.

II. What is the effect of this action?

Today's action is a determination that the Louisville Area attained the 1997 annual PM_{2.5} NAAQS by its applicable attainment date of April 5, 2010, consistent with CAA section 179(c)(1). Finalizing this action does not constitute a redesignation of Louisville Area to attainment of the 1997 annual PM_{2.5} NAAQS under section 107(d)(3) of the CAA. Further, finalizing this action does not involve approving maintenance plans for the Louisville Area as required under section 175A of the CAA, nor would it find that the Louisville Area has met all other requirements for redesignation. The designation status of the Louisville Area remains nonattainment for the 1997 annual PM2.5 NAAQS until such time as EPA determines that the Area meets the CAA requirements for redesignation to

attainment and takes action to redesignate the Area.

III. What is EPA's final action?

EPA is determining, based on quality-assured and certified monitoring data for the 2007–2009 monitoring period, that the Louisville Area attained the 1997 annual PM_{2.5} NAAQS by the applicable attainment date of April 5, 2010. This action is being taken pursuant to section 179(c)(1) of the CAA and is consistent with the CAA and its implementing regulations.

IV. Statutory and Executive Order Reviews

This action makes a determination of attainment based on air quality, and would not impose additional requirements beyond those imposed by state law. For that reason, this action:

- Is not a "significant regulatory action" subject to review by the Office of Management and Budget under Executive Order 12866 (58 FR 51735, October 4, 1993);
- Does not impose an information collection burden under the provisions of the Paperwork Reduction Act (44 U.S.C. 3501 *et seq.*);
- Is certified as not having a significant economic impact on a substantial number of small entities under the Regulatory Flexibility Act (5 U.S.C. 601 *et seq.*);
- Does not contain any unfunded mandate or significantly or uniquely affect small governments, as described in the Unfunded Mandates Reform Act of 1995 (Pub. L. 104–4);
- Does not have Federalism implications as specified in Executive Order 13132 (64 FR 43255, August 10, 1999);
- Is not an economically significant regulatory action based on health or safety risks subject to Executive Order 13045 (62 FR 19885, April 23, 1997);
- Is not a significant regulatory action subject to Executive Order 13211 (66 FR 28355, May 22, 2001);
- Is not subject to requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those requirements would be inconsistent with the CAA; and
- Does not provide EPA with the discretionary authority to address, as appropriate, disproportionate human health or environmental effects, using practicable and legally permissible methods, under Executive Order 12898 (59 FR 7629, February 16, 1994). In addition, this 1997 PM_{2.5} determination of attainment by applicable attainment date for the Louisville Area does not have tribal implications as specified by

Executive Order 13175 (65 FR 67249, November 9, 2000), because the SIP is not approved to apply in Indian country located in the state, and EPA notes that it will not impose substantial direct costs on tribal governments or preempt tribal law.

The Congressional Review Act, 5 U.S.C. 801 et seq., as added by the Small **Business Regulatory Enforcement** Fairness Act of 1996, generally provides that before a rule may take effect, the agency promulgating the rule must submit a rule report, which includes a copy of the rule, to each House of the Congress and to the Comptroller General of the United States. EPA will submit a report containing this action and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of the rule in the Federal Register. A major rule cannot take effect until 60 days after it is published in the **Federal Register**. This action is not a "major rule" as defined by 5 U.S.C. 804(2).

Under section 307(b)(1) of the CAA, petitions for judicial review of this action must be filed in the United States Court of Appeals for the appropriate circuit by November 7, 2011. Filing a petition for reconsideration by the Administrator of these final rules do not affect the finality of these actions for the purposes of judicial review nor does it extend the time within which a petition for judicial review may be filed, and shall not postpone the effectiveness of such rule or action. This action may not be challenged later in proceedings to enforce its requirements. (See section 307(b)(2).)

List of Subjects in 40 CFR Part 52

Environmental protection, Air pollution control, Incorporation by reference, Intergovernmental relations, Particulate matter, Reporting and recordkeeping requirements.

Dated: August 18, 2011.

Beverly H. Banister,

Acting Regional Administrator, Region 4. 40 CFR part 52 is amended as follows:

PART 52—[AMENDED]

■ 1. The authority citation for part 52 continues to read as follows:

Authority: 42 U.S.C. 7401 et seq.

Subpart P-Indiana

■ 2. Section 52.774 is added to read as follows:

§ 52.774 Determination of attainment.

Based upon EPA's review of the air quality data for the 3-year period 2007—

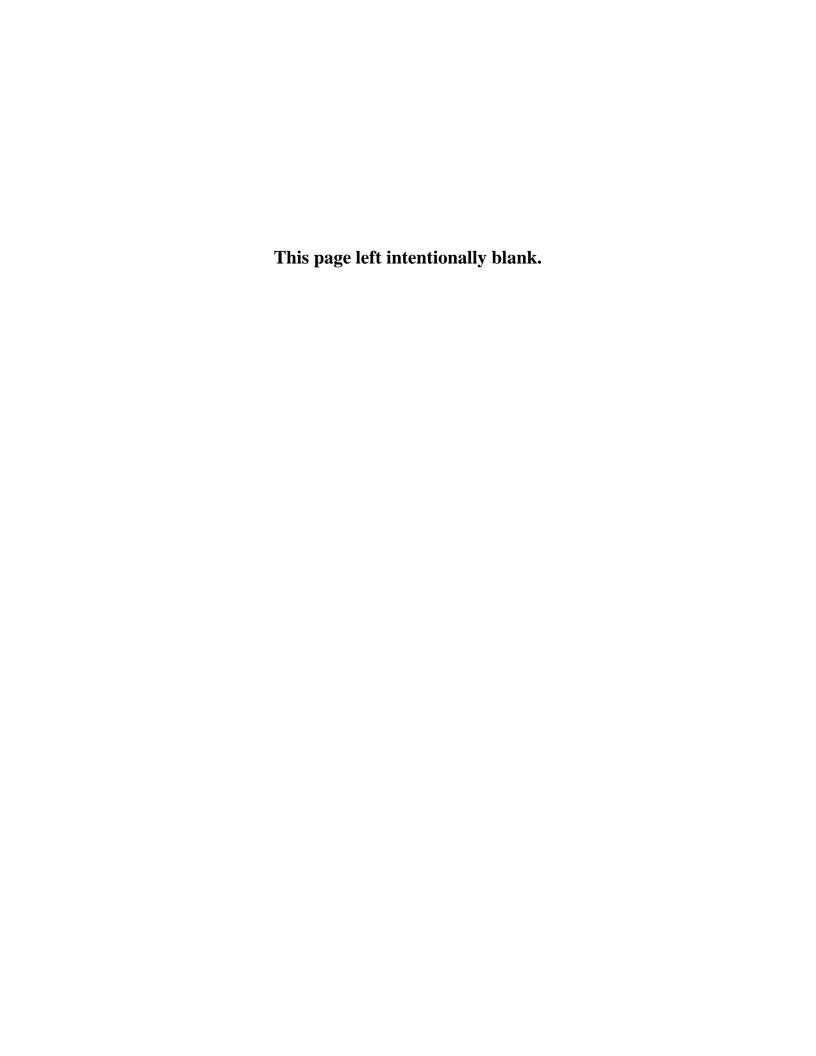
2009, EPA determined that the Louisville, Kentucky-Indiana PM_{2.5} nonattainment Area attained the 1997 annual PM_{2.5} NAAQS by the applicable attainment date of April 5, 2010. Therefore, EPA has met the requirement pursuant to CAA section 179(c) to determine, based on the Area's air quality as of the attainment date, whether the Area attained the standard. EPA also determined that the Louisville PM_{2.5} nonattainment Area is not subject to the consequences of failing to attain pursuant to section 179(d).

Subpart S—Kentucky

■ 3. Section 52.929 is amended by adding paragraph (b) to read as follows:

§ 52.929 Determination of attainment.

(b) Based upon EPA's review of the air quality data for the 3-year period 2007–2009, EPA determined that the Louisville, Kentucky-Indiana $PM_{2.5}$ nonattainment Area attained the 1997 annual $PM_{2.5}$ NAAQS by the applicable attainment date of April 5, 2010.


Therefore, EPA has met the requirement pursuant to CAA section 179(c) to determine, based on the Area's air quality as of the attainment date, whether the Area attained the standard. EPA also determined that the Louisville PM_{2.5} nonattainment Area is not subject to the consequences of failing to attain pursuant to section 179(d).

 $[FR\ Doc.\ 2011–22649\ Filed\ 9–6–11;\ 8:45\ am]$

BILLING CODE 6560-50-P

Appendix B 2005 SIP Base Year Inventory Discussion

2005 and 2008 Base Year Emissions Inventories and 2015 and 2025 Projected Emission Inventories for Nitrogen Oxides (NO_x), Sulfur Dioxides (SO_2), and Direct $PM_{2.5}$, Louisville Area

2005-Clark, Floyd and Jefferson Counties, IN Totals, All Sources (Tons Per Year)

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
NO	CLARK COUNTY, IN	4,106.81	1,971.32	358.62	0.00	2,220.61	8,657.36
NO _x	FLOYD COUNTY, IN	2,922.90	754.09	286.78	5,306.09	0.19	9,270.05
	JEFFERSON COUNTY, IN	521.05	521.01	152.26	22,620.90	7.74	23,822.96
		7,550.76	3,246.42	797.66	27,926.99	2,228.54	
			•		GRAND TO	TAI.	41 750 37

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
SO_2	CLARK COUNTY, IN	20.72	178.06	138.17	0.00	3,190.07	3,527.02
SO_2	FLOYD COUNTY, IN	14.03	78.04	113.26	56,666.70	0.00	56,872.03
	JEFFERSON COUNTY, IN	2.10	49.44	73.19	74,658.70	0.11	74,783.54
		36.85	305.54	324.62	131,325.40	3,190.18	
					GRAND TO	TAL	135,182.59

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
$PM_{2.5}$	CLARK COUNTY, IN	263.47	82.06	5.14	0.00	611.00	961.67
F 1V12.5	FLOYD COUNTY, IN	193.61	47.26	4.63	36.76	12.02	294.28
	JEFFERSON COUNTY, IN	15.11	31.07	2.50	283.00	10.70	342.38
		472.19	160.39	12.27	319.76	633.72	
					GRAND TO	TAL	1,598.33

2008-Clark, Floyd, and Jefferson Counties, IN Totals, All Sources (Tons Per Year)

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
NO _x	CLARK COUNTY, IN	3,444.07	1,519.07	364.36	0.00	2,419.41	7,746.91
NO _x	FLOYD COUNTY, IN	2,397.70	611.02	291.17	4,941.90	0.19	8,241.98
	JEFFERSON COUNTY, IN	403.83	423.14	155.62	20,546.70	7.88	21,537.17
		6,245.60	2,553.23	811.15	25,488.60	2,427.48	
					GRAND TO	TAL	37,526.06

SO ₂		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	22.22	86.85	140.18	0.00	3,493.53	3,742.78
	FLOYD COUNTY, IN	14.58	33.26	114.69	40,433.40	0.00	40,595.93
	JEFFERSON COUNTY, IN	2.09	21.86	75.45	64,934.30	0.11	65,033.81
		38.89	141.97	330.32	105,367.70	3,493.64	
					GRAND TO	TAI.	109 372 52

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
PM _{2.5}	CLARK COUNTY, IN	225.95	66.05	5.17	0.00	520.25	817.42
	FLOYD COUNTY, IN	159.34	39.48	4.68	31.00	3.79	238.29
	JEFFERSON COUNTY, IN	11.23	25.88	2.52	284.50	8.24	332.37
		396.52	131.41	12.37	315.50	532.28	
				•	GRAND TO	TAL	1,388.08

2015-Clark, Floyd, and Jefferson Counties, IN Totals, All Sources (Tons Per Year)

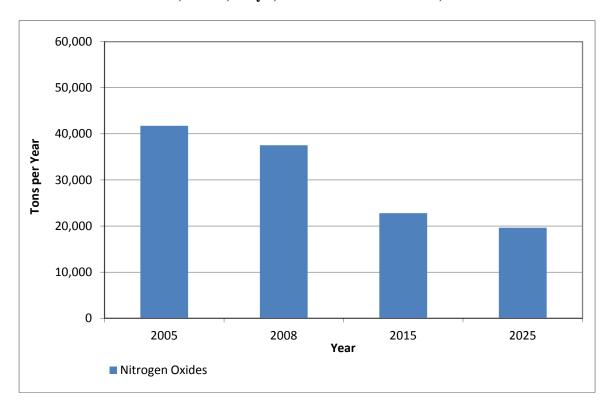
		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
NO _x	CLARK COUNTY, IN	1,843.80	1,039.80	358.58	0.00	1,360.31	4,602.49
	FLOYD COUNTY, IN	1,306.71	379.02	286.61	2,744.00	0.20	4,716.54
	JEFFERSON COUNTY, IN	199.31	287.45	153.02	12,822.00	7.93	13,469.71
		3,349.82	1,706.27	798.21	15,566.00	1,368.44	
			•		GRAND TO	TAL	22.788.74

50		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	22.83	25.82	135.94	0.00	1,349.85	1,534.44
SO_2	FLOYD COUNTY, IN	15.38	10.68	111.09	5,660.62	0.00	5,797.77
	JEFFERSON COUNTY, IN	1.97	5.37	73.37	27,203.00	0.11	27,283.82
		40.18	41.87	320.40	32,863.62	1,349.96	
			•		GRAND TO	TAL	34,616.03

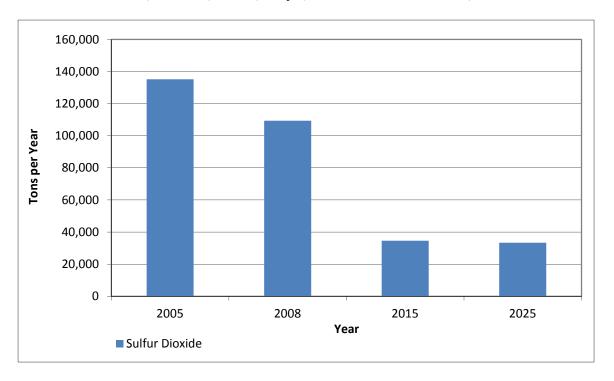
DM		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	112.38	44.37	5.04	0.00	579.58	741.37
PM _{2.5}	FLOYD COUNTY, IN	80.50	26.01	4.59	28.00	1.02	140.12
	JEFFERSON COUNTY, IN	4.88	17.36	2.45	285.00	7.37	317.06
		197.76	87.74	12.08	313.00	587.97	
			•		GRAND TO	TAL	1.198.55

2025-Clark, Floyd, and Jefferson Counties, IN Totals, All Sources (Tons Per Year)

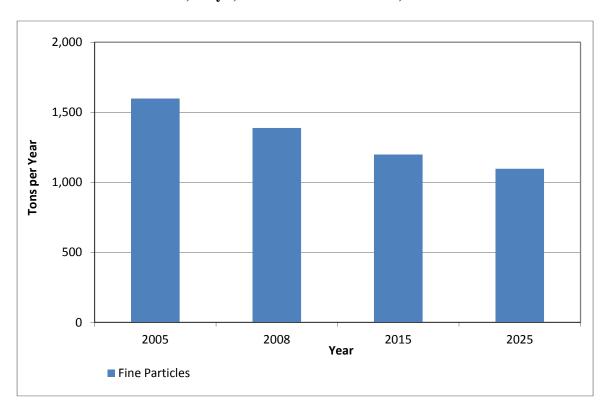
	1020 Charley 1 loy dy data delicison Countries; 11 (1 otalis; 1 in Sources (1 ons 1 cr 1 cm)						
NO _x		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	975.12	558.76	354.47	0.00	561.03	2,449.38
	FLOYD COUNTY, IN	726.78	176.87	283.29	2,744.00	0.20	3,931.14
	JEFFERSON COUNTY, IN	109.90	155.39	151.57	12,822.00	8.06	13,246.92
		1,811.80	891.02	789.33	15,566.00	569.29	
					GRAND TO	TAL	19,627.44

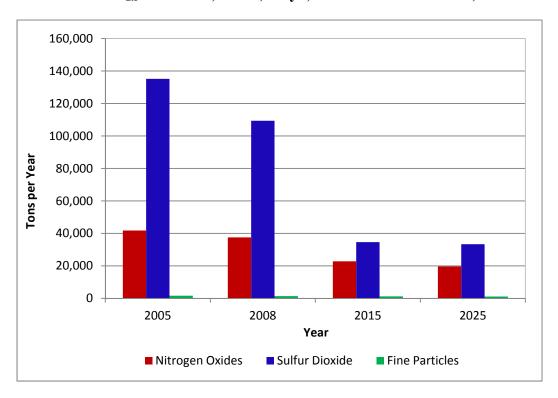

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
50	CLARK COUNTY, IN	21.70	2.63	131.87	0.00	122.30	278.50
SO_2	FLOYD COUNTY, IN	15.30	1.62	107.49	27,203.00	0.00	27,327.41
	JEFFERSON COUNTY, IN	2.01	0.35	71.99	5,660.62	0.11	5,735.08
		39.01	4.60	311.35	32,863.62	122.41	
					GRAND TO	TAL	33,340.99

DM		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	58.79	23.57	4.90	0.00	613.01	700.27
$PM_{2.5}$	FLOYD COUNTY, IN	45.02	13.50	4.50	28.00	0.18	91.20
	JEFFERSON COUNTY, IN	2.65	9.27	2.37	285.00	5.77	305.06
		106.46	46.34	11.77	313.00	618.96	
					GRAND TO	TAL	1.096.53


Comparison of 2008 Estimated and 2025 Projected Emission Estimates, All Sources in Clark, Floyd, and Jefferson Counties, Indiana (Tons per Year)

	2008	2025	Change	% Change
NO_x	37,526.06	19,627.44	-17,898.62	47.70% decrease
SO_2	109,372.52	33,340.99	-76,031.53	69.52% decrease
Direct PM _{2.5}	1,388.08	1,096.53	-291.55	21.00% decrease


Comparison of 2005 and 2008 Estimated and 2015 and 2025 Projected NO_x Emissions, Clark, Floyd, and Jefferson Counties, Indiana


Comparison of 2005 and 2008 Estimated and 2015 and 2025 Projected SO₂ Emissions, Sources, Clark, Floyd, and Jefferson Counties, Indiana

Comparison of 2005 and 2008 Estimated and 2015 and 2025 Direct PM_{2.5} Emissions, Clark, Floyd, and Jefferson Counties, Indiana

Comparison of 2005 and 2008 Estimated and 2015 and 2025 Projected NO_x, SO₂, and Direct PM_{2.5} Emissions, Clark, Floyd, and Jefferson Counties, Indiana

This page left intentionally blank

2005-Louisville Area Totals, All Sources (Tons Per Year)

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
NO _x	CLARK COUNTY, IN	4,106.81	1,971.32	358.62	0.00	2,220.61	8,657.36
	FLOYD COUNTY, IN	2,922.90	754.09	286.78	5,306.09	0.19	9,270.05
NO _x	JEFFERSON COUNTY, IN	521.05	521.01	152.26	22,620.90	7.74	23,822.96
	BULLITT COUNTY, KY	2,952.07	555.54	52.04	0.00	178.73	3,738.38
	JEFFERSON COUNTY, KY	22,241.72	12,311.53	0.00	20,109.00	3,542.50	58,204.76
		32,744.56	16,113.49	849.70	48,035.99	5,949.77	
					CDAND TO	ГАТ	102 602 51

SO ₂		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	20.72	178.06	138.17	0.00	3,190.07	3,527.02
	FLOYD COUNTY, IN	14.03	78.04	113.26	56,666.70	0.00	56,872.03
	JEFFERSON COUNTY, IN	2.10	49.44	73.19	74,658.70	0.11	74,783.54
	BULLITT COUNTY, KY	12.11	32.72	91.82	0.00	288.48	425.13
	JEFFERSON COUNTY, KY	95.26	1,508.63	0.00	42,893.90	1,143.79	45,641.59
		144.23	1,846.89	416.44	174,219.30	4,622.45	
			_		GRAND TO	ΓAL	181,249.31

DM		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	263.47	82.06	5.14	0.00	611.00	961.67
	FLOYD COUNTY, IN	193.61	47.26	4.63	36.76	12.02	294.28
PM _{2.5}	JEFFERSON COUNTY, IN	15.11	31.07	2.50	283.00	10.70	342.38
	BULLITT COUNTY, KY	165.41	47.23	240.51	0.00	56.46	509.61
	JEFFERSON COUNTY, KY	1,408.81	779.80	10.22	3,123.24	604.24	5,926.31
		2,046.41	987.42	263.00	3,443.00	1,294.42	
			•		GRAND TO	ΓΔΤ.	8 034 25

2008-Louisville Area Totals, All Sources (Tons Per Year)

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
NO _x	CLARK COUNTY, IN	3,444.07	1,519.07	364.36	0.00	2,419.41	7,746.91
	FLOYD COUNTY, IN	2,397.70	611.02	291.17	4,941.90	0.19	8,241.98
	JEFFERSON COUNTY, IN	403.83	423.14	155.62	20,546.70	7.88	21,537.17
	BULLITT COUNTY, KY	2,820.80	518.47	54.67	0.00	189.34	3,583.28
	JEFFERSON COUNTY, KY	19,094.05	10,373.56	0.00	19,687.10	3,283.48	52,438.19
•		28,160.45	13,445.26	865.82	45,175.70	5,900.30	
				•	GRAND TO	TAL	93,547.53

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
SO_2	CLARK COUNTY, IN	22.22	86.85	140.18	0.00	3,493.53	3,742.78
	FLOYD COUNTY, IN	14.58	33.26	114.69	40,433.40	0.00	40,595.93
	JEFFERSON COUNTY, IN	2.09	21.86	75.45	64,934.30	0.11	65,033.81
	BULLITT COUNTY, KY	13.28	14.31	69.68	0.00	298.95	396.22
	JEFFERSON COUNTY, KY	101.00	1,048.63	0.00	38,686.90	1,151.10	40,987.64
		153.18	1,204.91	400.00	144,054.60	4,943.69	
				•	GRAND TO	TAL	150,756.38

		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
PM _{2.5}	CLARK COUNTY, IN	225.95	66.05	5.17	0.00	520.25	817.42
	FLOYD COUNTY, IN	159.34	39.48	4.68	31.00	3.79	238.29
1 1/12.5	JEFFERSON COUNTY, IN	11.23	25.88	2.52	284.50	8.24	332.37
	BULLITT COUNTY, KY	167.76	45.23	229.83	0.00	57.00	499.82
	JEFFERSON COUNTY, KY	1,218.29	686.87	25.39	2,763.06	640.00	5,333.60
		1,782.56	863.51	267.59	3,078.56	1,229.28	
				•	GRAND TO	TAI.	7 221 50

2015-Louisville Area Totals, All Sources (Tons Per Year)

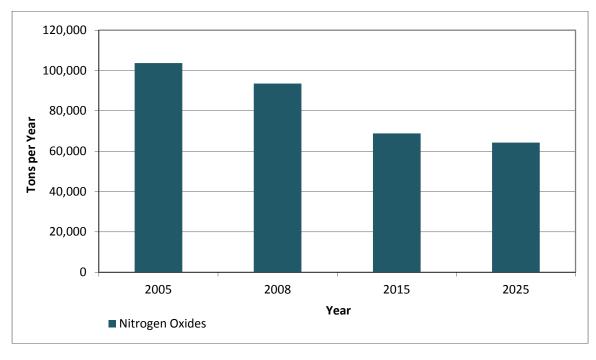
	distinctifed Totals, thi soc						
NO _x		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	1,843.80	1,039.80	358.58	0.00	1,360.31	4,602.49
	FLOYD COUNTY, IN	1,306.71	379.02	286.61	2,744.00	0.20	4,716.54
	JEFFERSON COUNTY, IN	199.31	287.45	153.02	12,822.00	7.93	13,469.71
	BULLITT COUNTY, KY	1,782.71	398.45	55.55	0.00	214.61	2,451.32
	JEFFERSON COUNTY, KY	10,259.60	8,440.65	0.00	21,370.18	3,533.98	43,604.41
		15,392.13	10,545.37	853.76	36,936.18	5,117.03	
				•	GRAND TO	ΓΑΙ	68,844,47

SO ₂		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	22.83	25.82	135.94	0.00	1,349.85	1,534.44
	FLOYD COUNTY, IN	15.38	10.68	111.09	5,660.62	0.00	5,797.77
	JEFFERSON COUNTY, IN	1.97	5.37	73.37	27,203.00	0.11	27,283.82
	BULLITT COUNTY, KY	15.01	3.26	62.30	0.00	333.59	414.16
	JEFFERSON COUNTY, KY	102.55	853.02	0.00	44,256.62	1,228.85	46,441.05
		157.75	898.15	382.70	77,120.24	2,912.40	
					GRAND TO	ΓAL	81,287.70

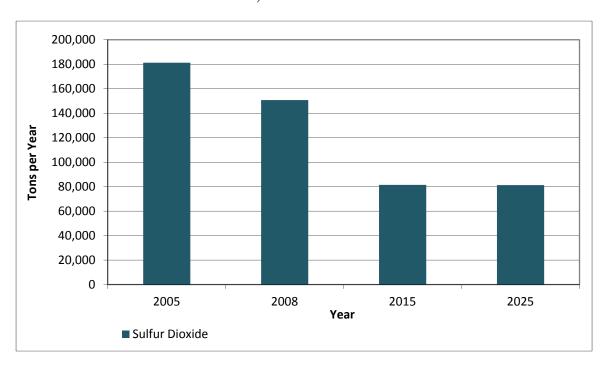
		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	112.38	44.37	5.04	0.00	579.58	741.37
PM _{2.5}	FLOYD COUNTY, IN	80.50	26.01	4.59	28.00	1.02	140.12
1 1/12.5	JEFFERSON COUNTY, IN	4.88	17.36	2.45	285.00	7.37	317.06
	BULLITT COUNTY, KY	107.96	33.93	226.27	0.00	61.10	429.26
	JEFFERSON COUNTY, KY	639.95	596.96	30.44	2,481.90	739.84	4,489.09
		945.67	718.63	268.79	2,794.90	1,388.91	
					GRAND TO	ΓAL	6,116,90

2025-Louisville Area Totals, All Sources (Tons Per Year)

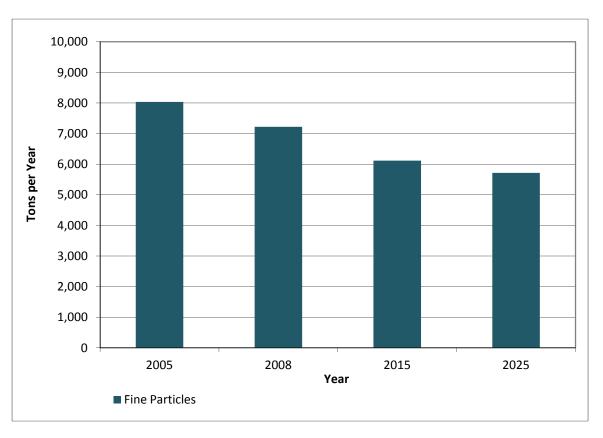
NO _x		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	975.12	558.76	354.47	0.00	561.03	2,449.38
	FLOYD COUNTY, IN	726.78	176.87	283.29	2,744.00	0.20	3,931.14
	JEFFERSON COUNTY, IN	109.90	155.39	151.57	12,822.00	8.06	13,246.92
	BULLITT COUNTY, KY	948.69	276.40	57.85	0.00	256.11	1,539.05
	JEFFERSON COUNTY, KY	5,336.69	6,119.17	0.00	27,910.67	3,745.57	43,122.10
		8,097.18	7,286.59	847.18	43,476.67	4,570.97	
					GRAND TO	ΓAL	64,278.59

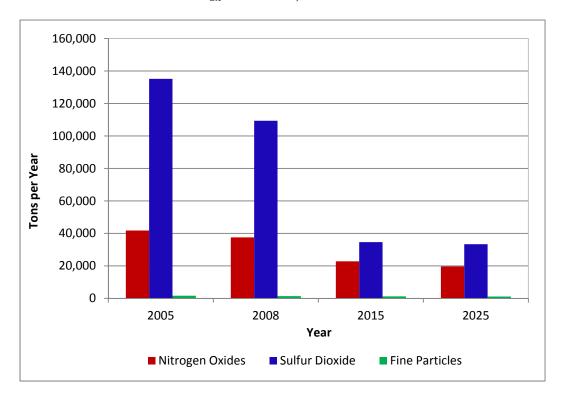

SO ₂		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	21.70	2.63	131.87	0.00	122.30	278.50
	FLOYD COUNTY, IN	15.30	1.62	107.49	5,660.62	0.00	27,327.41
	JEFFERSON COUNTY, IN	2.01	0.35	71.99	27,203.00	0.11	5,735.08
	BULLITT COUNTY, KY	16.33	0.16	48.97	0.00	387.03	452.49
	JEFFERSON COUNTY, KY	101.81	646.37	0.00	45,410.84	1,335.20	47,494.22
		157.15	651.13	360.32	78,274.46	1,844.64	
					GRAND TO	ΓAL	81,287.70

PM _{2.5}		ONROAD	NONROAD	AREA	EGU	POINT	TOTAL
	CLARK COUNTY, IN	58.79	23.57	4.90	0.00	613.01	700.27
	FLOYD COUNTY, IN	45.02	13.50	4.50	28.00	0.18	91.20
1 1412.5	JEFFERSON COUNTY, IN	2.65	9.27	2.37	285.00	5.77	305.06
	BULLITT COUNTY, KY	54.78	20.83	217.86	0.00	66.62	360.09
	JEFFERSON COUNTY, KY	333.04	484.97	59.92	2,481.90	899.14	4,258.97
		494.28	552.14	289.55	2,794.90	1,584.72	•
					GRAND TO	ΓAL	5,715.59


Comparison of 2005 and 2008 Estimated and 2025 Projected NO_x , SO_2 , and Direct $PM_{2.5}$ Emissions, Louisville Area (Tons per Year)

	2008	2025	Change	% Change
NO_x	93,547.53	64,278.59	-29,268.94	31.29% decrease
SO_2	150,756.38	81,278.70	-69,468.68	46.08% decrease
Direct PM _{2.5}	7,221.50	5,715.59	-1,505.91	20.85% decrease


Comparison of 2005 and 2008 Estimated and 2015 and 2025 Projected NO_x Emissions, Entire Louisville Area


Comparison of 2005 and 2008 Estimated and 2015 and 2025 Projected SO₂ Emissions, Entire Louisville Area

Comparison of 2005 and 2008 Estimated and 2015 and 2025 Projected Direct $PM_{2.5}$ Emissions, Entire Louisville Area

Comparison of 2005 and 2008 Estimated and 2015 and 2025 Projected NO_x , SO_2 , and Direct $PM_{2.5}$ Emissions, Entire Louisville Area

Plus fire									Portion factor of 7% applied for these numbers																	
2025 475-PRI	858.14	16.12	874.25	2025	SO3	635.50	6.46	641.96	2025	NOX	.61.22	6.88	68.09													
2002 2005 2008 2009 2015 2018 2022 2025 PM25-PRI	825.44	15.72	841.16	2022	SO2	619.94	6.57	626.51	2022	NOX	56.98	6.70	63.68	2025	M25-PRI	895.91	2025	SO2	100.36	2025	NOX	1.09				
2018 M25-PRIP	801.42	15.42	816.84	2018	SO2	607.14	6.65	613.79	2018	NOX	53.49	6.56	60.05	2018	M25-PRI PJ	865.13	2018	SO2	98.88	2018	_		•			
2015 M25-PRIP	783.40	15.20	798.60	2015	SO2	599.93	6.70	606.63	2015	NOX	51.53	6.48	58.00	2015	M25-PRIP	855.23	2015	SO2	98.41	2015	NOX	7+:1				
2009 M25-PRIP	747.37	14.76	762.13	2009	SO2	578.33	6.84	585.17	2009	NOX	45.64	6.24	51.88	2009	M25-PRI P	825.55	2009	SO2	86.98	2009	NOX	00.1			-	
2008 W25-PRIP	742.11	14.66	756.77	2008	SO2	573.14	6.78	579.92	2008	NOX	44.68	6.16	50.85	2008	M25-PRI P	822.39	2008	SO2	96.47	2008	NOX	9.7.0				
2005 W25-PRIP	726.35	14.35	740.71	2005	804	557.59	6.59	564.18	2005	NOX	41.82	5.94	47.76	2005	M25-PRIP	812.93	2005	S04	94.94	2005	XOX	76.67				
2002 W25-PRI P	710.59	14.05	724.64	2002	S02	542.03	6.40	548.44	2002	NOX	38.95	5.72	44.67	2002	PM25-PRI PM25-PRI PM25-PRI PM25-PRI PM25-PRI PM25-PRI PM25-PRI	803.47	2002	S02	93.40	2002	NOX 51 13	71:10	Population	1050	15569	7%
AREA SOURCE Cuty Name	ty Total	Lawrence County Total	Total			Boyd County Total	Lawrence County Total	Total			Boyd County Total	Lawrence County Total	Total	AREA SOURCE	114	Bullitt County Total			Bullitt County Total		Bullitt County, Total	Dunitt County 10tal		Nonattainment	area County total	%

90	9.97 116.07 48.69 12.62 113.04 34.94 0 11.9 11.7 124.78 13.83 13.83 4.63913865	9.77 1.15 1.26 0.21	5.58 8.27 147.95 18.96 20.97 0.01			13.39 13.39
4-CON SO2 0.01 18.87 0.27 17.7 1.19 0.08 0.06 8.15 0.06 8.15 0.26 5.16 0.71 0.04 0.71 0.04 0.73 0.24 3.87 0.24 3.87 0.24 0.03 0.03	\$000 \$	0.73 3.78 0.6 4.9	2.76			14.64 93.38 98
M25-PRI PR 0.05 0.36 0.21 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	2.42 69.498 78.0885 7.0149 22.3177 114.2685 35.56	5.65 4.63 4.43	95.91	. 11.92	7611	0.63
M25-FIL P 0.04 0.08 0.03 0.00 0.00 0.00 0.00 0.00 0.00	69.498 78.0885 7.0149 22.317 114.2685 35.56	4.92	95.91	11.92		0.63
PM10- PRI 0.11 0.11 0.48 0.05 0.05 0.15 0.95 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1		6.5	1.97	79.52		0.69
M10-FIL 0.1 0.21 0.05 0.09 0.05 0.12 0.13 1.34	739.24 776.97 52.33 166.54 177.8	5.9	1.977	79.52		0.69
A XON		7.51 8.14 1.35	1.11 1.65 29.59			1.7
NH3 0.09 0.03 0.03 0.04 0.05			0.03995852	5.9817662 0.13970054 0.13970054 0 0 0.0867308 0 0.0.575691412 0 0 0.000565259 for Waste	8.040192 6.109488 6.109488 6.109486 0.0739464 0.007037686 0.000103764 0.000113875 0.005038344 0.00113875 0.00503834 0.0012747936 0.00449616 0.0047747936 1.692672	0.09031992 0.04866432 15.47208 15.47208 0.3887856 2.459664 0.94.14015846
8		40.97 44.42 7.38	15.82 23.43 419.16	. 0. 0.003		.02
strSCC SCC_L1 SCC_L3 SCC_L3 SCC_L4 2102002000 Stationary Industrial Bituminou: Total: Bolier Types 210200000 Stationary Industrial Distillate of Total: Boliers and IC Engines 21020001000 Stationary Commercia Patriale of Total: Boliers and IC Engines 21030002000 Stationary Commercia Bituminou: Total: All Bolier Types 2103000000 Stationary Commercia Bituminou: Total: Boliers and IC Engines 21040001000 Stationary Commercia Bituminou: Total: Boliers and IC Engines 21040001000 Stationary Residential Infurbacter Total: All Combustor Types 21040008001 Stationary Residential Infurbacter Total: All Combustor Types 21040008001 Stationary Residential Wood Fireplaces: General 21040008001 Stationary Residential Wood Fireplaces: Insert; EPA certified; non-catalytic 2104000801 Stationary Residential Wood Fireplaces: Insert; EPA certified; analytic 2104000801 Stationary Residential Wood Fireplaces: Insert; EPA certified; catalytic 2104008001 Stationary Residential Wood Fireplaces: Insert; EPA certified; catalytic 2104008001 Stationary Residential Wood Fireplaces: Insert; EPA certified; catalytic 2104008001 Stationary Residential Wood Fireplaces: General 2104008001 Stationary Residential Wood Catalytic Woodstoves: General	Stationary Residential Wood Mobile So. Aircraff Refueling Mobile So. Draved Road II Paved Mobile So. Draved Road II Probe So. Draved Road II Probe So. Draved Road II Processive Train or Constructi Road Connindustrial F Usufface Co Auto Refi Solvent Uti Surface Co Auto Refi Solvent Uti Surface Co Auto Refi Solvent Uti Borgeasing All Process Solvent Uti Graphic Ar All Process Solvent Uti Miscellane Cutback A Solvent Uti Miscellane Pesticide Robert Uti Miscellane Pesticide Solvent Uti Miscellane Pesticide Solvent Uti Miscellane Pesticide Solvent Uti Miscellane All Produce Solvent Uti Miscellane Petroleum Gasoline: Storage an Petroleum Gasoline: Storage an Petroleum Gasoline: Storage an Petroleum Gasoline:	Storage an Petroleun Waste Disp On-site In Waste Disp On-site In Waste Disp On-site In Waste Disp On-site In	in Lategor and waste - brush so nodustrial Total Commercia Total Residential Household Waste (us Wundicpal Total Industrial Total Processed Public Own Total Processed Regriculture Tilling	Miscellane Agricultur Miscellane Agricultur	Missellane Agriculture Beef cattle Gonfinement Missellane Agriculture Beef cattle Gonfinement Missellane Agriculture Beef cattle Gonfinement Missellane Agriculture Beef cattle Land application of manure Missellane Agriculture Beef cattle Confinement Missellane Agriculture Boultry pric Confinement Missellane Agriculture Poultry pric Confinement Missellane Agriculture Poultry pric Land application of manure Missellane Agriculture Poultry pric Confinement Missellane Agriculture Poultry pric Confinement Missellane Agriculture Poultry pric Confinement Missellane Agriculture Dality cattle Land application of manure Missellane Agriculture Dality cattle Manure handling and storage	2805030000 Miscellane Agriculture Poultry Wa Not Elsewhere Classified (see also 28-05-007, -008, -009) 8205030000 Miscellane Agriculture Poultry Wa Ducks 2805030000 Miscellane Agriculture Poultry Wa Clese Second Miscellane Agriculture Poultry Wa Clese Second Miscellane Agriculture Source and Not Elsewhere Classified 2805039100 Miscellane Agriculture Swine proc Confinement 2805039100 Miscellane Agriculture Swine proc Land application of manure 2805049000 Miscellane Agriculture Swine proc Land application of manure 2805040000 Miscellane Agriculture Swine proc Land application of manure 2805047100 Miscellane Agriculture Swine proc Land application of manure 2805047100 Miscellane Agriculture Swine proc Land application of manure 2805043100 Miscellane Agriculture Swine proc Confinement 2805043100 Miscellane Other Com Structure F Total
7 Cou	2279 2279 2279 2311 2311 2400 2400 2400 2400 2400 2400 2400 24	250 9 260 9 260 9 260	2610 2610 2610 2610 2620 2630 2630 2630 2630 2630 2630 263	2800 2800 2800 2800 2800 2800 2800 2800	2800 2800 2800 2800 2800 2800 2800 2800	2805 2805 2805 2805 2805 2805 2805 2805
Cnty strState st Name FIPS 1 Bullitt (21 02 Bullitt				Buillitt (21 022	ulitr (21 029 offiltr (21 029	Bullitt (21 022 Bullitt (21 02
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 2 2 2 3	2 2 2 2 2 2 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Area (Y B) B Ar	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

2009							•			-M10-		7.		
rce ST ⊠	CNTY ST FIP Bullitt (21	FIP 029	strSCC 2102002000	SCC_L1 SCC Stationary S Indust	SCC_L3 Bitumínous	SCC_L4 Total: All Boiler Tvoes	2 8	XON SI	PM10-FIL	PRI PN		P.	CON SO2	VOC
Area KY	i i i		2102004000	Stationary S Indust	Distillate Oi	Total: Boilers and IC Engines	- •	0.1	0.22	0.51				
<u> </u>	Bullitt C 21 Bullitt C 21	029	2102006000	Stationary S Indusi Stationary S Comn	Natural Gas	trial Natural Gas Total: Boilers and IC Engines nercial/ Anthracite [,] Total: All Boiler Types	0	36	0.43	1.71	0.41	1.69 0.01	1.29 0.09 0 1.71	
<u>≥</u> ≥	\sim		2103002000	Stationary S Comm Stationary S Comm	l/ Bituminous l/ Distillate Oi	Total: All Boiler Types Total: Boilers and IC Engines	0	02	0.1	0.17				
	Hitt		2103006000	Stationary S Comm	I/ Natural Gas	Total: Boilers and IC Engines	0	0.04	0.23	0.93				
\$ \$			2104002000	stationary S Reside Stationary S Reside	Anthracite i Bituminous	lotal: All Combustor lypes Total: All Combustor Types			0.13	0.13				
	\sim		2104004000	Stationary S Reside	Distillate Oi	Total: All Combustor Types	00	0.51	1.23	7.42				
	, ,		2104008001	Stationary S Reside	Wood	Fireplaces: General	Ď.	77	6.1	2.15				
≿ ≿	\sim		2104008002	Stationary S Reside Stationary S Reside	Wood	Fireplaces: Insert; non-EPA certified Fireplaces: Insert: EPA certified: non-catalytic				36.73	(1)	36.73	0.48	
<u>₹</u>	0,		2104008004	Stationary S Reside	Wood	Fireplaces: Insert; EPA certified; catalytic				0.61		0.61	0.01	
<u> </u>	, ,		2104008030	stationary s Reside Stationary S Reside	Wood	woodstoves: general Catalytic Woodstoves: General				0.75	4	0.75	0.93	
<u>₹</u>	0		2104008050	Stationary S Reside	Wood	on-catalytic Woodsto				1.8		1.8	90.0	
<u> </u>	Bullitt (21 Bullitt (21	029	2275900101	Mobile Soui Aircra Mobile Soui Paved	Aircraft Refueling: / Di Paved Roads All Paved R. To	Displacement Loss/Uncontrolled Total: Fugitives			821.26	821.26		. 7.21		0
₹			2296000000	Mobile Sour	ot All Unpaved	Total: Fugitives			818.54	818.54	82.27	82.27		
⋛⋛	\sim \sim		2302050000	ndustrial Pr	ir Bakery Proc in Residential	Total			10.03	5		11	Ē	10.65
₹			2311020000	ndustrial Pı (in Industrial/C	Total			184.61	184.61	24.74	24.74		
⋛⋛	\circ		2311030000	ndustrial Pr	Construction Road Const To	Total			945.29	945.29		26.67		
2 ₹	, ,		2401001000	Solvent Util 3	t Anchitectur	Total Total: All Solvent Types			8.771	87//1		92.55		119,19
∑ :	J		2401005000	Solvent Util:	at Auto Refini:	otal: All So								46.03
<u></u> ≥ ≥	Bullitt (21		2401008000	Solvent Util 3	at Traffic Marl	Total: All Solvent Types								12.96
₹	Bullitt C 21		2420000370	Solvent Util Dry Cleaning Al	<u> </u>	Special Nap								22.8
<u></u>	Bullitt (21		2425000000	Solvent Util 6	٥.	Total: All Solvent Types								0
Ż Ż	Bullitt (21 Bullitt (21		2461021000	Solvent Util Solvent Util	or Cutback Asj 19 or Pesticide Aj A	lotai: All Solvent Types All Processes								14.11
₹	Bullitt C 21		2465000000	Solvent Util	or All Product:	All Solve								152.12
⋩⋩	Bullitt C 21 Bullitt C 21		2501060051	Storage and	ai Gasoline Se	Stage 1: Submerged Filling Stage 1: Splach Filling								136.32
₹	Bullitt (21		2501060201	Storage and	aı Gasoline Se	ground 7								27.81
<u></u>	Bullitt C 21		2501060300	Storage and	aı Gasoline Se	le Fuel (73.05
Ż Ż	Bullitt (21		2601010000	storage and Waste Dispo	Petroleum al Iruck Gasolli On-site Incin Industrial Total	Gasoline Total	56.25	10.31	9.87	10.87				9.91 1.58
<u></u> ≥ ≥	Bullitt (21		2601020000	Waste Dispo	in Commercia	Total	52.66	9.65	7	7.71	4.78	5.49	0.71 5.81	1.49
₹	tilli		2610000100	Waste Dispo	n All Categori	Yard Waste - Leaf Species Unspecified		7	4.64	4.64	4.64	4.64		77.0
<u>≿</u> ≥	Bullitt (21 Bullitt (21		2610000400	Waste Dispo	Surnin All Categori Ya Burnin Industrial To	Yard Waste - Brush Species Unspecified Total	27 75		2.07	2.07		2.07		1
₹	Bullitt (21		2610020000	Waste Dispr Open I	n Commercia To	Total	28.78	2.03						10.16
<u></u>	Bullitt (21		2610030000	Waste Disp	n Residential	Household Waste (use 26-10-000-xxx for Yard Waste	439.42	31.02	109.79	109.79	100.54 10	100.54	2.89	155.1
≥ ≥	Bullitt (21 Bullitt (21		2620030000	Waste Disp Waste Disp	Municipal r Industrial									20.39
∑ :	Bullitt C 21		2630020000	Waste Dispx W	r Public Own	Total Processed	Ó	94						0
≥ ≥	Bullitt (21 Bullitt (21		2801700001	Miscellanec Agriculture F / Miscellanec Agriculture F /	F Agricuiture F Fertilizer Ar	Hiling Anhydrous Ammonia		0	173.41	173.41	34.68	34.68		
₹	Bullitt C 21		2801700002	Miscellanec A	F Fertilizer Ap	Aqueous Ammonia								
⋩⋩	Bullitt (21 Bullitt (21		2801700003	Miscellanec Ag Miscellanec Ag	F Fertilizer Ap	Nitrogen Solutions II rea	ď	0 &						
₹	Bullitt (21		2801700005	Miscellanec Agriculture F	F Fertilizer Ap	Ammonium Nitrate	Ö	14						
≿ }	Bullitt (21		2801700006	Miscellaneo Ag	F Fertilizer Ap	Ammonium Sulfate		0 0						
₹ 🔀	Ħ		2801700010	Miscellanec Ag	F Fertilizer Ap	N-P-K (multi-grade nutrient fertilizers)	ri	010						
≿ }	Bullitt C 21		2801700011	Miscellanec Agriculture F	F Fertilizer Ap	Calcium Ammonium Nitrate		0 (
≿ ≿	Bullitt (21 Bullitt (21		2801/00012	Miscellanec Ag Miscellanec Ag	F Fertilizer Ap F Fertilizer Ap	Potassium Nitrate Diammonium Phosphate	o	0 69						
Ž	Bullitt C 21		2801700014	Miscellanec Agriculture F	F Fertilizer Ap	Monoammonium Phosphate	i	3 0						
<u>≿</u> ≿	Bullitt C 21 Bullitt C 21		2801700015	Miscellanec Ag Miscellanec Ag	F Fertilizer Ap	Fertilizer Af Liquid Ammonium Polyphosphate Fertilizer Ar Miscellaneous Fertilizers	0 0	0 5						
₹	Ħ		2805001000	Miscellanec Ag	F Beef cattle	Dust Kicked-up by Hooves (use 28-05-020, -001, -00)	2, or -003 for	Waste	78.23	78.23	11.73	11.73		
≿ ≿	Bullitt (21 Bullitt (21		2805001100	Miscellanec Agriculture F	Beef cattle	Confinement Manure handling and storage	7.	91						
₹	Bullitt C 21		2805001300	Miscellanec Ag	Beef cattle	Land application of manure	Ø	6.01						
≿ ≿	Bullitt C 21 Bullitt C 21		2805002000	Miscellanec Ag	F Beef cattle	Not Elsewhere Classified	ă	0 (
₹	Bullitt C 21	029	2805007100	Miscellanec A	P Poultry pro C	Confinement	į o	0.21						
⋩⋩	Bullitt (21 Bullitt (21		2805007300	Miscellanec Agriculture F Miscellanec Agriculture F	a a	Land application of manure Confinement		00						
₹	Bullitt C 21		2805008200	Miscellanec Agr	F Poultry pro-	Manure handling and storage	o	01						
⋩⋩	Bullitt C 21 Bullitt C 21		2805008300	Miscellanec Agriculture	F Poultry pro-	Poultry pro-Land application of manure Poultry pro-Confinement	C	0 6						
₹	Bullitt C 21		2805009200	Miscellanec Agr	F Poultry pro-	Manure handling and storage	5	0						
⋩⋩	Bullitt (21 Bullitt (21		2805009300	Miscellanec Agriculture Miscellanec Agriculture	F Poultry pro-1 F Poultry pro-0	Land application of manure Confinement	Ö	01						
₹	Bullitt C 21		2805010200	Miscellanec Agriculture F	Q.	Manure handling and storage		0						
⋩⋩	Bullitt (21 Bullitt (21	029 029	2805010300	Miscellanec Ag Miscellanec Ag	a 0	oultry pro Land application of manure Jairy cattle Not Elsewhere Classified		00						
Σ	Bullitt C 21		2805019100	Miscellanec Agriculture	7	5	Ö	04						
<u></u> ≿	Bulliff (21 Bulliff (21		2805019200 2805019300	Miscellanec Agricultur Miscellanec Agricultur	F Dairy cattle M F Dairy cattle La	Manure handling and storage Land application of manure	oo	13 01						
₹	Bullitt C 21		2805021100	Miscellanec Agricultur	F Dairy cattle	Confinement	i	1 79						
⋩⋩	Bullitt C 21 Bullitt C 21	029	2805021200	Miscellanec Agricultun Miscellanec Agricultun	F Dairy cattle F Dairy cattle	e F Dairy cattle Manure handling and storage e F Dairy cattle Land application of manure	⊷iα	3.22						
₹	Bullitt C 21		2805022100	Miscellanec Agricultur	F Dairy cattle	Confinement	Ö	18						
≿ }	Bullitt C 21		2805022200	Miscellanec Agricultur	F Dairy cattle	Manure handling and storage	o o	01						
₹ ≿	Bullitt C 21		2805023100	Miscellanec Agricultur	F Dairy cattle	can application of manure Confinement	o, 4,	3 5						
<u></u>	Bullitt (21		2805023200	Miscellanec Agricultur	F Dairy cattle	Manure handling and storage	o o	24						
₹ \$	Bullitt (21		2805025000	Miscellanec Agricultur	F Swine prod	28-0		82						
₹	Bullitt C 21		2805030000	Miscellanec Agricultur	F Poultry Wa:	Not Elsewhere Classified (see also 28-05-007, -008, -009)		0						
≿	Bullitt (21 Bullitt (21		2805030007	Miscellanec Agricultur Miscellanec Agricultur	F Poultry Wa: F Poultry Wa:	Ducks Grace	- c).1 06						
₹	Bullitt (21		2805035000	: 2	F Horses and	Not Elsewhere Classified	15.	47						
<u></u>	Bullitt (21 Bullitt (21		2805039100	Miscellar	F Swine prod	Confinement		0 0						
	Bullitt C 21		2805039300	Miscellanec Agriculture	F Swine prod	Land application of manure		0 0						
	Bullitt C 21		2805040000	Miscellar	F Sheep and 1	Total	o i	31						
<u></u>	Bullitt (21 Bullitt (21	029	2805045000	Miscellanec Agriculture Miscellanec Agriculture	F Goats Wast F Swine prod	Not Elsewhere Classified Confinement	7	23 0						
	Bullitt C 21		2805047300	Miscellanec Agriculture	F Swine prod	Land application of manure		. 0						
	Bullitt C 21		2805053100	Miscellanec Agriculture	P Swine prod	Confinement								
	Bullitt County	-	78.T0030000	Miscellanec Other Com	oi Structure Fi	lotal	62.92	1.46	9395 27	0.59	0.54	0.54	67 06 03	11.54
		!					1	1000	, ,4,0000	440.00		(0.80	.4.b/ 50.5.	705

2018								1					
9	CNT	고 담	strSCC 2102002000	SCC_L2	SCC_L3 SCC_L4 Franciscus Tatals All Basilor Transa	CO NH	NOX 8	M10-FIL P	M10-PM2 PRI PM2	ē. "	25- PM-CON	205	voc
	Bullit		2102004000	Stationary S Industrial Distil	late C Total: Boilers and IC Engines	0.1	1.	0.23	0.53				
	Bullit		2102006000	Stationary S Industrial Natu Stationary S Commercial/ Anth	ral Gs Total: Boilers and IC Engines acite Total: All Boiler Tynes	0.3	82	0.46	1.8				
Area	KY Bullitt (21	029	2103002000	Stationary S Commercial/ Bitur	/S Commercial/ Bituminou Total: All Boiler Types		,	0.1	0.17	0.04	0.11 0.06	5 8.66	
	Bullit		2103006000	stationary's Commercial/ Distil Stationary S Commercial/ Natu	iate C Total: boilers and IC Engines ral Ga Total: Boilers and IC Engines	0.03	ω γ γ	0.07	0.41				
	Bullitt		2104001000	Stationary S Residential Anth	acite Total: All Combustor Types			0.12	0.12				
	Bullit		2104004000	Stationary S Residential Bitur Stationary S Residential Distil	ninou I otal: All Combustor I ypes late (Total: All Combustor Types	0.44	4	0.32	0.53 6.42				
	Bullit		2104006000	Stationary S Residential Natu	ral Ga Total: All Combustor Types	0.7	en.	1.33	5.33				
	Bullit		2104008002	Stationary S Residential Woo	Fireplaces: Insert; non-EPA certified				1./3 36.6	⊣m	5.6	0.12	
	Bullit Bullit		2104008003	Stationary S Residential Wood Fir Stationary S Residential Wood Fir	eplaces: Insert; EPA cert eplaces: Insert: EPA cert				1.46	ਜਂ ਟ	.46	0.03	
	Bullitt		2104008010	Stationary S Residential Woo	Woodstoves: General				36.5	ñ	6.5	0.92	
	Bullit		2104008030	Stationary S Residential Woo Stationary S Residential Woo	d Catalytic Woodstoves: General d Non-catalytic Woodstoves: FPA certified				0.6	<u> </u>).6 A5	0.02	
	Bullit		2275900101	Mobile Sour Aircraft Refu	ling: Displacement Loss/Uncontrolled						}	9	0
	Bullit		2296000000	Mobile Sour Paved Koads All Pa Mobile Sour Unpaved Ro: All U	ved † Jotal: Fugitives pave Total: Fugitives			957.75	957.75	90.04 90.04	28		
	Bullit		2302050000	Industrial Pr Food and Kir Bake	y Prc Total								11.63
	Bullit		2311020000	Industrial Pr Construction Indus	Succinal Total dustrial/ Total						5.8 101		
	Bullit		2311030000	Industrial Pr Construction Road Cons To	Cons Total			1070.06 10	1070.06	143.39 143.39	68, 39		
	Bullit		2401001000	Solvent Utili Surface Coat Archi	tectu Total: All Solvent Types						Ď.	,,	134.96
	H H		2401005000	Solvent Utili Surface Coat Auto	Refin Total: All Solvent Types								53.34
	Bullit		2415000000	Solvent Utili Degreasing All Pr	oces: Total: All Solvent Types								14.67 144.68
	Bullit		2420000370	5 :	ili Dry Cleaning All Process Special Naphthas								26.55
	Bullitt		2425000000	solvent Utili Graphic Arts Ali Pr Solvent Utili Miscellaneol Cutba	oces: Iotal: All Solvent Iypes ick A. Total: All Solvent Types								0
	Bullitt		2461850000	5	ide / All Processes								13.78
	Bullit Bullit		2465000000	5 6	oduc Total: All Solvent Types Ine S stage 1: Submorged Filling							,,,	161.71
	Bullit		2501060052	Storage and Petroleum ai Gasoline S Stage 1	Sp							7	134.58 19.85
	Bullit		2501060201	Storage and Petroleum al Gaso	ine S Underground Tank: Breathing and Emptying								27.46
	Bullit		2505030120	storage and Petroleum al Gaso Storage and Petroleum al Truck	ine > Portable Fuel Container Gasoline								85,63
	Bullit		2601010000	Waste Dispr On-site Incin Indus	trial Total	74.72	13.7	13.11	14.44	8.97	10.3 1.33	6.89	2.1
	Bullit		2601030000		nerci lotai entia Total	63.31 8.44	11.6	8.41	9.26				1.8
	Bullit		2610000100	Waste Dispx Open Burnin All Catego Y	tego Yard Waste - Leaf Species Unspecified			4.94	4.94	4.94 4.	4.94		
	Bullitt		2610010000	waste Dispc Open Burnin All Ca Waste Dispc Open Burnin Indus	aste - Brush Species Unspecified	28.85	2.02	2.2	2.2		2.2		10 18
	Bullit		2610020000	Waste Dispc Open Burnin Comr	otal	35.02	2.47						12.36
	Bullit		2610030000	Waste Dispc Open Burnin Resid	ousehold Waste (use 26-10-000-xxx for Yard Waste	467.11	32.98	116.71	116.71	106.88 106.88	88	3.08	164.88
	Bullit		2630010000	Waste Dispt Wastewater Industrial T									24.49 5.42
	Bullitt		2630020000	Waste Dispr Wastewater Publi	: Owr Total Processed	0.05							0
	Bullit		2801000003	Miscellaneo Agriculture P Agriculturr T Miscellaneo Agriculture P Fertilizer A A	JItur Tilling zer f Anhydrous Ammonia			158.89 1	58.89	31.77 31.	77		
	Bullitt		2801700002	Viscellaneo Agriculture P Fertilizer A									
	Bullit		2801700003	Viscellaneo Agriculture P Fertil Viscellaneo Agriculture P Fertil		4	0 +						
	Bullit		2801700005	Ψ	artiizer 2 Ammonium Nitrate	0.1	- 4						
	Bullitt		2801700006		ertilizer Ammonium Sulfate		. 0						
	Bullit		2801700007	Miscellaneo Agriculture P Fertil Miscellaneo Agriculture P Fertil	ertilizer Ammonium Thiosulfate ertilizer & N-P-K (milliarade nutrient fertilizers)	-	0 -						
	Bullit		2801700011		r - N (iriniu-grade nutrient len ilcium Ammonium Nitrate	0.1	- 0						
_	Bullitt		2801700012	ure P F	먎		0						
	Bullit Hilling		2801700013	யீம்	zer A Diammonium Phosphate 2ar A Mongammonium Phosphate	0.5	on c						
_	Bullit		2801700015	L LL	artiker z Monodaniinonium Prospilate artilizer z Liquid Ammonium Polyphosphate								
	KY Bullitt (21		2801700099	Miscellaneo Agriculture P Fertil	ertilizer / Miscellaneous Fertilizers	0.01	1	6 L	1	;	:		
	Bullitt		2805001100 1	ellaneo Agriculture P.B. sellaneo Agriculture P.B.	sattik Uust Kicked-up by Hooves (use 28-05-020, -001, -002, o sattik Confinement	or -003 for Was 7.74	aste 4	76.56	76.56	11.48 11.	48		
_	Bullitt		2805001200	Miscellaneo Agriculture P Beef	attle Manure handling and storage		. 0						
	Bullit		2805001300 1	գ դ	Beef cattle Land application of manure Baef cattle Not Elsewhere Classified	5.88	& C						
_	Bullit		2805003100	ure P	attle Confinement	33.7	om						
	Bullit		2805007100	Miscellaneo Agriculture P Poult Miscellaneo Agriculture P Poult	oultry pri Confinement	0.2	4.0						
	Bullit		2805008100	Miscellaneo Agriculture P Poultry p	y pr Confinement	0							
	Bullit		2805008200 1		y pri Manure handling and storage	0.0	∺ 0						
	± ±		2805009100	Miscellaneo Agriculture P Poult	y pricative application of manual and y pri Confinement	0.01	о г						
	Bullit		2805009200	Viscellaneo Agriculture P Poult Viscellaneo Agriculture P Poult	y pri Manure handling and storage v pri land application of manure	0 0	0 -						
	Bullit		2805010100	Miscellaneo Agriculture P Poult	y pr. Confinement		1 0						
Area	KY Bullitt (21 KY Bullitt (21		2805010200 2805010300	Viscellaneo Agriculture P Poult Viscellaneo Agriculture P Poult	יף Poultry pr Manure handling and storage P Poultry סיג Land application of manure		0 0						
Area	Ħ.		2805018000	Miscellaneo Agriculture P Dairy	catt Not Elsewhere Classified		. 0						
Area	KY Bullitt (21 KY Bullitt (21		2805019100 2805019200	Viscellaneo Agriculture P Dairy Viscellaneo Agriculture P Dairy	catti Confinement catti Manure handling and storage	0.0	4 K						
Area	≝ .		2805019300	Miscellaneo Agriculture P Dairy cattl	cattl Land application of manure	0.0							
Area	KY Bullitt (21 CY Bullitt (21		2805021100 2805021200	Viscellaneo Agriculture P Dairy cattl Viscellaneo Agriculture P Dairy cattl	Na Co	1.6	9 /						
Area	KY Bullitt (21		2805021300 1	a P	cattl Land application of manure	3.2							
Area	¥ ±		2805022100 2805022200	Viscellaneo Agriculture P Dairy Viscellaneo Agriculture P Dairy	cattl Confinement cattl Manure handling and storage	0.0	on 1-						
Area	KY Bullitt (21		2805022300 1	Miscellaneo Agriculture P Dairy	catti Land application of manure	0.1	7						
Area Area	KY Bullitt (21 (Y Bullitt (21	029	2805023100 1	ellaneo Agriculture ellaneo Agriculture	P Dairy catti Confinement P Dairy catti Manure handling and storage	4.38 0.25	80 LA						
Area	KY Bullitt (21		2805023300 1	Miscellaneo Agriculture P Dairy	cattl Land application of manure		4						
Area Area	KY Bullitt (21 CY Bullitt (21		2805025000 2805030000	llaneo Agriculture Ilaneo Agriculture	wine proi Not Elsewhere Classiffied (see also 28-05-039, -047, -053) oultry W: Not Elsewhere Classified (see also 28-05-007 -008 -009)		^ C						
Area	KY Bullitt (21		2805030007	llaneo Agriculture P P	Ducks		. 2						
Area	KY Bullitt (21 CY Bullitt (21			llaneo Agriculture P f Ilaneo Agriculture P f	oultry W. Geese Horses an: Not Elsewhere Classified	0.07							
Area	KY Bullitt (21			_≌ :	pro Confinement		. 0						
Area Area	KY Bullitt (21 KY Bullitt (21			viiscellaneo Agricuiture P Swine Viiscellaneo Agriculture P Swine	pro: Manure handling and storage pro: Land application of manure		0 0				,		
Area	KY Bullitt (21			Miscellaneo Agriculture P Sheer	and Total	0.2	2						
Area	Y Bullitt (21			viscellaneo Agriculture Pisoats Viscellaneo Agriculture P Swine	wa: Not Eisewhere Classified pro Confinement	1.91	. 0						
Area >	KY Bullitt (21 CY Bullitt (21			Viscellaneo Agriculture P Swine Viscellaneo Agriculture D Swine	proc Land application of manure								
Area	KY Bullitt (21	029	2815030000 N	VIScellaneo Agriculture ا عسية Viscellaneo Other Combi Struct	pro Continement ure Total	48.96	1.14	0.46	0.46	0.42 0.42	42		8.98
	Bullitt Count	_			2	726.41 91.72	65.45	3764.61 38			43 14.63	98.83 10	1086.03

	Portion factor of 7% applied for these numbers			Made 2025 equal to 2018; formula			
		1		Made 20	4		
2025 M25-PRI 114.73 1.20 115.93	2025 SO2 366.00 2.92 368.93	2025 NOX 2539.75 32.69 2572.44	-				
2022 M25-PRI F 116.57 1.41 117.98	2022 SO2 370.03 3.10 373.13	2022 NOX 2707.10 36.27 2743.37	2025 M25-PRI 12.39	2025 SO2 0.76 €	2025 NOX 210.99		
2018 M25-PRI P 117.92 1.56 119.48	2018 SO2 372.98 3.23 3.76.21	2018 NOX 2830.06 38.89 2868.95	2018 M25-PRI P 24.08	2018 SO2 0.76	2018 NOX 333.15		(
2015 PM25-PRI F 118.93 1.67 120.60	2015 SO2 375.20 3.32 378.52	2015 NOX 2922.28 40.86 2963.14	2015 M25-PRJ F 29.09	2015 SO2 3.29	2015 NOX 385.51		
2009 PM25-PRI F 120.96 1.89 122.85	2009 - SO2 379.64 3.52 383.15	2009 NOX 3106.72 44.80	2009 M25-PRJ F 39.10	2009 SO2 8.35	2009 NOX 490.22		
2008 PM25-PRI F 122.34 1.91 124.25	2008 SO2 394.26 3.83 398.09	2008 NOX 3137.05 45.40 3182.45	2008 M25-PRJ F 39.86	2008 SO2 14.28	2008 NOX 502.71	Population 1050	15569 7%
2005 PM25-PRI F 126.47 1.98 128.46	2005 SO2 438.11 4.78 442.89	2005 NOX 3228.05 47.20 3275.25	2005 M25-PRI F 42.13	2005 SO3 32.05	2005 NOX 540.19		
2002 2005 2008 2009 2015 2022 2025 PM25-PRI PM25-	2002 SO2 481.96 5.74 487.70	2002 NOX 3319.05 48.99 3368.05	2002 2005 2008 2009 2015 2018 2025 PM25-PRI PM25-PRI PM25-PRI PM25-PRI PM25-PRI PM25-PRI 44.40 42.13 39.86 39.10 29.09 24.08 12.39	2002 SO2 49.83	2002 NOX 577.66		
Cnty_Name Boyd County Total Lawrence County Total Total	Cnty_Name Boyd County Total Lawrence County Total Total	Cnty_Name Boyd County Total Lawrence County Total_ Total	NONROAD SOURCE Cnty_Name Bullitt County Total	Cnty_Name Bullitt County Total	Cnty_Name Bullitt County Total	Area t 43.61	420.12
NONROAD Source	Source	Source	Source	Source	Source	Nonattainment	area County total %

Cnty_Name Bullitt County Total

NH3

XON

3472.815856 0.345545519 577.6643851 46.77730401 44.39563793 49.8299703 506.4929126

PM25-PRI PM10-PRI

SO2

VOC

Bullitt County Total Cnty_Name

NH3 8

XON

PM10-PRI

PM25-PRI

SO2

4140.166042 0.412927361 490.2182049 41.43146121 39.1048086 8.354842006 563.8523473

2018

Cnty_Name Bullitt County Total

NH3

XON

4502.053616 0.486373033 333.1523291 25.65612243 24.07555857 0.762203539 412.4390076

PM25-PRI

S02

PM10-PRI

Appendix B:

Interpolation of VISTA-provided inventory years to provide interim years for Kentucky area and nonroad.

VISTA provided 2002-2009-2018. See spreadsheet included this appendix.

Kentucky used a standard linear interpolation equation to derive the interim years required between the fixed value inventory years provided by VISTA.

For example, for 2005,

2005 = 03 + [(S3 - 03) * (3/7)], where there are seven years between the VISTA-provided inventory years of 2002 and 2009. Since 2005 is three years out between 2002 and 2009, that year is represented in the equation as 3/7 or 0.428.

Thus,

```
O3=130.61 (2002 year value)
S3=120.96 (2009 year value)
```

Thus, 2005=130.61 + [-4.14]

<u>2005 = 126.47</u>

The same method of calculation was used for 2008,

2008 = O3 + [(S3 - O3) * (6/7)], where there are seven years between the VISTA-provided inventory years of 2002 and 2009. Since 2008 is six years out between 2002 and 2009, that year is represented in the equation as 6/7 or 0.857.

Thus,

```
O3=130.61 (2002 year value)
S3=120.96 (2009 year value)
Thus, 2008=130.61 + [-8.27]
```

2008 = 122.34

The same calculation for 2015,

2015 = S3 + [(U3-S3) * (6/9)], where there are nine years between the VISTA-provided inventory years of 2009 and 2018. Since 2015 is six years out between 2009 and 2018, that year is represented in the equation as 6/9 or 0.667.

Thus,

S3=120.96 (2009 year value)

U3=117.92 (2018 year value)

Thus, 2015= 120.96 + [-2.20]

<u>2015 = 118.93</u>

The same calculation was used for calculating the out year 2022.

Since 2022 is thirteen years out from 2009, it can be calculated as 13/9 or 1.44, multiplied by the same increment (U3 – S3 = -3.04) already calculated between 2009 and 2018.

Where, 2022 = 120.96 + [-3.04 * 1.44] = -4.38.

Thus, 2022 = 120.96 + [-4.37] = 116.58.

2022 = 116.57.

(revised 02-06-2012)

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)
Bullitt County

Plant Level Information

			MASTER_					
0bs	MASAINAME		AI_ID	ALTFACID	COUNTYN	FIPS	SIC1	PRIPROD
1	KY Solite Corp		454	2102900002	Bullitt	21029	3295	LIGHT WEIGHT AGG
2	Quality Stone & Ready Mix I	no	471	2102900003	Bullitt	21029	3273	CONCRETE
3	Four Roses Distillery Inc		451	2102900004	Bullitt	21029	2085	SPIRIT STG
4	Jim Beam Brands Co - Clermor		450	2102900005	Bullitt	21029	2085	BRANDY
5	Quality Stone & Ready Mix I		44272	2102900009	Bullitt	21029	1422	LIMESTONE
6	Mago Construction Co LLC - S	Shepherdsville Asphalt Faci	ility 463	2102900010	Bullitt	21029	2951	ASPHALT
7	IMI South LLC		37419	2102900011	Bullitt	21029	3273	CONCRETE
8	Rogers Group Inc - Bullitt (Co Stone	473	2102900012	Bullitt	21029	1422	STONE
9	Publishers Printing Co - She	epherdsville Facility	469	2102900019	Bullitt	21029	2752	PRINTING
10	Publishers Printing Co - Lef	nanon Junction Press	470	2102900032	Bullitt	21029	2721	MAGAZINES
11	IMI South LLC		37418	2102900036	Bullitt	21029	3272	LIMESTONE
12	Specialty Engraving Systems	Inc	37449	2102900037	Bullitt	21029	2796	CROME PLAT
13	Monarch Hardware & Manufacte	ıring Co	465	2102900038	Bullitt	21029	3429	GENERAL HARDWARE
14	Clark & Associates LLC		34458	2102900040	Bullitt	21029	3441	Welding
15	Allied Ready Mix Co Inc		43856	2102900041	Bullitt	21029	3273	CONCRETE
16	Blackrock Trailers		50239	2102900042	Bullitt	21029	3715	Truck Trailers
17	Gordons Food Service		49577	2102900043	Bullitt	21029	5142	Frozen Food
18	Charlton Co Inc - Portable A	Asphalt Plant	40234	2102909043	Bullitt	2102 9	2951	ASPHALT
0bs	\$02	NO2	PM25_FIL	PM_CON	PM25_PRI			
1 ·	157.46849120	110.46380000	19.15735555	4.97697234	24.134			
2			0.14419707	0.11385425	0.258			
3	,		•					
4	201.46831440	96.37936000	4.74729982	17.40592478	22.153			
5		· ·	12.01011671	6.42253726	18.433			
6	5.44712000	7.29525000	0.73225019	8.52714157	9.259			
7			0.00000000	0.00000000	0.000			
8	•		58.43884734	27.73987875	86.179			
9	0.00822000	1.37000000	0.03123600	0.16659200	0.198			
10	0.00932213	1.57336905	0.11696168	0.18966075	0.307			
11			0.36062550	0.86385192	1.224			
12		•	1.30096990	5.88950015	7.190			
13	0.00165600	0.27600000	0.02102535	1.83918494	1.860			
14	,	•	0.00000000	0.00000000	0.000			
15	•		0.00000000	0.00000000	0.000			
16	0.01757082	2.92847000	4.28124692	5.30608716	9.587			
17	0.0000000	0.0000000	0.00000000	0.00000000	0.000			
				2.51974967	2.683			

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Plant Level Information

COUNTYN=Bullitt FIPS=21029	
(continued)	

0bs	MASAINAME		MASTER AI_I	_	COUNTYN	FIPS	SIC1	PRIPROD
19	Rogers Group Inc -Portabl	Le Brooks Crushed Stone	4027	6 2102909062	Bullitt	21029	1422	LIMESTONE
20	Rogers Group Inc - Portab	ole Crusher Plant 1	4050	1 2102909084	Bullitt	21029	1429	AGG CRUSH
21	RMS Gravel - Portable Pla	ant	4385	7 2102909111	Bullitt	21029	1442	
FIPS COUNTYN								
Obs	\$02	NO2	PM25_FIL	PM_CON	PM25_PAI			
19			1.82632558	1.37214762	3.198			•
20			0.00000000	0.00000000	0.000			
21	•		0.00000000	0.00000000	0.000			
FIPS	365.90798855	221.69661405	103.33205995	83.33308313	186.665			
COUNTYN	365.90798855	221.69661405	103.33205995	83.33308313	186.665			
	365.90798855	221.69661405	103.33205995	83.33308313	186.665			

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

		MASTER_												
0bs	MASAINAME	AI_ID	ALTFACID	PRIPR	OD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBIT	EMDESC	
1	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	001	1	30599999	POINT	001	
2	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	001	2	39000699	POINT	001	
3	KY \$olite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	002	1	30599999	POINT	002	
4	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	002	2	39000699	POINT	002	
5	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	002	3	39001389	POINT	002	
6	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	003	1	30502910	SHALE	EXPANDING H	KILN
7	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	003	3	39000699	SHALE	EXPANDING H	(ILN
8	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	005	1	30599999	POINT	005	
9	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	006	1	30599999	POINT	006	
10	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	007	1	30599999	POINT	007	
11	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	800	1	30599999	POINT	800	
12	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	009	1	30399999	POINT	009	
13	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	011	1	30502006	POINT	011	
14	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	012	1	30502006	POINT	012	
15	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	013	1	30502006	POINT	013	
16	KY Solite Corp	454	2102900002	LIGHT WEI	GHT AGG	Bullitt	21029	3295	014	1	30599999	POINT	014	
INAME														
0bs	SCCSUBDESC			502		Ni	02		PM25	FTI	PM	_CON	PM25_PRI	
003	GOODDEGO			302		IV	02		F MED	!	· w	_0011	TMEO_1111	
1	SHALE EXPANDING KI	LN #1							0.00000	0000	0.0000	0000	0.0000	
2	SHALE KILN #1 BURN	ER	0.00	0000000		0.000000	00		0.0000	0000	0.0000	0000	0.0000	
3	SHALE EXPANDING KI	LN #2	•						0.0000	0000	0.0000	0000	0.0000	
4	SHALE KILN #2 BURN	ER	0.00	0000000		0.000000	00		0.0000	0000	0.0000	0000	0.0000	
5	LIQUID BURNABLE MA	TERIAL	0.00	0000000		0.000000	00		0.0000	0000	0.0000	0000	0.0000	
6	AGGREGATE + COAL		157.46	6624000		109.994800	00							
7	NAT GAS FUEL		0.00	0225120		0.469000	00		0.00010	6040	0.0570	3040	0.0572	
8	PRIMARY CRUSH, SCRN	&HDLG							0.76740	6647	0.4198	0596	1.1873	
9	SECONDARY CRUSH, SC	RN,&HDL	•			•			0.3470	2826	0.1898	2527	0.5369	
10	STORAGE SILOS		•			•			0.09676	6884	0.0214	3427	0.1182	
11	HAUL ROAD & YARD A	REA							17.9405	7120	4.2770	7279	22.2176	
12	COAL HANDLING & ST	ORAGE							0.0053	3357	0.0114	5431	0.0168	
13	DUST SILO (LOADING) T-201							0.00000	0000	0.0000	0000	0.0000	
14	FILTER RECEIVER UN	IT F311	•			•			0.0000	0000	0.0000	0000	0.0000	
15	TRUCK LOADOUT (H20	2)							0.0000	2681	0.0003	4933	0.0004	
16	TEMP PORTABLE SEC	CRUSH	, .						0.0000	0000	0.0000	0000	0.0000	
									19.1573		4.9769		24.1343	

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

-- COMMINIONERUllitt ALTEACIDE2102900002 MASAINAMEEKY Solite Corn

		- QUQI¥1 TI¥-DU.L.	TICC ACTENOID	continued)		-KI 3011	re corb			 	
0bs	MASTER_ MASAINAME AI_ID	ALTFACID	PRIPROD	COUN	TYN FIPS	SIC1	PTÍĎ	SEGI	D 800	C SUBI	FEMDESC
ALTFACID											
Obs	SCCSUBDESC		S02		NO2		PM2	5_FIL		PM_CON	PM25_PRI
ALTFACID	-	157.46	849120	110.46	380000		19.157	35555	4	.97697234	24.1343
•••• <u>•</u>	COUNT	YN=Bullitt AL	TFACID=210290	0003 MASAIN	AME=Quality	y Stone	& Ready	Mix Inc	3		
• Obs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIP\$	SIC1	PTID	SEGID	scc	SUBITEMDESC
QDD	10 (5) (11) 1112	\\ * _ * D	ALITAGID	THITHOD	00011111	1110	0.0.	1125	02415		0001.1
17	Quality Stone & Ready Mix Inc	. 471	2102900003	CONCRETE	Bullitt	21029	3273	(-)	14	30501199	Unpaved Haul R
18	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	001	1	30501107	POINT 001
19	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	002	1	30501108	POINT 002
20	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	002	2	30501111	POINT 002
21	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	002	3	30501106	POINT 002
22	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	003	1	30501199	POINT 003
23	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	004	1	30501107	POINT 004
24	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	07	7	30501107	Cement Silo
Obs	SCCSUBDESC		802		N02			PM25_F	ΓL	PM_C	ON PM25_PRI
17	Unpaved Haul Road and Yard Are						0	. 0000000	00	0.0000000	0.00000
18	CEMENT SILO LOADING						0	.000087	12	0.0219676	66 0.02205
19	WEIGH HOPPER						0	.0032734	45	0.009286	38 0.01256
20	TRUCK LOADOUT						0	.0065469	90	0.018572	77 0.02512
21	AGG HANDLE & STOCKPILES				•			.0720159		0.018572	77 0.09059
22	HAUL ROAD & YARD AREA							.062261		0.0423908	84 0.10465
23	FLYASH SILO							.000012		0.0030638	
24	Cement Silo		_				n	.0000000	00	0.0000000	0.00000

Aedesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)
Bullitt County

	COUN	TYN=Bullitt	ALTFACID=210	2900003 MA	SAINAME=0	uality	Stone a	& Read	y Mix I	inc			
				(conti		,			•				
		MASTER_											
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBIT	EMDESC	
25	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	08	8	30501107	Fly A	sh Silo	
26	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	09	9	30501108	Cemen	t/Fly Ash We	ight Hopper
27	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	10	10	30501108	Aggre	gate Weight	Hopper
28	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	11	11	30501111	Truck	Loadout (Dr	у)
29	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	12	12	30501106	Aggre	gate Handlin	g
30	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	13	13	30501106	Stock	piles	
MASAINAME ALTFACID											-		
Obs	SCCSUBDESC		·S02		١	102		P	M25_FIL		PM_	CON PM25_	PRI
25	Fly Ash Silo							0.0	0000000)	0.00000	000 0.00	000
26	Cement/Fly Ash Weight Hopper							0.0	0000000)	0.00000	000 0.00	000
27	Aggregate Weight Hopper							0.0	0000000)	0.00000	000 0.00	000
28	Truck Loadout (Dry)								0000000		0.00000	000 0.00	000
29	Aggregate Handling							0.0	0000000)	0.00000	000 0.00	000
30	Stockpiles								0000000		0.00000		
	·												
MASAINAME		0	.00000000		0.000000	000		0.1	4419707	,	0.11385	425 0.25	805
ALTFACID		0	.00000000		0.000000	000		0.1	4419707	,	0.11385	425 0.25	805
	co		t ALTFACID=2	2102900004	MASAINAME	=Four R	oses D	istill	ery Ind	;			
Aha	MASAINAME	MASTER_	A1 TC 4070	00700	10D (COLINTY A	CTO:	e	eret	PTID	SEGID	SCC	SUBITEMDESC
0bs	MASAINAME	AI_ID	ALTFACID	PRIPR	OD C	NYTNUO	FIP	5	SIC1	PILO	SEGID	300	2001 LEWIDE2C
31	Four Roses Distillery Inc	451	2102900004	SPIRIT	STG E	Bullitt	210	29	2085	002	1	30201003	POINT 002
Obs	SCCSUBDESC	\$02		NO2		PM	25_FIL			PM_CON	PM25_P	RI	
31	WHISKEY AGEING .					•							

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

	ORIUSTVII O. I	1'	D 040000000				- 0-	01	01-	_*	
	COUNTYN=Bul		D=2102900005) MASAINAN	⊫=Jim Bea	ım Brano	s (0 -	Clerm	iont Pla	nt	
		MASTER_									0.10.7777.10.500
Obs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
32	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	001	1	30200505	GRAIN HANDLING
33	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	001	2	30200508	GRAIN HANDLING
34	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	001	3	30200699	GRAIN HANDLING
35	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	002	1	30201014	FERMENTATION
36	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	003	1	30201002	SPENT GRAIN DRYING
37	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	003	2	39000689	SPENT GRAIN DRYING
38	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	003	3	39001099	SPENT GRAIN DRYING
39	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	004	1	30201001	DRIED GRAIN STORAGE
40	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	005	1	30201003	Barrel Filling/Aging/Dumping
41	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	006	1	39999996	BOTTLING OPERATION
42	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	007	1	10200602	95.2 MMBTU/HR GAS BOILER
43	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	007	2	10200501	95.2 MMBTU/HR GAS BOILER
44	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	007	3	10200401	95.2 MMBTU/HR GAS BOILER
45	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY			2085	008	1	10200204	99 MMBTU/HR COAL BOILER
46	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	008	2	10200602	99 MMBTU/HR COAL BOILER
47	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	009	1	10200602	25.1 MMBTU/HR GAS BOILER
48	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	009	2	10200501	25.1 MMBTU/HR GAS BOILER
49	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt			010	1	39999996	PROCESS WASTE WATER
			2,0200000	510 1115 1	542220				·	**********	
Obs	SCCSUBDESC	S	02		NO2		P	M25_FI	L	PM_	CON PM25_PRI
32	GRAIN UNLOADING						3.6	806670	0	1.92329	9762 5.6040
33	GRAIN ELEVATOR/CONVEYOR	•					0.2	963500	0	3.84659	9525 4.1429
34	ROADS GRAIN TRANSPORTED						0.1	911040	0	1.78286	8802 1.9740
35	FERMENTATION-BUSHELS INPUT	•									
36	SPENT GRAIN DRYING	•					0.4	964837	5	3.07730	3.5738
37	SPENT GRAIN DRYER-NG USE	0.000000	00	0.000	00000						
38	SPENT GRAIN DRYING-LPG USE	0.000000	00	0.000	000000				-		,
39	TOTAL DRIED GRAINS STORAGED	•					0.0	000172	27	0.30773	0.3077
40	BARREL FILLING AGING DUMP									-	
41	PROCESSING BOTTLING OPER										•
42	NATURAL GAS USAGE	0.002575	80	0.601	02000		0.0	128790	0	0.02060	0640 0.0335
43	#2 FUEL OIL USAGE	0.000000			00000		0.0	000000	0	0.00000	0.000
44	#6 FUEL OIL	0.000000			000000			000000		0.00000	0000 0.0000
45	COAL FIRED HEAT EXCHANGER	201.463080		95.158				568501		6.42625	6.4831
46	NATURAL GAS USAGE	0.000069			10000			000006		0.00055	
47	NATURAL GAS USAGE	0.002589			24000			129480		0.02071	680 0.0337
48	#2 FUEL OIL USAGE	0.000000			00000			000000		0.00000	
											· ·

49 PROCESS WASTE WATER TREAT

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)
Bullitt County

	· 	COUNTYN≃Bullitt ALTF,		ASAINAME=Jim Beam B ontinued)	rands Co - Clermon	it Plant	
Obs	MASAINAME	MASTE AI_	_	RIPROD COUNTYN FI	PS SIC1 PTID S	SEGID SCC SUBIT	EMDESC
MASAINAME ALTFACID							
Obs	SCCSUBDESC		S02	NO2	PM25_FIL	PM_CON	PM25_PRI
MASAINAME ALTFACID		201 . 468 201 . 468		96.37936000 96.37936000	4.74729982 4.74729982	17.40592478 17.40592478	22.1532 22.1532
		- COUNTYN=Bullitt ALTFA	CID=2102900009 MAS	SAINAME=Quality Sto	ne & Ready Mix Inc	-Quarry	·
Obs	MASAINAME	MASTER_ AI_ID	ALTFACID PRIPE	ROD COUNTYN FIPS	SIC1 PTID SEGID	SCC SUBITEMDESC	
51 Qu 52 Qu 53 Qu 54 Qu 55 Qu	uality Stone & Ready Mix uality Stone & Ready Mix	Inc-Quarry 44272 Inc-Quarry 44272 Inc-Quarry 44272 Inc-Quarry 44272 Inc-Quarry 44272	2102900009 LIMEST 2102900009 LIMEST 2102900009 LIMEST 2102900009 LIMEST 2102900009 LIMEST	TONE Bullitt 21029	1422 001 2 1422 001 3 1422 002 1 1422 002 02 1 1422 002 03 1	30502001 POINT 001 30502006 POINT 001 30502002 POINT 001 30502006 POINT 002 30502001 (2) Crusher 30502006 (3) Conveyor 30502015 (4) Scalping	and Transfer Points Screen (2-deck, 5'x16')
Obs SC	CCSUBDESC	802	NO2	PM25_FIL	PM_CC	ON PM25_PRI	
51 CC 52 SE 53 Re 54 CI 55 CC	RUSHER DNVEYOR EC CRUSHER eceiving rusher onveyor calp Screen		· · · · · · · · · · ·	0.00020863 0.00145657 0.00058417 0.00242762 0.00347722 0.00825389 0.40567590	0.0214643 0.0220775 0.0357738 0.0613266 0.0357738	0.02292 0.02266 0.03820 0.06480 0.04403	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

	MASTER							÷,		
Obs MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	
57 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	002 05	1	3050200	6
58 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	002 06	1	3050200	6
59 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	002 07	1	3050201	5
60 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	002 08	1	3050201	5
61 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	002 09	1	3050201	5
62 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 01	1	3050200	6
63 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 02	1	3050209	9
64 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 03	1	3050200	7
65 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 04	1	3050200	
66 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 05	1	3050200	
67 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 06	1	3050200	
68 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 07	1	3050200	7
69 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 08	1	3050200	
70 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 09	1	3050200	
71 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 10	1	3050200	
72 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	004 01	1	3050209	
73 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	004 02	1	3050209	9
Obs SUBITEMDESC	SCCSUBDESC		S02		NO2		PM25_FIL		PM_CON	PM25_PRI
57 (5) Conveyor and Transfer Points	Conveyor						0.00495234	0	.02146433	0.0264
58 (14) Conveyor and Transfer Points	Conveyor			,			0.00495234	0	.02146433	0.0264
59 (15) Screen (3-deck, 6'x20', fines)	Screen						0.13039583	0	.54427417	0.6747
60 (16) Screen (3-deck, 6' x 20, fines)	Screen	•					0.13039583	0	. 54427417	0.6747
61 (-) Scalping Screen (2-deck, 5'x16')	Screen			•			0.00000000	0	.00000000	0.0000
62 (17) Conveyor and Transfer Points	Conveyor						0.00297139	0	.01287856	0.0158
63 (-) Truck Loadout	Truck Loadout						0.34772220	0	.00153317	0.3493
64 (-) Stockpile	Stockpile						0.02023780	0	.14601587	0.1663
65 (-) Stockpile	Stockpile						0.02023780	0	.14601587	0.1663
66 (-) Stockpile	Stockpile		•				0.02023780	0	.14601587	0.1663
67 (-) Stockpile	Stockpile	•					0.02023780		.14601587	0.1663
68 (-) Stockpile	Stockpile			•			0.02023780	0	.14601587	0.1663
69 (-) Stockpile	Stockpile			•			0.02023780	0	.14601587	0.1663
70 (-) Stockpile	Stockpile	•					0.02023780	0	.14601587	0.1663
71 (21) Surge Bin	Surge Bin						0.07649862		.00091990	0.0774
72 (-) Haul Road and Yard Area (paved)	Haul Road	-		•			0.20090616		.30867756	0.5096
73 (-) Haul Road and Yard Area (unpaved)	Haul Road			-		1	0.54757340	3	.34843600	13.8960

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

	COUNTY	N=Bullitt ALTFACID=2102	2900009 MASAINAM (continu		itone & Reac	ly Mix Inc	-Quarry					
Obs	MASAINAME	MASTER_ . AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTI)	SEGID	SCC	
MASAINAME ALTFACID												
Obs SUBITEMDES	ec	SCCSUBDESC		\$02		N02		PM25_	_FIL		PM_CON	PM25_PRI
MASAINAME ALTFACID			0.0000		0.0000			2.01011 2.01011			42253726 42253726	18.4327 18.4327
		LTFACID=2102900010 MASA	MASTER	₹ _			·					
Obs	MASAINAM	E	AI_	[D ALTFAC]	D PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	
75 Mago Consi 76 Mago Consi 77 Mago Consi 78 Mago Consi 79 Mago Consi	ruction Co LLC - Sheph ruction Co LLC - Sheph ruction Co LLC - Sheph ruction Co LLC - Sheph ruction Co LLC - Sheph	erdsville Asphalt Facil erdsville Asphalt Facil erdsville Asphalt Facil erdsville Asphalt Facil erdsville Asphalt Facil erdsville Asphalt Facil erdsville Asphalt Facil	lity 46 lity 46 lity 46 lity 46 lity 46 lity 46	21029000 321029000 321029000 321029000 321029000 321029000 321029000	010 ASPHALT 010 ASPHALT 010 ASPHALT 010 ASPHALT 010 ASPHALT	Bullitt Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029 21029	2951 2951 2951 2951 2951 2951 2951	001 002 002 003 003 004 004	1 1 2 1 2 1 2	3050020 3050020 3050029 3050029 3050020 3050020	4 3 9 9 9 9
Obs SUBITEMDES	SC .	SCCSUBDESC		S02		NO2		PM25_	_FIL		PM_CON	PM25_PRI
	ING & STOCKPILES FUGIT ING & STOCKPILES FUGIT YARD AREA UNPAV YARD AREA PAVED HAP R	- ROTARY DRYER IVE - AGGREGATE HAND IVE - STOCKPILES ED HAUL RD & YARD AR HAUL RD & YARD AREA ECEIVING HOPPER ONVEYOR & TRANSFER P	5.447 ⁻	12000	7.2952	25000	(0.07318 0.11180 0.33541 0.0000 0.03034 0.04537	0400 1200 0000 1824 7500	0. 2. 0. 0.	27410459 73552239 20656716 00000000 11691757 29850746 29850746	4.34729 0.84733 2.54198 0.00000 0.14727 0.34388 0.34388

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

 COUNTYN=Bullitt ALTFACID=2102900010 MASAINAME=Mago Construction Co LLC - Shepherdsville Asphalt Facility
(continued)

					(CONTENIDED	,								
Obs		MASAINAME			MASTER_ AI_ID		PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	•
81	Mago Construction Co I	IC - Shenhe	rdevilla Aenha	ilt Essilitu	463	210290001	O ASPHALT	Bullitt	21020	2951	004	3	30500	204
82	Mago Construction Co I	•	· ·	-	463		0 ASPHALT			2951	004	4	30500	
MASAINAME ALTFACID														
0bs	SUBITEMDESC	SCCSUBDESC			802		NO2		PM25_	FIL		PM_	CON	PM25_PRI
81 82		ALPING SCREE NVEYOR & TRA				· •			0.04537 0.04537			0.29850 0.29850	746	0.34388 0.34388
MASAINAME ALTFACID					712000 712000		525000 525000		0.73225 0.73225			8.52714 8.52714	157	9.25939 9.25939
Obs	MASAINAME	MASTER_ AI_ID	COUNTYN=Bu	PRIPROD	COUNTYN		=IMI South IC1 PTIC			sec	,		ITEMDE	
83	IMI South LLC	37419	2102900011	CONCRETE	Bullitt	21029 3	273 001	1	305	01107	BAG	HOUSE -	STLOS	, WEIGH H
84		37419	2102900011	CONCRETE	Bullitt		273 001	2		01107				, WEIGH H
85		37419	2102900011	CONCRETE	Bullitt		273 001	3		01108				, WEIGH H
86	IMI South LLC	37419	2102900011	CONCRETE	Bullitt		273 001	4		01111				, WEIGH H
87	IMI South LLC	37419	2102900011	CONCRETE	Bullitt	21029 3	273 002	1	305	01106	FU6	GITIVE -	AGG H	ANDLING &
Obs	SCCSUBDESC		\$02		N02		PM25_F1	:L	PN	_CON	PM25	5_PRI		
83	CEMENT SILO						0.0000000	00	0.0000	0000		0		
84	FLY ASH SILO						0.0000000	00	0.0000	0000		0		
85	WEIGH HOPPER						0.0000000	00	0.0000	0000		0		
86	TRUCK LOADOUT (DRY))			•		0.0000000	00	0.0000	0000		0		
87	AGGREGATE HANDLING						0.0000000	00	0.0000	0000		0		

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

			COUNTYN=B	ullitt AL1	FACID=21029 (conti		INAME=IMI	South LL	С				
		MASTER_											•
Obs	MASAINAME	AI_ID	ALTFACID	PRIPRO	COUNTY	N FIPS	SIC1	PTID	SEGID	S	cc	SUI	BITEMDESC
88	IMI South LLC	37419	2102900011	CONCRET	ΓE Bullit	t 21029	3273	002	2	305	01106	FUGITIVE	- AGG HANDLING &
89	IMI South LLC	37419	2102900011	CONCRET			3273	003	1	305	01199	FUGITIVE	- UNPAVED HAUL R
MASAINAME ALTFACID										٠			
0bs	SCCSUBDESC		802		NO	2	PM2	5_FIL		РМ_С	ON PN	125_PRI	
88	STOCKPILE			•			0.000	00000	0.	.000000	00	0	
89	UNPAVED HAUL ROAD						0.000			.000000		0	
MASAINAME ALTFACID			0.00000000		0.0000000		0.000	00000	0.	.000000	00	0	
0bs	MASAII	NAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
				_									•
90	Rogers Group Inc -				2102900012	STONE	Bullitt	21029	1422	001	1	30532031	POINT 001
91 92	Rogers Group Inc - Rogers Group Inc -				2102900012 2102900012	STONE STONE	Bullitt Bullitt	21029 21029	1422 1422	001 001	2 3	30502007 30502007	POINT 001 POINT 001
93	Rogers Group Inc -				2102900012	STONE	Bullitt	21029	1422	001	4	30502007	POINT 001
94	Rogers Group Inc -				2102900012	STONE	Bullitt	21029	1422	001	5	30502007	POINT 001
0bs	SCCSUBDESC			\$02		NO2		PM	25_FIL		PM_	CON PM2	5_PRI
90	RECEIVING HOPPER												
91	TRANSFER BIN (FEEDS	S CONE)						0.40	876506		2.94924		35801
92	TRANSFER BIN-FEEDS	,							874844		0.64032		72907
93	CONVEYOR TO RIP RAI	P STKPL							006148		0.00168	3262 0.0	00174
94	RIP RAP STOCKPILE		•					0.00	310948		0.02243	3492 0.6	02554

Bullitt County

Process Level (SCC) Information

------ COUNTYN=Bullitt ALTFACID=2102900012 MASAINAME=Rogers Group Inc - Bullitt Co Stone (continued)

		MASTER									
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
95	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	6	30502099	POINT 001
96	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	7	30502006	POINT 001
97	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	8	30502007	POINT 001
98	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	10	30502006	POINT 001
99	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	11	30502099	POINT 001
100	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	12	30502099	POINT 001
101	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	13	30502007	POINT 001
102	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	14	30502099	POINT 001
103	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	1	30532006	POINT 002
104	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	2	30502006	POINT 002
105	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	3	30502006	POINT 002
106	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	4	30502006	POINT 002
107	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	5	30502006	POINT 002
108	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	6	30502006	POINT 002
109	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	7	30502006	POINT 002
110	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	8	30502006	POINT 002
111	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	9	30502006	POINT 002
112	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	10	30502006	POINT 002
0bs	SCCSUBDESC	\$02		N02		PM [*]	25_FIL		PM	CON PM25	PRT
ÇDS	000000000000000000000000000000000000000	002		1102		, ,,,,	20_1 20		•	·	_,
95	RIP RAP TRUCK LOADOUT						272060		0.00005		0128
96	CONVEYOR TO SURGE STOCKPL					0.00	555524		0.15203		1576
97	SURGE STOCKPILE	•		•		0.28	095474		2.02709		3080
98	CONVEYOR TO STOCKPILE 24"	•		•		0.00	037243		0.01019	226 0.0	0106
99	LOADOUT BIN			-		0.07	705350		0.00033		7774
100	TRUCK LOADOUT (BIN #41)			•		0.02	239290		0.00009	873 0.0	0225
101	STOCKPILE (FROM BIN #41)	-				0.01	308362		0.09439	841 0. ⁻	1075
102	TRUCK LOADOUT (STKPL #42)	•		-		0.05	352390		0.00023	600 0.0	0538
103	CONVEYOR TO SCALPING SCRN			•		,			•	•	
104	CONVEYOR TO SURGE STACKER			•		0.01	636914		0.07094		0873
105	SURGE TUNNEL CONVEYOR 36"	•		-		0.01	636914		0.07094		0873
106	CONVEYOR TO SCREEN SPLTER	-		-		0.01	636914		0.07094		0873
107	CONVEYOR TO #23 SCREEN	•		•		0.01	377829		0.05971		0735
108	CONVEYOR TO 5 1/2' CONE	•		•		0.00	798438		0.03460		0426
109	CONVEYOR TO 54" ELJAY CNE			•		0.00	798438		0.03460		0426
110	CONVEYOR UNDER 5 1/2'CONE	•		•		0.00	798438		0.03460		0426
111	CONVEYOR UNDER 54" ELJAY	•		•		0.00	798438		0.03460		0426
112	CONVEYOR UNDER 54" ELJAY	•		•		0.01	378785		0.05975	906 0.0	0735

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

(continued)

0bs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
003	MUQUITAUME	Y1_1D	ALIFACID	FRIFROD	COUNTIN	1113	3101	,,,,,	OLGID	000	GGDITEIIDEGG
113	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	11	30502006	POINT 002
114	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	12	30502006	POINT 002
115	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	13	30502006	POINT 002
116	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	14	30502006	POINT 002
117	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	003	1	30532014	POINT 003
118	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	004	. 1	30502014	POINT 004
119	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	004	2	30502014	POINT 004
120	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	004	3	30502014	POINT 004
121	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	005	1	30502001	POINT 005
122	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	006	1	30502002	POINT 006
123	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	006	2	30502002	POINT 006
124	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	007	1	30502003	POINT 007
125	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	007	2	30502003	POINT 007
126	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	800	1	30502099	POINT 008
127	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	800	2	30502099	POINT 008
128	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	009	. 1	30502006	POINT 009
129	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	010	1	30502006	POINT 010
130	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	1	30502015	POINT 011
										•	
Obs	SCCSUBDESC	\$02		N02		PM:	25_FIL		PM_C	ON PM25	_PRI
113	CONVEYOR UNDER #23 SCREEN					0.01	377830		0.059717	767 O. (0735
114	CONVEYOR & TRANS PTS 24"	•	1	•			377830		0.059717		0735
115	SAND SCREW	•		•			109714		0.003717		0059
116	TO 36" RADIAL STACKER	•		•			109714		0.004755		0059
117	6' X 16' 3-DECK	•		•		0.00	100114		0.004700		J000
118	SCREEN (HR 6' X 16' 3D)	•		•		0.26	821872		0.253419		5216
119	SCREEN (HR 6' X 16' 3D)	•		•			B21872		0.253419		5216
120	SCREEN (HR 6' X 16' 3D)	•		•			B21872		0.253419		5216
121	PRIMARY CRUSHER-42X48 JAW	•		-			019509		0.05161		0518
122	SECONDARY CRUSHER-125/140	•		-			682300		0.05657		0934
123	SECONDARY CRUSHER-5 1/2'C	•					682300		0.05657		0934
124	TERTIARY CRUSHER-5 1/2' C			-			495039		0.055197		1401
125	TERTIARY CRUSHER-54"ELJAY			-			495039		0.055197		1401
126	HAUL ROAD & YARD (PAVED)						289316		0.70044		1533
127	HAUL ROAD & YARD-UNPAVED						717860		17.234639		5818
128	CONVEYOR (30") #24			-			593188		0.025709		0316
129	CONVEYOR (30") #32			-			188934		0.051530		0634
130	WASHING SCREEN (6X16 3D)			•			000000		0.000000		0000
	······· , · ··· ,	-				-					

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

------ GOUNTYN=Bullitt ALTFACID=2102900012 MASAINAME=Rogers Group Inc - Bullitt Co Stone (continued)

Obs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPAOD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC
1 31	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	2	30502099	POINT 011
132	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	3	30502099	POINT 011
133	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	4	30502099	POINT 011
134	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	5	30502099	POINT 011
135	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	012	1	30502006	POINT 012
136	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	012	2	30502006	POINT 012
137	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	013	1	30502007	POINT 013
138	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	013	2	30502007	POINT 013
139	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	014	1	30502099	POINT 014
140	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	014	2	30502099	POINT 014
141	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	014	3	30502099	POINT 014
142	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	015	1	30502006	POINT 015
143	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	015	2	30502007	POINT 015
144	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	015	3	30502099	POINT 015
145	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	015	4	30502006	POINT 015
146	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	015	5	30502007	POINT 015
147	Rogers Group Inc - Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	015	6	30502099	POINT 015
	0000100000								D. 1	nou Buos	DD.7
0bs	SCCSUBDESC	\$02		NO2		PM:	25_FIL		PM_C	CON PM25_	
131	LOADOUT BIN #34			-		0.00	000000		0.000000	000 0.0	0000
132	TRUCK LOADOUT-WET SCREEN					0.000	000000		0.000000	0.0	0000
133	LOADOUT BIN-(WET SCREEN)					0.000	000000		0.000000	000 0.0	0000
134	TRUCK LOADOUT-WET SCREEN	•		•		0.000	000000		0.000000	0.0	0000
135	CONVEYOR (30")-BLEND FEED					0.003	327756		0.014205	556 0.0	0175
136	CONVEYOR (36")-PUG MILL	•				0.004	405178		0.017561	117 0.0	216
137	BLENDING TRANSFER BINS-3			•		0.12	731268		0.918561	1.0	1459
138	DGA STOCKPILE (PUGMILL)	•				0.022	259928		0.163053	397 O. ·	1857
139	PUG MILL	•		•		0.000	000000		0.000000	0.0	0000
140	PUG MILL LOADOUT BIN #58			•		0.00	000000		0.000000	0.0	0000
141	PUG MILL TRUCK LOADOUT					0.000	000000		0.000000	0.0	0000
142	RADIAL STACKER (36") #60					0.00	137464		0.037620		0390
143	STOCKPILE-BASE/DGA #61	-		•		0.06	952220		0.501603		5711
144	TRUCK LOADOUT-BASE/DGA	•				0.284	440900		0.001254		2857
145	STACK (36") #63	•				0.00	137464		0.037620		0390
146	STOCKPILE-FROM RAD STKR	•					952220		0.501603		5711
147	TRUCK LOADOUT #65	•				0.284	440900		0.001254	101 0.2	2857

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

		,	.0000 2010.	1 (000) 1								
		COUNTYN=Bullitt ALTFACID=210		ASAINAME=Rog ontinued)	ers Group	Inc - Bul	llitt Co	Stone)		••	
			•	ĺ								
		MASTER_										
0b:	s MASAINAM	ME AI_ID	ALTFAC	ID PRIPRO	D COUNTY	'N FIPS	SIC	PTI	D SE	GID	SCC	SUBITEMDESC
	_											
MASAINAM	<u> </u>							•			**	•
ALTFACI												
Ob:	s SCCSUBDESC	coo			102		M26 ETI			PM CON	I PM25_F	DDT
ob:	s accountesc	802		ľ	102	ŗ	M25_FIL	-		FW_CON	FW25_r	-n1
MASAINAM		0.0000000		0.000000	00	58.4	13884734	 I	27.7	3987875	86.17	· '87
ALTFACII)	0.00000000		0.000000		58.4	13884734	ŀ	27.7	3987875	86.17	787
	COUNTY	N=Bullitt ALTFACID=2102900019	MASAINAM	E=Publishers	Printing	Co - Shep	herdsvi	ille Fa	cility		· ·	
			MASTER									
0bs	MASAI	NAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC
148	Publishers Printing Co -	Shepherdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	001	1	40500401	PRESS 437
	_	Shepherdsville Facility	469	2102900019	PRINTING	Bullitt		2752		2	39000699	PRESS 437
	=	Shepherdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	001	3	39999999	PRESS 437
151	Publishers Printing Co -	Shepherdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	001	4	39999995	PRESS 437
152	Publishers Printing Co -	Shepherdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	002	1	40500401	PRESS 441
153	Publishers Printing Co -	Shepherdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	002	2	39000699	PRESS 441
154	Publishers Printing Co -	Shepherdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	002	3	39999999	PRESS 441
0bs	SCCSUBDESC	S 02		N02		PM25_F	[L		PM_CO	IN PM	125_PRI	
148	PRESS #437 INK USE		_									
149	DRYER N.G. 2.56 MMBTU	0.00102000	0.	17000000		0.0038760	00	0.0	206720	0 0.	024548	
150	FOUNTAIN SOLUTION USE											
151	BLANKET WASH CLEANUP											
152	PRESS #441-INK USE											
153	DRYER N.G 1.8 MMBTU	0.00072000	0.	12000000		0.0027360	00	0.0	145920	0 0.	017328	

154 FOUNTAIN SOLUTION USE

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

(continued)

			MASTER_									
Obs	MASAI	NAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
155	Publishers Printing Co -	Shepherdsville Facilit	v 469	2102900019	PRINTING	Bullitt	21029	2752	002	4	39999995	PRESS 441
156	Publishers Printing Co -		•	2102900019	PRINTING	Bullitt	21029	2752	003	1	40500401	PRESS 442
157	Publishers Printing Co -	•	-	2102900019	PRINTING	Bullitt		2752	003	2	39000699	PRESS 442
158	Publishers Printing Co -			2102900019	PRINTING	Bullitt		2752	003	3	3999999	PRESS 442
159	Publishers Printing Co -			2102900019	PRINTING	Bullitt	21029	2752	003	4	39999995	PRESS 442
160	Publishers Printing Co -	•	-	2102900019	PRINTING	Bullitt	21029	2752	004	1	39999999	PRESS 444
161	Publishers Printing Co -	•	-	2102900019	PRINTING	Bullitt		2752	004	2	3999995	PRESS 444
162	Publishers Printing Co -		-	2102900019	PRINTING	Bullitt	21029	2752	004	3	40500401	PRESS 444
163	Publishers Printing Co -	Shepherdsville Facilit	v 469	2102900019	PRINTING	Bullitt	21029	2752	004	4	39000699	PRESS 444
164	Publishers Printing Co -	•	•	2102900019	PRINTING	Bullitt	21029	2752	005	1	39999995	PRESS 446
165	Publishers Printing Co -	Shepherdsville Facilit	y 469	2102900019	PRINTING	Bullitt	21029	2752	005	2	39999999	PRESS 446
166	Publishers Printing Co -			2102900019	PRINTING	Bullitt	21029	2752	005	3	40500401	PRESS 446
167	Publishers Printing Co -	Shepherdsville Facilit	y 469	2102900019	PRINTING	Bullitt	21029	2752	005	4	39000699	PRESS 446
168	Publishers Printing Co -	Shepherdsville Facilit	y 469	2102900019	PRINTING	Bullitt	21029	2752	006	1	40500401	PRESS 448
169	Publishers Printing Co -	Shepherdsville Facilit	y 469	2102900019	PRINTING	Bullitt	21029	2752	006	2	39999999	PRESS 448
170	Publishers Printing Co -	Shepherdsville Facilit	y 469	2102900019	PRINTING	Bullitt	21029	2752	006	3	39999995	PRESS 448
171	Publishers Printing Co -	Shepherdsville Facilit	y 469	2102900019	PRINTING	Bullitt	21029	2752	006	4	39000699	PRESS 448
172	Publishers Printing Co -	Shepherdsville Facilit	y 469	2102900019	PRINTING	Bullitt	21029	2752	007	1	40500401	PRESS 449
0bs	SCCSUBDESC	S	02	N02		PM25	_FIL		PM	_CON	PM25_PRI	
155	BLANKET WASH CLEANUP			_								
156	PRESS #442-INK					•						
157	DRYER N.G5.50 MMBTU	0.001050	00	•								
158			UU	0.17500000		0.0039	9000		0.0212	8000	0.02527	
	FOUNTAIN SOLUTION USE		00	0.17500000		0.0039	9000		0.0212	8000	0.02527	
159	FOUNTAIN SOLUTION USE BLANKET WASH CLEANUP		00	0.17500000		0.0039	9000		0.0212	8000	0.02527	
159 160	BLANKET WASH CLEANUP		00			0.0039	9000		0.0212	8000	0.02527	
	BLANKET WASH CLEANUP FOUNTAIN SOLUTION	· · · · · · · · · · · · · · · · · · ·	00		÷	0.0039	9000		0.0212	8000	0.02527	
160	BLANKET WASH CLEANUP	· · · · · · · · · · · · · · · · · · ·	00		·	0.0039	9000		0.0212	8000	0.02527	
160 161	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP			·							0.02527	
160 161 162	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP PRESS #444 INK USE	· · · · · · · · · · · · · · · · · · ·				0.0039			0.0212		· · · · ·	
160 161 162 163	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP PRESS #444 INK USE DRYER N.G 0.96 MMBTU			·							· · · · ·	
160 161 162 163 164	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP PRESS #444 INK USE DRYER N.G 0.96 MMBTU BLANKET WASH SOLVENT			·							· · · · ·	
160 161 162 163 164 165	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP PRESS #444 INK USE DRYER N.G 0.96 MMBTU BLANKET WASH SOLVENT FOUNTAIN SOLUTION USE		oo	·			8200			0400	· · · · ·	
160 161 162 163 164 165 166	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP PRESS #444 INK USE DRYER N.G 0.96 MMBTU BLANKET WASH SOLVENT FOUNTAIN SOLUTION USE PRESS #446 INK USE	0.000390	oo	0.06500000		0.0014	8200		0.0079	0400	0.00939	
160 161 162 163 164 165 166 167	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP PRESS #444 INK USE DRYER N.G 0.96 MMBTU BLANKET WASH SOLVENT FOUNTAIN SOLUTION USE PRESS #446 INK USE DRYER - N.G 2.2MMBTU	0.000390	oo	0.06500000		0.0014	8200		0.0079	0400	0.00939	
160 161 162 163 164 165 166 167	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP PRESS #444 INK USE DRYER N.G 0.96 MMBTU BLANKET WASH SOLVENT FOUNTAIN SOLUTION USE PRESS #446 INK USE DRYER - N.G 2.2MMBTU PRESS #448-INK USE	0.000390	oo	0.06500000		0.0014	8200		0.0079	0400	0.00939	
160 161 162 163 164 165 166 167 168 169	BLANKET WASH CLEANUP FOUNTAIN SOLUTION BLANKET WASH CLEANUP PRESS #444 INK USE DRYER N.G 0.96 MMBTU BLANKET WASH SOLVENT FOUNTAIN SOLUTION USE PRESS #446 INK USE DRYER - N.G 2.2MMBTU PRESS #448-INK USE FOUNTAIN SOLUTION USE	0.000390	00 00	0.06500000		0.0014	8200 0600		0.0079	0400 3200	0.00939	

Process Level (SCC) Information

COUNTYN=Bullitt ALTFACID=2102900019 MASAINAME=Publishers Printing Co - Shepherdsville Facility (continued)

			(C	ontinuea)								
Obs	MASAINAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTIŌ	SEGID	SCC	SUBITEMDESC
Q D3	MAGAINAME		71_10	ALII AOID	111211100	000		020,				
173	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	007	2	39999999	PRESS 449
174	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	007	3	39999995	PRESS 449
175	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	007	4	39000699	PRESS 449
176	Publishers Printing Co - Shephe		469	2102900019	PRINTING	Bullitt	21029	2752	800	1	40500401	PRESS 450
177	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	800	2	39999999	PRESS 450
178	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	800	3	39999995	PRESS 450
179	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	800	4	39000699	PRESS 450
180	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	009	1	40500401	PRESS 470
181	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	009	2	39999999	PRESS 470
182	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	009	3	39999995	PRESS 470
183	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	009	4	39000699	PRESS 470
184	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	010	1	40500401	PRESS 484
185	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	010	2	3999999	PRESS 484
186	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	010	3	39999995	PRESS 484
187	Publishers Printing Co - Shephe	rdsville Facility	469	2102900019	PRINTING	Bullitt	21029	2752	010	4	39000699	PRESS 484
MASAINAME												
0bs	SCCSUBDESC	\$02		NO2		PM25	_FIL		PN	_CON	PM25_PRI	
173	FOUNTAIN SOLUTION USE								•			
174	BLANKET WASH CLEANUP											
175	DRYER - N.G 2.2 MMBTU	0.00087000		0.14500000		0.0033	0600		0.0176	3200	0.02094	
176	PRESS #450 INK USE	,									•	
177	FOUNTAIN SOLUTION USE	,										
178	BLANKET WASH CLEANUP										•	
179	DRYER - N.G. 1.925 MMBTU	0.00075000		0.12500000		0.0028	5000		0.0152	20000	0.01805	
180	PRESS #470 - INK USE										-	
181	FOUNTAIN SOLUTION USE										-	
182	BLANKET WASH CLEANUP										•	
183	DRYER - N.G. 3.3 MMBTU	0.00129000		0.21500000		0.0049	0200		0.0261	4400	0.03105	
184	PRESS #484 - INK USE											
185	FOUNTAIN SOLUTION USE								•			
186	BLANKET WASH CLEANUP			•		•						
187	DRYER - N.G 0.96 MMBTU	0.00039000		0.06500000		0.0014	8200		0.0079	0400	0.00939	
MASAINAME	- -	0.00822000		1.37000000		0.0312	3600		0.1665	9200	0.19783	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Informatio	n
-----------------	-----------------	---

0bs	MASAINAME		MASTER_ AI_ID	•	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
ALTFACID												
O bs	SCCSUBDESC	\$02		NO2	2	PM25	_FIL		PI	v_con	PM25_PRI	
ALTFACID			1.37000000		0.03123600			0.16659200		0.19783		
	COUNTYN=Bullit	t ALTFACID=2102900	032 MASAIN	AME=Publishe	ers Printing	j Co - Let	anon Ju	unction	n Press	3		
			MASTER									
0bs	MASAINAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC
188	Publishers Printing Co - Lebanon ,	Junction Press	470	2102900032	MAGAZINES	Bullitt	21029	2721	001	1	40500401	PRESS 402
189	Publishers Printing Co - Lebanon (470	2102900032	MAGAZINES	Bullitt	21029	2721	001	2	39999995	PRESS 402
190	Publishers Printing Co - Lebanon a		470	2102900032	MAGAZINES	Bullitt	21029	2721	001	3	39999994	PRESS 402
191	Publishers Printing Co - Lebanon a	Junction Press	470	2102900032	MAGAZINES	Bullitt	21029	2721	001	4	39000689	PRESS 402
192	•		470	2102900032	MAGAZINE\$	Bullitt	21029	2721	001	5	39001099	PRESS 402
193	Publishers Printing Co - Lebanon .		470	2102900032					005	1	40500401	PRESS 405
194	Publishers Printing Co - Lebanon .		470	2102900032	MAGAZINES	Bullitt	21029	2721	005	2	39999995	PRESS 405
195	Publishers Printing Co - Lebanon (Junction Press	470	2102900032	MAGAZINES	Bullitt	21029	2721	005	3	39999994	PRESS 405
Obs	SCCSUBDESC	2	N02		PM25_FIL		L	PM_CON		PM25_P	RI	
188	WEB OFFSET PRESS 402 INK	_										
189		* *		•		•			•		·	
190	PRESS 402 - FOUNTAIN SOLN	,				•						
191	PRESS 402 - NG DRYER	0.0004260	0	0.07100	0000	0.0	0539600)	0.0	0863360	0.0140	30
192		0.0000010		0.00109		0.00001551						•
193	•			,							,	
194	PRESS 405 - BLANKET WASH						•					
107	FRESS 405 - BLANKET MASH	•										

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

(continued)

0bs			MASA.	INAME		MASTER_ AI ID	ALTFACID	PRIPROD	COUNTYN	FIP\$
000			WAGA.	INAME		71_15	ALTIAOID	111111105	000	. 1. 0
196	Publis	hers Prin	ntina Co	- Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
197			•	- Lebanon Jur		470	2102900032	MAGAZINES	Bullitt	21029
198			•	- Lebanon Jur		470	2102900032	MAGAZINES	Bullitt	21029
199			•	- Lebanon Jur		470	2102900032	MAGAZINES	Bullitt	21029
200	Publis	hers Prim	nting Co	- Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
201	Publis	hers Pri	nting Co	- Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
202	Publis	hers P rin	nting Co	- Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
203	Publis	hers Pri	nting Co	- Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
204	Publis	hers Prin	nting Co	- Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
205	Publis	hers Pri	nting Co	- Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
			-							
0bs	SIC1	PTID	SEGID	SCC	SUBITEMDESC			SC	SUBDESC	
ODS	0101	1110	OCUID	300	GOBITEMDEGO			00	000000	
196	2721	005	4	39000689	PRESS 405			PRI	\$\$ 405 -NAT	GAS DRYER
197	2721	005	5	39001099	PRESS 405			PRI	SS 405 - BPF	ROPANE
198	2721	006	1	40500401	PRESS 407			WEI	B OFFSET 407-	INK
199	2721	006	2	39999994	PRESS 407			PRI	SS 407 - FOL	INTAIN SOLN
200	2721	006	3	39999995	PRESS 407			PRI	SS 407 - BLA	NKET WASH
201	2721	006	4	39000689	PRESS 407			PRI	SS 407 - NAT	GAS DRYER
202	2721	006	5	39001099	PRESS 407			PRI	ESS 407 - BPF	OPANE
203	2721	007	1	40500401	PRESS 411			OF	ST LITHO PRE	SS 411 INK
204	2721	007	2	3 9 999994	PRESS 411			PRI	SS 411-FOUNT	AIN SOLN
205	2721	007	3	39999995	PRESS 411			PRI	ESS 411-BLANK	(ET WASH
Obs			802		NO2	PM25	_FIL	PM_CON	PM25_PRI	
196		0.000	056100	0	.09350000	0.0071	0600	0.01136960	0.018476	
197			000135		.00142785	0.0000		0.00007214	0.000092	
198										
199					•					
200										
201			089400		. 14900000	0.0113	2400	0.01811840	0.029442	
202			000216		.00228475	0.0000		0.00011544	0.000148	
203		•								
204		•							•	
205									-	

Process Level (SCC) Information

------COUNTYN=Bullitt ALTFACID=2102900032 MASAINAME=Publishers Printing Co - Lebanon Junction Press -------(continued)

Publishers Printing Co	0bs			MASAI	NAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029 Printing Co Press 470 2102900032 MAGAZINES Bullitt 21029 Press 470 2102900032 Press 411	206	Publis	hers Pri	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029	207	Publis	hers Pri	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
Publishers Printing Co - Lebanon Junction Press	208	Publis	hers Pri	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029	209	Publis	hers Pri	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
Publishers Printing Co - Lebanon Junction Press	210	Publis	hers Pri	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
Publishers Printing Co - Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029	211	Publis	hers Pri	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029	212	Publis	hers Pri	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
Publishers Printing Co Lebanon Junction Press 470 2102900032 MAGAZINES Bullitt 21029	213	Publis	hers Pri	nting Co -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
Obs SIC1 PTID SEGID SCC SUBITEMDESC SCCSUBDESC 206 2721 007 4 39000689 PRESS 411 PRESS 411 - DRYER-FUEL-NG 207 2721 007 5 39001099 PRESS 411 PRESS 411 - BPROPANE 208 2721 011 1 40500401 PRESS 414 WEB 0FFSET PRESS 414 INK 209 2721 011 2 3999999 PRESS 414 PRESS 414 FOUNT SOLN 210 2721 011 3 3999999 PRESS 414 PRESS 414 FOUNT SOLN 210 2721 011 4 39000689 PRESS 414 PRESS 414 FOUNT SOLN 211 2721 011 4 39001099 PRESS 414 PRESS 414 BLANKET WASH 212 2721 011 5 39001099 PRESS 415 PRESS 414 BPROPANE 213 2721 012 2 3999999 PRESS 415 PRESS 415 FOUNT SOLN 214 2721 012 2 3999999	214	Publis	hers Pri	nting Co -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
206 2721 007	215	Publis	hers Prin	nting Co -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
207 2721 007 5 39001099 PRESS 411 PRESS 411 BPROPANE				SEGID	SCC						
208 2721 011					39000689	PRESS 411					
209 2721 011 2 3999994 PRESS 414 PRESS 414 PRESS 414 FOUNT SOLN					39001099	PRESS 411					
210 2721 011 3 3999995 PRESS 414 PRESS 414 PRESS 414 DRYER-FUEL-NG 212 2721 011 4 39000689 PRESS 414 PRESS 414 PRESS 414 DRYER-FUEL-NG 212 2721 011 5 39001099 PRESS 414 PRESS 415 PRESS 414 BPROPANE 213 2721 012 1 40500401 PRESS 415 PRESS 415											
211 2721 011											
212 2721 011 5 39001099 PRESS 414 PRESS 414 BPROPANE				·=·							
213 2721 012											
214 2721 012 2 3999994 PRESS 415 215 2721 012 3 3999995 PRESS 415 0bs S02 N02 PM25_FIL PM_CON PM25_PRI 206 0.00090600 0.15100000 0.01147600 0.01836160 0.029838 207 0.00000219 0.00231325 0.00003287 0.00011688 0.000150 208				_							
215											
Obs \$02 NO2 PM25_FIL PM_CON PM25_PRI 206 0.00090600 0.15100000 0.01147600 0.01836160 0.029838 207 0.00000219 0.00231325 0.00003287 0.00011688 0.000150 208 209 210 .<											
206 0.00090600 0.15100000 0.01147600 0.01836160 0.029838 207 0.00000219 0.00231325 0.00003287 0.00011688 0.000150 208 209 210 211 0.00042000 0.07000000 0.00532000 0.00851200 0.013832 212 0.00000102 0.00107160 0.00001523 0.00005414 0.000069 213 214 	215	2721	012	3	39999995	PRESS 415			PRE	SS 415 BLANK	ET WASH
207 0.00000219 0.00231325 0.00003287 0.00011688 0.000150 208 209 210 211 0.00042000 0.07000000 0.00532000 0.00851200 0.013832 212 0.00000102 0.00107160 0.00001523 0.00005414 0.000069 213 214 	0bs			\$02		NO2	PM25	_FIL	PM_CON	PM25_PRI	
207 0.00000219 0.00231325 0.00003287 0.00011688 0.000150 208 209 210 211 0.00042000 0.07000000 0.00532000 0.00851200 0.013832 212 0.00000102 0.00107160 0.00001523 0.00005414 0.000069 213 214 	206		0.000	090600	0.	15100000	0.0114	7600 (0.01836160	0.029838	
208 .	207									0.000150	
210 .	208				-				ř	-	
211 0.00042000 0.07000000 0.00532000 0.00851200 0.013832 212 0.0000102 0.00107160 0.00001523 0.00005414 0.000069 213 214 											
212 0.00000102 0.00107160 0.00001523 0.00005414 0.000069 213 214 	210										
213	211		0.000	342000	0.	07000000	0.0053	2000 (.00851200	0.013832	
214	212		0.000	000102	0.	.00107160	0.0000	1523 0	.00005414	0.000069	
·	213								•	•	
215	214						•		•	•	
	215		•		٠,				•	•	

005 Kentucky Division for Air Quality Actual Point Source Emissic Bullitt County

Process Level (SCC) Information

COUNTYN=Bullitt ALTFACID=2102900032 MASAINAME=Publishers Printing Co - Lebanon Junction Press -------(continued)

						MASTER_				
Obs			MASAI	NAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
216	Publisher	rs Printing	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
217	Publisher	s Printing	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
218	Publisher	rs Printing	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
219	Publisher	rs Printin	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
220	Publisher	rs Printin	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
221	Publisher	rs Printin	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	\$ Bullitt	21029
222	Publisher	rs Printing	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
223	Publisher	^s Printino	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	S B ull i tt	21029
224	Publisher	rs Printin	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
225	Publisher	rs Printing	g Co -	Lebanon June	ction Press	470	2102900032	MAGAZINE	\$ Bullitt	21029
0bs	SIC1 F	PTID SI	EGID	SCC	SUBITEMDESC			S	CCSUBDESC	
216	2721 (012	4	39000689	PRESS 415			P	RESS 415 DRYER	-FUEL-NG
217	2721 (012	5	39001099	PRESS 415			P	RESS 415 BPROP	ANE
218	2721	013	1	40500401	5 Unit Web	Offset Heatset	Lithographic	(Press	MP1(Ink Useage) .
219	2721	013	2	40500412		Offset Heatset			P2(Auto Blanke	t Wash)
220	2721	013	3	39999994	5 Unit Web	Offset Heatset	Lithographic	(Press M	P3 (Fountain S	olution)
221	2721 (013	4	40201001		Offset Heatset			P4 (3.0 MMBtu	dryer, NG)
222	2721 (013	5	39001099	5 Unit Web	Offset Heatset	Lithographic	(Press M	P4 (3.0 MMBtu	dryer, Propane)
223	2721 (014	1	39000689	PRESS 414,	415 CAT OXIDZR		P	RESS 414,415-0	X NG
224	2721 (014	2	39001099	PRESS 414,	415 CAT OXIDZR		P	RESS 414,415 0	X PROPANE
225	2721 (015	1	39000689	THERMAL OXI	IDIZER 401-412,	416	T	HERMAL OXIDIZE	R NAT GAS
0bs		Si	02		NO2	PM2	5_FIL	PM_CON	PM25_PRI	
216		0.0004200	00	0.0	07000000	0.005	32000	0.00851200	0.01383	
217		0.0000010	02	0.0	00107160	0.000	01523	0.00005414	0.00007	
218		•				,			•	
219		•								
220										
221		0.0004200	00	0.6	07000000	0.004	14960	0.00851200	0.01266	
222		0.0000010	02	0.0	00107160	0.000	01523	0.00005414	0.00007	
223		0.001020	00	0.	17000000	0.0129	92000	0.02067200	0.03359	
224		0.000002	30	0.0	00243010	0.000	03453	0.00012278	0.00016	
225		0.0009300	00	0.	15500000	0.0113	78000	0.01884800	0.03063	

Bullitt County

Process Level (SCC) Information

(continued)

0bs			MASAI	NAME		MASTER AI_I	_	D PRIPROD	COUNTYN	FIPS
226	Publis	hers Prin	tina Co -	Lebanon Jur	oction Press	47	0 21029000	32 MAGAZINES	Bullitt	21029
227					ction Press	47				21029
228					ction Press	47			·	21029
229			•		ction Press	47				21029
230					ction Press	47	0 21029000	32 MAGAZINES	Bullitt	21029
231					ction Press	47	0 21029000	32 MAGAZINES	Bullitt	21029
232	Publish	ners Prin	ting Co -	Lebanon Jur	ction Press	47	0 21029000	32 MAGAZINES	Bullitt	21029
233	Publis	ners Prin	ting Co -	Lebanon Jur	ction Press	47	0 21029000	32 MAGAZINES	Bullitt	21029
234	Publish	ners Prin	ting Co -	Lebanon Jur	ction Press	47	0 21029000	32 MAGAZINES	Bullitt	21029
235	Publish	ners Prin	ting Co -	Lebanon Jur	ction Press	47	0 21029000	32 MAGAZINES	Bullitt	21029
0bs	SIC1	PTID	SEGID	SCC	SUBITEMDESC			sc	CSUBDESC	
226	2721	015	2	39001099	THERMAL OXIDIZ	ZER 401-41:	2. 416	TH	ERMAL OXIDIZE	R PROPANE
227	2721	02-04	1	40500401	PRESS 401, 404		-,		B OFFSET PRES	
228	2721	02-04	2	39999995	PRESS 401, 404	-			ESS 401 - BLA	-
229	2721	02-04	3	39999994	PRESS 401, 404				ESS 401 - FOU	
230	2721	02-04	4	39000689	PRESS 401, 404	•		PR	ESS 401 - NAT	GAS DRYER
231	2721	02-04	5	39001099	PRESS 401, 404	•		PR	ESS 401 - BPR	OPANE
232	2721	02-04	6	40500401	PRE\$S 401, 404	-		WE	B OFFST PRESS	404 INK
233	2721	02-04	7	39999995	PRESS 401, 404	-		PR	ESS 404 - BLA	NKET WASH
234	2721	02-04	8	39999994	PRESS 401, 404	•		PR	ESS 404 - FOU	NTAIN SOLN
235	2721	02-04	9	39000689	PRESS 401, 404	1, 406		PR	ESS 404 - NAT	GAS DRYER
0bs					1100	D	MOS . ET.	DH OON	DUGE DOT	
UDS			S02		NO2	PI	M25_FIL	PM_CON	PM25_PRI	
226		0.000	00208	0.	00219640	0.0	0003121	0.00011098	0.00014	
227								,		
228										
229									•	
230		0.000	66600	0.	11100000	0.00	0843600	0.01349760	0.02193	
231		0.000	00161	0.	00169955	0.0	0002415	0.00008587	0.00011	
232										
233									•	
234		•		3				-		
235		0.000	56100	0.	09350000	0.0	0710600	0.01136960	0.01848	

Process Level (SCC) Information

Obs			MASA:	INAME			STER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
236	Puhlis	thore Prin	tina Co	- Lebanon Jur	action Proce		470	2102900032	MAGAZINES	Bullitt	21029
237			-	- Lebanon Jur			470	2102900032	MAGAZINES		21029
238			_	- Lebanon Jur			470	2102900032	MAGAZINES		21029
239			-	- Lebanon Jur			470	2102900032	MAGAZINES		21029
240			-	- Lebanon Jur			470	2102900032	MAGAZINES		21029
241			-	- Lebanon Jur			470	2102900032	MAGAZINES		21029
242			-	- Lebanon Jur			470	2102900032	MAGAZINES	Bullitt	21029
243			-	- Lebanon Jur			470	2102900032			21029
244			-	- Lebanon Jur			470	2102900032	MAGAZINES	Bullitt	21029
245	Publis	hers Prin	ting Co	- Lebanon Jur	nction Press		470	2102900032	MAGAZINES		21029
Obs	SIC1	PTID	SEGID	scc	SUBITEMDES	r			90	CSUBDESC	
ODS	0101	1110	OLUID	300	GODI I EMIDE O	·				OOODDEOO	
236	2721	02-04	10	39001099	PRESS 401.	404. 406			PRI	ESS 404 - BPF	OPANE
237	2721	02-04	11	40500401	PRESS 401,	•			WEI	B OFFST PRESS	406 - INK
238	2721	02-04	12	39999995	PRESS 401,	-			PRI	ESS 406 - BLA	NKET WASH
239	2721	02-04	13	39999994	PRESS 401,	•			PRI	ESS 406 - FOU	NTAIN SOLN
240	2721	02-04	14	39000689	PRESS 401,	•			PRI	ESS 406 - NAT	GAS DRYER
241	2721	02-04	15	39001099	PRESS 401,	404, 406			PRI	ESS 406 - BPF	OPANE
242	2721	08-10	1	40500401	PRESS 409,	410 , 412	2		OF	FST LITHO PRE	SS 409 INK
243	2721	08-10	2	39999994	PRESS 409,	410 , 412	2		PRI	ESS 409-FOUNT	AIN SOLN
244	2721	08-10	3	39999995	PRESS 409,	410 , 412	2		PRI	ESS 409-BLANK	ET WASH
245	2721	08-10	4	39000689	PRESS 409,	410 , 412	2		PRI	ESS 409-DRYER	-FUEL-NG
0bs			S02		NO2		PM25	_FIL	PM_CON	PM25_PRI	
236		0.000	00135	0	.00142785		0.0000	2029	0.00007214	0.00009	
237		•									
238					•						
239			•								
240		0.000	56100	0.	. 09350000		0.0071	0600	0.01136960	0.01848	
241		0.000	00135	0	.00142785		0.0000	2029	0.00007214	0.00009	
242				,							
243											
244					•						
245		0.000	39300	0.	. 06550000		0.0049	7800	0.00796480	0.01294	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

COUNTYN=Bullitt ALTFACID=2102900032 MASAINAME=Publishers Printing Co - Lebanon Junction Press -------(continued)

0bs			MO C A T	TNIANET		MAS1	_	AL TEACTO	DOLDOOD	COUNTYN	FIPS
UUS			MASAI	INAWE		AI	_ID	ALTFACID	PRIPROD	COUNTEN	FIFO
246	Publis	hers Prin	tina Co -	Lebanon Jun	ction Press		470	2102900032	MAGAZINES	Bullitt	21029
247			_	· Lebanon Jun			470	2102900032	MAGAZINES		21029
248			_	Lebanon Jun			470	2102900032	MAGAZINES	Bullitt	21029
249			-	Lebanon Jun			470	2102900032	MAGAZINES	Bullitt	21029
250	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press		470	2102900032	MAGAZINES	Bullitt	21029
251	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press		470	2102900032	MAGAZINES	Bullitt	21029
252	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press		470	2102900032	MAGAZINES	Bullitt	21029
253	Publis	hers Prin	ting Co -	Lebanon Jun	otion Press		470	2102900032	MAGAZINES	Bullitt	21029
254	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press		470	2102900032	MAGAZINES	Bullitt	21029
255	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press		470	2102900032	MAGAZINES	Bullitt	21029
								•			
0bs	SIC1	PTID	SEGID	scc	DUDITENDED	0			90	CSUBDESC	
ODS	3101	LIID	35010	300	SUBITEMDES	C			30	COUBDLOC	
246	2721	08-10	5	39001099	PRESS 409.	410 , 412			PF	ESS 409 - BPF	OPANE
247	2721	08-10	6	40500401	PRESS 409,	,			OF	FST LITHO PRE	SS 410INK
248	2721	08-10	7	39999994	PRESS 409,	•			PF	ESS 410-FOUNT	AIN SOLN
249	2721	08-10	8	39999995	PRESS 409,	=			PF	ESS 410-BLANK	ET WASH
250	2721	08-10	9	39000689	PRESS 409,	410 , 412			PF	ESS 410-DRYER	-FUEL-NG
251	2721	08-10	10	39001099	PRESS 409,	410 , 412			PF	ESS 410 - BPF	IOPANE
252	2721	08-10	11	40500401	PRESS 409,	410 , 412			OF	FST LITHO PRE	SS 412INK
253	2721	08-10	12	39999994	PRESS 409,	410 , 412			PF	ESS 412-FOUNT	AIN SOLN
254	2721	08-10	13	39999995	PRESS 409,	410 , 412			PF	ESS 412-BLANK	ET WASH
255	2721	08-10	14	39000689	PRESS 409,	410 , 412			PF	ESS 412-DRYEF	-FUEL-NG
0bs			502		NO2		PM25_F	IL	PM_CON	PM25_PRI	
246		0.000	00095	0.	00099940	(.000014	20	0.00005050	0.00006	
247		• .				•					
248		•								•	
249											
250		0.000	56100	0.	09350000	(.007106	i00	0.01136960	0.01848	
251		0.000	00135	0.	00142785		.000020		0.00007214	0.00009	
252											
253		•					•		-		
254							i			•	
255		0.000	56100	0.	09350000	(.007106	000	0.01136960	0.01848	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) **Bullitt County**

Process	Level	(SCC)	Information
F100633	TEAGT.	10001	IIII Of mation

		COUNTYN=B	Bullitt AL	TFACID=21029	900032 MASAINAME: (con1	=Publishers F tinued)	rinting Co - l	_ebanon Junc	tion Press		
0bs			MASAI	NAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	
256	Publis	shers Prin	ting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029	
MASAINAME ALTFACID											
Obs	SIC1	PTID	SEGID	scc	SUBITEMDESC			SCO	CSUBDESC		
256	2721	08-10	15	39001099	PRESS 409, 410), 412		PRI	ESS 412 - BPF	OPANE	
MASAINAME ALTFACID											
Obs			S02		NO2	PM25	5_FIL	PM_CON	PM25_PRI		
256	•	0.000	00135	0.	00142785	0.0000	2029 (0.00007214	0.00009		
MASAINAME		0.009	32213	1.	57336905	0.1169	16168 (0.18966075	0.30662		

0.11696168

1.57336905

ALTFACID

0.00932213

0.18966075

0.30662

Bullitt County

				COUN	TYN=Bullit	t ALTFACID=2	102900036	MASAI	NAME=IMI	South L	.LC				
Oho	144	CATNAME	MASTER_	AL TEACTO	DOTODOO	DOLINITE VAL:	ETD0	2704	DTID	OFOID	800	ėue	ottewneer	SCCSUBD	ECC
Obs	IVIA	SAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIP\$	SIC1	PTID	SEGID	SCC	300	BITEMDESC	3003000	230
257	IMI	South LLC	37418	2102900036	LIMESTON	Bullitt	21029	3272	001	1	30501107	PC	OINT 001	CEMENT	UNLOADING SILO
258	IMI	South LLC	37418	2102900036	LIMESTON			3272	002	1	30501107	PC	INT 002	FLYASH	UNLOADING SILO
259	IMI	South LLC	37418	2102900036	LIMESTON	Bullitt	21029	3272	003	1	30501108	PC	E00 TMI	CEMENT	& FLYASH WEIGH:
260	IMI	South LLC	37418	2102900036	LIMESTON		21029	3272	004	1	30501111	PC)INT 004	TRUCK L	
261		South LLC	37418	2102900036	LIMESTON		21029	3272	005	1	30501106)INT 005		DLING & STKPILE
262	IMI	South LLC	37418	2102900036	LIMESTON	Bullitt	21029	3272	006	1	30501199	PC	OINT 006	HAUL RO	AD-UNPAVED
ASAINAME ALTFACID															
Obs		Si	02	I	N02	PM2	5_FIL		PM_CC	N PM2	25_PRI				
257				_		0.002	43000	0	.0612766	0 0.	06371				
258				-		0.000			.0153191		01593				
259						0.000		0	.0063829		00661				
260						0.003		0	.1021276	6 0.	10573				
261				-		0.316	80000	0	.6536170	2 0.	97042				
262		•		•		0.036			.0251285		06209				
SAINAME		0.000000	 nn	0.00000	000	0.360	62550		.8638519		22448				
LTFACID		0.000000		0.00000		0.360			.8638519		22448				
				3.33444		0.000	02500	·							
			(COUNTYN=Bulli	tt ALTFACI)=2102900037	MASAINAME	E=Spec	ialty Er	graving	Systems I	nc			·································
					MASTER_										
(0bs	MAS	AINAME		AI_ID	ALTFACID	PRIPRO)	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
:	263	Specialty Engra	aving Syste	ems Inc	37449	2102900037	CROME PL	LAT	Bullitt	21029	2796	001	1	30901097	POINT 001
;	264	Specialty Engra	aving Syste	ems Inc	37449	2102900037	CROME PL	LAT	Bullitt	21029	2796	002	1	30901098	POINT 002
(Obs	SCCSUBDESC			\$02		N02			PM25_F1	ïL	F	M_CON	PM25_PRI	
		CHROMIC ACID TA								.0003090)62755 307118	1.13094 2.44867	

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Obs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD C	COUNTYN F	.PS S	IC1 F	PTID	SEGID	SCC	SUBITEMDES
265	Specialty Engraving Systems Inc	37449	2102900037	CROME PLAT E	Bullitt 2	029 21	796 C	003	1	30901098	POINT 003
ASAINAME ALTFACID											
0bs	SCCSUBDESC	\$02		N02	PM2	25_FIL		PM	I_CON	PM25_PRI	
265	COPPER PLATING TANK	•			0.77	06088		2.8358	0142	3.61086	
<i>-</i>											
ASAINAME ALTFACID	COUNTYN=Bu MASAINAME	0.00000000 0.00000000 11itt ALTFACID: MASTER_ AI_II	0.0 2102900038 MA	00000000 00000000 ASAINAME=Monarch PRIPROD	1.300			5.8895 5.8895 CO		7.19047 7.19047	
ALTFACID Obs 266	MASAINAME Monarch Hardware & Manufacturing	0.00000000 llitt ALTFACID MASTER AI_II	0.0 2102900038 MA ALTFACID 2102900038	OOOOOOOO ASAINAME=Monarch PRIPROD GENERAL HARDWA	1.300 n Hardware 8 COUNTY! ARE Bullit	96990 Manufa FIPS 21029	sturing SIC1 3429	5.8895 ; Co PTID 001	SEGID	7.19047 SCC 40200110	SUBITEMDES
Obs 266 267 268	MASAINAME Monarch Hardware & Manufacturing of Monarch Hardware & Monarch & M	0.00000000 11itt ALTFACIDA MASTER AI_II Co 469 Co 469 Co 469	0.0 2102900038 MA ALTFACID 2102900038 2102900038 2102900038	OOOOOOOO ASAINAME=Monarch PRIPROD GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA	1.300 THARTWARE { COUNTY! ARE Bullit! ARE Bullit!	96990 Manufac FIPS 21029 21029 21029	sic1 3429 3429 3429 3429	5.8895 CO PTID 001 001 002	SEGID 1 2 1	7.19047 SCC 40200110 4020098 40200310	SUBITEMDES PAINT BOOT PAINT BOOT WAX BOOTH
Obs 266 267	MASAINAME Monarch Hardware & Manufacturing (Monarch Hardware & Manufacturing (0.00000000 11itt ALTFACIDA MASTER AI_II Co 469 Co 469 Co 469 Co 469	0.0 2102900038 MA ALTFACID 2102900038 2102900038 2102900038 2102900038	OOOOOOOO ASAINAME=Monarch PRIPROD GENERAL HARDWA GENERAL HARDWA	1.300 THARMARE & COUNTY! ARE Bullit: ARE Bullit: ARE Bullit: ARE Bullit:	96990 Manufad FIPS 21029 21029	sic1 SIC1 3429 3429	5.8895 CO PTID 001 001	SEGID 1 2	7.19047 SCC 40200110 40200998	SUBITEMDES PAINT BOOT PAINT BOOT WAX BOOTH LATHES
Obs 266 267 268 269	MASAINAME Monarch Hardware & Manufacturing of Monarch Hardware &	0.00000000 11itt ALTFACIDA MASTER AI_II Co 469 Co 469 Co 469 Co 469	0.0 2102900038 MA ALTFACID 2102900038 2102900038 2102900038 2102900038	OOOOOOOO ASAINAME=Monarch PRIPROD GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA	1.300 THARMARE & COUNTY! ARE Bullit: ARE Bullit: ARE Bullit: ARE Bullit:	96990 Manufac FIPS 21029 21029 21029 21029	SIC1 3429 3429 3429 3429 3429	5.8895 CO PTID 001 001 002 003	SEGID 1 2 1 1	7.19047 SCC 40200110 40200998 40200310 30903099	SUBITEMDES PAINT BOOT PAINT BOOT WAX BOOTH LATHES
Obs 266 267 268 269 270	MASAINAME Monarch Hardware & Manufacturing of Monarch Hardware &	0.00000000 11itt ALTFACIDA MASTER AI_II Co 469 Co 469 Co 469 Co 469	0.0 2102900038 MA ALTFACID 2102900038 2102900038 2102900038 2102900038	OOOOOOOO ASAINAME=Monarch PRIPROD GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA	1.300 The Hardware & COUNTY! ARE Bullit: ARE Bullit: ARE Bullit: ARE Bullit:	96990 Manufac FIPS 21029 21029 21029 21029	SIC1 3429 3429 3429 3429 3429	5.8895 G Co PTID 001 001 002 003 004	SEGID 1 2 1 1	7.19047 SCC 40200110 40200998 40200310 30903099	SUBITEMDES PAINT BOOT PAINT BOOT WAX BOOTH LATHES
Obs 266 267 268 269 270	MASAINAME Monarch Hardware & Manufacturing (0.00000000 11itt ALTFACID: MASTER_AI_II Co 46: Co 46: Co 46: Co 46:	0.0 2102900038 MA ALTFACID 2102900038 2102900038 2102900038 2102900038	OOOOOOOO ASAINAME=Monarch PRIPROD GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA	1.300 The Hardware & COUNTY! ARE Bullit: ARE Bullit: ARE Bullit: ARE Bullit:	96990 Manufac FIPS 21029 21029 21029 21029	SIC1 3429 3429 3429 3429 3429	5.8895 G Co PTID 001 001 002 003 004	SEGID 1 2 1 1	7.19047 SCC 40200110 40200998 40200310 30903099 39000689	SUBITEMDES PAINT BOOT PAINT BOOT WAX BOOTH LATHES
Obs 266 267 268 269 270	MASAINAME Monarch Hardware & Manufacturing of Monarch Hardware &	0.00000000 11itt ALTFACID: MASTER_AI_II Co 46: Co 46: Co 46: Co 46:	0.0 2102900038 MA ALTFACID 2102900038 2102900038 2102900038 2102900038	OOOOOOOO ASAINAME=Monarch PRIPROD GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA	1.300 The Hardware & COUNTY! ARE Bullit: ARE Bullit: ARE Bullit: ARE Bullit:	96990 Manufac FIPS 21029 21029 21029 21029	SIC1 3429 3429 3429 3429 3429	5.8895 G Co PTID 001 001 002 003 004	SEGID 1 2 1 1	7.19047 SCC 40200110 40200998 40200310 30903099 39000689	SUBITEMDES PAINT BOOT PAINT BOOT WAX BOOTH LATHES
Obs 266 267 268 269 270 ASAINAME Obs 266	MASAINAME Monarch Hardware & Manufacturing of Monarch Hardware &	0.00000000 11itt ALTFACID: MASTER_AI_II Co 46: Co 46: Co 46: Co 46:	0.0 2102900038 MA ALTFACID 2102900038 2102900038 2102900038 2102900038	OOOOOOOO ASAINAME=Monarch PRIPROD GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA GENERAL HARDWA	1.300 The Hardware & COUNTYN THE BULLITY THE BULLITY	96990 Manufac FIPS 21029 21029 21029 21029	SIC1 3429 3429 3429 3429 3429	5.8895 G Co PTID 001 001 002 003 004	SEGID 1 2 1 1 1 1	7.19047 SCC 40200110 40200998 40200310 30903099 39000689	SUBITEMDES PAINT BOOT PAINT BOOT WAX BOOTH LATHES

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

(continued)

		64																	
		W									_								
		A									S								
		\$									U	S							
	М	T									В	С							
	Α	E	Α								I	С				P		Р	
	S	R	L	Ρ	C						Т	S				М		M	
	Α	_	Т	R	0						Ε	Ų				2	. Р	2	
	I	Α	F	I	, U				5	3	M	В				5	М	5	
	N	Ī	Α	P	Ν	F	S	Р	Е	Ē	D	D				. —	_	_	
0	Α	_	С	R	Т	I	I	Т	6	i S	Е	Ε	\$	N		F	C	P	
b	М	I	I	0	Υ	Р	C	I	1	. c	\$	S	0	0		I	0	R	
s	E	D	D	D	N	s	1	D) C	С	С	2	2		. L	N	I	
ALTFACID													0.00165600	0.27600000	0.021	02535	1.83918494	1.86	021

		MASTER_									
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
271	Clark & Associates LLC	34458	2102900040	Welding	Bullitt	21029	3441	001	1	30900500	MIG WELDING OPERATIONS
272	Clark & Associates LLC	34458	2102900040	Welding	Bullitt	21029	3441	002	1	40200610	COATING OPERATIONS
273	Clark & Associates LLC	34458	2102900040	Welding	Bullitt	21029	3441	002	2	40200610	COATING OPERATIONS
274	Clark & Associates LLC	34458	2102900040	Welding	Bullitt	21029	3441	002	3	40200610	COATING OPERATIONS
275	Clark & Associates LLC	34458	2102900040	Welding	Bullitt	21029	3441	002	4	40200610	COATING OPERATIONS
276	Clark & Associates LLC	34458	2102900040	Welding	Bullitt	21029	3441	003	1	30502011	ROADWAYS

MASAINAME

0bs	SCCSUBDESC	\$02	NO2	PM25_FIL	PM_CON	PM25_PRI
271	3 MIG WELDING STATIONS		,	0.0000000	0.0000000	0
272	PRIMER	•	•	0.00000000	•	0
273	RUSTOLEUM-SAFETY BLUE	•		0.0000000	•	0
274	RUSTOLEUM-SAFETY YELLOW	•		0.0000000		0
275	KLEAN-STRIP XYLOL		•	•		
276	UNPAVED ROADWAY	•		•	-	
	-					
MASAINAME		0.0000000	0.0000000	0.00000000	0.00000000	a

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

				(conti	,						
Obs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC
LTFACID											
Obs	SCCSUBDESC		S02		N02		ı	PM25_FI	L	PM_CO	N PM25_PRI
LTFACID		0	.00000000	0	.00000000		0.0	0000000	0	0.0000000	0 0
		COUNTYN=Bul	litt ALTFACID	=2102900041	MASAINAM	E=Allied	Ready M	ix Co I	nc		
Obs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
277	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	01	1	30501107	Cement Silo
278	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	02	1	30501107	Fly Ash Silo
279	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	03	1	30501108	Cement Weight Hoppe
280	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	04	1	30501109	Drum Mixer
281	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	05	1	30501106	Aggregate Handling
282	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	06	1	30501111	Truck Loadout
283	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	7	1	30501106	Stockpiles
284	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	8	1	30501199	Paved Haul Road
Obs	SCCSUBDESC		S02		NO2		PM2	5_FIL		PM_CON	PM25_PRI
	Cement Silo	į		Ē			0.000	00000	(0.0000000	0
277							0.000	00000	C	.00000000	0
277 278	Fly Ash Silo	•						00000	,		^
	Fly Ash Silo Cement Weight Hopper						0.000	00000	·	0.0000000	0
278	-	•		•			0.000			0.0000000	0
278 279	Cement Weight Hopper							00000	C		•
278 279 280	Cement Weight Hopper Drum Mixer	·		· · · · · ·			0.000	00000	C	0.0000000	0 0 0
278 279 280 281	Cement Weight Hopper Drum Mixer Aggregate Handling	· · · ·					0.000	00000 00000 00000	(0.00000000	0

Bullitt County

	M																
	A							S									
	S							U									
	M T							В									_
	A E .							I							P		P
			Ç					T							M	_	M
	_		0			_		E							2	Р	
		FI		_	_			M							5	М	5
•		A P				PE		D		_					_	_	_
0		C R		I		T 0				S			N		F	C	
b		I 0			C	I I				0			0		I	0	
\$	E D	D D	N.	5	1	D [) (C	<i>j</i>	2			2		L ·	14	I
MASAINAME									0.000	000000		0.00000	 000	 O	.00000000	0.00000000	- 0
									0.00	000000		0.00000		·		0.0000000	
ALTFACID					- COUN	TYN=E	Bull	itt A	0.000 _TFACID=210290004	000000 2 MASAINAM		0.00000 ock Tra			.00000000	0.00000000	
ALTFACID	MASAINAME			MA	STER_				_TFACID=210290004	2 MASAINAM	E=Blackr	ock Tra	ilers				
ALTFACID	MASAINAME			MA:	STER_ AI_ID	AL	.TFA	CID	_TFACID=210290004	2 MASAINAM COUNTYN	E=Blackro FIPS	ock Tra	ilers PTID	SEGID	scc	SUBITEMDESC	
Obs 285	Blackrock Traile			MA:	STER_ AI_ID 50239	AL 210	.TFA	CID 0042	_TFACID=210290004 PRIPROD Truck Trailers	2 MASAINAM COUNTYN Bullitt	E=Blackro FIPS 21029	ock Tra SIC1 3715	ilers PTID O1MP1	SEGID 1	scc 10300603	SUBITEMDESC Tool Cleaning	0
Obs 285 286	Blackrock Traile Blackrock Traile	rs		MA:	STER_ AI_ID 50239 50239	AL 210 210	.TFA: 1290: 1290:	CID 0042 0042	_TFACID=210290004: PRIPROD Truck Trailers Truck Trailers	2 MASAINAM COUNTYN Bullitt Bullitt	E=Blackro FIPS 21029 21029	ock Tra SIC1 3715 3715	ilers PTID O1MP1 O1MP2	SEGID 1 2	SCC 10300603 10300603	SUBITEMDESC Tool Cleaning washing Operat	0
Obs 285 286 287	Blackrock Traile Blackrock Traile Blackrock Traile	rs rs		MA:	STER_ AI_ID 50239 50239 50239	AL 210 210 210	.TFA: 1290: 1290: 1290:	CID 0042 0042 0042	_TFACID=210290004: PRIPROD Truck Trailers Truck Trailers Truck Trailers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt	E=Blackro FIPS 21029 21029 21029 21029	ock Tra SIC1 3715 3715 3715	PTID O1MP1 O1MP2 O1MP3	SEGID 1 2 3	SCC 10300603 10300603 10300603	SUBITEMDESC Tool Cleaning washing Operat Parts Drying	0
Obs 285 286	Blackrock Traile Blackrock Traile	rs rs rs		MA:	STER_ AI_ID 50239 50239	210 210 210 210	.TFA: 1290: 1290: 1290: 1290:	CID 0042 0042	_TFACID=210290004: PRIPROD Truck Trailers Truck Trailers	2 MASAINAM COUNTYN Bullitt Bullitt	E=Blackro FIPS 21029 21029	ock Tra SIC1 3715 3715	ilers PTID O1MP1 O1MP2	SEGID 1 2	SCC 10300603 10300603	SUBITEMDESC Tool Cleaning washing Operat	tion
Obs 285 286 287 268 289	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile	rs rs rs		MA:	STER_ AI_ID 50239 50239 50239 50239	210 210 210 210	.TFA: 1290: 1290: 1290: 1290:	CID 0042 0042 0042 0042	PRIPROD Truck Trailers Truck Trailers Truck Trailers Truck Trailers Truck Trailers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt Bullitt	E=Blackro FIPS 21029 21029 21029 21029 21029	ock Tra SIC1 3715 3715 3715 3715	PTID O1MP1 O1MP2 O1MP3 O1MP4	SEGID 1 2 3 4	SCC 10300603 10300603 10300603 10300603	SUBITEMDESC Tool Cleaning washing Operat Parts Drying Powder Coating	tio
Obs 285 286 287 288 289	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile	rs rs rs		MA:	STER_ AI_ID 50239 50239 50239 50239	210 210 210 210	.TFA: 1290: 1290: 1290: 1290:	CID 0042 0042 0042 0042	PRIPROD Truck Trailers Truck Trailers Truck Trailers Truck Trailers Truck Trailers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt Bullitt	E=Blackro FIPS 21029 21029 21029 21029 21029	SIC1 3715 3715 3715 3715 3715	PTID O1MP1 O1MP2 O1MP3 O1MP4	SEGID 1 2 3 4	SCC 10300603 10300603 10300603 10300603	SUBITEMDESC Tool Cleaning washing Operat Parts Drying Powder Coating	0
0bs 285 286 287 288 289	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile	rs rs rs		MA:	STER_ AI_ID 50239 50239 50239 50239	AL 210 210 210 210	.TFA 1290 1290 1290 1290 1290	CID 0042 0042 0042 0042 0042	PRIPROD Truck Trailers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt	E=Blackro FIPS 21029 21029 21029 21029 21029	SIC1 3715 3715 3715 3715 3715 3715	PTID O1MP1 O1MP2 O1MP3 O1MP4 O2MP5	SEGID 1 2 3 4 1	SCC 10300603 10300603 10300603 10300603 39999999	SUBITEMDESC Tool Cleaning washing Operat Parts Drying Powder Coating 30 Stations	0
Obs 285 286 287 288 289 ASAINAME Obs 285 286	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile SCCSUBDESC Bake off Oven Hot Water Parts	rs rs rs rs		MA:	STER_ AI_ID 50239 50239 50239 50239	AL 210 210 210 210	0290 0290 0290 0290 0290 0290	CID 0042 0042 0042 0042 0042 S02	PRIPROD Truck Trailers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt Bullitt	E=Blackro FIPS 21029 21029 21029 21029 21029	ock Tra. SIC1 3715 3715 3715 3715 3715 0.01	PTID 01MP1 01MP2 01MP3 01MP4 02MP5	SEGID 1 2 3 4 1	SCC 10300603 10300603 10300603 39999999 PM_CON .01864128 .07115667	SUBITEMDESC Tool Cleaning washing Operate Drying Powder Coating 30 Stations PM25_PRI 0.03029 0.11563	0
Obs 285 286 287 288 289 ASAINAME Obs 285 286 287	Blackrock Traile SCCSUBDESC Bake off Oven Hot Water Parts Hot Air Drier	rs rs rs rs Wash	er	MA:	STER_ AI_ID 50239 50239 50239 50239	AL 210 210 210 210	0290 0290 0290 0290 0290 0000 0000	CID 0042 0042 0042 0042 0042 502	PRIPROD Truck Trailers Truck Trailers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt NO2	E=Blackro FIPS 21029 21029 21029 21029 21029	ock Tra. SIC1 3715 3715 3715 3715 3715 0.01	PTID 01MP1 01MP2 01MP3 01MP4 02MP5	SEGID 1 2 3 4 1	SCC 10300603 10300603 10300603 39999999 PM_CON .01864128 .07115667 .10652160	SUBITEMDESC Tool Cleaning washing Operate Drying Powder Coating 30 Stations PM25_PRI 0.03029 0.11563 0.17310	0
Obs 285 286 287 288 289	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile SCCSUBDESC Bake off Oven Hot Water Parts	rs rs rs rs Wash	er	MA:	STER_ AI_ID 50239 50239 50239 50239	AL 210 210 210 210	.TFA/ 0290/ 0290/ 0290/ 0290/ 0000/ 0003/ 0005/	CID 0042 0042 0042 0042 0042 \$02 91980 51102	PRIPROD Truck Trailers O.19	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt Bullitt NO2 5330000 8517000	E=Blackro FIPS 21029 21029 21029 21029 21029	OCK Tra. SIC1 3715 3715 3715 3715 0.01 0.04 0.06 0.09	PTID 01MP1 01MP2 01MP3 01MP4 02MP5	SEGID 1 2 3 4 1	SCC 10300603 10300603 10300603 39999999 PM_CON .01864128 .07115667	SUBITEMDESC Tool Cleaning washing Operate Drying Powder Coating 30 Stations PM25_PRI 0.03029 0.11563	0

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

		COUNTYN=B	ıllitt ALTFAC	ID=2102900042 (continue		=Blackro	ock Traile	ers		
Obs	MASAINAME	MASTER_ AI_ID AL	[FACID	PRIPROD .	COUNTYN	FIPS	SIC1 F	PTID SEGIO	o scc	SUBITEMDESC
ALTFACID										
Obs	SCCSUBDESC		\$02		NO2		PM25_	_FIL	PM_CON	PM25_PRI
ALTFACID		0.0)1757082	2.928	47000		4.28124	1692	5.30608716	9.58733
Obs	MASAINAME	COUNTYN=Bu MASTER_ AI_ID ALTFACID		D=2102900043 M COUNTYN FIPS				/ice	SUBITEM	
	rdons Food Service rdons Food Service	49577 210290004 49577 210290004								Generator (21 mmbtu/ Generator (21 mmbtu/
MASAINAME ALTFACID										
0bs	SCCSUBDESC	S02		NO2		PM25_	_FIL	PM_CC	ON PM25_PR	I
	esel fuel usage esel fuel usage	0.0000000		0.00000000 0.00000000		0.00000		0.0000000		
MASAINAME		0.00000000		0.00000000		0.00000	0000	0.0000000	00 0	-

0.00000000

0.00000000

0

0.00000000

0.00000000

ALTFACID

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) **Bullitt County**

		COL	JNTYN=Bul	litt ALTFA	ACID=21029	09043 MAS	AINAME=Charl	ton Co In	c - Port	table	Aspha:	lt Pla	nt			
Obs	MAS	AINAME			MASTER_ AI ID	ALTFACII	O PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGI	D :	scc	SUE	BITEMDESC
				.	_											
292 293	Charlton Co Inc - Charlton Co Inc -		•		40234 40234	210290904 210290904		Bullitt Bullitt		2951 2951	001 002	1		500205 500204		TARY DRYER HANDLING & STOC
294	Charlton Co Inc -		•		40234	210290904		Bullitt		2951	002	2				HANDLING & STOC
MASAINAME																
ALTFACID																
0bs	SCCSUBDESC			\$02			N02	ı	PM25_FIL	-		PM_	CON	PM25_	PRI	
292	ASPHALT ROTARY DRY	ED	-	.48729400		1.4103	20500	0.4	3949022	,		. 70325	614	1.74	276	
293	AGGREGATE HANDLING		'	,40/29400		1.410	36300)3102803			. 70323 . 20412		0.23		
294	STOCKPILES			•					9308409			.61237		0.70	545	
MASAINAME			· · · · · · · · · · · · ·	.48729400		1.4103	 36500	0.		- 1	2	.51974		2.68		
ALTFACID				.48729400		1.4100			16360234		2	.51974	967	2.68	335	
OE		COUNTY		t ALTFACIO)=21029090	062 MASAINA MASTER_ AI_ID	AME=Rogers G	PRIPROD		Le Bro ſYN F		rushed SIC1		e SEGID	scc	SUBITEMDESC
29	95 Rogers Group Inc	-Portabl	le Brooks	Crushed S	Stone	40276	2102909062	LIMESTON	Bulli	itt 2	1029	1422	001	1	30532031	POINT 001
29							2102909062	LIMESTON		itt 2		1422	002	1	30532013	POINT 002
29	• .						2102909062	LIMESTON			1029	1422	003	1	30532001	POINT 003
29 29	• •						2102909062 2102909062	LIMESTONE LIMESTONE			1029 1029	1422 1422	004 004	1 2	30532006 30532006	POINT 004 POINT 004
					,	102.0	2102000002	22.000		-					•••	
Ob	s SCCSUBDESC				S02		NO2	2	P	PM25_F	IL		PI	M_CON	PM25_PRI	
29	95 RECEIVING HOPPER								•							
29													•			
29		•	V	•			•		•						•	
29 29							•		•				•		• *	

-- Lavel (200) Takened

Process Level (SCC) Information

0 1	MAGATAUNE		MASTER_									
0bs	MASAINAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
300	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	004	3	30532014	POINT 004
301	Rogers Group Inc -Portable Brooks		40276	2102909062	LIMESTONE	Bullitt		1422	004	4	30532006	POINT 004
302	Rogers Group Inc -Portable Brooks		40276	2102909062	LIMESTONE	Bullitt		1422	005	1	30532002	POINT 005
303	Rogers Group Inc -Portable Brooks		40276	2102909062	LIMESTONE	Bullitt		1422	006	1	30532006	POINT 006
304	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	1	30532006	POINT 007
305	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	2	30532007	POINT 007
306	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	3	30532031	POINT 007
307	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	4	30532006	POINT 007
308	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	5	30532007	POINT 007
309	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	6	30532031	POINT 007
310	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	7	30532006	POINT 007
311	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	8	30532007	POINT 007
312	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	9	30532031	POINT 007
313	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	014	1	30502015	NSPS POINTS
314	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	014	2	30502006	NSPS POINTS
315	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	014	3	30502006	NSPS POINTS
316	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	1	30502006	FUGITIVE POINTS
317	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	2	30502007	FUGITIVE POINTS
Ohs	SCCSUBDESC	902		NOS		DM25	FTI		PM	CON	PM25 PRT	
ad0	SCCSUBDESC	\$02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
0bs 300	SCCSUBDESC 8' X 20' 3-DECK	so2		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
		S02		NO2		PM25	_FIL		РМ	_CON	PM25_PRI	
300	8' X 20' 3-DECK	S02		, , ,		PM25	_FIL		PM	_CON	PM25_PRI	
300 301	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER	S02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
300 301 302	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP)	\$02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
300 301 302 303	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER	\$02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
300 301 302 303 304	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK	\$02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
300 301 302 303 304 305	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT)	\$02		NO2		PM25	_FIL		PM	_сом	PM25_PRI	
300 301 302 303 304 305 306	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT)	S02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
300 301 302 303 304 305 306 307	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT) BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT)	S02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
300 301 302 303 304 305 306 307 308 309 310	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT) BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) THROUGHS TO STOCKPILE	S02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
300 301 302 303 304 305 306 307 308 309 310 311	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT) BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) THROUGHS TO STOCKPILE STOCKPILE (THROUGHS)	S02		NO2		PM25	_FIL		PM	_CON	PM25_PRI	
300 301 302 303 304 305 306 307 308 309 310 311 312	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT) BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) THROUGHS TO STOCKPILE STOCKPILE (THROUGHS) TR LOADOUT (THROUGHS)	S02		NO2								
300 301 302 303 304 305 306 307 308 309 310 311 312 313	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT) BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) TROUGHS TO STOCKPILE STOCKPILE (THROUGHS) TR LOADOUT (THROUGHS) SCALPING SCREEN	\$02		NO2			0000			- 428Ġ		
300 301 302 303 304 305 306 307 308 309 310 311 312 313	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT) BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) TROUGHS TO STOCKPILE STOCKPILE (THROUGHS) TR LOADOUT (THROUGHS) SCALPING SCREEN CONVEYOR AND TRANSFER PTS	\$02		NO2			0000 8258			- 4286 0000	0.99244	
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT) BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) THROUGHS TO STOCKPILE STOCKPILE (THROUGHS) TR LOADOUT (THROUGHS) SCALPING SCREEN CONVEYOR AND TRANSFER PTS	\$02		NO2			0000 8258 8258			- 4286 0000 0000		
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHER SEC CRUSH (130/150 IMP) FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT) TR LOADOUT (MID-DECK MAT) BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) TR LOADOUT (BOT-DECK MAT) TROUGHS TO STOCKPILE STOCKPILE (THROUGHS) TR LOADOUT (THROUGHS) SCALPING SCREEN CONVEYOR AND TRANSFER PTS	S02		NO2			0000 8258 8258 2350			4286 0000 0000 2857	0.99244	

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) **Bullitt County**

Process Level (SCC) Information

------- COUNTYN=Bullitt ALTFACID=2102909062 MASAINAME=Rogers Group Inc -Portable Brooks Crushed Stone

				(continued)								
Obs	MASAINAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC
318	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	3	30502099	FUGITIVE POINTS
319	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	4	30502006	FUGITIVE POINTS
320	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	5	30502007	FUGITIVE POINTS
321	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	6	30502099	FUGITIVE POINTS
322	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	016	1	30502099	FUGITIVE POINTS
323	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	016	2	30502099	FUGITIVE POINTS
324	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	016	3	30502099	FUGITIVE POINTS
325	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	017	1	30502006	NSPS POINT
326	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	018	1	30502099	FUGITIVE POINTS
327	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	018	2	30502099	FUGITIVE POINTS
328	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	019	1	30502015	NSPS POINTS
329	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	019	2	30502006	NSPS POINTS
330	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	020	1	30502006	NSPS POINTS
331	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	020	2	30502003	NSPS POINTS
332	Rogers Group Inc -Portable Brooks	Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	020	3	30502006	NSPS POINTS
MASAINAME												
Obs	SCCSUBDESC	502		NO2		PM25	_FIL		PN	_сои	PM25_PRI	
318	TRUCK LOADOUT			•		0.5679	0000		0.0025	0397	0.57040	
319	CONVEYOR AND TRANSFER PTS					0.0035	2350		0.0964	2857	0.09995	
320	STOCKPILE					0.0393	8000		0.2841	2698	0.32351	
321	TRUCK LOADOUT			•		0.5679	0000		0.0025	0397	0.57040	
322	RECEIVING HOPPER	i		•		0.0001	7100		0.0000	3016	0.00020	
323	PUG MILL	,				0.0000	0000		0.0000	0000	0.00000	
324	TRUCK LOADOUT					0.0000	0000		0.0000	0000	0.00000	
325	CONVEYOR AND TRANSFER PTS					0.0004	8708		0.0021	1111	0.00260	

		•				
318	TRUCK LOADOUT	•		0.56790000	0.00250397	0.57040
319	CONVEYOR AND TRANSFER PTS			0.00352350	0.09642857	0.09995
320	STOCKPILE	,	•	0.03938000	0.28412698	0.32351
321	TRUCK LOADOUT	,	•	0.56790000	0.00250397	0.57040
322	RECEIVING HOPPER	•	•	0.00017100	0.00003016	0.00020
323	PUG MILL			0.00000000	0.00000000	0.00000
324	TRUCK LOADOUT	,	•	0.0000000	0.00000000	0.00000
325	CONVEYOR AND TRANSFER PTS		•	0.00048708	0.00211111	0.00260
326	RECEIVING HOPPER		•	0.00017100	0.00003016	0.00020
327	TRUCK LOADOUT			0.0000000	0.00000000	0.00000
328	WASH SCREEN	,	•	0.0000000	0.00000000	0.00000
329	CONVEYOR AND TRANSFER PTS		•	0.00188425	0.00816667	0.01005
330	CONVEYOR AND TRANSFER PTS		•	0.00188425	0.00816667	0.01005
331	TERTIARY CRUSHER			0.06774840	0.00971429	0.07746
332	CONVEYOR AND TRANSFER PTS			0.00130744	0.00566667	0.00697
MASAINAME		0.0000000	0.0000000	1.82632558	1.37214762	3.19847

30502007

POINT 005

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)
Bullitt County

Process Level (SCC) Information

			(COUNTYN≃Bu	llitt AL	TFACID=210	12909062 MASA	AINAME=Rogers (continued)		-Portable	Brooks	Crusł	ied Sto	ne		
Obs			MAS	SAINAME			MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC
ALTFACID																
Obs	SCCSUI	BDESC				S02	!	NO2	!	PM25	_FIL		PM	I_CON	PM25_PRI	
ALTFACID					(0.0000000.0		0.00000000		1.8263	32558		1.3721	4762	3.19847	
				- COUNTYN=	Bullitt /	ALTFACID=2	102909084 MA	SAINAME=Roge	rs Group In	nc - Porta	ıble Cru	ısher f	Plant 1			
	0bs			MASAINAME			MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
	333 R	ogers Group	Inc	- Portable	Crusher	Plant 1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	001	1	30502099	POINT 001
	334 R	ogers Group	Inc	- Portable	Crusher	Plant 1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	002	1	30502001	POINT 002
	335 R	ogers Group	Inc ·	- Portable	Crusher	Plant 1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	003	1	30502006	POINT 003
		ogers Group					40501	2102909084	AGG CRUSH	Bullitt	21029	1429	003	2	30502006	POINT 003
		ogers Group					40501	2102909084	AGG CRUSH	Bullitt	21029	1429	003	3	30502006	POINT 003
		ogers Group					40501	2102909084	AGG CRUSH	Bullitt	21029	1429	004	1	30502015	POINT 004
	339 R	ogers Group	inc -	- Portable	crusher	Plant 1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	1	30502006	POINT 005

0bs	SCCSUBDESC	S02	NO2	PM25_FIL	PM_CON	PM25_PRI
333	RECEIVING			0.0000000	0.00000000	0
334	PRIMARY CRUSHER-5348 IMPT			0.00000000	0.0000000	0
335	CONVEYOR 42" X 78' (C-1)	•	•	0.00000000	0.00000000	0
336	CONVEYOR 30" X 100' (C-2)		•	0.00000000	0.00000000	0
337	CONVEYOR 30" X 60' (C-4)			0.00000000	0.00000000	0
338	SCREEN 6'X16' 3D SCALPING			0.00000000	0.00000000	0
339	CONVEYOR 30" X 100' (C-3)		-	0.00000000	0.00000000	0
340	RIP RAP STOCKPILE (SP-1)		•	0.00000000	0.0000000	0
337 338 339	CONVEYOR 30" X 60' (C-4) SCREEN 6'X16' 3D SCALPING CONVEYOR 30" X 100' (C-3)	; ; ; ;	· · · · ·	0.0000000 0.0000000 0.0000000	0.0000000 0.0000000 0.0000000	

40501 2102909084 AGG CRUSH Bullitt 21029 1429 005

340 Rogers Group Inc - Portable Crusher Plant 1

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

------ COUNTYN=Bullitt ALTFACID=2102909084 MASAINAME=Rogers Group Inc - Portable Crusher Plant 1 -------------(continued)

			(concinued)								
0bs	MASAINAME	MASTER_ AI_IC	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
341	Rogers Group Inc - Portable	Crusher Plant 1 40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	3	30502099	POINT 005
342	Rogers Group Inc - Portable		2102909084	AGG CRUSH	Bullitt	21029	1429	005	4	30502006	POINT 005
343	Rogers Group Inc - Portable	Crusher Plant 1 40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	5	30502007	POINT 005
344	Rogers Group Inc - Portable	Crusher Plant 1 40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	6	30502099	POINT 005
345	Rogers Group Inc - Portable	Crusher Plant 1 40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	7	30502006	POINT 005
346	Rogers Group Inc - Portable	Crusher Plant 1 40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	8	30502007	POINT 005
347	Rogers Group Inc - Portable	Crusher Plant 1 40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	9	30502099	POINT 005
MASAINAME ALTFACID											
0bs	SCCSUBDESC	\$02		N02		PM25_FI	L		PM_CO	N PM25_	PRI
341	RIP RAP TRUCK LOADOUT-L01	,			0.	0000000	0	0.	.0000000) 0)
342	CONVEYOR 36" X 120' (C-5)				0.	0000000	0	0.	.0000000) 0)
343	BASE STOCKPILE (SP-2)		-		0.	0000000	0	0.	.00000000) 0	
344	BASE TRUCK LOADOUT-LO-2				0.	0000000	0	0.	.0000000) . 0)
345	CONVEYOR 36" X 96' (C-6)				0.	0000000	0	0.	.0000000) 0)
346	2'S STOCKPILE (SP-3)				0.	0000000	0	0.	.0000000) 0)
347	2'S TRUCK LOADOUT-LO-3	•	•		0.	0000000	0	0.	.0000000) 0)
MASAINAME		0.0000000	0.00000	000	۵.	0000000	 0	0.	.00000000)
ALTFACID		0.0000000	0.00000		-	0000000			0000000		

2005 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

		MASTER_									
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
348	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	1	30502099	FUGITIVES
349	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	2	30502006	FUGITIVES
350	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	3	30502007	FUGITIVES
351	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	4	30502099	FUGITIVES
352	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	5	30502007	FUGITIVES
353	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	6	30502099	FUGITIVES
354	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	7	30502099	FUGITIVES
355	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	002	1	30502001	CRUSHER
MASAINAME											
ALTFACID											
COUNTYN											
Obs	SCCSUBDESC	\$02		N02		PM25_FIL		PM_CO	N PM2	25_PRI	
348	LOADOUT				0.	00000000		0.0000000	0	0.000	
349	CONVEYOR					00000000		0.0000000		0.000	
350	STOCKPILE					00000000		0.0000000		0.000	
351	LOADOUT					00000000		0.0000000		0.000	
352	STOCKPILE					00000000		0.0000000		0.000	
353	TRUCK LOADOUT					00000000		0.0000000		0.000	
354	RECEIVING HOPPER	•			0.	00000000		0.0000000	0	0.000	
355	PRIMARY CRUSHER					00000000		0.0000000	0	0.000	
MASAINAME		0.0000000	0.000	000000		00000000		0.0000000		0.000	
ALTFACID		0.00000000	0.000	00000	0.	00000000		0.0000000	0	0.000	
COUNTYN		365.90798855	221.696	661405		33205995		33.3330831		6.665	
		========= 365.90798855	=======================================	===== = 661405	. 22222222	33205995		======= 33.3330831		===== 6.665	

Bullitt County

Plant Level Information

COUNTYN=Bull	litt	FTPS=21029	_

		000	NIAN=ROTTILL LIB2=5105					
			MASTER_				•	
0bs	MASAINAME		AI_ID	ALTFACID	COUNTYN	FIPS	SIC1	PRIPROD
1	KY Solite Corp		454	2102900002	Bullitt	21029	3295	LIGHT WEIGHT AGG
2	Quality Stone & Ready Mix I	nc	471	2102900003	Bullitt	21029	3273	CONCRETE
3	Four Roses Distillery Inc		451	2102900004	Bullitt	21029	2085	SPIRIT STG
4	Jim Beam Brands Co - Clermo	nt Plant	450	2102900005	Bullitt	21029	2085	BRANDY
5	Quality Stone & Ready Mix I	nc-Quarry	44272	2102900009	Bullitt	21029	1422	LIMESTONE
6	Mago Construction Co LLC -	Shepherdsville Asphalt Fa	cility 463	2102900010	Bullitt	21029	2951	ASPHALT
7	IMI South LLC	•	37419	2102900011	Bullitt	21029	3273	CONCRETE
8	Rogers Group Inc - Bullitt	Co Stone	473	2102900012	Bullitt	21029	1422	STONE
9	Publishers Printing Co - Sh		469	2102900019	Bullitt	21029	2752	PRINTING
10	Publishers Printing Co - Le	banon Junction Press	470	2102900032	Bullitt	21029	2721	MAGAZINES
11	IMI South LLC		37418	2102900036	Bullitt	21029	3272	LIMESTONE
12	Specialty Engraving Systems	: Inc	37449	2102900037	Bullitt	21029	2796	CROME PLAT
13	Monarch Hardware & Manufact		465	2102900038	Bullitt	21029	3429	GENERAL HARDWARE
14	Clark & Associates LLC	J	34458	2102900040	Bullitt	21029	3441	Welding
15	Allied Ready Mix Co Inc		43856	2102900041	Bullitt	21029	3273	CONCRETE
16	Blackrock Trailers		50239	2102900042	Bullitt	21029	3715	Truck Trailers
17	Gordons Food Service		49577	2102900043	Bullitt	21029	5142	Frozen Food
18	Medimmune Distribution Cent	er	63309	2102900044	B⊔llitt	21029	8731	Misc Medical
0bs	802	NO2	PM25_FIL	PM_CON	PM25_PRI			
1	304.37299688	172.40839000	104.94284970	32.55492099	137.498			
2			0.0000000	0.00000000	0.000			
3	•		•					
4	198.85632240	92.35856000	4.33520982	15.69996885	20.035			
5		•	8.07272422	5.00128200	13.074			
6	2.56572400	3.43623750	0.33953312	3.98113234	4.321			
7			0.0000000	0.00000000	0.000			
8			37.89286876	18.03467263	55.928			
9	0.01032143	1.72503200	0.05901407	0.20955008	0.269			
10	0.01775586	2.99033900	0.22158267	0.36219536	0.584			
11	•	•	0.36062550	0.86385192	1.224			
12			1,30096990	5.88950015	7.190			
13	0.00165600	0.27600000	0.02102535	1.83918494	1.860			
14	:	•	0.00000000	0.00000000	0.000			
15			0.00000000	0.00000000	0.000			
16	0.01757082	2.92847000	4.28124692	5.30608716	9.587			
17	0.0000000	0.0000000	0.00000000	0.00000000	0.000			
• •								

0.10015336

18

0.23221750

6.90273300

0.00841115

0.109

Plant Level Information

COUNTYN=Bullitt FIPS=21029	
(continued)	

Obs	MASAINAME	MASTER_ AI_ID	ALTFACID	COUNTYN	FIPS	SIC1	PRIPROD
19	Marrillia Environmental LLC	70880	2102900045	Bullitt	21029	4953	Waste
20	Sabert Corp	81499	2102900046	Bullitt	21029	3089	plastics
21	On Site Electrostatic Painting Co	100306	2102900048	Bullitt	21029	7539	painting
22	Charlton Co Inc - Portable Asphalt Plant	40234	2102909043	Bullitt	21029	2951	ASPHALT
23	Rogers Group Inc -Portable Brooks Crushed Stone	40276	2102909062	Bullitt	21029	1422	LIMESTONE
24	Rogers Group Inc - Portable Crusher Plant 1	40501	2102909084	Bullitt	21029	1429	AGG CRUSH
25	RMS Gravel - Portable Plant	43857	2102909111	Bullitt	21029	1442	
26	Flynn Brothers Contracting - Portable	85396	2102909186	Bullitt	21029	2951	asphalt
27	Mago Construction Co LLC - Portable Screening Unit	99372	2102909199	Bullitt	21029	1429	Asphalt
28	Mago Construction Co LLC - HMA Portable Plant	99804	2102909202	Bullitt	21029	1429	crushed stone
29	Concrete Industries Inc - Portable Batch Plant	101134	2102909222	Bullitt	21029	3273	concrete

FIPS COUNTYN

0bs	\$02	N02	PM25_FIL	PM_CON	PM25_PRI
19	0.10302207	1.52765972	0.13027534	0.03822934	0.169
20	0.00934800	1.55800000	0.53899640	1.41092258	1.950
21	0.0000000	0.0000000	0.0000000	0.00000000	0.000
22	0.76560000	0.72600000	0.08421600	1.29706726	1.381
23	•	•	0.0000000	0.00000000	0.000
24	•		0.0000000	0.00000000	0.000
25	•		0.0000000	0.00000000	0.000
26	0.15884023	1.21466059	0.17592937	3.55276226	3.729
27			0.01089054	0.00969045	0.021
28	0.04694157	0.34649199	0.07363126	0.07042956	0.144
29	•	•	0.0000000	0.0000000	0.000
FIPS	507.15831676	288.39857380	162.94174230	96.12985901	259.072
COUNTYN	507.15831676	288.39857380	162.94174230	96.12985901	259.072
	507.15831676	288.39857380	162.94174230	96.12985901	259.072

		C	OUNTYN≃Bullitt .	ALTFACID=21	02900002	MASAINAME	=KY So	lite Corp			
	MART	ED									
Obs	MAST MASAINAME AI	_TD ALTFACIO	PRIPROD	COLINITYN	FIPS S	STC1 PTID	SEGID	scc	SUBITEMDESC		
0.00	,	_ID //CII//OIC	THITHOD	COUNTIN	t i i i c	1101 1110	OEGID	500	CODITEMBLOO		
1	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 02-01	1	30502920	Kiln #2 Clinker	Cooler (FP5)
2	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 02	1	30502910	Light Aggregate	Expanding K	iln #2 (PP2)
3	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 02	2	39000299	Light Aggregate	Expanding K	iln #2 (PP2)
4	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 02	3	39000599	Light Aggregate	Expanding K	iln #2 (PP2)
5	KY Solite Corp	454 210290000	2 LIGHT WEIGHT	AGG Bullitt	21029 3	3295 EU 02	4	39000699	Light Aggregate	Expanding K	iln #2 (PP2)
6	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 03	1	30502910	Light Aggregate	Expanding K	iln #3 (PP1)
7	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 03	2	39000299	Light Aggregate	Expanding K	iln #3 (PP1)
8	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 03	3	39000599	Light Aggregate	Expanding K	iln #3 (PP1)
9	KY Solite Corp	454 210290000	2 LIGHT WEIGHT	AGG Bullitt	21029 3	3295 EU 03	4	39000699	Light Aggregate	Expanding K	iln #3 (PP1)
10	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 04	1	30502920	Kiln #3 Clinker	Cooler (FP4) (Multi-Cyclone)
11	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 05A	1	30599999	Raw Material Pr	ocessing; Pr	imary Crushing, Sc
12	KY Solite Corp	454 210290000	2 LIGHT WEIGHT	AGG Bullitt	21029 3	3295 EU 05A	2	30599999	Raw Material Pr	ocessing; Pr	imary Crushing, Sc
13	KY Solite Corp	454 210290000	2 LIGHT WEIGHT	AGG Bullitt	21029 3	3295 EU 05A	3	30502033	Raw Material Pr	ocessing; Pr	imary Crushing, Sc
14	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 05A	4	30502033	Raw Material Pr	ocessing; Pr	imary Crushing, Sc
15	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 05A	5	30502033	Raw Material Pr	ocessing; Pr	imary Crushing, Sc
16	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 05A	6	30502001	Raw Material Pr	ocessing; Pr	imary Crushing, Sc
17	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 05A	7	30502001	Raw Material Pr	ocessing; Pr	imary Crushing, Sc
18	KY Solite Corp	454 210290000	2 LIGHT WEIGHT .	AGG Bullitt	21029 3	3295 EU 05A	8	30502006	Raw Material Pr	ocessing; Pr	imary Crushing, Sc
	•										
UDS	SCCSUBDESC		;	S02		N02		PN	M25_FIL	PM_CON	PM25_PRI
1	Kiln #2 Clinker Produce	d									
	AGGREGATE PROCESSED		0.00000	. 000	0.	00000000					
	COAL BURNED		0.00000			00000000		0.00	000000	0.00000000	0.00000
	FUEL OIL AND USED OIL B	URNED	0.00000			00000000			0000000	0.00000000	0.00000
	NATURAL GAS BURNED		0.00000			00000000			0000000	0.00000000	0.00000
	AGGREGATE PROCESSED		292.82408			67550000					
7	ONLY COAL BURNED		11.54877			09930000		0.03	3664565	2.56985745	2.60650
8	FUEL OIL AND USED OIL B	JRNED	0.00000			00000000				0.00000000	0.00000
9	NATURAL GAS BURNED		0.00013			63359000			005099	0.04532032	0.04537
10	Kiln #3 Clinker Produce	ď	•					•			•
11	RS6, Raw Mat. Stockpile	#1	•					0.00	131698	0.00145759	0.00277
	RS6, Raw Mat. Stockpile							0.00	000000	0.00000000	0.00000
13	(-),TruckLoadout, from	Quarry	•							0.00158753	0.00286
	(-)Loader from RM Stock									0.00031906	0.00044
	(-)Loader from RM Stock									0.00000000	0.00000
16	RS5, Raw Mat Dump Hopper	to RC1.								0.00092298	0.00092
	RC1, Raw Crusher, feeds							0.00	0009420	0.02215152	0.02225
18	RB1,30"Belt Conveyor to	RU1								0.01319860	0.01386

11:18 Tuesday, September 27, 2011

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Bullitt County

Process Level (SCC) Information

		MASTER_							÷			
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS S	IC1 PTID	SEGID	SCC		SUBITEMDE	ESC
10	KY Solite Cor	n 454	210200000	LIGHT WEIGHT	AGG Bullitt	21020 3	205 FU 05A	9	30502002 Ray	w Material	Processina: F	Primary Crushing, Sc
	KY Solite Cor	•		LIGHT WEIGHT								Primary Crushing, Sc
	KY Solite Cor			LIGHT WEIGHT				11				rimary Crushing, Sc
	KY Solite Cor	'		LIGHT WEIGHT				12				rimary Crushing, Sc
	KY Solite Cor	•		LIGHT WEIGHT				13				Primary Crushing, Sc
	KY Solite Cor	•		LIGHT WEIGHT				14				rimary Crushing, Sc
	KY Solite Cor	-		LIGHT WEIGHT								rimary Crushing, Sc
	KY Solite Cor	•		LIGHT WEIGHT				16	30502006 Ray	w Material	Processing; F	rimary Crushing, Sc
	KY Solite Cor	•		LIGHT WEIGHT				17				rimary Crushing, Sc
	KY Solite Cor	•		LIGHT WEIGHT				18	30502006 Rav	w Material	Processing; F	rimary Crushing, Sc
	KY Solite Cor	•		LIGHT WEIGHT				19	30502006 Ra	w Material	Processing; F	rimary Crushing, Sc
	KY Solite Cor	•		LIGHT WEIGHT				20	30502006 Ra	w Material	Processing; F	Primary Crushing, Sc
	KY Solite Cor	•	2102900002	LIGHT WEIGHT	AGG Bullitt	21029 3	295 EU 05A	21	30502006 Ra	w Material	Processing; F	rimary Crushing, Sc
	KY Solite Cor	•	2102900002	LIGHT WEIGHT	AGG Bullitt	21029 3	295 EU 05A	22	30502006 Rav	w Material	Processing; F	rimary Crushing, Sc
33	KY Solite Cor	р 454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029 3	295 EU 05A	23	30599999 Ra	w Material	Processing; F	Primary Crushing, Sc
34	KY Solite Cor	p 454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029 3	295 EU 05A	24	30502006 Ra	w Material	Processing; F	Primary Crushing, Sc
35	KY Solite Cor	p 454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029 3	295 EU 05A	25	30502006 Ra	w Material	Processing; F	Primary Crushing, Sc
36	KY Solite Cor	p 45 4	2102900002	LIGHT WEIGHT	AGG Bullitt	21029 3	295 EU 05B	1	30502001 Ra	w Material	Processing; A	Primary Crushing, Sc
0 !	0000UDDE00				000		NO.0		DNOC	ETI	DM CON	DNOS DDT
0bs	SCCSUBDESC				S02		NO2		PM25	_FIL	PM_CON	PM25_PRI
		een, feed RB2	,3,4		S02		NO2		PM25 0.0026		PM_CON 0.10438895	PM25_PRI
19	AU1,3Deck Scr	een, feed RB2 onveyor to RC			S02		NO2			4572		_
19 20	RU1,3Deck Scr RB2,24"Belt C	•	1	· •	S02		NO2		0.0026	4572 0353	0.10438895	0.10703
19 20 21	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C	onveyor to RC	1 3	•	S02		NO2		0.0026 0.0003	4572 0353 6231	0.10438895 0.00304582	0.10703 0.00335
19 20 21 22	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S	onveyor to RC onveyor to RS	1 3 SC1		S02		NO2		0.0026 0.0003 0.0002	4572 0353 6231 4064	0.10438895 0.00304582 0.00263219	0.10703 0.00335 0.00289
19 20 21 22 23	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad	onveyor to RC onveyor to RS tore Bin feed	1 3 SC1 s		S02		NO2		0.0026 0.0003 0.0002 0.0081	4572 0353 6231 4064 9045	0.10438895 0.00304582 0.00263219 0.00699128	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827
19 20 21 22 23 24	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine	1 3 SC1 s		S02		NO2		0.0026 0.0003 0.0002 0.0081 0.0000	4572 0353 6231 4064 9045 4946	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929	0.10703 0.00335 0.00289 0.01513 0.00033
19 20 21 22 23 24 25	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS	1 3 SC1 s 1 PB1		S02		NO2		0.0026 0.0003 0.0002 0.0081 0.0000	4572 0353 6231 4064 9045 4946 2958	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414
19 20 21 22 23 24 25 26	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds	1 3 3 5C1 s 1 PB1		S02		NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007	4572 0353 6231 4064 9045 4946 2958 7473	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.00998763	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162
19 20 21 22 23 24 25 26 27	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C RS2 RM Store	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds onveyor to RS	1 3 SC1 s 1 PB1 2 PB2		S02		NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007 0.0116	4572 0353 6231 4064 9045 4946 2958 7473	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.00998763 0.00376030	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162 0.00414
19 20 21 22 23 24 25 26 27 28	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C RS2 RM Store PB1,18"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds onveyor to RS Silo #2 feeds	1 3 SC1 s 1 PB1 2 PB2 3		S02		NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007 0.0116 0.0003	4572 0353 6231 4064 9045 4946 2958 7473	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.00998763 0.00376030 0.00376030 0.00376030	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162 0.00414
19 20 21 22 23 24 25 26 27 28 29	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C RS2 RM Store PB1,18"Belt C PB2,18"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds onveyor to RS Silo #2 feeds onveyor to PB	1 3 SC1 s 1 PB1 2 PB2 3 1n2		S02		NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007 0.0116 0.0003 0.0003 0.0003	4572 0353 6231 4064 9045 4946 2958 7473 2958 7473 7473	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.00998763 0.00376030 0.00376030 0.00376030 0.00376030	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162 0.00414 0.00414
19 20 21 22 23 24 25 26 27 28 29 30	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C RS2 RM Store PB1,18"Belt C PB2,18"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds onveyor to RS Silo #2 feeds onveyor to PB onveyor to Ki	1 3 SC1 s 1 PB1 2 PB2 3 1n2		S02	•	NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007 0.0116 0.0003 0.0013 0.0003 0.0003	4572 0353 6231 4064 9045 4946 2958 7473 2958 7473 7473 4946	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.00998763 0.00376030 0.00376030 0.00376030 0.00376030 0.00376030	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162 0.00414 0.00414 0.00414
19 20 21 22 23 24 25 26 27 28 29 30 31	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C RS2 RM Store PB1,18"Belt C PB2,18"Belt C PB3,18"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds onveyor to RS Silo #2 feeds onveyor to PB onveyor to PB onveyor to PB	1 3 SC1 s 1 PB1 2 PB2 3 1n2 4		S02	•	NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007 0.0116 0.0003 0.0003 0.0003 0.0003	4572 0353 6231 4064 9045 4946 2958 7473 2958 7473 7473 4946 4946	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.00998763 0.00376030 0.00376030 0.00376030 0.00376030 0.00376030 0.00752060	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162 0.00414 0.00414 0.00414 0.00827 0.00827
19 20 21 22 23 24 25 26 27 28 29 30 31 32	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C RS2 RM Store PB1,18"Belt C PB2,18"Belt C PB3,18"Belt C PB4,18"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds onveyor to RS Silo #2 feeds onveyor to PB	1 3 SC1 s 1 PB1 2 PB2 3 ln2 4 5		S02	•	NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007 0.0116 0.0003 0.0013 0.0003 0.0003 0.0007 0.0007	4572 0353 6231 4064 9045 4946 2958 7473 2958 7473 7473 7473 4946 4946 5915	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.00998763 0.00376030 0.00376030 0.00376030 0.00376030 0.00752060 0.00752060 0.019975266	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162 0.00414 0.00414 0.00414 0.00827 0.00827
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	RU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C RS2 RM Store PB1,18"Belt C PB2,18"Belt C PB3,18"Belt C PB4,18"Belt C PB5,18"Belt C PS3, Kiln 3 F PB7,18"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds onveyor to RS Silo #2 feeds onveyor to PB onveyor to PB onveyor to PB onveyor to PS eed Bin to PB onveyor to Kionveyor to Kionveyor to Kionveyor to RS eed Bin to PB onveyor to Kionveyor to Ki	1 3 SC1 s 1 PB1 2 PB2 3 ln2 4 5 3 7		\$02	•	NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007 0.0116 0.0003 0.0003 0.0003 0.0003 0.0007 0.0007	4572 0353 6231 4064 9045 4946 2958 7473 2958 7473 7473 7473 4946 4946 5915	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.0098763 0.00376030 0.00376030 0.00376030 0.00376030 0.00752060 0.00752060 0.01997526	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162 0.00414 0.00414 0.00414 0.00827 0.00827 0.00827
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	AU1,3Deck Scr RB2,24"Belt C RB3,24"Belt C RS3 RM Fine S RD1 TruckLoad RB4,24"Belt C RS1 RM Store RB5,24"Belt C RS2 RM Store PB1,18"Belt C PB2,18"Belt C PB3,18"Belt C PB4,18"Belt C PB5,18"Belt C PS3, Kiln 3 F PB7,18"Belt C PB6,18"Belt C	onveyor to RC onveyor to RS tore Bin feed out Bulk Fine onveyor to RS Silo #1 feeds onveyor to RS Silo #2 feeds onveyor to PB onveyor to PB onveyor to PB onveyor to PB onveyor to PS eed Bin to PB	1 3 SC1 s 1 PB1 2 PB2 3 1n2 4 5 3 7 1n 3 PS3		S02	•	NO2		0.0026 0.0003 0.0002 0.0081 0.0000 0.0007 0.0116 0.0003 0.0013 0.0003 0.0003 0.0007 0.0007	4572 0353 6231 4064 9045 4946 2958 7473 2958 7473 7473 7473 4946 4946 5915 4946 0000	0.10438895 0.00304582 0.00263219 0.00699128 0.00023929 0.00752060 0.00998763 0.00376030 0.00376030 0.00376030 0.00376030 0.00752060 0.00752060 0.019975266	0.10703 0.00335 0.00289 0.01513 0.00033 0.00827 0.02162 0.00414 0.02162 0.00414 0.00414 0.00414 0.00827 0.00827

Bullitt County

Process Level (SCC) Information

(continued)

		MASTER_										
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	OIT	SEGID	SCC	SUBITEMDESC	
37	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	2	30502006 Raw N	aterial Processing; Primary Crus	hing, Sc
38	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	3	30599999 Raw M	aterial Processing; Primary Crus	hing, Sc
39	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	4	30599999 Raw M	aterial Processing; Primary Crus	hing, Sc
40	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	5	30502006 Raw M	aterial Processing; Primary Crus	hing, Sc
41	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	6	30599999 Raw N	laterial Processing; Primary Crus	hing, Sc
42	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	7	30502006 Raw N	laterial Processing; Primary Crus	hing, Sc
43	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	8	30502006 Raw A	laterial Processing; Primary Crus	hing, Sc
44	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	9	30502006 Raw M	aterial Processing; Primary Crus	hing, Sc
45	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	10	30502001 Raw M	aterial Processing; Primary Crus	hing, Sc
46	KY Solite Corp			LIGHT WEIGHT					11	30502001 Raw M	aterial Processing; Primary Crus	hing, Sc
	KY Solite Corp			LIGHT WEIGHT					12	30502006 Raw N	laterial Processing; Primary Crus	hing, Sc
48	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EI	J 05B	13	30502006 Raw N	aterial Processing; Primary Crus	hing, Sc
49	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E	J 05B	14	30502006 Raw M	laterial Processing; Primary Crus	hing, Sc
	KY Solite Corp			LIGHT WEIGHT					15	30502006 Raw N	aterial Processing; Primary Crus	hing, Şc
	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EI	J 05B	16		laterial Processing; Primary Crus	
	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 E) 05B	17		laterial Processing; Primary Crus	
	KY Solite Corp			LIGHT WEIGHT					18		laterial Processing; Primary Crus	
54	KY Solite Corp	4 54	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EI	J 06A	1	30502006 Finis	hed Product Processing; Secondar	y Crushi
٠												
Obs	SCCSUBDESC				S 02		I	102		PM25_F1	L PM_CON PM25_PRI	
37	SC1Screw Conveyo	or to RS4								0.000000	0.000000 0.00000	
38	RS4 RM Extru Sto	re Bin feed	iPE1							0.0000000	0.0000000 0.000000	
39	PS4 LAKD Extru S	Stor Bin, to	PE1							0.0000000	0.0000000 0.000000	
40	PE1 Extruder(RS4	/PS4)feeds	PB6							0.0000000	0.0000000 0.000000	
41	PS5, Kiln 2 Feed	Bin								0.0000000	0.0000000 0.000000	
42	PB8, 18" Belt Co	nveyor, Ki	ln 2	Ē						0.0000000	0.0000000 0.000000	
43	PB9, 18" Belt Co	nveyor, Kil	ln 2	Ē						0.0000000	0.000000 0.000000	
44	PB10, 18" Belt C	Conveyor Kil	ln 2	•						0.0000000	0.0000000 0.000000	
45	WS1, Mobile Hopp	per								0.0000000	0.000000 0.000000	
46	M\$2, Mobile Hopp	er								0.0000000	0.000000 0.000000	
47	MB1, Mobile Stac	king Convey	or/	•						0.0000000	0.000000 0.000000	
48	MB2, Mobile Stac	king Convey	or/							0.0000000	0.0000000 0.000000	
49	MB3, Mobile Stac	king Convey	or/							0.0000000	0.0000000 0.000000	
50	MB4, Mobile Stac	king Convey	or/							0.0000000	0.000000 0.000000	
51	MB5, Mobile Stac	king Convey	/or							0.0000000	0.0000000 0.000000	
52	MB6, Mobile Stac	king Convey	or/	•						0.0000000	0.000000 0.000000	
53	MB7, Mobile Stac	king Convey	or/							0.0000000	0.0000000 0.000000	
54	FB1, 18" Conveyo	or, feeds FE	32							0.0003717	0 0.00745975 0.007831	

Process Level (SCC) Information

		MASTER_														
Obs	MASAINAME	AI_ID	ALTFACID	PRIPRO)D	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC			SUBITEMDESC		
55	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	2	30502006	Finished	Product	Processing;	Secondary	Crushi
56	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	3				Processing;		
57	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	4	30599999	Finished	Product	Processing;	Secondary	Crushi
58	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	5	30599999	Finished	Product	Processing;	Secondary	Crushi
59	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	6	30599999	Finished	Product	Processing;	Secondary	Crushi
60	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	7	30599999	Finished	Product	Processing;	Secondary	Crushi
61	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	8	30502033	Finished	Product	Processing;	Secondary	Crushi
62	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 B	U 06A	9	30502033	Finished	Product	Processing;	Secondary	Crushi
63	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	10	30502033	Finished	Product	Processing;	Secondary	Crushi
64	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	11	30502033	Finished	Product	Processing;	Secondary	Crushi
65	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	12	30502033	Finished	Product	Processing;	Secondary	Crushi
66	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	13	30502033	Finished	Product	Processing;	Secondary	Crushi
67	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	14	30502033	Finished	Product	Processing;	Secondary	Crushi
68	KY Solite Corp		2102900002							15				Processing;	-	
69	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	16				Processing;		
70	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	17				Processing;	_	
71	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 I	U 06A	18				Processing;	_	
72	KY Solite Corp	454	2102900002	LIGHT WEIG	HT AGG	Bullitt	21029	3295 E	U 06A	19	30502003	Finished	Product	Processing;	Secondary	Crushi
0bs	SCCSUBE	DESC			802				N02		Pf	M25 FIL		PM_CON	PM25_PRI	
0bs	SCCSUBE	DESC			802				N02		PI	M25_FIL		PM_CON	PM25_PRI	
	SCCSUBE		le#1		S02				N02			M25_FIL	0.	PM_CON 00745975	PM25_PRI	
55		to ClnkrPi		· ·	S02				NO2		0.0	_		-	_	
55 56	FB2, 18" Convey t	to ClnkrPi , ClinkerS	urge		802				NO2		0.0	0074340	0.	00745975	0.008203	
55 56 57	FB2, 18" Convey t	to ClnkrPi , ClinkerS , ClinkerS	urge urge		S02				NO2		0.00 0.00 0.00	0074340 0006346	0. 0.	00745975 00014048	0.008203 0.000204	
55 56 57 58	FB2, 18" Convey t Clinker Stock #1, Clinker Stock #2,	to ClnkrPi , ClinkerS , ClinkerS , Product F	urge urge Mat.		S02				NO2		0.00 0.00 0.00	0074340 0006346 0000590	0. 0. 0.	00745975 00014048 00001307	0.008203 0.000204 0.000019	
55 56 57 58 59	FB2, 18" Convey t Clinker Stock #1, Clinker Stock #2, Clinker Stock #3,	to ClnkrPi , ClinkerS , ClinkerS , Product f , Product f	urge urge Mat. Mat.		802				NO2		0.00 0.00 0.00	0074340 0006346 0000590	0. 0. 0.	00745975 00014048 00001307 00000167	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007	
55 56 57 58 59 60	FB2, 18" Convey t Clinker Stock #1, Clinker Stock #2, Clinker Stock #3, Clinker Stock #4,	to ClnkrPi , ClinkerSi , ClinkerSi , Product F , Product F , Off-Spec	urge urge Mat. Mat.		S02				NO2		0.00 0.00 0.00 0.00	0074340 0006346 0000590 0000075	0. 0. 0. 0.	00745975 00014048 00001307 00000167 00006855	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.000047	
55 56 57 58 59 60	FB2, 18" Convey t Clinker Stock #1, Clinker Stock #2, Clinker Stock #3, Clinker Stock #4, Clinker Stock #5,	to ClnkrPi , ClinkerS , ClinkerS , Product F , Product F , Off-Spec rom FP4 Co	urge urge Mat. Mat. oler		S02				NO2		0.00 0.00 0.00 0.00 0.00	0074340 0006346 0000590 0000075 0003097	0. 0. 0. 0.	00745975 00014048 00001307 00000167 00006855 00000497	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.000047 0.000000	
55 56 57 58 59 60 61 62	FB2, 18" Convey t Clinker Stock #1, Clinker Stock #2, Clinker Stock #3, Clinker Stock #4, Clinker Stock #5, FE Loader xfer fr	to ClnkrPi , ClinkerS , ClinkerS , Product ! , Product ! , Off-Spec rom FP4 Cor	urge urge Mat. Mat. oler ler		S02				NO2		0.00 0.00 0.00 0.00 0.00	0074340 0006346 0000590 0000075 0003097 0000224	0. 0. 0. 0. 0.	00745975 00014048 00001307 00000167 00006855 00000497 00003413	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.0000047 0.000000 0.000001	
55 56 57 58 59 60 61 62 63	FB2, 18" Convey to Clinker Stock #1, Clinker Stock #2, Clinker Stock #4, Clinker Stock #5, FE Loader xfer for FE Loader xfer for Converse #4	to ClnkrPi , ClinkerS , ClinkerS , Product ! , Product ! , Off-Spec rom FP4 Co rom K2 Coo rm Ckr Sto	urge urge Mat. Mat. oler ler ck#3		S02				NO2		0.00 0.00 0.00 0.00 0.00 0.00	0074340 0006346 0000590 0000075 0003097 0000224 0001290 0000000	0. 0. 0. 0. 0.	00745975 00014048 00001307 00000167 00006855 00000497 00003413 00000000	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.000047 0.000000 0.000001 0.0000068	
55 56 57 58 59 60 61 62 63 64 65	FB2, 18" Convey to Clinker Stock #1, Clinker Stock #2, Clinker Stock #4, Clinker Stock #5, FE Loader xfer for FE Loader xfer fo	to ClnkrPi , ClinkerSi , ClinkerSi , Product ! , Off-Spec rom FP4 Coo rom K2 Coo rm Ckr Sto rm Ckr Sto rm Ckr Sto	urge urge Mat. Mat. oler ler ck#3 ck#4		S02				NO2		0.00 0.00 0.00 0.00 0.00 0.00 0.00	0074340 0006346 0000590 0000075 0003097 0000224 0001290 0000000 0000015 0001860 00003150	0. 0. 0. 0. 0. 0.	00745975 00014048 00001307 00000167 00006855 00000497 00003413 0000000 00000040 00004921 00008333	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.0000047 0.000000 0.000001 0.000068 0.000115	
55 56 57 58 59 60 61 62 63 64 65 66	FB2, 18" Convey to Clinker Stock #1, Clinker Stock #2, Clinker Stock #4, Clinker Stock #5, FE Loader xfer for E Loader x	to ClnkrPi; , ClinkerSi , ClinkerSi , Product ! , Off-Spec rom FP4 Coo rom K2 Coo rm Ckr Stoo rm Ckr Stoo rm MC1 Cru rm Ckr Stoo	urge wat. Mat. Oler ler ck#3 ck#4 sher ck#1		S02				NO2		0.00 0.00 0.00 0.00 0.00 0.00 0.00	0074340 0006346 0000590 0000075 00003097 0000224 0001290 0000000 0000015 0001860 00003150	0. 0. 0. 0. 0. 0. 0.	00745975 00014048 00001307 00000167 00006855 00000497 00003413 0000000 000004921 00008333 00000397	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.000047 0.000000 0.000001 0.000068 0.000115 0.000005	
55 56 57 58 59 60 61 62 63 64 65 66	FB2, 18" Convey to Clinker Stock #1, Clinker Stock #3, Clinker Stock #4, Clinker Stock #5, FE Loader xfer for FE Loader xfer fo	to ClnkrPi , ClinkerSi , ClinkerSi , Product ! , Off-Spec rom FP4 Coo rom K2 Coo rm Ckr Stoo rm Ckr Stoo rm MC1 Crus rm Ckr Stoo rm Ckr Stoo	urge urge Mat. Mat. oler ler ck#3 ck#4 sher ck#1		S02				NO2		0.00 0.00 0.00 0.00 0.00 0.00 0.00	0074340 0006346 0000590 0000075 00003097 0000224 0001290 0000000 0000015 0001860 0003150 0000150	0. 0. 0. 0. 0. 0. 0.	00745975 00014048 00001307 00000167 00006855 00000497 00003413 0000000 0000040 00004921 00008333 00000397	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.0000047 0.0000001 0.000001 0.000015 0.000005	
55 56 57 58 59 60 61 62 63 64 65 66 67 68	FB2, 18" Convey to Clinker Stock #1, Clinker Stock #2, Clinker Stock #3, Clinker Stock #5, FE Loader xfer for FE Loader xfer fo	to ClnkrPi , ClinkerSi , ClinkerSi , Product ! , Product ! , Off-Spec rom FP4 Coo rom K2 Coo rom Ckr Stoo rom Ckr Stoo rom Ckr Stoo rom Ckr Stoo rom Ckr Stoo rom Ckr Stoo	urge urge Mat. Mat. oler ler ck#3 ck#4 sher ck#1 ck#2		S02				NO2		0.00 0.00 0.00 0.00 0.00 0.00 0.00	0074340 0006346 0000590 0000075 00003097 0000224 0001290 0000000 0000015 0003150 0000150 0000015	0. 0. 0. 0. 0. 0. 0.	00745975 00014048 00001307 00000167 00006855 00000497 00003413 00000000 0000040 00004921 00008333 00000397 00000397	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.000000 0.000001 0.000068 0.000115 0.000005 0.000005	
55 56 57 58 59 60 61 62 63 64 65 66 67 68	FB2, 18" Convey to Clinker Stock #1, Clinker Stock #2, Clinker Stock #3, Clinker Stock #4, Clinker Stock #5, FE Loader xfer fif E Loader x	to ClnkrPi , ClinkerSi , ClinkerSi , Product ! , Product ! , Off-Spec rom FP4 Coo rom K2 Coo rom Ckr Sto rom Ckr Sto rom Ckr Sto rom Ckr Sto rom Ckr Sto rom Ckr Sto rom Ckr Sto	urge urge Mat. Mat. oler ler ck#3 ck#4 sher ck#1 ck#2		S02				NO2		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0074340 0006346 0000590 0000075 0003097 0000224 0001290 00000015 0001860 0003150 0000150 0000150 0000015	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	00745975 00014048 00001307 00000167 00006855 00000497 00003413 0000000 0000040 00004921 00008333 00000397 00000397 00000040 00676400	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.000000 0.000001 0.000068 0.000115 0.000005 0.000005 0.000001 0.007438	
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	FB2, 18" Convey to Clinker Stock #1, Clinker Stock #2, Clinker Stock #3, Clinker Stock #5, FE Loader xfer fif E Loader x	to ClnkrPi , ClinkerSi , ClinkerSi , Product ! , Product ! , Off-Spec rom K2 Coo rom Ckr Stoi rm Ckr Stoi rm Ckr Stoi rm Ckr Stoi rm Ckr Stoi rm Ckr Stoi ckr #1 to ! s FB4	urge urge Mat. Mat. oler ler ck#3 ck#4 sher ck#1 ck#2 ck#5		S02				NO2		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0074340 0006346 0000590 0000075 0003097 0000224 0001290 00000015 000150 0000150 0000150 0000150 0000150 0000150	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	00745975 00014048 00001307 00000167 00006855 00000497 00003413 0000000 0000040 00004921 00008333 00000397 00000397 00000040 00676400 01374295	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.0000047 0.000000 0.000001 0.000005 0.000005 0.000005 0.000001 0.007438 0.014327	
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	FB2, 18" Convey to Clinker Stock #1, Clinker Stock #2, Clinker Stock #3, Clinker Stock #4, Clinker Stock #5, FE Loader xfer fif E Loader x	to ClnkrPi , ClinkerSi , ClinkerSi , Product ! , Product ! , Off-Spec rom FP4 Coo rom K2 Coo rom Ckr Stoi rm Ckr Stoi s FB4 o FB5 & FU	urge urge Mat. Mat. oler ler ck#3 ck#4 sher ck#1 ck#2 ck#5		S02				NO2		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0074340 0006346 0000590 0000075 0003097 0000224 0001290 00000015 0001860 0003150 0000150 0000150 0000015	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	00745975 00014048 00001307 00000167 00006855 00000497 00003413 0000000 0000040 00004921 00008333 00000397 00000397 00000040 00676400	0.008203 0.000204 0.000019 0.000002 0.000100 0.000007 0.000000 0.000001 0.000068 0.000115 0.000005 0.000005 0.000001 0.007438	

Process Level (SCC) Information

COUNTYN=Bullitt ALTFACID=2102900002 MASAINAME=KY Solite Corp (continued)

		MAS	STER															
0bs	M	MASAINAME A	AI_ID	ALTFACID	PRIPROD		COUNTYN	FIPS	SIC1	PΊ	TID	SEGID	SCC			SUBITEMDESC		
73	KY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	20	30502006	Finished	Product	Processing;	Secondary	Crushi
74	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	ΕŲ	06A	21	30502006	Finished	Product	Processing;	Secondary	Crushi
75	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	22	30502006	Finished	Product	Processing;	Secondary	Crushi
76	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	23	30502006	Finished	Product	Processing;	Secondary	/ Crushi
77	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	24	30599999	Finished	Product	Processing;	Secondary	Crushi
78	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	25	30599999	Finished	Product	Processing;	Secondary	/ Crushi
79	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	26	30599999	Finished	Product	Processing;	Secondary	/ Crushi
80	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	27	30599999	Finished	Product	Processing;	Secondary	/ Crushi
81	ΚY	Solite Corp			LIGHT WEIGHT							28	30599999	Finished	Product	Processing;	Secondary	/ Crushi
82	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	29	30599999	Finished	Product	Processing;	Secondary	Crushi
83	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	ΕU	06A	30	30599999	Finished	Product	Processing;	Secondary	Crushi
84	ΚY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	31	30599999	Finished	Product	Processing;	Secondary	/ Crushi
		Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	32				Processing;	-	
		Solite Corp			LIGHT WEIGHT							33				Processing;		
		Solite Corp			LIGHT WEIGHT							34				Processing;	-	
		Solite Corp			LIGHT WEIGHT							35				Processing;	,	
		Solite Corp			LIGHT WEIGHT							36				Processing;	_	
90	KY	Solite Corp	454	2102900002	LIGHT WEIGHT	AGG	Bullitt	21029	3295	EU	06A	37	30599999	Finished	Product	Processing;	Secondary	Crushi
		•																
0bs		SCCSUBDESC				S02				NC	12		PI	/25_FIL		PM CON	PM25_PRI	
											_						· · · · <u>-</u> · · ·	
73	FB5	5 20"Conveyor feeds	F85		•								0.00	0100433	0.	01007814	0.011082	
74	FB6	3 24"Conveyor to Fir	ıStk#1	1	ı.								0.00	0021342	0.	00214160	0.002355	
75	FB7	7 20"Conveyor to Fir	ıStk#2	2	ı.								0.00	0003766	0.	00037793	0.000416	
76	FB8	3 18"Conveyor to Fir	ıStk#3	3									0.00	0037662	0.	00377929	0.004156	
77	Fir	nish Product Stockpi	ile #1	I	•								0.00	0002385	0.	00002640	0.000050	
78	Fîr	nish Product Stockpi	ile #2	2									0.00	003099	0.	00003430	0.000065	
79	Fir	nish Product Stockpi	ile #3	3	•								0.00	0014072	0.	.00015575	0.000296	
80	Fir	nish Product Stockpi	ile #4	1	•								0.00	0000200	0.	00000221	0.000004	
81	Fir	nish Product Stockpi	ile #5	5	-								0.00	0000054	0.	00000060	0.000001	
82	Fir	nish Product Stockpi	ile #6	6	•								0.00	0000283	0.	00000314	0.000006	
83	Fir	nish Product Stockpi	ile #7	7									0.00	0000059	0.	00000065	0.000001	
84	Fir	nish Product Stockpi	ile #8	3									0.00	0013695	0.	.00015158	0.000289	
85	Fir	nish Product Stockpi	ile #9	9	-									0001032	0.	00001142	0.000022	
86	Fir	nish Prod (Specialty	/) Stk	c#10	-								0.00	0012708	0.	00014064	0.000268	
87	Fir	nish Prod (Specialty	/) Stk	¢#11	•								0.00	8090000	0.	00000673	0.000013	
88	Fir	nish Prod (Specialty	/) Stł	(#12	4								0.00	0002033	0.	00002250	0.000043	
89	Fir	nish Prod (Specialty	/) Stk	(#13	•								0.00	0000482	0.	00000533	0.000010	
90	Fir	nish Prod (Specialty	/) Stk	(#14	•				•				0.00	8800000	0.	00000098	0.000002	

Process Level (SCC) Information

									\-		,									
			MASTE	ĒR																
Obs	s !	MASAINAM		_	ALTFACID	PI	RIPROD		COUNTYN	FIPS	SIC1	PTI	ID	SEGID	SCC			SUBITEMDESC		
			_	_																
91	KY	Solite 0	Corp 4	154 2	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (06A	38	30599999	Finished	Product	Processing;	Secondary	Crushi
92	KY	Solite	Corp 4	154 2	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (06A	39	30599999	Finished	Product	Processing;	Secondary	Crushi
93	3 KY	Solite (Corp 4	154 2 ⁻	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (36A	40	30599999	Finished	Product	Processing;	Secondary	Crushi
94	I KY	Solite	Corp 4	154 2	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (06A	41	30599999	Finished	Product	Processing;	Secondary	Crushi
95	KY	Solite (Corp 4	154 2	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (06A	42				Processing;	-	
96	S KY	Solite	Corp 4	154 2	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU ()6A	43				Processing;	_	
97	' KY	Solite	Corp 4	154 2°	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (06A	44				Processing;		
98	KY	Solite	Corp 4	154 2°	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (36A	45				Processing;	_	
98	€ KY	-Solite (Corp 4	154 2	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (06A	46				Processing;	-	
		Solite (•		102900002									47				Processing;	-	
		Solite (102900002									48				Processing;		
		Solite	•		102900002									49				Processing;	-	
		Solite (•		102900002									50				Processing;	-	
104	i KY	Solite	· ·		102900002									51				Processing;	-	
108	5 KY	Solite	•		102900002									52				Processing;		
		Solite			102900002									53				Processing;	-	
		Solite			102900002									54				Processing;	_	
108	3 KY	Solite	Corp 4	154 2°	102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU (06A	55	30502032	Finished	Product	Processing;	Secondary	Crushi
e la			00001100500										_		DI	10E ETI		DM CON	DUAC DOT	
Obs	•		SCCSUBDESC					S02				NO2	2		Pr	M25_FIL		PM_CON	PM25_PRI	
Q.	Fi	nish Pro	d (Specialty)	Stk#	15										0.00	0000169	0	.00000187	0.000004	
			d (Specialty)				•									0000421		00000466	0.000009	
			d (Specialty)				•				•					0013232		.00014644	0.000279	
			d (Specialty)				•				•					0004555		.00005042	0.000096	
			d (Specialty)								-					0002262		.00002504	0.000048	
			d (Specialty)								-					0000021		.00000024	0.000000	
			d (Specialty)													0000033	0	.00000036	0.000001	
			xfer frm FinPr													0001500		00003968	0.000055	
			xfer frm FinPr								-				0.0	0000750	0	.00001984	0.000027	
			xfer frm FinPr													0001500	0	. 00003968	0.000055	
			xfer frm FinPr													0000450	0	.00001190	0.000016	
			xfer frm FinPr													0000075		.00000198	0.000003	
			xfer frm FinPr													0000300		.00000794	0.000011	
			xfer frm FinPr													0000000	0	.00000000	0.000000	
			xfer frm FinPr													0000315		.00000833	0.000011	
106	3 FE	Loader	xfer frm FinPr	roStk	#9										0.0	0000023	0	.00000060	0.000001	
																		00054003	0 000075	
107	7 FB	9 30" Co	nveyor feeds F	FP2											0.0	00425 9 7	U	.00854901	0.008975	

COUNTYN=Bullitt ALTFACID=2102900002	MASAINAME=KY Solite Corp
(continued)	

									(0)	JIICIII	· · · · ·									
0bs	MASA]	ΓNΙΔΝ		ASTER_	ALTFACID	DE	AIPROD		COUNTYN	ETDC	QT/1	רם	rrn	SEGID	SCC	SUBITEMDE	:90			
003	WACA.	r i atulia	I L	V1_10	ALII AOID	гг	TEROD		COUNTIN	LILD	3101	F	110	SEGID	300	SOBITEMEN	.00			
109	KY Soli	ite	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU	06A	56	30502006	Finished	Product	Processing;	Secondary	Crushi
110	KY Soli	ite	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	ΕU	06A	57	30502032	Finished	Product	Processing;	Secondary	Crushi
111	KY Soli	ite	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU	06A	58	30599999	Finished	Product	Processing;	Secondary	Crushi
112	KY Soli	ite	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU	06A	59	30599999	Finished	Product	Processing;	Secondary	Crushi
113	KY Soli	ite	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU	06A	60	30599999	Finished	Product	Processing;	Secondary	Crushi
114	KY Soli	ite	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	ΕU	06A	61	30599999	Finished	Product	Processing;	Secondary	Crushi
115	KY Soli	Lte	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU	06A	62	30599999	Finished	Product	Processing;	Secondary	Crushi
116	KY Soli	Lte	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU	06A	63	30599999	Finished	Product	Processing;	Secondary	Crushi
117	KY Soli	Lte	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	ΕŲ	06A	64	30599999	Finished	Product	Processing;	Secondary	Crushi
	KY Soli		•	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU	06A	65				Processing;	•	
	KY Soli		•		2102900002									66				Processing;	_	
	KY Soli		•	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU	06A	67				Processing;	-	
	KY Soli		•		2102900002									68				Processing;	_	
	KY Soli		•		2102900002					-								Processing;	-	
	KY Soli		•		2102900002													Processing;	-	
	KY Soli		•		2102900002									71				Processing;	-	
	KY Soli		•		2102900002													Processing;	_	
126	KY Soli	Lte	Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	Eυ	06A	73	30502003	Finished	Product	Processing;	Secondary	Crushi
Obe	SCCSUBI	neer						S02				N/)2		DI	M25_FIL		PM CON	PM25_PRI	
ODG	OCCOOL	JLUL	•					302				INC	<i>)</i> <u> </u>			W23_I IL		1 W_OON	LMED_LIT	
109	FB10 30)"Co	nveyor fee	ds FP3											0.00	0001321	0	.00026509	0.000	
110	FP3 Rai	11 L	oadout frm.	FinPro	Stk										0.00	0000911	0	.00002410	0.000	
111	FM1 Fir	nish	Mixer (Sp	ecialty	()										0.0	1398825	0	.01140171	0.025	
112	FE Load	derx	fer frm Fi	пProStk	(#10										0.0	0005400	0	.00012648	0.000	
113	FE Load	derx	fer frm Fi	nProStk	:#11		-								0.0	0000023	0	.00000053	0.000	
114	FE Load	derx	fer frm Fi	nProStk	#12										0.0	0002250	0	.00005270	0.000	
115	FE Load	derx	fer frm Fi	nProStk	#13										0.0	0002790	0	.00006535	0.000	
116	FE Load	derx	fer frm Fi	nProStk	#14										0.0	0003870	0	.00009064	0.000	
117	FE Load	derx	fer frm Fi	пProStk	#15										0.00	0001575	0	.00003689	0.000	
118	FE Load	ierx	fer frm Fi	nProStk	#16		•				•				0.00	0003195	, 0	.00007483	0.000	
119	FE Load	lerx	fer frm Fi	nProStk	(#17										0.00	0001800	0	.00004216	0.000	
120	FE Load	lerx	fer frm Fi	nProStk	#18										0.0	0001800	0	.00004216	0.000	
121	FE Load	derx	fer frm Fi	nPro S tk	(#19		•								0.0	0000225	0	.00000527	0.000	
122	FE Load	derx	fer frm Fi	πProStk	(#20		•								0.00	0000000	0	.00000000	0.000	
123	FE Load	derx	fer frm Fi	nProStk	(#21		•									0000000		.00000000	0.000	
	•	•	Alt. Fin.				-				•					0000000		.00000000	0.000	
			Alt. Fin.				•									0000000		.00000000	0.000	
126	RC1 Cru	ıshe	er Alt. Fin	. Scena	ırio		•				•				0.0	0000000	0	.00000000	0.000	

11:18 Tuesday, September 27, 2011

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

MASTER_

Process Level (SCC) Information

127 KY Solite Corp 454 2102900002 LIGHT WEIGHT AGG Bullitt 21029 3295 EU 06A 74 30502006 Finished Proc	luct Processing; Secondary Crushi
	luct Processing; Secondary Crushi
	luct Processing; Secondary Crushi
·	luct Processing; Secondary Crushi
	luct Processing; Secondary Crushi
132 KY Solite Corp 454 2102900002 LIGHT WEIGHT AGG Bullitt 21029 3295 EU 06A 79 30502032 Finished Proc	luct Processing; Secondary Crushi
133 KY Solite Corp 454 2102900002 LIGHT WEIGHT AGG Bullitt 21029 3295 EU 06B 1 30502003 Finished Prod	luct Processing; Secondary Crushi
134 KY Solite Corp 454 2102900002 LIGHT WEIGHT AGG Bullitt 21029 3295 EU 06B 2 30502003 Finished Prod	luct Processing; Secondary Crushi
135 KY Solite Corp 454 2102900002 LIGHT WEIGHT AGG Bullitt 21029 3295 EU 06B 3 30502003 Finished Proc	luct Processing; Secondary Crushi
136 KY Solite Corp 454 2102900002 LIGHT WEIGHT AGG Bullitt 21029 3295 EU 06B 4 30502003 Finished Proc	luct Processing; Secondary Crushi
137 KY Solite Corp 454 2102900002 LIGHT WEIGHT AGG Bullitt 21029 3295 EU 06B 5 30502003 Finished Proc	luct Processing; Secondary Crushi
	luct Processing; Secondary Crushi
	luct Processing; Secondary Crushi
·	luct Processing; Secondary Crushi
	luct Processing; Secondary Crushi
	luct Processing; Secondary Crushi
	luct Processing; Secondary Crushi
144 KY Solite Corp 454 2102900002 LIGHT WEIGHT AGG Bullitt 21029 3295 EU 06B 12 30502006 Finished Proc	luct Processing; Secondary Crushi
Obs SCCSUBDESC S02 NO2 PM25_FIL	PM_CON PM25_PRI
127 RB1 30" Convey Alt.Fin.Scenari . 0.00000000	0.00000000 0.000
128 RB2 24" Convey Alt.Fin.Scenari . 0.00000000	0.00000000 0.000
129 RB3 24" Convey Alt.Fin.Scenari . 0.00000000	0.00000000 0.000
130 RB4 24" Convey Alt.Fin.Scenari . 0.00000000	0.00000000 0.000
131 RS3 Store Bin Atl.Fin.Scenario 0.00000000	0.00000000 0.000
132 RD1 Truck LO from Alt.Fin.Scen . 0.00000000	0.00000000 0.000
133 FS2, Hopper, feeds FC3 . 0.00000000	0.00000000 0.000
134 FC3, Crusher, feeds FB2 0.00000000	0.00000000 0.000
135 MC1 Mobile Crusher to Loader X . 0.00085050	0.00200000 0.003
136 MS1 Mobile Hopper, to FB3/FB4 . 0.00004500	0.00008730 0.000
137 FU1 Screen feeds FC1 & MB1 . 0.00290544	0.05349706 0.056
138 MB1 Mobile Convey, to FinStk#9 0.00003090	0.00031005 0.000
139 FU2 Screen feeds FC2 & FBs5-8 0.00216638	0.03988881 0.042
	0.03988881 0.042
140 FU3 Screen feeds FC2 & FBs5-8 0.00216638	
141 MB2 Mobile Undercar Conveyor 0.00000000	0.0000000 0.000
141 MB2 Mobile Undercar Conveyor.0.00000000142 MB3 Mobile Convey, FinProStk#8.0.00005394	0.00054127 0.001
141 MB2 Mobile Undercar Conveyor	

2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

COUNTYN=Bullitt ALTFACID=2102900002 MASAINAME=KY Solite Corp	
(continued)	

		MASTER_										
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS S	SIC1 PTID	SEGID	SCC	SUBITEMDESC	•	
	KY Solite Corp			LIGHT WEIGHT					30502006	Finished Produ	ct Processing	; Secondary Crushi
146	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 06	B 14	30502006	Finished Produ	ct Processing	; Secondary Crushi
147	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 06	B 15	30502006	Finished Produ	ct Processing	; Secondary Crushi
148	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 07	1	30501613	Lime Storage S	ilo (PS2) and	Lime unloading
149	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 07	2	30501608	Lime Storage S	ilo (P\$2) and	Lime unloading
150	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 08	1	30599999	Haul Roads, Po	nds Cleaning,	and Yard Area
151	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 08	2	30599999	Haul Roads, Po	nds Cleaning,	and Yard Area
152	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 08	3	30599999	Haul Roads, Po	nds Cleaning,	and Yard Area
153	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	1	30501008	Coal Handling	and Storage	
154	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	2	30501009	Coal Handling	and Storage	
155	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	3	30501009	Coal Handling	and Storage	
156	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	4	30501008	Coal Handling	and Storage	
157	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	5	30501008	Coal Handling	and Storage	
158	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	6	30501011	Coal Handling	and Storage	•
159	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	7	30501017	Coal Handling	and Storage	
160	KY Solite Corp			LIGHT WEIGHT					30501011	Coal Handling	and Storage	
161	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	9	30501011	Coal Handling	and Storage	
162	KY Solite Corp	454	2102900002	LIGHT WEIGHT	AGG Bullitt	21029	3295 EU 09	10	30501011	Coal Handling	and Storage	
0bs	SCCSUBDESC				S02		N02		PI	M25_FIL	PM_CON	PM25_PRI
											_	_
145	MB6 Mobile Stacking	g Conveyo	or						0.0	0000000	0.00000000	0.000
146	MB7 Mobile Stacking	g Conveyo	or						0.0	000000	0.00000000	0.000
147	MS2 Mobile Hopper								0.0	0000435	0.00004365	0.000
148	LIME STORAGE SILO-	(PS2)							0.0	0000084	0.00000084	0.000
149	LIME TRUCK LOADOUT								0.0	0002928	0.00584273	0.006
150	5 MILES of HAUL ROA	AD .							104.8	0860000	29.45814448	134.267
151	Slurry Pond #1 Truc	ck Loadou	ıt						0.0	0180000	0.00421599	0.006
152	Slurry Pond #2 Truc	ck Loadou	ıt	•					0.0	0036000	0.00084320	0.001
153	(-)Coal Truck Loads	out Unloa	ad						0.0	0001215	0.00003384	0.000
154	(CS6) Coal Stockpil	le #1							0.0	0000164	0.00000439	0.000
155	(CS6) Coal Stockpil	le #2							0.0	0000027	0.00000073	0.000
	(-)Frontend Loader		(#1							0000083	0.00000230	0.000
	(-)Frontend Loader			•			•			0000019	0.00000052	0.000
	(CS1)Dump Hopper, f				•					0004050	0.00022979	0.000
	(MC1) Mobile Crushe			•						0000000	0.00000000	0.000
	(CB1) 24" Conveyor,			· -	-					0003313	0.00018799	0.000
	(CS2) 400T Coal Bir	•	CB2	• -						0004418	0.00025066	0.000
	(CB2) 24" Conveyor,	•	- :- m	•						0003313	0.00018799	0.000
	, =, =:	,		•			•					~-~~

Process Level (SCC) Information

		M	MASTER_															
0bs	MASAINA	AME	AI_ID	ALTFACID	PF	RIPROD		COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBI.	TEMDESC			
163	KY Solite	e Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU 09	11	30501011	Coal	Handling	and	Storage	9
	KY Solite	•		2102900002								12			Handling		•	
	KY Solite	•		2102900002								13			Handling		-	
	KY Solite	•		2102900002								14			Handling		_	
	KY Solite	•		2102900002								15			Handling		_	
	KY Solite	•		2102900002								16			Handling		-	
	KY Solite	•		2102900002								17			Handling		_	
	KY Solite	•		2102900002								18			Handling		_	
	KY Solite	•		2102900002								19			Handling			
	KY Solite	•		2102900002								20			Handling		_	
	KY Solite			2102900002								21	30501011	Coal	Handling	and	Storage	e
	KY Solite	•		2102900002								22	30501011	Coal	Handling	and	Storage	e
	KY Solite	•		2102900002								23	30501011	Coal	Handling	and	Storage	Э
176	KY Solite	e Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU 09	24	30501011	Coal	Handling	and	Storage	€
177	KY Solite	e Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU 09	25	30501011	Coal	Handling	and	Storage	9
178	KY Solite	e Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU 09	26	30501011	Coal	Handling	and	Storage	9
179	KY Solite	e Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU 09	27	30501011	Coal	Handling	and	Storage	9
180	KY Solite	e Corp	454	2102900002	LIGHT	WEIGHT	AGG	Bullitt	21029	3295	EU 09	28	30501011	Coal	Handling	and	Storage	9
0bs	SCCSUBDES	sc					S02				NO2		P	M25_F:	IL		PM_CO	N PM25_PRI
				202			S02				NO2			_		0.4		
163	(C\$5)Dire	ect Feed Hop	. ,			•	S02				NO2		0.0	00000	00		0000000	0.000
163 164	(CS5)Dire (CB3) 24°	ect Feed Hop " Conveyor,	feeds (CS3			S02				NO2		0.0	00000	00 13	0.6	0000000 0001879	0.000
163 164 165	(CS5)Dire (CB3) 24° (CS3)Mill	ect Feed Hop " Conveyor, 1#1 Feed Bir	feeds (n,feeds	CB4			S02				NO2		0.0 0.0 0.0	000000 00033 00044	00 13 18	0.0	00000000 00018799 0002506	0.000 0.000 0.000
163 164 165 166	(CS5)Dire (CB3) 24° (CS3)Mill (CB4) 18"	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t	feeds (n,feeds to Mill#	CS3 CB4 #1			S02				NO2		0.0 0.0 0.0	000006 00033 00044 00033	00 13 18 13	0.0	00000000 00018799 0002506	0.000 9 0.000 6 0.000 9 0.000
163 164 165 166 167	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t	feeds (n,feeds to Mill# to Kiln	CS3 CB4 #1 3			S02				NO2		0.0 0.0 0.0 0.0	000000 00033 00044 00033	00 13 18 13	0.0 0.0 0.0	00000000 00018799 0002506 00018799	0.000 9 0.000 6 0.000 9 0.000 9 0.002
163 164 165 166 167 168	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24"	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor,	feeds (n,feeds to Mill# to Kiln feeds (CS3 CB4 #1 3 CS4			S02				NO2		0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000	00 13 18 13 09	0.0 0.0 0.0	0000000 0001879 0002506 0001879 0016163	0.000 9 0.000 6 0.000 9 0.000 9 0.002 0 0.000
163 164 165 166 167 168 169	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir	feeds (n,feeds to Mill# to Kiln feeds (n,feeds	CS3 CB4 #1 3 CS4 CB6			S02				NO2		0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000	00 13 18 13 09 00	0.0 0.0 0.0 0.0	0000000 0001879 0002506 0001879 0016163 0000000	0.000 9 0.000 6 0.000 9 0.000 9 0.002 0 0.000
163 164 165 166 167 168 169 170	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18"	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill#	CS3 CB4 #1 3 CS4 CB6			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000 00000	00 13 18 13 09 00	0.0 0.0 0.0 0.0	0000000 0001879 0002506 0001879 0016163 0000000 0000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln	CS3 CB4 #1 3 CS4 CB6			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000 00000	00 13 18 13 09 00 00	0.0 0.0 0.0 0.0 0.0	00000000 0001879 0002506 0001879 0016163 0000000 0000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170 171	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa (CB7) Bel	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t It Conveyor	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln	CS3 CB4 #1 3 CS4 CB6			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 000000 000000 000000 000000	00 13 18 13 09 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000000 0001879 0002506 0001879 0016163 0000000 0000000 00000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170 171 172	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa (CB7) Bel	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t lt Conveyor	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln	CS3 CB4 #1 3 CS4 CB6			SO2				NO2		0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 000000 000000 000000 000000	00 13 18 13 09 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0	00000000 0001879 0002506 0001879 0016163 0000000 0000000 00000000 0000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170 171 172 173	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa (CB7) Bel MS1 Mobil	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t lt Conveyor le Hopper	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln	CS3 CB4 #1 3 CS4 CB6 #2			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000 00000 00000 00000	00 13 18 13 09 00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000000 0001879 0002506 0001879 0000000 0000000 0000000 00000000 000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170 171 172 173 174	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa (CB7) Bel MS1 Mobil MS2 Mobil	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t lt Conveyor le Hopper le Stacking	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln	CS3 CB4 #1 3 CS4 CB6 #2 2			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000 00000 00000 00000 00000	00 13 18 13 09 00 00 00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0000000 0001879 0002506 0001879 0016163 0000000 0000000 0000000 0000000 000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170 171 172 173 174 175	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa (CB7) Bel MS1 Mobil MB2 Mobil MB2 Mobil MB2 Mobil	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t lt Conveyor le Hopper le Stacking	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln Conveyo	CS3 CB4 #1 3 CS4 CB6 #2 2			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000 00000 00000 00000 00000	00 13 18 13 09 00 00 00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000000 0001879 0002506 0001879 0016163 0000000 0000000 0000000 0000000 000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170 171 172 173 174 175 176	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa (CB7) Bel MS1 Mobil MB2 Mobil MB2 Mobil MB3 Mobil	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t lt Conveyor le Hopper le Hopper le Stacking le Stacking	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln Conveyo Conveyo	CS3 CB4 #1 3 CS4 CB6 #2 2			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000 00000 00000 00000 00000 0000	00 13 18 13 09 00 00 00 00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000000 0001879 0002506 0001879 0016163 0000000 0000000 0000000 0000000 000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa (CB7) Bel MS1 Mobil MB2 Mobil MB2 Mobil MB3 Mobil MB4 Mobil	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t lt Conveyor le Hopper le Hopper le Stacking le Stacking	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln Conveyo Conveyo Conveyo Conveyo	CS3 CB4 #1 3 CS4 CB6 #2 2			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000 00000 00000 00000 00000 0000	00 13 18 13 09 00 00 00 00 00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000000 0001879 0002506 0001879 0016163 0000000 0000000 0000000 0000000 000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	(CS5)Dire (CB3) 24" (CS3)Mill (CB4) 18" (CP1) Coa (CB5) 24" (CS4)Mill (CB6) 18" (CP2) Coa (CB7) Bel MS1 Mobil MB2 Mobil MB2 Mobil MB3 Mobil MB4 Mobil MB5 Mobil	ect Feed Hop " Conveyor, 1#1 Feed Bir " Conveyor t al Mill #1 t " Conveyor, 1#2 Feed Bir " Conveyor t al Mill #2 t lt Conveyor le Hopper le Hopper le Stacking le Stacking	feeds (n,feeds to Mill# to Kiln feeds (n,feeds to Mill# to Kiln Conveyo Conveyo Conveyo Conveyo Conveyo	CS3 CB4 #1 3 CS4 CB6 #2 2			S02				NO2		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000 00033 00044 00033 00000 00000 00000 00000 00000 00000 0000	00 13 18 13 09 00 00 00 00 00 00 00 00 00	30.00 30 30 30 30 30 30 30 30 30 30 30 30 3	00000000 0001879 0002506 0001879 0016163 0000000 0000000 0000000 0000000 000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bullitt County

							(cor		,							
		STER_														
0bs	MASAINAME A	'I_ID	ALTFACID	PI	RIPROD	C	COUNTYN F	FIPS	SIC1	PTID 8	EGID	SCC	SUBIT	EMDESC		
181	KY Solite Corp	454	2102900002	LIGHT	WEIGHT	AGG E	Bullitt 2	21029	3295 E	Ų 09	29	3050101	1 Coal	Handling	and Storage	
182	KY Solite Corp	454	2102900002	LIGHT	WEIGHT	AGG E	Bullitt 2	21029	3295 E	U 11	1	3050200	6 LAKD	Dust Silo	(PS1) (Loadi	ng)
183	KY Solite Corp	454	2102900002	LIGHT	WEIGHT	AGG E	Bullitt 2	21029	3295 E	U 12	1	3050200	6 LAKD	Filter Re	eceiver Unit (FP1)
INAME FACID																
0bs	SCCSUBDESC					S02				N02			PM25_FI	L	PM_CON	PM25_PRI
101	MP7 Mobile Stacking Co	ND LIONA	- n									0		.0	0.0000000	0.000
	MB7 Mobile Stacking Co LAKD DUST SILO (PS1) 1	_	71		•				•				0000000		0.00000000	0.000
	LAKD FILTER RECEIVER (Rin		•				•				0000000		0.00000000	0.000
	LAND FILTEN NEOLIVEN (,,,	7		' 											0.000
INAME				30	04.37299	9688		172	.40839	000		104.	9428497	0	32.55492099	137.498
FACID				36	04.37299	9688		172	. 40839	000		104.	9428497	0	32.55492099	137.498
			· COUNTYN=BI	ullitt	ALTFAC]	D=210	2900003	MASAI	NAME=0	uality	Stone	& Read	y Mix I	nc		
			•													
0bs	MASAINAME		Ma	ASTER_ AI_ID	ALTF#	CID	PRIPRO	D CO	NYTNU	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC	
0bs		· Mix		_	ALTF#		PRIPROD CONCRET			FIPS 21029	SIC1 3273		SEGID	SCC 30501199		l Road
	Quality Stone & Ready Quality Stone & Ready	/ Mix	Inc Inc	AI_ID	210290	00003	CONCRET	TE Bu		21029		(-)			Unpaved Hau	l Road
184	Quality Stone & Ready	/ Mix	Inc Inc	AI_ID 471	210290 210290	00003	CONCRET	TE Bu TE Bu	11itt	21029 21029	3273	(-) 07	14	30501199	Unpaved Hau Cement Silo	
184 185	Quality Stone & Ready Quality Stone & Ready	/ Mix / Mix	Inc Inc Inc	AI_ID 471 471	210290 210290 210290	00003 00003	CONCRET	TE Bu TE Bu TE Bu	llitt llitt llitt	21029 21029	3273 3273	(-) 07 08	14 7	30501199 30501107 30501107	Unpaved Hau Cement Silo Fly Ash Sil	
184 185 186 187	Quality Stone & Ready Quality Stone & Ready Quality Stone & Ready	/ Mix / Mix	Inc Inc Inc	AI_ID 471 471 471	210290 210290 210290	00003 00003	CONCRET	TE Bu TE Bu TE Bu	llitt llitt llitt	21029 21029 21029	3273 3273 3273	(-) 07 08	14 7 8	30501199 30501107 30501107 30501108	Unpaved Hau Cement Silo Fly Ash Sil	0
184 185 186 187	Quality Stone & Ready Quality Stone & Ready Quality Stone & Ready Quality Stone & Ready	/ Mix / Mix / Mix	Inc Inc Inc Inc	AI_ID 471 471 471	210290 210290 210290	00003 00003 00003	CONCRET	TE Bu TE Bu TE Bu	llitt llitt llitt	21029 21029 21029 21029	3273 3273 3273	(-) 07 08 09	14 7 8 9	30501199 30501107 30501107 30501108	Unpaved Hau Cement Silo Fly Ash Silo Cement/Fly	o Ash Weight Hopp
184 185 186 187	Quality Stone & Ready Quality Stone & Ready Quality Stone & Ready Quality Stone & Ready SCCSUBDESC	/ Mix / Mix / Mix	Inc Inc Inc Inc	AI_ID 471 471 471	210290 210290 210290	00003 00003 00003	CONCRET	TE Bu TE Bu TE Bu	llitt llitt llitt	21029 21029 21029 21029	3273 3273 3273	(-) 07 08 09	14 7 8 9 PM25_F	30501199 30501107 30501107 30501108	Unpaved Hau Cement Silo Fly Ash Silo Cement/Fly	o Ash Weight Hopp PM25_PRI
184 185 186 187 Obs	Quality Stone & Ready Quality Stone & Ready Quality Stone & Ready Quality Stone & Ready SCCSUBDESC	/ Mix / Mix / Mix	Inc Inc Inc Inc	AI_ID 471 471 471	210290 210290 210290	00003 00003 00003	CONCRET	TE Bu TE Bu TE Bu	llitt llitt llitt	21029 21029 21029 21029	3273 3273 3273	(-) 07 08 09	14 7 8 9 PM25_F	30501199 30501107 30501107 30501108 TL	Unpaved Hau Cement Silo Fly Ash Silo Cement/Fly PM_CON	o Ash Weight Hopp PM25_PRI O

	COL	JNTYN≃Bullitt	ALTFACID=210	2900003 MASA (continu		lity Sto	ne & Re	ady Mix	Inc			
Obs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEM	DESC
188	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	10	10	30501108		te Weight Hopper
189	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	11	11	30501111		oadout (Dry)
190	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	12	12	30501106		te Handling
191	Quality Stone & Ready Mix Inc	471	2102900003	CONCRETE	Bullitt	21029	3273	13	13	30501106	5 Stockpi	les
MASAINAME ALTFACID												
O bs	SCCSUBDESC		S02	1	102		PM25_F	IL		PM_CQN	PM25_PRI	
188	Aggregate Weight Hopper	•				0	.000000	00	0.00	0000000	0	
189	Truck Loadout (Dry)					0	.000000	00	0.00	0000000	0	
190	Aggregate Handling					. 0	.000000	00	0.00	0000000	0	
191	Stockpiles	•		•		0	.000000	00	0.00	0000000	0	
MASAINAME		0.00000		0.000000	200	٠	.000000	- <i>-</i> -	0.00	0000000	0	
ALTFACID		0.00000		0.000000			.000000			0000000	o	
		MASTER_	tt ALTFACID=2									
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNT	YN FI	PS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
192	Four Roses Distillery Inc	451	2102900004	SPIRIT STO	a Bulli	tt 21	029	2085	002	1	30201003	WHISKEY AGEING
0bs	SCCSUBDESC	\$02		N02		PM25_FI	L		PM_CON	PM25_PR	I	
192	WHISKEY AGEING .											

Process Level (SCC) Information

					0	=					
		MASTER_									
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
193	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21020	2085	001	1	30200505	GRAIN HANDLING
194	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY		21029	2085	001	2	30200508	GRAIN HANDLING
195	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	001	3	30200699	GRAIN HANDLING
196	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	002	1	30200099	FERMENTATION
197	Jim Beam Brands Co - Clermont Plant	450				21029	2085	003	1	30201014	SPENT GRAIN DRYING
198	Jim Beam Brands Co - Clermont Plant		2102900005	BRANDY	Bullitt					39000689	
199	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	003 003	2	39001099	SPENT GRAIN DRYING SPENT GRAIN DRYING
200	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085		3		
		450	2102900005	BRANDY	Bullitt	21029	2085	004	1	30201001	DRIED GRAIN STORAGE
201	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	005	1	30201003	Barrel Filling/Aging/Dumping
202	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	006	1	39999996	BOTTLING OPERATION
203	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	007	1	10200602	95.2 MMBTU/HR GAS BOILER
204	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	007	2	10200501	95.2 MMBTU/HR GAS BOILER
205	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	007	3	10200401	95.2 MMBTU/HR GAS BOILER
206	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	800	1	10200204	99 MMBTU/HR COAL BOILER
207	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	800	2	10200602	99 MMBTU/HR COAL BOILER
208	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt		2085	009	1	10200602	25.1 MMBTU/HR GAS BOILER
209	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	009	2	10200501	25.1 MMBTU/HR GAS BOILER
210	Jim Beam Brands Co - Clermont Plant	450	2102900005	BRANDY	Bullitt	21029	2085	010	1	39999996	PROCESS WASTE WATER
0bs	SCCSUBDESC		.00		NOO			WOE ET		DU	CON PHOS PRIT
ons	3003000230	ં	02		NO2		r	M25_FI	.L	rw_	CON PM25_PRI
193	GRAIN UNLOADING						3.4	161210	10	1.78506	5162 5.2012
194	GRAIN ELEVATOR/CONVEYOR						0.2	750500	10	3.57012	324 3.8452
195	ROADS GRAIN TRANSPORTED						0.1	760320	10	1.64225	669 1.8183
196	FERMENTATION-BUSHELS INPUT										•
197	SPENT GRAIN DRYING							713551	3	2.30173	
198	SPENT GRAIN DRYER-NG USE	0.000000	00	0.000	00000						•
199	SPENT GRAIN DRYING-LPG USE	0.000000	00		00000						•
200	TOTAL DRIED GRAINS STORAGED			_				000129	12	0.23017	
201	BARREL FILLING AGING DUMP								_		,
202	PROCESSING BOTTLING OPER						_				
203	NATURAL GAS USAGE	0.006411	60	1.496	04000		0.0	320580	Ю	0.05129	280 0.0834
204	#2 FUEL OIL USAGE	0.000000		0.000				000000		0.00000	
205	#6 FUEL OIL	0.000000		0.000				000000		0.00000	
206	COAL FIRED HEAT EXCHANGER	198.847740		90.356				539812		6.10196	
207	NATURAL GAS USAGE	0.000051		0.011				000005		0.00040	
208	NATURAL GAS USAGE	0.000031			62000 62000			105990		0.01695	
209	#2 FUEL OIL USAGE	0.002119			00000			000000		0.00000	
210	PROCESS WASTE WATER TREAT	0.000000	00	0.000	22000			500000		0.00000	
210	THOUSEN MADE MATER TREAT									•	• · · · ·

Bullitt County

	COUNTYN=E	Bullitt ALTFACID=2102900	005 MASAINAME=Jim Beam (continued)	Brands Co - Clermo	ont Plant	
Obs	MASAINAME	MASTER_ AI_ID ALTFACI	D PRIPROD COUNTYN F	TIPS SIC1 PTID	SEGID SCC SU	JBITEMDESC
MASAINAME ALTFACID						
Obs SCCSUE	BDESC	S02	NO2	PM25_FIL	_ РМ_СОГ	N PM25_PRI
MASAINAME ALTFACID		198.85632240 198.85632240	92,35856000 92,35856000	4.33520982 4.33520982		
	COUNTYN=BI	allitt ALTFACID=21029000	D9 MASAINAME=Quality S ⁻¹	one & Ready Mix Ir	nc-Quarry	
0bs	MASAINAME	MASTER_ AI_ID ALTFACID	PRIPROD COUNTYN FIPS	SIC1 PTID SEGIO	O SCC SUBITEMD	ESC
212 Quality 213 Quality 214 Quality 215 Quality 216 Quality	Stone & Ready Mix Inc-Quarry Stone & Ready Mix Inc-Quarry	44272 2102900009 44272 2102900009 44272 2102900009 44272 2102900009 44272 2102900009	LIMESTONE Bullitt 21029	9 1422 001 02 1 9 1422 001 03 1 9 1422 002 01 1 9 1422 002 02 1 9 1422 002 03 1	30502006 (7) Convo 30502002 (20) Sect 30502099 (1) Rece: 30502001 (2) Crusl 30502006 (3) Convo	
Obs SCCSUBDE	sc so2	NO2	PM25_F	EL PM_C	CON PM25_PRI	
211 Crusher 212 Conveyor 213 Sec Crus 214 Receivir 215 Crusher 216 Conveyor	sher . ng .	• • • • • • • • • • •	0.000136 0.000955 0.000478 0.004433 0.002280 0.005412	11 0.014074 32 0.018094 52 0.011724 10 0.040213	0.01503 600 0.01857 389 0.01616 333 0.04249	

Process Level (SCC) Information

Obs MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SICI	PTID	SEGID	scc	
218 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	002 05	1	3050200	6
219 Quality Stone & Ready Mix Inc-Quarry		2102900009	LIMESTONE	Bullitt	21029	1422	002 06	1	3050200	6
220 Quality Stone & Ready Mix Inc-Quarry		2102900009	LIMESTONE	Bullitt	21029	1422	002 07	1	3050201	
221 Quality Stone & Ready Mix Inc-Quarry		2102900009	LIMESTONE	Bullitt	21029	1422	002 08	1	3050201	5
222 Quality Stone & Ready Mix Inc-Quarry		2102900009	LIMESTONE	Bullitt	21029	1422	002 22	1	30502000	6
223 Quality Stone & Ready Mix Inc-Quarry		2102900009	LIMESTONE	Bullitt	21029	1422	002 23	1	3050201	5
224 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	002 24	1	3050200	6
225 Quality Stone & Ready Mix Inc-Quarry		2102900009	LIMESTONE	Bullitt	21029	1422	003 01	1	30502000	6
226 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 02	1	30502099	9
227 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 03	1	3050200	7
228 Quality Stone & Ready Mix Inc-Quarry		2102900009	LIMESTONE	Bullitt	21029	1422	003 04	1	3050200	7
229 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 05	1	3050200	7
230 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 06	1	3050200	7
231 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 07	1	3050200	7
232 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 08	1	3050200	7
233 Quality Stone & Ready Mix Inc-Quarry	44272	2102900009	LIMESTONE	Bullitt	21029	1422	003 09	1	3050200	7
234 Quality Stone & Ready Mix Inc-Quarry		2102900009	LIMESTONE	Bullitt	21029	1422	003 10	1	3050200	7
235 Quality Stone & Ready Mix Inc-Quarry	and the second s	2102900009	LIMESTONE	Bullitt	21029	1422	004 01	1	30502099	9
Obs SUBITEMDESC	SCCSUBDESC		\$02		NO2		PM25_FIL		PM_CON	PM25_PRI
218 (5) Conveyor and Transfer Points	Conveyor						0.00324736		0.01407467	0.0173
219 (14) Conveyor and Transfer Points	Conveyor	•		•			0.00243552		0.01055600	0.0130
220 (15) Screen (3-deck, 6'x20', fines)	Screen	•		•			0.06412770		0.26767000	0.3318
221 (16) Screen (3-deck, 6' x 20, fines)		•		•			0.06412770		0.26767000	0.3318
222 (22) Conveyor and Transfer Points	Conveyor						0.03085730		0.15080000	0.1817
223 (23) Screen (3-deck, 6'x20', fines)	Screen						0.17100720		0.71378667	0.8848
224 (24) Conveyor and Transfer Points	Conveyor						0.02314297	24	0.11310000	0.1362
225 (17) Conveyor and Transfer Points	Conveyor						0.00243552		0.01055600	0.0130
226 (-) Truck Loadout	Truck Loadout						0.22800960		0.00100533	0.2290
227 (-) Stockpile	Stockpile						0.01327040		0.09574603	0.1090
228 (-) Stockpile	Stockpile						0.01327040		0.09574603	0.1090
229 (-) Stockpile	Stockpile						0.01327040		0.09574603	0.1090
230 (-) Stockpile	Stockpile						0.01327040		0.09574603	0.1090
231 (-) Stockpile	Stockpile			•			0.01327040		0.09574603	0.1090
232 (-) Stockpile	Stockpile						0.01327040		0.09574603	0.1090
233 (-) Stockpile	Stockpile						0.01327040		0.09574603	0.1090
234 (21) Surge Bin	Surge Bin						0.06270264		0.00075400	0.0635
235 (-) Haul Road and Yard Area (paved)	Haul Road	,					0.13173888		0.20240711	0.3341
,										

Bullitt County

		COOMIAN=RUTT	ICC ACTI ACTS-210	(conti	nued)								
Obs	MASAINAME		MASTER_ AI_ID	ALTFACID	PRIPROD (COUNTYN	FIPS	SIC1	PTID	g	SEGID	SCC	
			_										•
236	G Quality Stone & Ready Mix	Inc-Quarry	44272	2102900009	LIMESTONE E	Bullitt	21029	1422	004 0:	2	1	3050209	9
MASAINAME ALTFACIO													
Obs	SUBITEMDESC		SCCSUBDESC		S02		NO2		PM25_	FIL		PM_CON	PM25_PRI
236	6 (-) Haul Road and Yard Are	ea (unpaved)	Haul Road					6	3.91629	120	2.	19564800	9.1119
MASAINAME				0.00	000000	0.0000000			3.07272	422	5.6	00128200	13.0740
ALTFACIO				0.00	000000	0.0000	0000	8	3.07272	422	5.0	00128200	13.0740
	COUNTYN=Bul	llitt ALTFACI	D=2102900010 MAS	SAINAME=Mago Co	onstruction Co	_LC - Shepl	nerdsville	• Asphal	lt Faci	lity -			
Obs		Llitt ALTFACI ASAINAME	D=2102900010 MAS	MAST		LC - Shepl			lt Faci SIC1			SCC	
237	MA 7 Mago Construction Co LLC -	ASAINAME - Shepherdsvi	lle Asphalt Fac:	MASI Al	ER_	PRIPROD	COUNTYN Bullitt	FIPS 21029	SIC1 2951	PTID	SEGID	SCC 3050020	5
237 238	MA Mago Construction Co LLC - Mago Construction Co LLC -	ASAINAME - Shepherdsvi - Shepherdsvi	lle Asphalt Fac lle Asphalt Fac	MASI Al ility ility	TER_ :_ID ALTFACID 463 2102900010 463 2102900010	PRIPROD ASPHALT ASPHALT	COUNTYN Bullitt Bullitt	FIPS 21029 21029	SIC1 2951 2951	PTID 001 002	SEGID	SCC 3050020 3050020	5 4
237 238 239	MA Mago Construction Co LLC -	ASAINAME - Shepherdsvi - Shepherdsvi - Shepherdsvi	lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac:	MAST Al ility ility ility	TER_ :_ID ALTFACID 463 2102900010 463 2102900010 463 2102900010	PRIPROD ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt	FIPS 21029 21029 21029	SIC1 2951 2951 2951	PTID 001 002 002	SEGID 1 1 2	SCC 3050020 3050020 3050020	5 4 3
237 238 239 240	MAGO Construction Co LLC - Mago Construction Co LLC - Mago Construction Co LLC - Mago Construction Co LLC - Mago Construction Co LLC -	ASAINAME - Shepherdsvi - Shepherdsvi - Shepherdsvi - Shepherdsvi	lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac:	MAST Al ility ility ility ility	ER_ ALTFACID 463 2102900010 463 2102900010 463 2102900010 463 2102900010	PRIPROD ASPHALT ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt Bullitt	FIPS 21029 21029 21029 21029	SIC1 2951 2951 2951 2951	PTID 001 002 002 003	SEGID 1 1 2 1	SCC 3050020 3050020 3050020 3050029	5 4 3 9
237 238 239 240 241	MA Mago Construction Co LLC -	ASAINAME Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi	lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac:	MAST Al ility ility ility ility ility	TER_ :_ID ALTFACID 463 2102900010 463 2102900010 463 2102900010	PRIPROD ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt	FIPS 21029 21029 21029 21029 21029	SIC1 2951 2951 2951 2951 2951	PTID 001 002 002	SEGID 1 1 2	SCC 3050020 3050020 3050020	5 4 3 9
237 238 239 240 241 242	MAGO Construction Co LLC -	ASAINAME - Shepherdsvi - Shepherdsvi - Shepherdsvi - Shepherdsvi - Shepherdsvi	lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac:	MAST Al ility ility ility ility ility	TER_ 2102900010 463 2102900010 463 2102900010 463 2102900010 463 2102900010	PRIPROD ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt	FIPS 21029 21029 21029 21029 21029	SIC1 2951 2951 2951 2951 2951	PTID 001 002 002 003 003 004	SEGID 1 1 2 1 2	SCC 3050020 3050020 3050020 3050029 3050020	5 4 3 9
237 238 239 240 241 242 Obs	MAGO Construction Co LLC -	ASAINAME - Shepherdsvi - Shepherdsvi - Shepherdsvi - Shepherdsvi - Shepherdsvi	lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac:	MASI All ility ility ility ility ility ility ility	TER_	PRIPROD ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt NO2	FIPS 21029 21029 21029 21029 21029	SIC1 2951 2951 2951 2951 2951 2951	PTID 001 002 002 003 003 004	SEGID 1 1 2 1 2 1	SCC 3050020 3050020 3050020 3050029 3050020	5 4 3 9 9
237 238 239 240 241 242 0bs	Mago Construction Co LLC - Substitution Co LLC - Substitution Co LLC - Mago Construction Co LLC - Substitution Co LLC - Mago Construction Co LLC - Mago Cons	ASAINAME Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi	lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac:	MASI All ility ility ility ility ility ility ility	TER_ 2.ID ALTFACID 463 2102900010 463 2102900010 463 2102900010 463 2102900010 463 2102900010 502	PRIPROD ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt NO2	FIPS 21029 21029 21029 21029 21029	SIC1 2951 2951 2951 2951 2951 2951	PTID 001 002 002 003 003 004 FIL	SEGID 1 1 2 1 2 1	SCC 3050020 3050020 3050029 3050029 3050020	5 4 3 9 9 4 PM25_PRI
237 238 239 240 241 242 Obs	Mago Construction Co LLC - Substruction Co LLC - Mago Construction Co LLC -	ASAINAME Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi	lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: UBDESC RY DRYER	MASI All ility ility ility ility ility ility ility	TER_ 2.ID ALTFACID 463 2102900010 463 2102900010 463 2102900010 463 2102900010 463 2102900010 502	PRIPROD ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt NO2	FIPS 21029 21029 21029 21029 21029	SIC1 2951 2951 2951 2951 2951 2951 PM25_ 0.03447 0.04823 0.14469	PTID 001 002 002 003 004 FIL 233 060 180	SEGID 1 1 2 1 2 1 0.0	SCC 3050020 3050020 3050029 3050020 PM_CON 01320565 31729353 95188060	5 4 3 9 9 4 PM25_PRI 2.04768 0.36552 1.09657
237 238 240 241 242 Obs 237 238 239 240	Mago Construction Co LLC - Mago Construction Co	ASAINAME Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi FUGITIVE FUGITIVE	lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: lle Asphalt Fac: UBDESC RY DRYER	MASI All ility ility ility ility ility ility ility	TER_ 2.ID ALTFACID 463 2102900010 463 2102900010 463 2102900010 463 2102900010 463 2102900010 502	PRIPROD ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt NO2	FIPS 21029 21029 21029 21029 21029	SIC1 2951 2951 2951 2951 2951 2951 PM25_ 0.03447 0.04823 0.14469	PTID 001 002 003 003 004 FIL 233 060 180 000	SEGID 1 1 2 1 2 1 0.0	SCC 3050020 3050020 3050029 3050020 PM_CON 01320565 31729353 95188060 00000000	5 4 3 9 9 4 PM25_PRI 2.04768 0.36552 1.09657 0.00000
237 238 240 241 242 Obs 237 238 239 240 241	Mago Construction Co LLC - Mago Construction Co	ASAINAME Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi Shepherdsvi FUGUTIVE - FUGUTIVE - UNPAVED HAU	lle Asphalt Fac: UBDESC RY DRYER AGGREGATE HAND STOCKPILES L RD & YARD AR	MASI All ility ility ility ility ility ility ility	TER_ 2.ID ALTFACID 463 2102900010 463 2102900010 463 2102900010 463 2102900010 463 2102900010 502	PRIPROD ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt NO2	FIPS 21029 21029 21029 21029 21029	SIC1 2951 2951 2951 2951 2951 2951 PM25_ 0.03447 0.04823 0.14469	PTID 001 002 003 003 004 FIL 233 060 180 000 475	SEGID 1 1 2 1 2 1 0 0 0 0 0 0 0	SCC 3050020 3050020 3050029 3050020 PM_CON 01320565 31729353 95188060	5 4 3 9 9 4 PM25_PRI 2.04768 0.36552 1.09657

Bullitt County

	· ·
 - COUNTYN=Bullitt ALTFACID=2102900010 MASAINAME=Mago Construction Co LLC - Shepherdsville Asphalt Facility	
(continued)	

					(continue	1)									
Obs	·	MASAINAME			MASTER_ AI_I	_	ACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	
243	Mago Construction Co	-			460	3 21029	00010	ASPHALT	Bullitt		2951	004	. 2	30500	
244 245	Mago Construction Co Mago Construction Co	•	•	_	463 463			ASPHALT ASPHALT	Bullitt Bullitt	21029 21029	2951 2951	004 004	3 4	30500 30500	
MASAINAME ALTFACID	mago Constitución Co	ero onophor	dovillo Asphal	c racilly	400	, 21023		AOITIALI	DULLICC		2001	001	·	00000	
ALIFACID															
Obs	SUBITEMDESC	SCCSUBDESC			S02			NO2		PM25_	_FIL		PM_	CON	PM25_PRI
243	RAP UNIT RAP CO	NVEYOR & TRAI	NSFER P							0.02494	718		0.16411	940	0.18907
244		CALPING SCREEN		•						0.02494			0.16411		0.18907
245	RAP UNIT RAP CO	INVEYOR & TRAI	NSFER P							0.02300	1210		0.15132	338	0.17433
MASAINAME				2.565	72400		3.4362	3750		0.33953			3.98113	234	4.32067
ALTFACID				2.565	72400		3.4362	3750		0.33953	3312		3.98113	234	4.32067
			COUNTYN=Bul	litt ALTFAC	ID=21029000	1 MASAI	NAME=I	MI South	LLC						
	·	MASTER_													•
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC	1 PTID	SEGIC) 5	CC		SUB	ITEMDE	sc
246	IMI South LLC	37419	2102900011	CONCRETE	Bullitt	21029	327	3 001	1	309	01107	BAG	HOUSE -	SILOS	, WEIGH H
247		37419	2102900011	CONCRETE	Bullitt	21029	327		2		01107				, WEIGH H
248 249		37419 37419	2102900011	CONCRETE	Bullitt	21029	327 327		3 4		01108 01111				, WEIGH H , WEIGH H
249	IMI South LLC	37419	2102900011	CONCRETE	Bullitt	21029	321	3 001	4	300	01111	DAG	INUUSE ~	31LU3	, WEIGH H
0bs	SCCSUBDESC		802		N02			PM25_FI	L	PN	I_CON	PM25	i_PRI		
246	CEMENT SILO				•			0.0000000	0	0.0000	00000		0		
247	FLY ASH SILO							0.0000000	0	0.0000	0000		0		
248			•		-			0.0000000		0.0000			0		
249	TRUCK LOADOUT (DRY	')	•		•			0.0000000	0	0.0000	00000		0		

2008 Kentucky Division for Air Quality Actual Point Source Emissions

Bullitt County

Process Level (SCC) Information

					(continu	ed)							
	M	ASTER_											
0bs		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PT	ID :	SEGID	SCC	SUBITEMDESC	
250	IMI South LLC	37419	2102900011	CONCRETE	Bullitt	21029	3273	00	2	1	30501106	FUGITIVE - AGG HAND	LING &
251	IMI South LLC	37419	2102900011	CONCRETE	Bullitt	21029	3273	. 00	2	2	30501106	FUGITIVE - AGG HAND	LING &
252	IMI South LLC	37419	2102900011	CONCRETE	Bullitt	21029	3273	00	3	1	30501199	FUGITIVE - UNPAVED	HAUL R
MASAINAME													
ALTFACID	1												
0bs	SCCSUBDESC		\$02		N02			PM25_F	IL		PM_CON	PM25_PRI	
050	ACCRECATE HANDLING						۸	000000	OO.	٥	00000000	0	
250 251			•		•			000000			00000000	0	
251								000000			00000000	0	
MASAINAME			0.00000000		.00000000			000000	 00		00000000	0	
ALTFACID			0.00000000		.00000000			000000			00000000	0	
		COUNTYN=	Bullitt ALTFAC	ID=210290001	2 MASAINA	ME=Rogers	Group	Inc -	Bullit	t Co St	one		
			MASTER_										
Obs	MASAINAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC	
253	Rogers Group Inc - Bullitt	Co Stone	473	2102900012	STONE	Bullitt	21029	1422	001	1	30532031	AGGREGATE HANDLING/STO	CKPILE
	Rogers Group Inc - Bullitt Rogers Group Inc - Bullitt		473 473	2102900012 2102900012	STONE STONE	Bullitt Bullitt		1422 1422		1 2	30532031 30502007	AGGREGATE HANDLING/STO AGGREGATE HANDLING/STO	
254		Co Stone	473				21029		001		30502007	·	CKPILES
254 255	Rogers Group Inc - Bullitt	Co Stone	473 473	2102900012	STONE	Bullitt	21029 21029	1422 1422	001 001	2	30502007 30502007	AGGREGATE HANDLING/STO	CKPILES
254 255 256	Rogers Group Inc - Bullitt Rogers Group Inc - Bullitt	Co Stone	473 473	2102900012 2102900012 2102900012	STONE STONE STONE	Bullitt Bullitt	21029 21029	1422 1422 1422	001 001	2 3	30502007 30502007	AGGREGATE HANDLING/STO AGGREGATE HANDLING/STO AGGREGATE HANDLING/STO	CKPILES
254 255 256 Obs	Rogers Group Inc - Bullitt Rogers Group Inc - Bullitt Rogers Group Inc - Bullitt	Co Stone	473 473 473	2102900012 2102900012 2102900012	STONE STONE STONE	Bullitt Bullitt Bullitt	21029 21029	1422 1422 1422	001 001 001	2 3	30502007 30502007 30502006	AGGREGATE HANDLING/STO AGGREGATE HANDLING/STO AGGREGATE HANDLING/STO	CKPILES
254 255 256 Obs 253	Rogers Group Inc - Bullitt Rogers Group Inc - Bullitt Rogers Group Inc - Bullitt SCCSUBDESC	Co Stone	473 473 473	2102900012 2102900012 2102900012	STONE STONE STONE	Bullitt Bullitt Bullitt	21029 21029	1422 1422 1422 PM2	001 001 001	2 3	30502007 30502007 30502006	AGGREGATE HANDLING/STO AGGREGATE HANDLING/STO AGGREGATE HANDLING/STO N PM25_PRI	CKPILES

256 CONVEYOR TO RIP RAP STKPL

0.00003763

0.00107

0.00102976

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

----- COUNTYN=Bullitt ALTFACID=2102900012 MASAINAME=Rogers Group Inc - Bullitt Co Stone ----------------------(continued)

				•	,						
0bs		MASAI	NAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	
257	Rogers Gr	coun Inc -	Bullitt Co St	one 473	2102900012	STONE	Bullitt	21029	1422	001	
258			Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	001	
259			Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	001	
260			Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	001	
261			Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	001	
262	-	-	Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	001	
263	_		Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	001	
264			Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	001	
265			Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	001	
266			Bullitt Co St		2102900012	STONE	Bullitt	21029	1422	002	
200	noger 3 dr	oup IIIC -	Bullitt Co St	une 473	2102900012	STONE	Buille	21023	1422	002	
0bs	SEGID	scc	SUBITEMDESC			SCCSUBD	ESC				S02
257	5	30502007	AGGREGATE H	ANDLING/STOCKPILES		RIP RAP	STOCKPILE				
258	6	30502099	AGGREGATE H	ANDLING/STOCKPILES		RIP RAP	TRUCK LOAD	OUT			
259	7	30502006	AGGREGATE H	ANDLING/STOCKPILES		CONVEYO	R TO SURGE	STOCKPL			
260	8	30502007	AGGREGATE HA	ANDLING/STOCKPILES		SURGE S	TOCKPILE				
261	10	30502006	AGGREGATE H	ANDLING/STOCKPILES		CONVEYO	R TO STOCKP	ILE 24"			
262	11	30502099	AGGREGATE H	ANDLING/STOCKPILES		LOADOUT	BIN			•	
263	12	30502099	AGGREGATE H	ANDLING/STOCKPILES		TRUCK L	OADOUT (BIN	l #41)		ı.	
264	13	30502007	AGGREGATE H	ANDLING/STOCKPILES		STOCKPI	LE (FROM BI	N #41)			
265	14	30502099	AGGREGATE H	ANDLING/STOCKPILES		TRUCK L	OADOUT (STK	(PL #42)		•	
266	1	30532006	CONVEYORS			CONVEYO	R TO SCALPI	NG SCRN			
Obs		N	102	PM25_FIL	PM_CON	PM25_PRI					
257				0.00190300	0.01373016	0.0156					
258				0.00778500	0.00003433	0.0078					
259				0.00321074	0.08786905	0.0911					
260				0.16238200	1,17158730	1.3340					
261				0.00025013	0.00684524	0.0071					
262		•		0.05175000	0.00022817	0.0520					
263		į.		0.01462500	0.00006448	0.0147					
264		·		0.00783200	0.05650794	0.0643					
265			•	0.03204000	0.00014127	0.0322					
266											

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

					-							
					STER_			00.11.	E700	0704	DTID	
Obs		MASAIN	IAME	,	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	
267	Rogers	Group Inc -	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
268	Rogers	Group Inc -	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
269	Rogers	Group Inc	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
270	Rogers	Group Inc -	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
271	Rogers	Group Inc -	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
272	_	= '-	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
273	. •	•	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
274	Rogers	Group Inc -	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
275	Rogers	Group Inc -	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
276	Rogers	Group Inc -	Bullitt Co Stone		473	2102900012	STONE	Bullitt	21029	1422	002	
Obs	SEGID	scc	SUBITEMDESC				SCCSUBD	ESC				S02
267	2	30502006	CONVEYORS				CONVEYO	R TO SURGE	STACKER			
268	3	30502006	CONVEYORS				SURGE T	UNNEL CONVE	YOR 36"			
269	4	30502006	CONVEYORS				CONVEYO	R TO SCREEN	N SPLTER			
270	5	30502006	CONVEYORS				CONVEYO	R TO #23 SC	REEN			
271	6	30502006	CONVEYORS				CONVEYO	R TO 5 1/2	CONE		•	
272	7	30502006	CONVEYORS			•	CONVEYO	R TO 54" EL	JAY CNE			
273	.8	30502006	CONVEYORS				CONVEYO	R UNDER 5 1	1/2'CONE			
274	9	30502006	CONVEYORS				CONVEYO	R UNDER 54'	' ELJAY			
275	10	30502006	CONVEYORS				CONVEYO	R UNDER 54'	" ELJAY			
276	11	30502006	CONVEYORS				CONVEYO	R UNDER #23	3 SCREEN		•	
0bs		N(02	PM25_FIL		PM_CON	PM25_PRI					
267			0	.00946097		0.04100556	0.0505					
268			0	.00946097		0.04100556	0.0505					
269			0	.00946097		0.04100556	0.0505					
270			0	.00946097		0.04100556	0.0505					
271			0	.00493749		0.02140000	0.0263					
272			0	.00493749		0.02140000	0.0263					
273			0	.00493749		0.02140000	0.0263					
274			0	.00493749		0.02140000	0.0263					
275			0	.00946097		0.04100556	0.0505					
276		•	0	.00946097		0.04100556	0.0505					

Process Level (SCC) Information

0bs		MASAIN	NAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	
277	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	
278	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	
279	_	•	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	002	
280	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	003	
281	_	-	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	004	
282			Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	004	
283	_	•	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	004	
284	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	005	
285	=	=	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	006	
286	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	006	
Oh a						0000000	v=00				000
0bs	SEGID	SCC	SUBITEMDESC			SCCSUBD	ESC				S02
277	12	30502006	CONVEYORS			CONVEYO	R & TRANS F	TS 24"			
278	13	30502006	CONVEYORS			SAND SO					
279	14	30502006	CONVEYORS				RADIAL STAC	KER			
280	1	30532014	6' X 16' 3-DECK				3 - DECK				
281	1	30502014	SCREEN (HR 6' X 16' 3	D)			(HR 6' X 16	3' 3D)			
282	2	30502014	SCREEN (HR 6' X 16' 3				(HR 6' X 16				
283	3	30502014	SCREEN (HR 6' X 16' 3			SCREEN	(HR 6' X 16	3' 3D)			
284	1	30502001	PRIMARY CRUSHER-42X48	JAW		PRIMARY	CRUSHER-42	X48 JAW			
285	1	30502002	SECONDARY CRUSHER			SECONDA	RY CRUSHER-	125/140			
286	2	30502002	SECONDARY CRUSHER			SECONDA	RY CRUSHER-	5 1/2'C			
Obs		NO	02 PM25_F	IL	PM_CON	PM25_PRI					
277			0.009460	97	0.04100556	0.0505					
278			0.000735	75	0.00318889	0.0039					
279			0.000735	75	0.00318889	0.0039					
280		•				•					
281			0.162225	00	0.15327381	0.3155					
282			0.162225	00	0.15327381	0.3155					
283			0.162225	00	0.15327381	0.3155					
284		,	0.000127	43	0.03371111	0.0338					
285			0.022267	53	0.03420952	0.0565					
286			0.022267	53	0.03420952	0.0565			•		

Bullitt County Process Level (SCC) Information

				(co	ntinued)						
Oha		MACAT	NAME	MASTER_	A1 TEACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	
Obs		MASAI	NAIVIE	AI_ID	ALTFACID	FHIPHUD	COUNTIN	1110	3101	LITD	
287	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	007	
288	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	007	
289	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	800	
290	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	800	
291	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	009	
292	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	010	
293	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	
294	-	•	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	
295	-	•	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	
296	_	•	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	
0bs	SEGID	SCC	SUBITEMDESC			SCCSUBE	DESC				S02
287	1	30502003	TERTIARY CRUSHER				RY CRUSHER-5	-		-	
288	2	30502003	TERTIARY CRUSHER				RY CRUSHER-5			-	
289	1	30502099	HAUL ROAD & YARD				AD & YARD	•	•	•	
290	2	30502099	HAUL ROAD & YARD)AD & YARD-l			•	
291	1	30502006	CONVEYOR (30") #24				OR (30") #24		•	• •	
292	1	30502006	CONVEYOR (30") #32			CONVEYO	DR (30") #32	2		•	
293	1	30502015	AGGREGATE HANDLING			WASHING	SCREEN (6)	(16 3D)		•	
294	2	30502099	AGGREGATE HANDLING			LOADOUT	BIN #34			•	
295	3	30502099	AGGREGATE HANDLING			TRUCK L	OADOUT - WET	SCREEN		•	
296	4	30502099	AGGREGATE HANDLING			LOADOUT	BIN-(WET S	SCREEN)		•	
Obs		4	102 PM25_	FIL	PM_CON	PM25_PRI					
287			0.23014	530	0.03300000	0.2631					
288			0.23014	530	0.03300000	0.2631					
289			0.29445	000	0.45539683	0.7498					
290			35.33400	0000	11.20515874	46.5392					
291			0.00334		0.01451667	0.0179					
292			0.00716		0.03103889	0.0382					
293			0.00000		0.00000000	0.0000					
294			0.0000		0.00000000	0.0000					
295			0.00000		0.00000000	0.0000					
296			0.00000		0.00000000	0.0000					

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

(continued)

				MASTER							
Obs		MASAIN	NAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	
297	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	011	
298			Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	012	
299	•	•	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	012	
300	_	•	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	013	
301			Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	013	
302	-	•	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	014	
303	Rogers	Group Inc	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	014	
304	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	014	
305	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	015	
306	Rogers	Group Inc -	Bullitt Co Stone	473	2102900012	STONE	Bullitt	21029	1422	015	
0bs	SEGID	SCC	SUBITEMDESC			SCCSUBD	ESC				S02
297	. 5	30502099	AGGREGATE HANDLING			TRUCK L	OADOUT - WET	SCREEN			
298	1	30502006	CONVEYOR (30")-BLE	ND FEED, (36")-PUG MILL	CONVEYO	R (30")-BLE	ND FEED			
299	2	30502006	CONVEYOR (30")-BLE	ND FEED, (36")-PUG MILL	CONVEYO	R (36")-PUG	MILL			
300	1	30502007	BLENDING TRANSFER	BINS-3 & DGA	STOCKPILE (PUG	BLENDIN	G TRANSFER	BINS-3			
301	2	30502007	BLENDING TRANSFER	BINS-3 & DGA	STOCKPILE (PUG	DGA STO	CKPILE (PUG	MILL)			
302	1	30502099	PUG MILL			PUG MIL	L			-	
303	2	30502099	PUG MILL			PUG MIL	L LOADOUT B	IN #58		-	
304	3	30502099	PUG MILL			PUG MIL	L TRUCK LOA	DOUT			
305	1	30502006	AGGREGATE HANDLING			RADIAL	STACKER (36	") #60			
306	2	30502007	AGGREGATE HANDLING			STOCKPI	LE-BASE/DGA	#61			
				·							
0bs		NC)2 PM2	5_FIL	PM_CON	PM25_PRI					
297			0.000	00000	0.00000000	0.0000					
298			0.001	98166	0.00858889	0.0106					
299			0.002	44952	0.01061667	0.0131					
300		•	0.077	02200	0.55571429	0.6327					
301			0.013	66200	0.09857143	0.1122					
302			0.000	00000	0.00000000	0.0000					
303			0.000	00000	0.00000000	0.0000			•		
304		-	0.000	00000	0.00000000	0.0000					
305		•	0.000	83129	0.02275000	0.0236					
306			0.042	04200	0.30333333	0.3454					

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

(continued) MASTER PTID 0bs MASAINAME AI_ID ALTFACID PRIPROD COUNTYN FIPS SIC1 Rogers Group Inc - Bullitt Co Stone 2102900012 STONE Bullitt 21029 1422 015 307 473 Rogers Group Inc - Bullitt Co Stone STONE Bullitt 21029 1422 015 308 473 2102900012 STONE Bullitt 21029 1422 015 Rogers Group Inc - Bullitt Co Stone 473 2102900012 309 STONE Bullitt 21029 1422 015 310 Rogers Group Inc - Bullitt Co Stone 473 2102900012 _____ MASAINAME ALTFACID 502 SEGID SCC SCCSUBDESC Obs SUBITEMDESC TRUCK LOADOUT-BASE/DGA 307 3 30502099 AGGREGATE HANDLING 308 4 30502006 AGGREGATE HANDLING STACK (36") #63 STOCKPILE-FROM RAD STKR 309 5 30502007 AGGREGATE HANDLING 310 6 30502099 AGGREGATE HANDLING TRUCK LOADOUT #65 0.00000000 MASAINAME 0.00000000 ALTFACID PM25 PRI NO2 PM25_FIL PM CON 0bs 0.1727 307 0.17199000 0.00075833 308 0.00083129 0.02275000 0.0236 0.04204200 0.30333333 0.3454 309 310 0.17199000 0.00075833 0.1727 55.9275 MASAINAME 0.00000000 37.89286876 18.03467263 55.9275 ALTFACID 0.00000000 37.89286876 18.03467263

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

------ COUNTYN=Bullitt ALTFACID=2102900019 MASAINAME=Publishers Printing Co - Shepherdsville Facility

0bs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FTDS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
003	MUNOVILANNE	A1_10	ALTFACID	LUILUOD	COUNTIN	LILO	3101	LIID	SEGIO	300	20D1 LEMDE2C
311	Publishers Printing Co - Shepherdsville	Facility 469	2102900019	PRINTING	Bullitt	21029	2752	001	1	40500401	PRESS 437
312	Publishers Printing Co - Shepherdsville	•	2102900019	PRINTING	Bullitt		2752	001	2	39000699	PRESS 437
313	Publishers Printing Co - Shepherdsville		2102900019	PRINTING	Bullitt	21029	2752	001	3	39999999	PRESS 437
314	Publishers Printing Co - Shepherdsville		2102900019	PRINTING	Bullitt		2752	001	4	39999995	PRESS 437
315	Publishers Printing Co - Shepherdsville		2102900019	PRINTING	Bullitt	21029	2752	001	5	39001099	PRESS 437
316 ⁻	-	•	2102900019	PRINTING	Bullitt	21029	2752	002	1	40500401	PRESS 441
317	Publishers Printing Co - Shepherdsville	•	2102900019	PRINTING	Bullitt		2752	002	,2	39000699	PRESS 441
318	Publishers Printing Co - Shepherdsville		2102900019	PRINTING	Bullitt		2752	002	3	39999999	PRESS 441
319	Publishers Printing Co - Shepherdsville	-	2102900019	PRINTING	Bullitt		2752	002	4	39999995	PRESS 441
320	Publishers Printing Co - Shepherdsville	-	2102900019	PRINTING	Bullitt		2752	002	5	39001099	PRESS 441
321	Publishers Printing Co - Shepherdsville	•	2102900019	PRINTING		21029	2752	003	1	40500401	PRESS 442
322	Publishers Printing Co - Shepherdsville		2102900019	PRINTING	Bullitt		2752	003	2	39000699	PRESS 442
323	Publishers Printing Co - Shepherdsville	-	2102900019	PRINTING		21029	2752	003	3	39999999	PRESS 442
324	Publishers Printing Co - Shepherdsville	•	2102900019	PRINTING	Bullitt		2752	003	4	39999995	PRESS 442
325	Publishers Printing Co - Shepherdsville	<u>*</u>	2102900019	PRINTING	Bullitt	21029	2752	003	5	39001099	PRESS 442
326	Publishers Printing Co - Shepherdsville	•	2102900019	PRINTING		21029	2752	005	1	39999995	PRESS 446
327	Publishers Printing Co - Shepherdsville	-	2102900019	PRINTING	Bullitt	21029	2752	005	2	39999999	PRESS 446
328	Publishers Printing Co - Shepherdsville		2102900019	PRINTING	Bullitt	21029	2752	005	3	40500401	PRESS 446
	•	•									
0bs	SCCSUBDESC	\$02	NO	2	РМ	25_FIL			PM_CON	PM25_PR	I
311	PRESS #437 INK USE										
312	DRYER N.G. 2.56 MMBTU	0.00075000	0.1250000	0	0.00	285000		0.01	520000	0.01805	ם
313	FOUNTAIN SOLUTION USE									•	
314	BLANKET WASH CLEANUP									•	
315	Dryer - Propane Backup	0.00000056	0.0004550	0	0.00	001103		0.00	003920	0.00005	Ď
316	PRESS #441-INK USE				-						
317	Two DRYER NG 1.8 MMBTU each	0.00045000	0.0750000	0	0.00	171000		0.00	912000	0.01083	0
318	FOUNTAIN SOLUTION USE	•			•						
319	BLANKET WASH CLEANUP										
320	Dryers - Backup Propane	0.0000032	0.0002600	0	0.00	000630		0.00	002240	0.00002	9
321	PRESS #442-INK				•						
322	DRYER N.G2.94 MMBTU	0.00087000	0.1450000	0	0.00	330600		0.01	763200	0.02093	В
323	FOUNTAIN SOLUTION USE		•								
324	BLANKET WASH CLEANUP	•	•		•					•	
325	Dryer - Backup Propané	0.00000064	0.0005200	0	0.00	001260		0.00	004480	0.00005	7
326	BLANKET WASH SOLVENT	•	-							•	
327	FOUNTAIN SOLUTION USE										
328	PRESS #446 INK USE		•								

Process Level (SCC) Information

(continued)

0bs			MASA	INAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
329	Publis	hers Pri	ntina Co	- Shanhardev	ille Facility	469	2102900019	PRINTING	Bullitt	21029
330			•	•	ille Facility	469	2102900019		Bullitt	21029
331			-	•	ille Facility	469	2102900019	PRINTING	Bullitt	21029
332			-	•	ille Facility	469	2102900019	PRINTING	Bullitt	21029
333			-	•	ille Facility	469	2102900019		Bullitt	21029
334			_	•	ille Facility	469	2102900019		Bullitt	21029
335			•	•	ille Facility	469	2102900019		Bullitt	21029
336			-		ille Facility	469	2102900019	PRINTING	Bullitt	21029
337			_		ille Facility	469	2102900019	PRINTING	Bullitt	21029
338					ille Facility	469	2102900019	PRINTING	Bullitt	21029
Obs	SIC1	PŤID	\$EGID	scc	SUBITEMDESC			sccs	SUBDESC	
329	2752	005	4	39000699	PRESS 446			Two	DRYER NG 2.2	MMBTU each
330	2752	005	5	39001099	PRESS 446			Drye	ers - Propane	Backup
331	2752	006	1	40500401	PRESS 448				SS #448-INK L	
332	2752	006	2	3999999	PRESS 448				TAIN SOLUTIO	
333	2752	006	3	3999995	PRESS 448				IKET WASH CLE	
334	2752	006	4	39000699	PRESS 448				DRYER NG 2.2	
335	2752	006	5	39001099	PRESS 448			_	ers - Propane	
336	2752	007	1	40500401	PRESS 449				SS #449 - INK	
337	2752	007	2	39999999	PRESS 449				TAIN SOLUTIO	
338	2752	007	3	39999995	PRESS 449			BLAN	KET WASH CLE	ANUP
0bs			S02		NO2	PM25_	FIL	PM_CON	PM25_PRI	
329		0.00	132000	0	.22000000	0.00501	600	0.02675200	0.03177	
330			880000		.00071500	0.00001		0.00006160	0.00008	
331				_		•			•	
332					•	•		•		
333					•	_				
334		0.00	0132000	0	.22000000	0.00501	600	0.02675200	0.03177	
335			0000088		.00071500	0.00001		0.00006160	0.00008	
336								•	•	
337						•		•		
338						-			-	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

-- COUNTYN=Bullitt ALTFACID=2102900019 MASAINAME=Publishers Printing Co - Shepherdsville Facility ------ (continued)

0bs			MASA	INAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
						, (1_12	7127777020			
339	Publis	hers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
340	Publis	hers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
341	Publis	hers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
342	Publis	hers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
343	Publis	hers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
344	Publis	hers P ri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	2102 9
345	Publis	hers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
346	Publis	hers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
347					ille Facility	469	2102900019	PRINTING	Bullitt	21029
348	Publis	hers P ri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
0bs	SIC1	PTID	SEGID	scc	SUBITEMDESC			SCCS	UBDESC	
220	0750	007	4	0000000	BB500 440			DDV	- N.C. C	O MIDTH
339 340	2752 2752	007 007	4	39000699	PRESS 449				R - N.G 2 r - Backup P	
340 341	2752 2752	007	5	39001099	PRESS 449			•	•	•
341 342	2752 2752	800	1	40500401	PRESS 450			•	S #450 INK U	
342 343	2752 2752	800	2	39999999	PRESS 450				ITAIN SOLUTIO KET WASH CLE	
343 344	2752 2752	800	3 4	39999995	PRESS 450 PRESS 450				R - N.G. 1.	
345	2752	008	5	39000699 39001099	PRESS 450				r - N.G. 1. r - Propane	
346	2752	009	1	40500401	PRESS 470			-	:	•
347	2752	009	2	39999999					TAIN SOLUTIO	
348	2752	009	3	39999995	PRESS 470 PRESS 470				KET WASH CLE	
040	2132	009	J	29999993	FNC33 470			DEN	IKET WASH OLL	ANO
0bs			S 02		NO2	PM25_	FIL	PM_CON	PM25_PRI	
339		0.00	066000	0	.11000000	0.00250	800 0	.01337600	0.01588	
340			000048		.00039000	0.00000		.00003360	0.00004	
341				_		•		•	•	
342									-	
343					•	•				
344		0.00	048000	0	.08000000	0.00182	400 0	.00972800	0.01155	
345			000032		.00026000	0.00000		.00002240	0.00003	
346					•	•		•		
347					•					
348						•				

Process Level (SCC) Information

COUNTYN=Bullitt ALTFACID=2102900019 MASAINAME=Publishers Printing Co - Shepherdsville Facility -------(continued)

0bs			MASAI	NAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
349	Publis	hers Pri	ntina Co -	Shepherdsy	ille Facility	469	2102900019	PRINTING	Bullitt	21029
350			_	•	ille Facility	469	2102900019	PRINTING	Bullitt	21029
351					ille Facility	469	2102900019	PRINTING	Bullitt	21029
352					ille Facility	469	2102900019	PRINTING	Bullitt	21029
353					ille Facility	469	2102900019	PRINTING	Bullitt	21029
354			_	-	ille Facility	469	2102900019	PRINTING	Bullitt	21029
355			_	-	ille Facility	469	2102900019	PRINTING	Bullitt	21029
356					ille Facility	469	2102900019	PRINTING	Bullitt	21029
357			*	•	/ille Facility	469	2102900019	PRINTING	Bullitt	21029
358			-	•	/ille Facility	469	2102900019	PRINTING	Bullitt	21029
0bs 349 350 351	SIC1 2752 2752 2752	PTID 009 009 010	SEGID 4 5 1	SCC 39000699 39001099 40500401	SUBITEMDESC PRESS 470 PRESS 470 PRESS 484			Two Drye PRES	UBDESC DRYER NG 3.3 rs - Propane S #484 - INK	Backup USE
352	2752	010	2	39999999	PRESS 484				TAIN SOLUTIO	
353	2752	010	3	39999995	PRESS 484				IKET WASH CLE	
354	2752	010	4	39000699	PRESS 484				R - N.G 0	
355	2752	010	5	39001099	PRESS 484			-	r - Propane	
356	2752	011	1	40500401	PRESS 405				S #405 INK U	
357	2752	011	2	39000699	PRESS 405				R N.G. 2.56	
358	2752	011	3	39999999	PRESS 405			FOUN	TAIN SOLUTIO	IN USE
0bs			\$02		NO2	PM25_	FIL	PM_CON	PM25_PRI	
349		0.00	195000	(0.32500000	0.00741	000 0	.03952000	0.04693	
350			0000136		0.00110500	0.00002		.00009520	0.00012	
351					•			•	•	
352					•					
353								•		
354		0.00	030000	(0.05000000	0.00114	0000	.00608000	0.00722	
355			000016	(0.00013000	0.00000	315 0	.00001120	0.00001	
356									•	
357		0.00	000000	(0.00000000	0.00000	0000 0	.00000000	0.00000	
358					•	•			•	

Process Level (SCC) Information

					(contri	iu c u)				
Obs			APAM	INAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
003			MAGA	IIIAWE		, A1_1D	ALITACID	THITHOD	COORTTR	1110
359	Publis	hers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
360			_	,	ville Facility	469	2102900019	PRINTING	Bullitt	21029
361	Publis	hers Pri	inting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
362	Publis	shers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
363	Publis	shers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
364	Publis	shers Pri	nting Co	- Shepherdsv	/ille Facility 🕟	469	2102900019	PRINTING	Bullitt	21029
365	Publis	shers Pri	nting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
366	Publis	shers Pri	Inting Co	- Shepherdsv	ille Facility	469	2102900019	PRINTING	Bullitt	21029
MASAINAME										
Obs	SIC1	PTID	SEGID	SCC	SUBITEMDESC			SCC	SUBDESC	
359	2752	011	4	39999995	PRESS 405			BLAI	NKET WASH CLE	ANUP
360	2752	011	5	39001099	PRESS 405			Dry	er - Propane	Backup
361	2752	012	1	10500106	39 Co-Ray Vac F	Radiant Comfort	Heaters (40,	00 1.50	6 MM BTU/հր Ռ	√G
362	2752	012	2	10500110	39 Co-Ray Vac F	Radiant Comfort	Heaters (40,	00 1.50	6 MM BTU/hr F	ropane
363	2752	013	1	10500106	11 Heaters (Tot	tal 1.66MMBTU/H	r)	1.60	SMMBTU/hr NG	
364	2752	013	2	10500110	11 Heaters (Tot	tal 1.66MMBTU/H	r)	1.60	SMMBTU/hr Pro	pane
36 5	2752	014	1	10500106	Regenerative Th	nermal Oxidizer	(RTO) 4.0 N	MMB MEG	TEC CS-250 4.	.O MMBtu/hr
366	2752	014	2	10500110	Regenerative Th	nermal Oxidizer	(RTO) 4.0 N	MMB MEG	ΓEC CS-250 4.	.O MMBtu/hr
MASAINAME										
Obs			\$02		N02	PM25_F	IL	PM_CON	PM25_PRI	
359						-				
360		0.00	000000	c	0.0000000	0.000000	00 0.	00000000	0.00000	
361		0.00	0081000	C	.13500000	0.010260	00 0.	01641600	0.02668	
362		0.00	000058	C	0.00046800	0.000025	20 0.	00004032	0.00007	
363		0.00	002400	c	.00400000	0.000304	00 0.	00048640	0.00079	
364		0.00	0000017	C	0.00013650	0.000007	35 0.	00001176	0.00002	
365		0.00	138000	c	.23000000	0.017480	00 0.	02796800	0.04545	
366		0.00	0000108		0.00087750	0.000047	25 0.	00007560	0.00012	
MASAINAME		0.01	032143	1	.72503200	0.059014	07 0.	20955008	0.26856	

30

11:18 Tuesday, September 27, 2011

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

(continued) MASTER_ 0bs AI_ID ALTFACID PRIPROD COUNTYN FIPS MASAINAME _____ ALTFACID SCCSUBDESC 0bs SIC1 PTID SCC SEGID SUBITEMDESC _____ ALTFACID PM25_PRI 0bs S02 N02 PM25_FIL PM_CON ALTFACID 0.05901407 0.20955008 0.26856 0.01032143 1.72503200

		COUNTYN=	Bullitt AL	TFACID=21029	00032 MASAINAME=	Publishers P	Printing Co -	Lebanon Junci	ion Press	
05-			11404			MASTER_	AL TEACTO	2270000	OOLINTYAL	EXDO
Obs			MASAI	NAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
367	Publis	hers Pri	nting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
368			-	Lebanon Jun		470	2102900032		Bullitt	21029
369			_	Lebanon Jun		470	2102900032		Bullitt	21029
370			-	Lebanon Jun		470	2102900032		Bullitt	21029
371			_	Lebanon Jun		470	2102900032		Bullitt	21029
372			-	Lebanon Jun		470	2102900032		Bullitt	21029
373				Lebanon Jun		470	2102900032		Bullitt	21029
374				Lebanon Jun		470	2102900032		Bullitt	21029
375				Lebanon Jun		470	2102900032		Bullitt	21029
376				Lebanon Jun		470	2102900032		Bullitt	21029
377				Lebanon Jun		470	2102900032		Bullitt	21029
377	FUDIIS	mers Fri	nting Go -	Lebanon Jun	ction Press	470	2102900032	WAGAZINES	BUILLE	21029
Obs	SIC1	PTID	SEGID	scc	SUBITEMDESC			sco	SUBDESC	
367	2721	001	1	40500401	PRESS 402			WEE	OFFSET PRES	S 402 INK
368	2721	001	2	39999995	PRESS 402			PRE	SS 402 -BLAN	IKET WASH
369	2721	001	3	39999994	PRESS 402			PRE	SS 402 - FOL	INTAIN SOLN
370	2721	001	4	39000689	PRESS 402			PRE	SS 402 - NO	DRYER
371	2721	001	5	39001099	PRESS 402			PRE	SS 402 - DRY	ER - BPropane
372	2721	005	1	40500401	PRESS 405			WEE	OFFSET PRES	S 405 INK
373	2721	005	2	39999995	PRESS 405		•	PRE	SS 405 -BLAN	IKET WASH
374	2721	005	3	39999994	PRESS 405				SS 405 - FOL	
375	2721	005	4	39000689	PRESS 405			PRE	SS 405 - NO	DRYER
376	2721	005	5	39001099	PRESS 405			PRE	SS 405 - DRY	ER - BPropane
377	2721	006	1	40500401	PRESS 407				OFFSET 407-	•
Oho			000		NOO	Duos	. 671	DM CON	DUGE DOT	
Obs			S02		N02	PM23	5_FIL	PM_CON	PM25_PRI	
367								•	-	
368		•							•	
369								•	•	
370		0.00	096000	0.	16000000	0.0121	6000	0.01945600	0.031616	
371		0.00	000297	ο.	00214500	0.0000	5198	0.00018480	0.000237	
372									•	
373									•	
374									•	
375		0.000	033000	0.	05500000	0.0041	8000	0.00668800	0.010868	
376			000099		00071500	0.0000		0.00006160	0.000079	
377										
		=		•				*		

Bullitt County

Process Level (SCC) Information

------ COUNTYN=Bullitt ALTFACID=2102900032 MASAINAME=Publishers Printing Co - Lebanon Junction Press (continued)

						MASTER_				
0bs			MASAI	NAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
378	Publis	hers Prin	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
379			-		oction Press	470	2102900032	MAGAZINES	Bullitt	21029
380	Publis	hers Prin	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
381	Publis	hers Pri	nting Co -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
382	Publis	hers Prin	nting C o -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
383	Publis	hers Pri	nting Co -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
384	Publis	hers Pri	nting Co -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
385	Publis	hers Prin	nting Co -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
386	Publis	hers Prin	nting Co -	Lebanon Jur	nction Press	470	2102900032	MAGAZINES	Bullitt	21029
387	Publis	hers Pri	nting Co -	Lebanon Jur	oction Press	470	2102900032	MAGAZINES	Bullitt	21029
Obs	SIC1	PTID	SEGID	scc	SUBITEMDESC			sco	SUBDESC	
378	2721	006	2	39999994	PRESS 407			PRE	SS 407 - FOL	INTAIN SOLN
379	2721	006	3	39999995	PRESS 407			PRE	SS 407 - BLA	NKET WASH
380	2721	006	4	39000689	PRESS 407				SS 407 - NAT	
381	2721	006	5	39001099	PRESS 407			PRE	SS 407 - BPF	ROPANE
382	2721	007	1	40500401	PRESS 411			OFF	ST LITHO PRE	SS 411 INK
383	2721	007	2	39999994	PRESS 411			PRE	SS 411-FOUNT	AIN SOLN
384	2721	007	3	39999995	PRESS 411			PRE	SS 411-BLANK	CET WASH
385	2721	007	4	39000689	PRESS 411			PRE	SS 411-DRYER	R-FUEL-NG
386	2721	007	5	39001099	PRESS 411			PRE	SS 411 - BPF	ROPANE
387	2721	011	1	40500401	PRESS 414			WEE	OFFSET PRES	S\$ 414 INK
0bs			S02		NO2	PM25	_FIL	PM_CON	PM25_PRI	
378										
379					,	•		· .		
380		0.002	204000	0	.34000000	0.0258	4000	0.04134400	0.067184	
381			000630		.00455000	0.0001		0.00039200	0.000502	
382				Ū						
383										
384		•								
385		0.002	207000	0	.34500000	0.0262	2000	0.04195200	0.068172	
386			000639		.00461500	0.0001		0.00039760	0.000509	
387		•			•			•		

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

Obs			MASAI	NAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
388	Publis	shers Pri	ntina Co -	Lebanon Jur	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
389			_	Lebanon Jur		470	2102900032	MAGAZINES		21029
390				Lebanon Jur		470	2102900032	MAGAZINES		21029
391				Lebanon Jur		470	2102900032	MAGAZINES	Bullitt	21029
392				Lebanon Jur		470	2102900032	MAGAZINES	Bullitt	21029
393				Lebanon Jun		470	2102900032	MAGAZINES	Bullitt	21029
394	Publis	hers Pri	nting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
395	Publis	hers Pri	nting C o -	Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
396	Publis	hers Pri	nting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
397	Publis	hers Pri	nting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
0bs	SIC1	PTID:	SEGID	scc	SUBITEMDESO	:		sc	CSUBDESC	
388	2721	011	2	39999994	PRESS 414			PF	ESS 414 FOUNT	SOLN
389	2721	011	3	39999995	PRESS 414			PF	ESS 414 BLANK	CET WASH
390	2721	011	4	39000689	PRESS 414			PF	ESS 414 DRYER	R-FUEL-NG
391	2721	011	5	39001099	PRESS 414			PF	IESS 414 BPROF	PANE
392	2721	012	1 .	40500401	PRESS 415				B OFFSET PRES	
393	2721	012	2	39999994	PRESS 415				IESS 415 FOUNT	
394	2721	012	3	39999995	PRESS 415				IESS 415 BLAN	
395	2721	012	4	39000689	PRESS 415				IESS 415 DRYEF	
396	2721	012	5	39001099	PRESS 415				IESS 415 BPROF	
397	2721	013	1	40500401	5 Unit Web	Offset Heatset	Lithographic	(Press N	IP1(Ink Useage	•)
0bs			\$02		NO2	PM25	5_FIL	PM_CON	PM25_PRI	
388									•	
389				•						
390		0.000	057000	0.	09500000	0.0072	22000	0.01155200	0.018772	
391		0.000	000288	0.	00208000	0.0000	05040	0.00017920	0.000230	
392						•			•	
393		•				•		-	•	
394		•				•		•		
395			096000		16000000	0.012		0.01945600	0.031616	
396		0.000	000288	0.	00208000	0.0000	05040	0.00017920	0.000230	
397		•		-				•	•	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Bullitt County
Process Level (SCC) Information

						MASTER_				
0bs			MASAI	NAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
398	Publis	hers Prin	nting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
399			•	Lebanon Jun		470	2102900032	MAGAZINES		21029
400			•	Lebanon Jun		470	2102900032	MAGAZINES		21029
401			-	Lebanon Jun		470	2102900032	MAGAZINES		21029
402			-	Lebanon Jun		470	2102900032	MAGAZINES		21029
403			_	Lebanon Jun		470	2102900032	MAGAZINES		21029
404			_	Lebanon Jun		470	2102900032	MAGAZINES		21029
405			_	Lebanon Jun		470	2102900032	MAGAZINES		21029
406			•	Lebanon Jun		470	2102900032	MAGAZINES	S Bullitt	21029
407			_	Lebanon Jun		470	2102900032			21029
		···-·	y 00	,	V 12411 1 1 1 0 0 0	•			,	
0bs	SIC1	PTID	SEGID	scc	SUBITEMDES	C		S	CCSUBDESC	
398	2721	013	2	40500412	5 Unit Web	Offset Heatset	Lithographic	(Press M	P2(Auto Blanke	t Wash)
399	2721	013	3	39999994		Offset Heatset	• ,	•	P3 (Fountain S	•
400	2721	013	4	40201001		Offset Heatset		,	P4 (3.0 MMBtu	•
401	2721	013	5	39001099		Offset Heatset		,	•	dryer, Propane)
402	2721	014	1	39000689		415 CAT OXIDZR	· ·	•	RESS 414,415-0	
403	2721	014	2	39001099	•	415 CAT OXIDZR			RESS 414,415 O	
404	2721	015	1	39000689	•	IDIZER 401-412,			HERMAL OXIDIZE	
405	2721	015	2	39001099		IDIZER 401-412,		TI	HERMAL OXIDIZE	R PROPANE
406	2721	02-04	1	40500401	PRESS 401,	•			EB OFFSET PRES	
407	2721	02-04	2	39999995	PRESS 401,	•		PI	RESS 401 - BLA	NKET WASH
Obs			S02		NO2	PM2	5_FIL	PM_CON	PM25_PRI	
398		•							,	
399		-							•	
400		0.000	096000	0.	16000000	0.009	48480	0.01945600	0.02894	
401		0.000	000288		00208000	0.000	05040	0.00017920	0.00023	
402			135000		22500000	0.017		0.02736000	0.04446	* · · · · · · · · · · · · · · · · · · ·
403			000425		00306800	0.000		0.00026432	0.00034	
404			066000		11000000	0.008		0.01337600	0.02174	
405			000202		00145600	0.000		0.00012544	0.00016	
406										
407								4	•	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

COUNTYN=Bullitt ALTFACID=2102900032 MASAINAME=Publishers Printing Co - Lebanon Junction Press (continued)

0bs			MASA]	NAME				STER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
400	Dule 1 des	.	. :					4770	010000000		D.:11444	01000
408 409				Lebanon Jur Lebanon Jur				470 470	2102900032 2102900032			21029 21029
410			•	Lebanon Jur				470 470	2102900032			21029
411			•	Lebanon Jur				470	2102900032	,		21029
412			_	Lebanon Jur				470	2102900032			21029
413			-	Lebanon Jur				470	2102900032			21029
414			•	Lebanon Jur				470	2102900032			21029
415			•	Lebanon Jur				470	2102900032			21029
416			_	Lebanon Jur				470	2102900032			21029
417			_	Lebanon Jur				470	2102900032			21029
0bs	SIC1	PTID	SEGID	SCC	SUBITEMDES	^				90	CSUBDESC	
ODS	3101	1110	GLGID	300	30011EWDE3	•					300000000	
408	2721	02-04	3	39999994	PRESS 401,	404.	406			PR	ESS 401 - FOL	NTAIN SOLN
409	2721	02-04	4	39000689	PRESS 401,	•				PR	ESS 401 - NAT	GAS DRYER
410	2721	02-04	5	39001099	PRESS 401,	•				PR	ESS 401 - BPF	OPANE
411	2721	02-04	6	40500401	PRESS 401,	404,	406			WE	3 OFFST PRESS	404 INK
412	2721	02-04	7	39999995	PRESS 401,	404,	406			PR	ESS 404 - BLA	NKET WASH
413	2721	02-04	8	39999994	PRESS 401,	404,	406			PR	ESS 404 - FOL	NTAIN SOLN
414	2721	02-04	9	39000689	PRESS 401,	404,	406			PR	ESS 404 - NAT	GAS DRYER
415	2721	02-04	10	39001099	PRESS 401,	404,	406			PR	ESS 404 - BPR	OPANE
416	2721	02-04	11	40500401	PRESS 401,	404,	406				3 OFFST PRESS	
417	2721	02-04	12	39999995	PRESS 401,	404,	406		÷	PR	ESS 406 - BLA	NKET WASH
0bs			S02		NO2			PM25_	FIL	PM_CON	PM25_PRI	
408			50000		85588888				2000			
409		0.001			25500000			0.01938		0.03100800	0.05039	
410		0.000	UQ468		00338000			0.00008	1190	0.00029120	0.00037	
411 412		•		•				•		•	•	
413		•		•				•		•	•	
414		0.001	26000	n ,	21000000			0.01596	8000	0.02553600	0.04150	
415		0.000			00286000			0.00006		0.00024640	0.00032	
416			00000	0.	0020000				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3.00002	
417		•						•				
		•		•				•		-	-	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

						MASTER_		•		
Obs			MASA]	INAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
418	Publis	hers Prin	ting Co -	- Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
419	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
420	Publis	hers Prin	ting Co -	- Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
421	Publis	hers Prin	ting Co -	- Lebanon Jun	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
422	Publis	hers Prin	ting Co	- Lebanon Jur	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
423	Publis	hers Prin	ting Co -	- Lebanon Jur	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
424	Publis	hers Prin	ting Co	Lebanon Jur	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
425	Publis	hers Prin	ting Co	- Lebanon Jur	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
426	Publis	hers Prin	ting Co -	- Lebanon Jur	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
427	Publis	hers Prin	ting Co -	- Lebanon Jur	ction Press	470	2102900032	MAGAZINES	Bullitt	21029
			-							
0bs	SIC1	PTID	SEGID	SCC	SUBITEMDESC			sco	SUBDESC	
418	2721	02-04	13	39999994	PRESS 401, 40	04, 406		PRE	SS 406 - FO	JNTAIN SOLN
419	2721	02-04	14	39000689	PRESS 401, 40	04, 406		PRE	SS 406 - NA	C GAS DRYER
420	2721	02-04	15	39001099	PRESS 401, 40	04, 406		PRE	SS 406 - BPI	ROPANE
421	2721	08-10	1	40500401	PRESS 409, 41	10 , 412		OFF	ST LITHO PR	ESS 409 INK
422	2721	08-10	2	39999994	PRESS 409, 41	10 , 412		PRE	SS 409-FOUN	TAIN SOLN
423	2721	08-10	3	39999995	PRESS 409, 41	10 , 412		PRE	SS 409-BLANI	KET WASH
424	2721	08-10	4	39000689	PRESS 409, 41	10 , 412		PRE	SS 409-DRYE	R-FUEL-NG
425	2721	08-10	5	39001099	PRESS 409, 41	10 , 412		PR	SS 409 - BPI	ROPANE
426	2721	08-10	6	40500401	PRESS 409, 41	10 , 412		OFF	ST LITHO PR	ESS 410INK
427	2721	08-10	7	39999994	PRESS 409, 41	10 , 412		PRE	ESS 410-FOUN	TAIN SOLN
0bs			S02		NO2	PM2	5_FIL	PM_CON	PM25_PRI	
418				_					•	
419		0.001	26000	0	21000000	0.0159	96000	0.02553600	0.04150	
420			00396		00286000	0.0000		0.00024640	0.00032	
421			+ -							
422		•								
423						-		•		
424		0,000	90000	0.	15000000	0.0114	10000	0.01824000	0.02964	
425			00279		00201500	0.000		0.00017360	0.00022	
426		÷						•		
427								•	•	

Process Level (SCC) Information

(continued)

					1,	concinued,				
0bs			масал	TAIAME		MASTER_	AL TEACID		COUNTYN	FIPS
Ons			MASAI	INAME		AI_ID	ALTFACID	PRIPROD	COUNTEN	FIFS
428	Publis	hers Prin	ting Co -	· Lebanon Jun	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
429	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
430	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINE	\$ Bullitt	21029
431	Publis	ners Prin	ting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
432	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
433			-	Lebanon Jun		470	2102900032	MAGAZINE	S Bullitt	21029
434	Publis	hers Prin	ting Co -	- Lebanon Jun	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
435			_	Lebanon Jun		470	2102900032	MAGAZINE	S Bullitt	21029
436				· Lebanon Jun		470	2102900032	MAGAZINE	S Bullitt	21029
437	Publis	hers Prin	ting Co -	Lebanon Jun	ction Press	470	2102900032	MAGAZINE	S Bullitt	21029
0bs	SIC1	PTID	SEGID	scc	SUBITEMDES	С		S	CCSUBDESC	
428	2721	08-10	8	39999995	PRESS 409,	410 . 412		Р	RESS 410-BLANK	ET WASH
429	2721	08-10	9	39000689	PRESS 409,				RESS 410-DRYER	
430	2721	08-10	10	39001099	PRESS 409,	-			RESS 410 - BPF	
431	2721	08-10	11	40500401	PRESS 409,	•			FFST LITHO PRE	
432	2721	08-10	12	39999994	PRESS 409,	•			RESS 412-FOUNT	
433	2721	08-10	13	3999995	PRESS 409,				RESS 412-BLANK	
434	2721	08-10	14	39000689	PRESS 409,			Р	RESS 412-DRYER	-FUEL-NG
435	2721	08-10	15	39001099	PRESS 409,	•		Р	RESS 412 - BPF	OPANE
436	2721	EP#16	1	40500401		Offset Heatset	Lithographic	(Press	MP1(Ink Usage)	
437	2721	EP#16	2	40500412		Offset Heatset			P2(Auto Blanke	t Wash)
0bs			S02		NO2	PM2	5 FIL	PM CON	PM25_PRI	
000			002		1102	1 1812-1		1111_0014	, W. L. J. 112	
428										
429		0.001	26000	0.	21000000	0.015	96000	0.02553600	0.04150	
430		0.000	00396	0.	00286000	0.000	06930	0.00024640	0.00032	
431				-		•				
432										
433		•								
434		0.001	26000	0.	21000000	0.015	96000	0.02553600	0.04150	
435		0.000	00396	0.	00286000	0.000	06930	0.00024640	0.00032	
436									•	
437		•				•		•	•	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

Obs			MASAI	NAME			ı	MASTER_ AI_ID	ALTFACID	PRIF	POD	COUNTYN	FIPS
438	Publis	hers Prin	ting Co -	Lebanon Jur	nction Pre	ess		470	2102900032	MAGAZ	INES	Bullitt	21029
439	Publis	hers Prin	ting Co -	Lebanon Jur	nction Pre	ss		470	2102900032	MAGAZ	INES	Bullitt	21029
440	Publis	hers Prin	ting Co -	Lebanon Jur	nction Pre	ss		470	2102900032	MAGAZ	INES	Bullitt	21029
MASAINAME ALTFACID													
0bs	SIC1	PTID	SEGID	scc	SUBITE	(DESC	;				SCC	SUBDESC	
438	2721	EP#16	3	39999994	5 Unit	Web	Offset	Heatset	Lithographic	(Press	мРЗ	(Fountain	Solution)
439	2721	EP#16	4	40201001	5 Unit	Web	Offset	Heatset	Lithographic	(Press	MP4	(4.0 MMBtu	dryer, NG)
440	2721	EP#16	5	39001099	5 Unit	Web	Offset	Heatset	Lithographic	(Press	MP4	(4.0 MMBtu	dryer, Propane)
MASAINAME ALTFACID													•
0bs			S02		N02			PM2	5_FIL	PM_C	ON	PM25_PRI	
438												•	
439		0.000	33000	0	.05500000			0.003	26040	0.006688	100	0.00995	
440		0.000	00099	0	.00071500			0.000	01733	0.000061	60	0.00008	
MASAINAME		0.017	75586	2	.99033900			0.221	58267	0.362195	36	0.58378	
ALTFACID			75586		.99033900			0.221		0.362195		0.58378	

										MI South						
		MASTER_														
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUE	BITEMDE:	SC		SCCSUBDESC	
441	IMI South LLC	37418	2102900036	LIMESTONE	Bullitt	21029	3272	001	1	3050110	7 CEM	AENT UNI	_OADING :	SILO	CEMENT UNLOADING S	SILO
442	IMI South LLC	37418	2102900036	LIMESTONE	Bullitt	21029	3272	002	1	30501107	7 FLY	ASH UNI	_OADING	SILO	FLYASH UNLOADING S	3ILO
443	IMI South LLC	37418	2102900036	LIMESTONE	Bullitt	21029	3272	003	1	30501108	B CEN	MENT & I	FLYASH W	EIGHING	CEMENT & FLYASH WE	:IGHI
444	IMI South LLC	37418	2102900036	LIMESTONE	Bullitt	21029	3272	004	1	3050111	1 TRU	JCK LOAI	TUOC		TRUCK LOADOUT	
445	IMI South LLC	37418	2102900036	LIMESTONE	Bullitt	21029	3272	005	1	30501106	6 AGG	HANDL:	ING & ST	KPILE	AGG HANDLING & STK	(PILE
446	IMI South LLC	37418	2102900036	LIMESTONE	Bullitt	21029	3272	006	1	30501199	9 HAL	JL ROAD	-UNPAVED		HAUL ROAD-UNPAVED	
AINAME TFACID																
0bs		\$02		NO2		PM25_F	IL		PM_C	ON PM2	25_PRI	ī				
441					0	.002430	000	0	.061276	60 0	.06371	ļ				
442	•		-		0	.000607	7 50	0	.015319	15 0	.01593	3				
443					0	.000225	500	0	.006382	98 0	.00661	l				
444					0	.003600	000	0	.102127	66 0	. 10573	3				
445	•		•		0	.316800	000	0	.653617	02 0	.97042	2			4	
446					_	.036963	300		.025128		.06209					
AINAME	0.0000	0000	0.000	00000	٥	.360625	550		.863851		.22448					
TFACID	0.0000	0000	0.000	00000		.360625			.863851		. 22448	3				
			- COUNTYN=Bu	llitt ALTF	ACID=21029	00037 N	MASAINA	ME=Spe	cialty	Engravinç	g Syst	ems Ind	>			, -
Obs	MASA	INAME		AI_ID	ALTFACID	PRI	PROD	CON	NTYN	FIP\$	SIC1	PTID	SEGID	SCC	SUBITEMDES	SC.
447	Specialty Engra			37449	2102900037		E PLAT			21029 2	2796	001	1	3090109	97 CHROMIC ACID T	ANK
448	Specialty Engra	ving System	is Inc	37449	2102900037	CRON	ME PLAT	Bul	litt	21029 2	2796	002	1	3090109	98 COPPER PLATING	i TAN
Obs	SCCSUBDESC			S 02		¥	102		Р	M25_FIL		ı	PM_CON	PM25_PI	RI	
0.00																
447	CHROMIC ACID TA	νK				,			0.0	0030902		1.130	062755	1.130	94	

				COUNT	YN=Bullitt A	LTFACIE	=2102900037	MASAINAM	E=Specialt	ty Engravi	ing Syst	ems In	ıc			
							(00	ontinued)								
					MASTER_											
Obs		MASAIN	IAME		AI_ID	AL1	FACID P	RIPROD	COUNTYN	FIPS	SIC1	PTID	SEGI	D S	CC	SUBITEMDESC
449	Spe	ecialty Engravi	ng Sy	ystems Inc	37449	2102	2900037 CR	OME PLAT	Bullitt	21029	2796	003	1	309	01098 0	COPPER PLATING TANK
MASAINAME ALTFACID																
Obs		SCCSUBDESC			S02			NO2		PM25_FIL	.		PM_CON	PM2	5_PRI	
449	COF	PPER PLATING TA	NK						C	77506088	3	2.83	580142		61086	
MASAINAME ALTFACID					0.00000000	- * * * -	0.0000			1.30096990 1.30096990			950015 950015	7.	19047 19047	
	 0bs		IASAII		H=Bullitt ALT	FACID=2 ASTER_ AI_ID	2102900038 M/		Monarch Ha	ardware &		eturing SIC1		SEGID	scc	SUBITEMDESC
4	450	Monarch Hardwa			•	465	2102900038	GENERAL	. HARDWARE	Bullitt	21029	3429	001	1	40200110	
4	451	Monarch Hardwa				465	2102900038		. HARDWARE			3429	001	2	40200998	
		Monarch Hardwa			_	465	2102900038		HARDWARE			3429	002	1	40200310	
		Monarch Hardwa			-	465	2102900038		. HARDWARE	Bullitt		3429	003	1	30903099 39000689	
	454	Monarch Hardwa	ire &	Manutacturi	.ng Co	465	2102900038	GENERAL	. HARDWARE	Bullitt	21029	3429	004	1	39000008	OVEN/HEATENS
MASAIN	AME															
t	0bs	SCCSUBDESC			s	02		N02		· PM25	5_FIL		PW	_CON	PM25_PRI	ı
	450	PAINT BOOTH													•	
•	451	THINNER USAGE			•										•	
•	452	WAX BOOTH			-											
	453	END LATHES			•					0.0000	14935		1.8056	32334	1.80567	7
•	454	OVEN & HEATER	NG U	SE	0.001656	00	0.3	27600000		0.0209	97600		0.0335	6160	0.05454	
MASAIN	AME				0.001656	00	0.:	27600000		0.0210	02535		1.8391	8494	1.86021	

2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

MASSAIINO ABB	M A S T E A R L P C _ T R O A F I U I A P N F _ C R T I I I O Y P	I T G	SUSBCICSEUBBDBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB		s o			N O		P M 2 5 - F I	P M - C	P M 2 5 - P R
s E	D D D N S	1 D D	c c c		2			2		L	N	I
LTFACID				0.00	165600	(276000	000	(0.02102535	1.83918494	1.86021
		- COUNTYN=Bu	llitt ALTFACI	D=21029000	10 MASAINAN	IE=Clark	& Asso	ciates I	_LC			
Obs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC	
		AI_ID										BATTONS
455	Clark & Associates LLC	AI_ID 34458	2102900040	Welding	Bullitt	21029	3441	001	1	30900500	MIG WELDING OPE	
455 456	Clark & Associates LLC Clark & Associates LLC	AI_ID 34458 34458	2102900040 2102900040	Welding Welding	Bullitt Bullitt	21029 21029	3441 3441	001 002	1 1	30900500 40200610	MIG WELDING OPE COATING OPERATI	ONS
455 456 457	Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC	AI_ID 34458 34458 34458	2102900040 2102900040 2102900040	Welding Welding Welding	Bullitt Bullitt Bullitt	21029 21029 21029	3441 3441 3441	001 002 002	1 1 2	30900500 40200610 40200610	MIG WELDING OPE COATING OPERATI COATING OPERATI	ONS ONS
455 456 457 458	Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC	AI_ID 34458 34458 34458 34458	2102900040 2102900040 2102900040 2102900040	Welding Welding Welding Welding	Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029	3441 3441 3441 3441	001 002 002 002	1 1 2 3	30900500 40200610 40200610 40200610	MIG WELDING OPE COATING OPERATI COATING OPERATI COATING OPERATI	ONS ONS ONS
455 456 457	Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC	AI_ID 34458 34458 34458	2102900040 2102900040 2102900040	Welding Welding Welding	Bullitt Bullitt Bullitt	21029 21029 21029	3441 3441 3441	001 002 002	1 1 2	30900500 40200610 40200610	MIG WELDING OPE COATING OPERATI COATING OPERATI	ONS ONS ONS
455 456 457 458 459	Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC	AI_ID 34458 34458 34458 34458 34458	2102900040 2102900040 2102900040 2102900040 2102900040	Welding Welding Welding Welding Welding	Bullitt Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029 21029	3441 3441 3441 3441 3441	001 002 002 002 002	1 1 2 3 4	30900500 40200610 40200610 40200610 40200610	MIG WELDING OPE COATING OPERATI COATING OPERATI COATING OPERATI COATING OPERATI	ONS ONS ONS
455 456 457 458 459 460	Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC Clark & Associates LLC	AI_ID 34458 34458 34458 34458 34458	2102900040 2102900040 2102900040 2102900040 2102900040	Welding Welding Welding Welding Welding	Bullitt Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029 21029 21029	3441 3441 3441 3441 3441	001 002 002 002 002	1 1 2 3 4 1	30900500 40200610 40200610 40200610 40200610	MIG WELDING OPE COATING OPERATI COATING OPERATI COATING OPERATI COATING OPERATI ROADWAYS	ONS ONS ONS
455 456 457 458 459 460 	Clark & Associates LLC	AI_ID 34458 34458 34458 34458 34458	2102900040 2102900040 2102900040 2102900040 2102900040 2102900040	Welding Welding Welding Welding Welding	Bullitt Bullitt Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029 21029 21029	3441 3441 3441 3441 3441	001 002 002 002 002 003	1 1 2 3 4 1	30900500 40200610 40200610 40200610 30502011	MIG WELDING OPE COATING OPERATI COATING OPERATI COATING OPERATI COATING OPERATI ROADWAYS CON PM25_PRI	ONS ONS ONS
455 456 457 458 459 460 	Clark & Associates LLC SCCSUBDESC 3 MIG WELDING STATIONS	AI_ID 34458 34458 34458 34458	2102900040 2102900040 2102900040 2102900040 2102900040 2102900040	Welding Welding Welding Welding Welding	Bullitt Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029 21029 21029	3441 3441 3441 3441 3441	001 002 002 002 002 003 PM25_F	1 1 2 3 4 1	30900500 40200610 40200610 40200610 40200610 30502011	MIG WELDING OPE COATING OPERATI COATING OPERATI COATING OPERATI COATING OPERATI ROADWAYS CON PM25_PRI	ONS ONS ONS
455 456 457 458 459 460 	Clark & Associates LLC SCCSUBDESC 3 MIG WELDING STATIONS PRIMER	AI_ID 34458 34458 34458 34458	2102900040 2102900040 2102900040 2102900040 2102900040 2102900040	Welding Welding Welding Welding Welding	Bullitt Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029 21029 21029	3441 3441 3441 3441 3441	001 002 002 002 003 PM25_F	1 1 2 3 4 1	30900500 40200610 40200610 40200610 30502011	MIG WELDING OPE COATING OPERATI COATING OPERATI COATING OPERATI COATING OPERATI ROADWAYS CON PM25_PRI COO O O	ONS ONS ONS
455 456 457 458 459 460 	Clark & Associates LLC SCCSUBDESC 3 MIG WELDING STATIONS PRIMER RUSTOLEUM-SAFETY BLUE	AI_ID 34458 34458 34458 34458	2102900040 2102900040 2102900040 2102900040 2102900040 2102900040	Welding Welding Welding Welding Welding	Bullitt Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029 21029 21029	3441 3441 3441 3441 3441	001 002 002 002 003 003 PM25_F	1 1 2 3 4 1	30900500 40200610 40200610 40200610 30502011	MIG WELDING OPE COATING OPERATI COATING OPERATI COATING OPERATI COATING OPERATI ROADWAYS CON PM25_PRI	ONS ONS ONS
455 456 457 458 459 460 	Clark & Associates LLC SCCSUBDESC 3 MIG WELDING STATIONS PRIMER	AI_ID 34458 34458 34458 34458	2102900040 2102900040 2102900040 2102900040 2102900040 2102900040	Welding Welding Welding Welding Welding	Bullitt Bullitt Bullitt Bullitt Bullitt	21029 21029 21029 21029 21029 21029	3441 3441 3441 3441 3441	001 002 002 002 003 PM25_F	1 1 2 3 4 1	30900500 40200610 40200610 40200610 30502011	MIG WELDING OPE COATING OPERATI COATING OPERATI COATING OPERATI COATING OPERATI ROADWAYS . CON PM25_PRI DOO 0 0 0	ONS ONS ONS

				(conti	Lnuea)						
0bs	MASAINAME	MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBITEMDESC
ALTFACID											
Obs	SCCSUBDESC		\$O2		NO2		ı	PM25_FI	L	PM_CO	N PM25_PRI
ALTFACID		0	. 00000000		0.00000000		0.0	0000000	0	0.0000000	0 0
		COUNTYN=Bull	litt ALTFACID	=2102900041	1 MASAINAME	≕Allied	Ready M	ix Co I	nc		
		MASTER									
Obs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
461	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	01	1	30501107	Cement Silo
462	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	02	1	30501107	Fly Ash Silo
463	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	03	1	30501108	Cement Weight Hoppe
464	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	04	1	30501109	Drum Mixer
465	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273	05	1	30501106	Aggregate Handling
		40050	0400000044	CONCRETE	Bullitt	21029	3273	06	1	30501111	Truck Loadout
466	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	BUTITLE	- 1 0 - 0					
	Allied Ready Mix Co Inc Allied Ready Mix Co Inc	43856 43856	2102900041	CONCRETE	Bullitt	21029	3273	7	1	30501106	Stockpiles
466	-						3273 3273	7 8	1	30501106 30501199	Paved Haul Road
466 467	Allied Ready Mix Co Inc	43856	2102900041	CONCRETE	Bullitt	21029	3273				•
466 467 468	Allied Ready Mix Co Inc Allied Ready Mix Co Inc	43856	2102900041 2102900041	CONCRETE	Bullitt Bullitt	21029	3273	8 5_FIL	1	30501199	Paved Haul Road
466 467 468 Obs	Allied Ready Mix Co Inc Allied Ready Mix Co Inc SCCSUBDESC	43856	2102900041 2102900041	CONCRETE	Bullitt Bullitt	21029	3273 PM2	8 5_FIL 00000	1	30501199 PM_CON	Paved Haul Road PM25_PRI
466 467 468 Obs	Allied Ready Mix Co Inc Allied Ready Mix Co Inc SCCSUBDESC Cement Silo	43856	2102900041 2102900041	CONCRETE	Bullitt Bullitt	21029	3273 PM2 0.000	8 5_FIL 00000 00000	1	30501199 PM_CON	Paved Haul Road PM25_PRI 0
466 467 468 Obs 461 462	Allied Ready Mix Co Inc Allied Ready Mix Co Inc SCCSUBDESC Cement Silo Fly Ash Silo	43856	2102900041 2102900041	CONCRETE	Bullitt Bullitt	21029	3273 PM2 0.000 0.000	8 5_FIL 00000 00000 00000	1 (30501199 PM_CON 0.00000000	Paved Haul Road PM25_PRI 0 0
466 467 468 Obs 461 462 463	Allied Ready Mix Co Inc Allied Ready Mix Co Inc SCCSUBDESC Cement Silo Fly Ash Silo Cement Weight Hopper	43856	2102900041 2102900041	CONCRETE	Bullitt Bullitt	21029	3273 PM2 0.000 0.000 0.000	8 5_FIL 00000 00000 00000 00000	1	30501199 PM_CON 0.00000000 0.00000000	Paved Haul Road PM25_PRI 0 0 0
466 467 468 Obs 461 462 463 464	Allied Ready Mix Co Inc Allied Ready Mix Co Inc SCCSUBDESC Cement Silo Fly Ash Silo Cement Weight Hopper Drum Mixer	43856	2102900041 2102900041	CONCRETE	Bullitt Bullitt	21029	3273 PM2 0.000 0.000 0.000	8 5_FIL 00000 00000 00000 00000	1	30501199 PM_CON 0.00000000 0.00000000 0.00000000	Paved Haul Road PM25_PRI 0 0 0 0
466 467 468 Obs 461 462 463 464 465	Allied Ready Mix Co Inc Allied Ready Mix Co Inc SCCSUBDESC Cement Silo Fly Ash Silo Cement Weight Hopper Drum Mixer Aggregate Handling	43856	2102900041 2102900041	CONCRETE	Bullitt Bullitt	21029	3273 PM2 0.000 0.000 0.000 0.000	8 5_FIL 00000 00000 00000 00000 00000	1 (30501199 PM_CON 0.00000000 0.00000000 0.00000000 0.000000	Paved Haul Road PM25_PRI 0 0 0 0 0

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

										continu	ueu)								
	М																		
	A							5	_										
	S M T							U											
								В	C							_			_
			P	^				I								P		-	P
			R					T E								M 2		P	M 2
			I				s	M								5			5
	N I.				- s	Р		D								ວ		ivi	J
0					. I	T		SE			s			N		_ F		ċ	_ P
b		I		, , Y F		ī		C S			0			0		I	,	_	R
s s	E D		DI			D		CC			2			2		L.			I
ASAINAME										0.000	000000		0.00000	 000		.00000000	0.000	00000	_
																	0.000		v
ALTFACID					COU	NTYN=	:Bul	litt.	ALTFACID=210	0.000			0.00000 ock Tra			.00000000	0.000		0
				 N		NTYN=	:Bul	litt .	ALTFACID=210								0.000		0
	MASAINAME			 N	COU MASTER_ AI_ID			litt .	ALTFACID=210 PRIPRO	2900042							0.000		
ALTFACID	MASAINAME Blackrock Traile		· -	 M	IASTER_	A	LTF			2900042 D	2 MASAINAM	E=Blackr	ock Tra	ilers				ESC	
ALTFACID Obs				 M	MASTER_ AI_ID	21	LTF.	ACID	PRIPRO	2900042 D ilers	2 MASAINAM COUNTYN	E=Blackr FIPS	ock Tra SIC1	ilers PTID	SEGID	scc	SUBITEMDI	ESC aning	
Obs	Blackrock Traile	rs		 N	ASTER AI_ID 50239	21 21	0294 0294	ACID 00042	PRIPRO	2900042 D ilers ilers	2 MASAINAM COUNTYN Bullitt	E=Blackr FIPS 21029	ock Tra SIC1 3715	ilers PTID O1MP1	SEGID 1	SCC 10300603	SUBITEMDI	ESC aning Operat	
Obs 469 470	Blackrock Traile Blackrock Traile	rs rs		 N	ASTER_ AI_ID 50239 50239	21 21 21	029 029 029	ACID 00042 00042	PRIPRO Truck Tra Truck Tra	12900042 ilers ilers ilers	2 MASAINAM COUNTYN Bullitt Bullitt	E=Blackr FIPS 21029 21029	ock Tra SIC1 3715 3715	ilers PTID 01MP1 01MP2	SEGID 1 2	SCC 10300603 10300603	SUBITEMDI Tool Cle washing (ESC aning Operat ying	 tio
Obs 469 470 471	Blackrock Traile Blackrock Traile Blackrock Traile	rs rs rs	· -	N	MASTER_ AI_ID 50239 50239 50239	21 21 21 21	029 029 029 029 029	ACID 00042 00042 00042	PRIPRO Truck Tra Truck Tra Truck Tra	12900042 ilers ilers ilers ilers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt	E=Blackr FIPS 21029 21029 21029	ock Tra SIC1 3715 3715 3715	ilers PTID O1MP1 O1MP2 O1MP3	SEGID 1 2 3	SCC 10300603 10300603 10300603	SUBITEMDI Tool Clea washing (Parts Dry	ESC aning Operat ying oating	tio
Obs 469 470 471 472	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile	rs rs rs		N	AI_ID 50239 50239 50239 50239	21 21 21 21	029 029 029 029 029	ACID 00042 00042 00042	PRIPRO Truck Tra Truck Tra Truck Tra Truck Tra	12900042 ilers ilers ilers ilers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt Bullitt	E=Blackr FIPS 21029 21029 21029 21029 21029	ock Tra SIC1 3715 3715 3715 3715	PTID O1MP1 O1MP2 O1MP3 O1MP4	SEGID 1 2 3 4	SCC 10300603 10300603 10300603 10300603	SUBITEMDI Tool Clea washing (Parts Dry Powder Co	ESC aning Operat ying oating	 tio
Obs 469 470 471 472 473	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile	rs rs rs		N	AI_ID 50239 50239 50239 50239	21 21 21 21	029 029 029 029 029	ACID 00042 00042 00042	PRIPRO Truck Tra Truck Tra Truck Tra Truck Tra	12900042 ilers ilers ilers ilers	2 MASAINAM COUNTYN Bullitt Bullitt Bullitt Bullitt	E=Blackr FIPS 21029 21029 21029 21029 21029	ock Tra SIC1 3715 3715 3715 3715 3715	PTID O1MP1 O1MP2 O1MP3 O1MP4	SEGID 1 2 3 4	SCC 10300603 10300603 10300603 10300603	SUBITEMDI Tool Clea washing (Parts Dry Powder Co	ESC aning Operat ying oating	tio
Obs 469 470 471 472 473	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile	rs rs rs		N	AI_ID 50239 50239 50239 50239	21 21 21 21 21	029 029 029 029 029	ACID 00042 00042 00042 00042	PRIPRO Truck Tra Truck Tra Truck Tra Truck Tra Truck Tra	D ilers ilers ilers ilers ilers	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt Bullitt	E=Blackr FIPS 21029 21029 21029 21029 21029	ock Tra SIC1 3715 3715 3715 3715 3715	PTID O1MP1 O1MP2 O1MP3 O1MP4 O2MP5	SEGID 1 2 3 4 1	SCC 10300603 10300603 10300603 10300603 39999999	SUBITEMDI Tool Clea washing (Parts Dry Powder Co 30 Statio	ESC aning Operat ying oating	 tio
Obs 469 470 471 472 473 SAINAME	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile	rs rs rs	her	N	AI_ID 50239 50239 50239 50239	21 21 21 21 21	029 029 029 029 029	ACID 00042 00042 00042 00042 00042	PRIPRO Truck Tra Truck Tra Truck Tra Truck Tra Truck Tra	ilers ilers ilers ilers ilers ilers	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt	E=Blackr FIPS 21029 21029 21029 21029 21029	ock Tra SIC1 3715 3715 3715 3715 3715	PTID O1MP1 O1MP2 O1MP3 O1MP4 O2MP5	SEGID 1 2 3 4 1	SCC 10300603 10300603 10300603 39999999	SUBITEMDI Tool Clea washing (Parts Dry Powder C 30 Statio	ESC aning Operat ying oating	tio
Obs 469 470 471 472 473 SAINAME Obs 469	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile SCCSUBDESC Bake off Oven	rs rs rs	her	N	AI_ID 50239 50239 50239 50239	21 21 21 21 21	029 029 029 029 029	ACID 00042 00042 00042 00042 50042	PRIPRO Truck Tra Truck Tra Truck Tra Truck Tra Truck Tra	0.15	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt Bullitt NO2	E=Blackr FIPS 21029 21029 21029 21029 21029	SIC1 3715 3715 3715 3715 3715 3715	PTID 01MP1 01MP2 01MP3 01MP4 02MP5	SEGID 1 2 3 4 1	SCC 10300603 10300603 10300603 39999999 PM_CON	SUBITEMDI Tool Clea washing (Parts Dry Powder C 30 Station	ESC aning Operat ying oating	 tio
Obs 469 470 471 472 473 SAINAME Obs 469 470	Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile Blackrock Traile SCCSUBDESC Bake off Oven Hot Water Parts	rs rs rs		N	AI_ID 50239 50239 50239 50239	21 21 21 21 21	029 029 029 029 029 029	ACID 00042 00042 00042 00042 50042	PRIPRO Truck Tra Truck Tra Truck Tra Truck Tra Truck Tra	ilers ilers ilers ilers ilers ilers 0.15 0.58	COUNTYN Bullitt Bullitt Bullitt Bullitt Bullitt Bullitt Bullitt	E=Blackr FIPS 21029 21029 21029 21029 21029	SIC1 3715 3715 3715 3715 3715 0.01	PTID O1MP1 O1MP2 O1MP3 O1MP4 O2MP5 25_FIL 165080 447292	SEGID 1 2 3 4 1	SCC 10300603 10300603 10300603 39999999 PM_CON .01864128 .07115667	SUBITEMDI Tool Clea washing (Parts Dry Powder Cc 30 Station PM25_PRI 0.03029 0.11563	ESC aning Operat ying oating	tio

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area

2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)
Bullitt County

COUNTYN=Bullitt ALTFACID=2102900042 MASAINAME=Blackrock Trailers
(continued)

					(cor	ntinued))								
Obs	MASAINAME	MAST AI	_	FACID	PRIPROD	cc	OUNTYN	N F	IPS	SIC1	PTID	SEGID	scc	SUBITEMD	ESC
ALTFACID															
Obs	SCCSUBDESC			S02			NO2			PM2	5_FIL		PM_CON	PM25_PRI	
ALTFACID			0.01	1757082		2.92847	7000			4,281	24692	5.	30608716	9.58733	
0bs	MASAINAME	MASTER_	OUNTYN=Bull	litt ALTFACI PRIPROD	D=2102900						rvice		SUBITE	MDESC	
	ordons Food Service ordons Food Service			Frozen Food Frozen Food											(21 mmbtu/ (21 mmbtu/
MASAINAME ALTFACID															
Obs	SCCSUBDESC		\$02		N	02			PM25	_FIL		PM_CON	PM25_PI	RI.	
474 di	lesel fuel usage	0.	00000000		0.000000	00		0	.0000	0000	0	.00000000	0		

0bs	SCCSUBDESC	\$02	NO2	PM25_F1L	PM_CON	PM25_PRI
474	diesel fuel usage	0.00000000	0.00000000	0.00000000	0.00000000	0
475	diesel fuel usage	0.00000000	0.00000000	0.00000000	0.00000000	0
MASAINAME		0.00000000	0.00000000	0.00000000	0.00000000	0
ALTFACID		0.0000000	0.0000000	0.00000000	0.00000000	0

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

			COUNTYN=Bullit	t ALTFACID=210290	0044 MASAINAME	=Medimmune Distr	ibution Cen	ter			
				MASTER_							
0bs		MASAI	INAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1		
476	Medimmu	ne Distr	ribution Center	63309	2102900044	Misc Medical	Bullitt	21029	8731		
477	Medimmu	ne Distr	ribution Center	63309	2102900044	Misc Medical	Bullitt	21029	8731		
478	Medimmu	ne Distr	ribution Center	63309	2102900044	Misc Medical	Bullitt	21029	8731		
479	Medimmu	ne Distr	ribution Center	63309	2102900044	Misc Medical	Bullitt	21029	8731		
MASAINAME ALTFACID											
Obs	PTID	SEGID	scc		SUBITEMDESC		SCCSUB	DESC		802	
476	EU 01	1	20100102	Emergency Genera	tor #1, 1120 E	BHP, Kohler Mode	Fuel Oil	Usage		0.09695575	
477	EU 02	1	20100102	Emergency Genera	· · · · · · · · · · · · · · · · · · ·	=	Fuel Oil	Usage		0.09695575	
478	EU 03	1	20100102	Diesel Fire Pump	•		Fuel Oil	Usage		0.01915300	
479	EU 04	1	20100102	Diesel Fire Pump	Engine #2, 18	33 BHP, Aurora M	Fuel Oil	Usage		0.01915300	
MASAINAME										0.23221750	
ALTFACID										0.23221750	

0bs	NO2	PM25_FIL	PM_CON	PM25_PRI
476	2.78628125	0.04283010	0.00359699	0.04643
477	2.78628125	0.04283010	0.00359699	0.04643
478	0.66508525	0.00724658	0.00060859	0.00786
479	0.66508525	0.00724658	0.00060859	0.00786
		*		
MASAINAME	6.90273300	0.10015336	0.00841115	0.10856
ALTFACID	6.90273300	0.10015336	0.00841115	0.10856

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

				- COUNTYN=Bu	llitt ALTF	ACID=2102	2900045	MASAIN	AME=Ma	rrilli	a En	vironmenta	al LLC			
Obs	N	MASAINAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	I FIPS	SIC1	PTID S	EGID	scc	SUBITEMDESC			
481 1	Marrillia	Environment Environment Environment	al LLC	70880	2102900045 2102900045 2102900045	Waste	Bullitt Bullitt Bullitt	21029	4953	EU02	1 1 1	20300101	Mechanical (88-hp diese Wood and Ash	engine	•	ir Curtain Incin
MASAINAME ALTFACID																
0bs	sccs	SUBDESC			\$02			N02			PI	M25_FIL	Pi	_CON	PM25_PRI	
481	88-hp dies	n Incinerat sel engine Ash Handling			0271850 0030357			87400 878572			0.0	3339677 9687857 0000000	0.035 0.0029 0.0000	0009	0.06913 0.09938 0.00000	
MASAINAME ALTFACID			-		0302207 0302207			65972 65972			0.1	3027534 3027534	0.038	22934	0.16850 0.16850	
				CC	OUNTYN=Bull	itt ALTF/	ACID=210	290004	6 MASA	INAME=	-Sabe	rt Corp -			•	
0b	s MASAIN		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIP\$	SIC1	PTID	SEG]	:D	SCC		SUBIT	remdesc	
48: 48: 48: 48: 48	4 Sabert 5 Sabert 6 Sabert	Corp Corp Corp	81499 81499 81499	2102900046 2102900046 2102900046 2102900046 2102900046	plastics plastics plastics plastics plastics	Bullitt Bullitt Bullitt	21029 21029 21029	3089 3089 3089 3089 3089	EP 01 EP 02 EP 03 EP 04 EP 05	1 1	3: 3:	0899999 0899999 0899999	Silo Materia Thermoformer Thermoformer Thermoformer Crystallizer	grinder Regrinde blender	(8 units) er bins (8 (8 units)	•
0 b	ıs	SCCSUBDE	ESC			S 02				NO2		;	PM25_FIL		PM_CON	PM25_PRI
48 48 48 48	4 Thermot 5 Thermot 6 Thermot	aterial Hand former grind former Regri former blend lizer (8 un	der (8 u inder (8 der (8 u)					•			0.0 0.0 0.0	00000000 31024350 00580080 00015082 00001136	0.37 0.14 0.14	0000000 7837413 1149364 1149364 3854490	0.00000 0.68862 0.14729 0.14164 0.13856

-	COUNTYN=Bullitt	ALTFACID=2102900046	MASAINAME=Sabert	Corp	
		(continued)			

			·	OOM IN-DUI	TILL ALII		tinued		. III.	iber e oorp		
						(33.		,				
		MASTER									•	
0bs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC	
488	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 05A	1	30890003	Crystallizer process heater (8 uni	te\
489	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 05A	1	30899999	Dryer (8 units) (thermoforming line	,
490	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 06A	1	30890003	Dryer process heater (8 units)	-3)
491	Sabert Corp	81499	2102900046	plastics	Bullitt		3089	EP 07	1	30899999	Material transfer A (blender-crysta	allizer-dev
492	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 08		30899999	Material transfer B (dryer-extruder	•
493	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 09	1	30801002	Extruder (8 units)	-nopper)
494	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 10	1	30801002	Thermoformer (8 units)	
495	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 10	2	30801002	Thermoformer (8 units)	
496	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 11	1	30899999	Trim press (8 units)	
497	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 12	1	30899999	Injection molding grinders (8 units	e 1
498	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 13	1	30899999	Injection molding regrind bins (8 a	•
499	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 14	1	30899999	Injection molding blender (8 units)	•
500	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 15	1	30899999	Material transfer equipment (8 unit	•
501	Sabert Corp	81499	2102900046	plastics	Bullitt	21029	3089	EP 16	1	30801007	Injection molding (8 units)	is) (Bronds
502	Sabert Corp	81499	2102900046	plastics	Bullitt		3089	EP 17	1	38500102	Cooling tower	
					•							
MASAINAME												
•												
Obs	SCCSUBDESC				S02			NO	12		PM25_FIL PM_CON PM25_	_PRI
488	Crystallizer He	ater		0.0	0467400		0	.7790000	10	0.	05328360 0.09472640 0.14	1801
489	Dryer for therm	oforming l	ines	,						0.	00001136 0.13854490 0.13	3856
490	Dryer process h	eater (8 u	nits)	0.0	0467400		0	.7790000	10	0.	05328360 0.09472640 0.14	18 01

Obs	SCCSUBDESC	S02	N02	PM25_FIL	PM_CON	PM25_PRI
488	Crystallizer Heater	0.00467400	0.77900000	0.05328360	0.09472640	0.14801
489	Dryer for thermoforming lines			0.00001136	0.13854490	0.13856
490	Dryer process heater (8 units)	0.00467400	0.7790000	0.05328360	0.09472640	0.14801
491	Material transfer A			0.00015082	0.14149364	0.14164
492	Material transfer B			0.00000000	0.0000000	0.00000
493	Extruder (8 units)					•
494	Extruder (8 units)					
495	Extruder - Silicone Emulsion				•	
496	Trim press (8 units)			0.11601608	0.14149364	0.25751
497	Injection molding grinder (8)			0.0000000	0.00000000	0.00000
498	Injection molding regrinders	•		0.0000000	0.00000000	0.00000
499	injection molding blender		•	0.0000000	0.00000000	0.00000
500	Material transfer (8 units)		•	0.00000000	0.00000000	0.00000
501	Injection molding (8 units)			•		
502	Cooling tower	•	•	0.00004446	0.00003128	0.00008
MASAINAME	- -	0.00934800	1.55800000	0.53899640	1.41092258	1.94992

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

							(/								
			· · · · · · · · · · · · · · · · · · ·	COUNTYN=Bu]	litt ALTF		102900040 ntinued)	6 MASAI	NAME=Sal	bert Corp					
						(00)	ii ciiiu cu j								
		MASTER													
Obs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FTPS	SIC1	PTID	SEGID	SCC	SUBITE	MDESC			
									*						
ALTFACID															
Obs	SCCSUBDESC				S02			NC)2		PM25_FI	:L	PM_	CON PM25_PRI	
												_			
ALTFACID				0.0	0934800		1 .	5580000	in	n	.5389964	 in	1.41092	258 1.94992	
ALTFACID				0.0	0934000		1	000000	no.	·	.500000	•	1.71002	1101002	
			COUNTYN=Bul	litt ALTFAC	ID=210290	0048 M	ASAINAME	=On Sit	e Elect	rostatic	Painting	Co	-		
		•													
				MASTER_										•	
Obs	MASAIN	AME		AI_ID	ALTFAC	ID	PRIPROD	CC	UNTYN	FIPS	SIC1	PTID	SEGID	SCC	
	Site Electrosta		_	100306	2102900	048	paintin	•	ıllitt	21029	753 9	01	1	40200110	
504 On	Site Electrosta	tic Painti	ng Co	100306	2102900	048	paintin	•	illitt	21029	7539	02	1	40200110	
5 0 5 On	Site Electrosta	tic Painti	ng Co	100306	2102900	048	paintin	•	ıllitt	21029	7539	03	1	40200110	
506 Оп	Site Electrosta	tic Painti	ng Co	100306	2102900	048	paintin	g Bu	ıllitt	21029	7539	04	1	40299998	
507 On	Site Electrosta	tic Painti	ng Co	100306	2102900	048	paintin	g Bı	ıllitt	21029	7539	05	1	40201001	
508 On	Site Electrosta	tic Painti	ng Co	100306	2102900	048	paintin	g Bu	ıllitt	21029	7539	06	1	40201001	
• • • • • • • • • • • • • • • • • • • •															
MASAINAME															
ALTFACID															
Obs. CIII	BITEMDESC			0000	SUBDESC			S02			N02		PM25_FIL	PM CON I	PM25_PRI
005 301	DI I LIWIDESC			3000	ODDESC			302		ē	1102		1 1120_1 12	, m_0011 1	, III_O
503 Pa	inting Room #1:	Descriptio	n: Electros	tatic Coat	ina Use		_					0	.00000000		0
	inting Room #2:				•								.00000000	•	0
	inting Room #3:				-							0	.00000000	•	0
	wder Coating Roo			•	ing Use								.00000000		0
	tural Gas Oven #				ired		0.000	00000		0.00000	000		.00000000	0.00000000	0
	tural Gas Oven #				ired		0.000			0.00000			.00000000	0.0000000	0
				-											
					-										
MASAINAME					-		0.000	00000		0.00000	1000	0	.00000000	0.00000000	0

2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

		COUNTYN=											
0bs	MASA	AINAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
509	Charlton Co Inc - F	Portable Asphai	lt Plant	40234	2102909043	ASPHALT	Bullitt	21029	2951	001	1	30500205	S ASPHALT ROTARY DRYER
510	Charlton Co Inc - F	•		40234	2102909043			21029		002	1	30500204	
511	Charlton Co Inc - F	•		40234	2102909043		Bullitt			002	2	30500203	AGGREGATE HANDLING & STO
MASAINAME ALTFACID													
Obs	SCCSUBDESC		SC	2	I	NO2		PM25_F	IL		PM_C	ON PM25	5_PAI
509	ASPHALT ROTARY DRYE	ER	0.7656000	0	0.72600	000	0	.020328	00 .	0.	.876768	75 0.8	19710
510	AGGREGATE HANDLING							.015972			.1050746		2105
511	STOCKPILES				•		0	.047916	00	0.	.3152238		36314
MASAINAME			0.7656000	0	0.72600	000	0	.084216	00	1.	. 2970672	26 1.3	88128
MASAINAME ALTFACID			0.7656000 0.7656000		0.72600 0.72600		-	0.084216 0.084216			. 2970672 . 2970672		98128 98128
		COUNTYN=Bull	0.7656000	0 ID≃21029090 MAS	0.72600	000 E=Rogers G	O	.084216 -Porta	00 ble Bro	1. ooks Cr	.2970672 rushed	26 1.3 Stone	
ALTFACID	N	MASAINAME	0.7656000	0 ID≃21029090 MAS	0.72600 062 MASAINAM STER_	000 E=Rogers 6 CID PRIF	0 Group Inc	.084216 : -Porta	00 ble Bro PS SIO	1. ooks Cr C1 PTII	.2970672 rushed	26 1.3 Stone SCC	88128
ALTFACID Obs 512		MASAINAME ortable Brooks	0.7656000 Litt ALTFAC	0 ID≃21029090 MAS А	0.72600 062 MASAINAM STER_ NI_ID ALTFA	000 E=Rogers 6 CID PRIF 9062 LIMES	O Group Inc PROD COU STONE Bul	.084216 :-Porta INTYN FI .litt 21	00 ble Bro PS SIC 029 142	1. ooks Cr 01 PTII 22 001	.2970672 rushed	26 1.3 Stone SCC 30532031	SUBITEMDESC
Obs 512 513	N Rogers Group Inc -Po	MASAINAME ortable Brooks ortable Brooks	0.7656000 Litt ALTFAC Crushed St Crushed St	O ID=21029090 MAS A One 4 one 4	0.72600 062 MASAINAM STER_ AI_ID ALTFA	000 E=Rogers 6 CID PRIF 9062 LIMES 9062 LIMES	Group Inc PROD COU STONE Bul STONE Bul	.084216 Porta INTYN FI litt 21 litt 21	00 ble Bro PS SIC 029 142 029 142	1. ooks Cr 01 PTII 22 001 22 002	.2970672 rushed 5 D SEGID	Stone SCC 30532031 30532013	SUBITEMDESC RECEIVING HOPPER
Obs 512 513 514	N Rogers Group Inc -Po Rogers Group Inc -Po	MASAINAME ortable Brooks ortable Brooks ortable Brooks	0.7656000 Litt ALTFAC Crushed St Crushed St Crushed St	O ID=21029090 MAS A One 4 one 4 one 4 one 4	0.72600 062 MASAINAM STER_ AI_ID ALTFA 10276 210290 10276 210290	E=Rogers 6 CID PRIF 9062 LIMES 9062 LIMES 9062 LIMES	Group Inc PROD COU STONE Bul STONE Bul STONE Bul	.084216 Porta INTYN FI litt 21 litt 21 litt 21	00 ble Bro PS SIC 029 142 029 142 029 142	1.000ks Cr C1 PTIC 22 001 22 002 22 003	.2970672 rushed S D SEGID 1	Stone SCC 30532031 30532013 30532001	SUBITEMDESC RECEIVING HOPPER VIBRATING GRIZZLY FEEDER
Obs 512 513 514 515	Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po	MASAINAME ortable Brooks ortable Brooks ortable Brooks ortable Brooks	0.7656000 Litt ALTFAC Crushed St Crushed St Crushed St Crushed St	O ID=21029090 MAS one 4 one 4 one 4 one 4 one 4	0.72600 062 MASAINAM STER_ AI_ID ALTFA 10276 210290 10276 210290 10276 210290	E=Rogers G CID PRIF 9062 LIMES 9062 LIMES 9062 LIMES 9062 LIMES	Group Incorporation COURTONE BullsTONE BullsTO	.084216 Porta INTYN FI litt 21 litt 21 litt 21 litt 21	00 ble Bro PS SIC 029 142 029 142 029 142 029 142	1.000ks Cr C1 PTIE 22 001 22 002 22 003 22 004	.2970672 rushed S D SEGID 1 1	Stone SCC 30532031 30532013 30532001 30532006	SUBITEMDESC RECEIVING HOPPER VIBRATING GRIZZLY FEEDER PRIMARY CRUSHER (3242 JAW)
Obs 512 513 514 515 516	Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po	MASAINAME ortable Brooks ortable Brooks ortable Brooks ortable Brooks	0.7656000 Litt ALTFAC Crushed St Crushed St Crushed St Crushed St	O ID=21029090 MAS one 4 one 4 one 4 one 4 one 4	0.72600 062 MASAINAM STER_ AI_ID ALTFA 10276 210290 10276 210290 10276 210290 10276 210290	E=Rogers G CID PRIF 9062 LIMES 9062 LIMES 9062 LIMES 9062 LIMES	Group Incorporation COURTONE BullsTONE BullsTO	.084216 :-Porta !NTYN FI .litt 21 .litt 21 .litt 21 .litt 21	00 ble Bro PS SIC 029 142 029 142 029 142 029 142	1.000ks Cr C1 PTIE 22 001 22 002 22 003 22 004	.2970672 rushed S D SEGID 1 1 1 1 2	Stone SCC 30532031 30532001 30532001 30532006 30532006	SUBITEMDESC RECEIVING HOPPER VIBRATING GRIZZLY FEEDER PRIMARY CRUSHER (3242 JAW) CRUSHERS AND SCREENS
Obs 512 513 514 515 516	Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po	MASAINAME ortable Brooks ortable Brooks ortable Brooks ortable Brooks	0.7656000 Litt ALTFAC Crushed St Crushed St Crushed St Crushed St	O ID=21029090 MAS one 4 one 4 one 4 one 4 one 4 one 4	0.72600 062 MASAINAM STER_ AI_ID ALTFA 10276 210290 10276 210290 10276 210290 10276 210290	E=Rogers 6 CID PRIF 9062 LIMES 9062 LIMES 9062 LIMES 9062 LIMES	Group Incorporation COURTONE BullsTONE BullsTO	.084216 :-Porta !NTYN FI .litt 21 .litt 21 .litt 21 .litt 21	00 ble Bro PS SIO 029 142 029 142 029 142 029 142	1.000ks Cr C1 PTIE 22 001 22 002 22 003 22 004	.2970672 rushed S D SEGID 1 1 1 1 2	Stone SCC 30532031 30532001 30532001 30532006 30532006	SUBITEMDESC RECEIVING HOPPER VIBRATING GRIZZLY FEEDER PRIMARY CRUSHER (3242 JAW) CRUSHERS AND SCREENS CRUSHERS AND SCREENS
Obs 512 513 514 515 516 Obs 512	Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po SCCSUBDESC	MASAINAME prtable Brooks prtable Brooks prtable Brooks prtable Brooks prtable Brooks	0.7656000 Litt ALTFAC Crushed St Crushed St Crushed St Crushed St	O ID=21029090 MAS one 4 one 4 one 4 one 4 one 4 one 4	0.72600 062 MASAINAM STER_ AI_ID ALTFA 10276 210290 10276 210290 10276 210290 10276 210290	E=Rogers 6 CID PRIF 9062 LIMES 9062 LIMES 9062 LIMES 9062 LIMES	Group Incorporation COURTONE BullsTONE BullsTO	.084216 :-Porta !NTYN FI .litt 21 .litt 21 .litt 21 .litt 21	00 ble Bro PS SIO 029 142 029 142 029 142 029 142	1.000ks Cr C1 PTIE 22 001 22 002 22 003 22 004	.2970672 rushed S D SEGID 1 1 1 1 2	Stone SCC 30532031 30532001 30532006 30532006	SUBITEMDESC RECEIVING HOPPER VIBRATING GRIZZLY FEEDER PRIMARY CRUSHER (3242 JAW) CRUSHERS AND SCREENS CRUSHERS AND SCREENS
Obs 512 513 514 515 516 Obs 512 513	Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po SCCSUBDESC	MASAINAME ortable Brooks ortable Brooks ortable Brooks ortable Brooks ortable Brooks	0.7656000 Litt ALTFAC Crushed St Crushed St Crushed St Crushed St	O ID=21029090 MAS one 4 one 4 one 4 one 4 one 4 one 4	0.72600 062 MASAINAM STER_ AI_ID ALTFA 10276 210290 10276 210290 10276 210290 10276 210290	E=Rogers 6 CID PRIF 9062 LIMES 9062 LIMES 9062 LIMES 9062 LIMES	Group Incorporation COURTONE BullsTONE BullsTO	.084216 :-Porta !NTYN FI .litt 21 .litt 21 .litt 21 .litt 21	00 ble Bro PS SIO 029 142 029 142 029 142 029 142	1.000ks Cr C1 PTIE 22 001 22 002 22 003 22 004	.2970672 rushed S D SEGID 1 1 1 1 2	Stone SCC 30532031 30532001 30532006 30532006	SUBITEMDESC RECEIVING HOPPER VIBRATING GRIZZLY FEEDER PRIMARY CRUSHER (3242 JAW) CRUSHERS AND SCREENS CRUSHERS AND SCREENS
Obs 512 513 514 515 516 Obs 512 513 514 515	Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po Rogers Group Inc -Po SCCSUBDESC RECEIVING HOPPER VIBRATING GRIZZLY FE	MASAINAME ortable Brooks ortable Brooks ortable Brooks ortable Brooks ortable Brooks	0.7656000 Litt ALTFAC Crushed St Crushed St Crushed St Crushed St	O ID=21029090 MAS one 4 one 4 one 4 one 4 one 4 one 4	0.72600 062 MASAINAM STER_ AI_ID ALTFA 10276 210290 10276 210290 10276 210290 10276 210290	E=Rogers 6 CID PRIF 9062 LIMES 9062 LIMES 9062 LIMES 9062 LIMES	Group Incorporation COURTONE BullsTONE BullsTO	.084216 :-Porta !NTYN FI .litt 21 .litt 21 .litt 21 .litt 21	00 ble Bro PS SIO 029 142 029 142 029 142 029 142	1.000ks Cr C1 PTIE 22 001 22 002 22 003 22 004	.2970672 rushed S D SEGID 1 1 1 1 2	Stone SCC 30532031 30532001 30532006 30532006	SUBITEMDESC RECEIVING HOPPER VIBRATING GRIZZLY FEEDER PRIMARY CRUSHER (3242 JAW) CRUSHERS AND SCREENS CRUSHERS AND SCREENS

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

ALTFACID

COUNTYN FIPS

PRIPROD

SIC1

PTID SEGID

SCC

MASTER_

AI_ID

MASAINAME

Obs

517 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	004	3	30532014	
518 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	004	4	30532006	
519 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	005	1	30532002	
520 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	006	1	30532006	
521 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	1	30532006	
522 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	2	30532007	
523 Rogers Group Inc -Portable Bro	aks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	3	30532031	
524 Rogers Group Inc -Portable Bro		40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	4	30532006	
525 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	5	30532007	
526 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	6	30532031	
527 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	7	30532006	
528 Rogers Group Inc -Portable Bro	oks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	8	30532007	
529 Rogers Group Inc -Portable Bro		40276	2102909062	LIMESTONE	Bullitt	21029	1422	007	9	30532031	
530 Rogers Group Inc -Portable Bro		40276	2102909062	LIMESTONE	Bullitt	21029	1422	014	1	30502015	
531 Rogers Group Inc -Portable Bro		40276	2102909062	LIMESTONE	Bullitt	21029	1422	014	2	30502006	
532 Rogers Group Inc -Portable Bro		40276	2102909062	LIMESTONE	Bullitt	21029	1422	014	3	30502006	
533 Rogers Group Inc -Portable Bro	· ·	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	1	30502006	
534 Rogers Group Inc -Portable Bro		40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	2	30502007	
											*
Obs SUBITEMDESC	SCCSUBDESC		;	502	N	02	i	PM25_FIL		PM_CON PM	25_PRI
			,	S02	,)2		PM25_FIL		PM_CON PM	25_PRI
517 CRUSHERS AND SCREENS	8' X 20' 3-DECK	ER.	· :	s02	N	02		PM25_FIL		PM_CON PM	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE		: - -	\$02)2		PM25_FIL		PM_CON PM	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP)	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP	')	: : :	502)2		PM25_FIL		•	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER	')		502)2 		PM25_FIL		•	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK	?) 3		502		02		PM25_FIL		•	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MA	?) R AT)		502		02		PM25_FIL		•	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK M	?) R AT)		502		02		PM25_FIL			25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT)	P) R RT) MAT)		502	N(02		PM25_FIL		· · · · · · · · · · · · · · · · · · ·	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT	P) R MAT) MAT)		502		02		PM25_FIL		· · · · · · · · · · · · · · · · · · ·	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS 526 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MA TR LOADOUT (MID-DECK M BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MA TR LOADOUT (BOT-DECK MA	P) R MAT) MAT)		502		02		PM25_FIL		· · · · · · · · · · · · · · · · · · ·	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS 526 STOCKPILES AND LOADOUTS 527 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT THROUGHS TO STOCKPILE	P) R MAT) MAT)		502		02		PM25_FIL		· · · · · · · · · · · · · · · · · · ·	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS 526 STOCKPILES AND LOADOUTS 527 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT BOT-DECK MAT TO STOCK STOCKPILE (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT THROUGHS TO STOCKPILE STOCKPILE (THROUGHS)	P) R MAT) MAT)		502		02		PM25_FIL		· · · · · · · · · · · · · · · · · · ·	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS 526 STOCKPILES AND LOADOUTS 527 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 529 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (THROUGHS) TR LOADOUT (THROUGHS) TR LOADOUT (THROUGHS)	P) R MAT) MAT)		502		02		PM25_FIL	C	· · · · · · · · · · · · · · · · · · ·	25_PRI
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS 526 STOCKPILES AND LOADOUTS 527 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 529 STOCKPILES AND LOADOUTS 529 STOCKPILES AND LOADOUTS 530 NSPS POINTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHEF MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT THROUGHS TO STOCKPILE STOCKPILE (THROUGHS) TR LOADOUT (THROUGHS) SCALPING SCREEN	P) R RT) MAT) MAT)	· · · · · · · · · · · · · · · · · · ·	502		02				· · · · · · · · · · · · · · · · · · ·	
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS 526 STOCKPILES AND LOADOUTS 527 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 529 STOCKPILES AND LOADOUTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (THROUGHS) TR LOADOUT (THROUGHS) TR LOADOUT (THROUGHS)	PTS	· · · · · · · · · · · · · · · · · · ·	502		02		00000000	C		
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS 526 STOCKPILES AND LOADOUTS 527 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 529 STOCKPILES AND LOADOUTS 529 STOCKPILES AND LOADOUTS 530 NSPS POINTS 531 NSPS POINTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (THROUGHS) TR LOADOUT (THROUGHS) SCALPING SCREEN CONVEYOR AND TRANSFER	P) RT) MAT) MAT) PTS PTS		502		02	0.1	00000000	C		
517 CRUSHERS AND SCREENS 518 CRUSHERS AND SCREENS 519 SEC CRUSH (130/150 IMP) 520 CONVEYOR FROM SECONDARY CRUSHE 521 STOCKPILES AND LOADOUTS 522 STOCKPILES AND LOADOUTS 523 STOCKPILES AND LOADOUTS 524 STOCKPILES AND LOADOUTS 525 STOCKPILES AND LOADOUTS 526 STOCKPILES AND LOADOUTS 527 STOCKPILES AND LOADOUTS 528 STOCKPILES AND LOADOUTS 529 STOCKPILES AND LOADOUTS 529 STOCKPILES AND LOADOUTS 530 NSPS POINTS 531 NSPS POINTS	8' X 20' 3-DECK OVERSIZE TO SEC CRUSHE SEC CRUSH (130/150 IMP R FROM SECONDARY CRUSHER MID-DECK MAT TO STOCK STOCKPILE (MID-DECK MAT TR LOADOUT (MID-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (BOT-DECK MAT TR LOADOUT (THROUGHS) TR LOADOUT (THROUGHS) SCALPING SCREEN CONVEYOR AND TRANSFER	P) RT) MAT) MAT) PTS PTS		502		02	0.1	00000000 00000000 00000000	0		

2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

(continued)

		MASTER_								
Obs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC
535 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	3	30502099
536 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	4	30502006
537 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	5	30502007
538 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	015	6	30502099
539 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	016	1	30502099
540 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	016	2	30502099
541 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	016	3	30502099
542 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	017	1	30502006
543 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	018	1	30502099
544 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	018	2	30502099
545 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	019	1	30502015
546 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	019	2	30502006
547 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	020	1	30502006
548 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	020	2	30502003
549 Rogers	Group Inc -Portable Brooks Crushed Stone	40276	2102909062	LIMESTONE	Bullitt	21029	1422	020	3	30502006

MASAINAME

Obs SUBITEMDESC	SCCSUBDESC	\$02	NO2	PM25_FIL	PM_CON PM25_PRI		
535 FUGITIVE POINTS	TRUCK LOADOUT			0.00000000	0.00000000	0	
536 FUGITIVE POINTS	CONVEYOR AND TRANSFER PTS			0.00000000	0.00000000	0	
537 FUGITIVE POINTS	STOCKPILE			0.00000000	0.00000000	0	
538 FUGITIVE POINTS	TRUCK LOADOUT	,		0.00000000	0.00000000	0	
539 FUGITIVE POINTS	RECEIVING HOPPER			0.00000000	0.00000000	0	
540 FUGITIVE POINTS	PUG MILL		,	0.00000000	0.00000000	0	
541 FUGITIVE POINTS	TRUCK LOADOUT	,	,	0.00000000	0.00000000	0	
542 NSPS POINT	CONVEYOR AND TRANSFER PTS	•		0.00000000	0.00000000	0	
543 FUGITIVE POINTS	RECEIVING HOPPER	•		0.00000000	0.00000000	0	
544 FUGITIVE POINTS	TRUCK LOADOUT			0.00000000	0.00000000	0	
545 NSPS POINTS	WASH SCREEN	•	,	0.00000000	0.00000000	0	
546 NSPS POINTS	CONVEYOR AND TRANSFER PTS	•		0.00000000	0.00000000	0	
547 NSPS POINTS	CONVEYOR AND TRANSFER PTS	•	•	0.00000000	0.00000000	0	
548 NSPS POINTS	TERTIARY CRUSHER	•	,	0.00000000	0.00000000	0	
549 NSPS POINTS	CONVEYOR AND TRANSFER PTS		•	0.00000000	0.0000000	0	
MASAINAME		0.0000000	0.0000000	0.00000000	0.0000000	0	

2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

COUNTYN=Bull	itt ALTFACID=210290906	2 MASAINAME=Roge (continue		ortable Brooks Crus	hed Stone	
Obs MASAINAME	N	ASTER_ AI_ID ALTFAC	ID PRIPROD	COUNTYN FIPS	SIC1 PTID SE	GID SCC
ALTFACID						
Obs SUBITEMDESC S	CCSUBDESC		\$02	NO2	PM25_FIL	PM_CON PM25_PRI
ALTFACID		0.0	0000000	0.00000000	0.00000000	0.00000000 0
COUNTYN=Bu	llitt ALTFACID=2102909	084 MASAINAME=Ro	gers Group Inc	- Portable Crusher	Plant 1	
	MASTE	R				
Obs MASAINAME			RIPROD COUNTYN	FIPS SIC1 PTID SE	GID SCC SUBIT	EMDESC
550 Rogers Group Inc - Portable Cru	sher Plant 1 405	01 2102909084 AG	G CRUSH Bullitt	21029 1429 001	1 30502099 RECE	VING
551 Rogers Group Inc - Portable Cru			G CRUSH Bullitt		1 30502001 PRIMA	ARY CRUSHER-5348 IMPT
552 Rogers Group Inc - Portable Cru	sher Plant 1 405	01 2102909084 AG	G CRUSH Bullitt	21029 1429 003	1 30502006 CONVE	FYOR
553 Rogers Group Inc - Portable Cru	sher Plant 1 405	01 2102909084 A	G CRUSH Bullitt	21029 1429 003	2 30502006 CONVE	EYOR
554 Rogers Group Inc - Portable Cru	sher Plant 1 405	01 2102909084 A0	G CRUSH Bullitt	21029 1429 003	3 30502006 CONVE	YOR
555 Rogers Group Inc - Portable Cru	isher Plant 1 405	01 21029 <mark>0</mark> 9084 A0	G CRUSH Bullitt	21029 1429 004	1 30502015 SCREE	N 6'X16' 3D SCALPING
556 Rogers Group Inc - Portable Cru	isher Plant 1 405	01 21029 <mark>09</mark> 084 A0	G CRUSH Bullitt	21029 1429 005	1 30502006 STOCK	(PILE AND TRANSFER
557 Rogers Group Inc - Portable Cru	isher Plant 1 405	01 2102909084 A0	G CRUSH Bullitt	21029 1429 005	2 30502007 STOCE	(PILE AND TRANSFER
Obs SCCSUBDESC	S 02		NO2	PM25_FIL	PM_CON F	PM25_PRI
550 RECEIVING				0.00000000	0.00000000	0
551 PRIMARY CRUSHER-5348 IMPT	•			0.00000000	0.00000000	0
552 CONVEYOR 42" X 78' (C-1)	•			0.0000000	0.00000000	0
553 CONVEYOR 30" X 100' (C-2)	,	•		0.00000000	0.00000000	0
554 CONVEYOR 30" X 60' (C-4)		•		0.00000000	0.0000000	o
555 SCREEN 6'X16' 3D SCALPING				0.0000000	0.00000000	O
556 CONVEYOR 30" X 100' (C-3)				0.0000000	0.00000000	o
557 RIP RAP STOCKPILE (SP-1)				0.00000000	0.00000000	0 ·

0

0.00000000

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

0.00000000

ALTFACID

Process Level (SCC) Information

									(00110411	,									
Ob	s		MAS	AINAME			M	ASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	scc	SUBI	TEMDE	:SC
55	8 Rogers	Group :	Inc - P	ortable	Crusher	Plant	1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	3	30502099	STOCKPILE	AND	TRANSFER
55	9 Rogers	Group 3	Inc - P	ortable	Crusher	Plant	1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	4	30502006	STOCKPILE	AND	TRANSFER
56	0 Rogers	Group :	Inc - P	ortable	Crusher	Plant	1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	5	30502007	STOCKPILE	AND	TRANSFER
56	1 Rogers	Group :	Inc - P	ortable	Crusher	Plant	1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	6	30502099	STOCKPILE	AND	TRANSFER
56	2 Rogers	Group 3	Inc - P	ortable	Crusher	Plant	1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	7	30502006	STOCKPILE	AND	TRANSFER
56	3 Rogers	Group :	Inc - P	ortable	Crusher	Plant	1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	8	30502007	STOCKPILE	AND	TRANSFER
56	4 Rogers	Group :	Inc - P	ortable	Crusher	Plant	1	40501	2102909084	AGG CRUSH	Bullitt	21029	1429	005	9	30502099	STOCKPILE	AND	TRANSFER
ALTFACI Ob		SCCSUBI	DESC				S02	:		NO2		PI	//25_F	ΙL		PM_COI	N PM25_	PRI	
55	8 RIP RAP	TRUCK	LOADOU	T-L01								0.00	00000	00	(. 00000000) d	ı	
55	9 CONVEYO	R 36"	X 120'	(C-5)								0.00	00000	00	(0.0000000) (ı	
56	O BASE ST	OCKPIL	E (SP-2)		,			•			0.00	00000	00	(0.0000000) 0	ı	
56	1 BASE TR	RUCK LO	ADOUT - L	0-2								0.00	00000	00	(0.0000000) (ı	
56	2 CONVEYO	PR 36"	X 96' (C-6)					ē			0.00	00000	00	(0.0000000) 0		
56	3 2'S STO	CKPILE	(SP-3)			•			•			0.00	000000	00	(0.00000000) (
56	4 2'S TRU	ICK LOAI	DOUT - LO	-3		•						0.00	00000	00	(0.0000000) (
MASAINAM	E					0.0	0000000		0.0	0000000		0.00	00000	00	(0.00000000) c		

0.00000000

0.00000000

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

		MASTER_					•				
Obs	MASAINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID	SEGID	SCC	SUBITEMDESC
565	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	1	30502099	FUGITIVES
5 66	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	2	30502006	FUGITIVES
567	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	3	30502007	FUGITIVES
568	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	4	30502099	FUGITIVES
569	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	5	30502007	FUGITIVES
570	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	6	30502099	FUGITIVES
571	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	001	7	30502099	FUGITIVES
572	RMS Gravel - Portable Plant	43857	2102909111		Bullitt	21029	1442	002	1	30502001	CRUSHER
INAME FACID											
Obs	SCCSUBDESC	S02		NO2		PM25_FIL		РМ_С	ON PM2	25_PRI	
565	LOADOUT	•			0.	00000000		0.000000	00	0	
566	CONVEYOR				0.	00000000		0.000000	00	0	
567	STOCKPILE				0.	00000000		0.000000	00	0	
568	LOADOUT				0.	00000000		0.000000	00	0	
569	STOCKPILE	•			0.	00000000		0.000000	00	0	
570	TRUCK LOADOUT				0.	00000000		0.000000	00	0	
571	RECEIVING HOPPER				0.	00000000		0.000000	00	0	
572	PRIMARY CRUSHER	-			0.	00000000		0.000000	00	0	
INAME		0.0000000		000000		00000000		0.000000		0	
FACID		0.00000000	0.00	000000	0.	00000000		0.000000	UU	0	

Bullitt County

Process Level (SCC) Information

	COUNTY	N=Bullitt ALTFACID=2102909	186 MASAINAN	ME=Flynn Brot	hers Contract	ing - Port	able		
			MASTER						
Obs	MAS	AINAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID
573	Flynn Brothers Co	ntracting - Portable	85396	2102909186	asphalt	Bullitt	21029	2951	(-)
574	Flynn Brothers Co	•	85396	2102909186	•	Bullitt	21029	2951	01 01
575	Flynn Brothers Co		85396	2102909186	•	Bullitt	21029	2951	01 01
576	Flynn Brothers Co		85396	2102909186	•	Bullitt	21029	2951	01 01
577	Flynn Brothers Co	_	85396	2102909186	•	Bullitt	21029	2951	06 01
578	Flynn Brothers Co		85396	2102909186	•	Bullitt	21029	2951	06 02
579	Flynn Brothers Co	-	85396	2102909186	-	Bullitt	21029	2951	08 05
580	Flynn Brothers Co	•	85396	2102909186	•	Bullitt	21029	2951	09 01
581	Flynn Brothers Co	-			•	Bullitt	21029	2951	09 02
582		-	85396 95396	2102909186	•				
583	Flynn Brothers Co	-	85396	2102909186	•	Bullitt	21029	2951	09 03
503	Flynn Brothers Co	ntracting - Portable	85396	2102909186	asphalt	Bullitt	21029	2951	09 04
Obs	SEGID SCC	SUBITEMDESC			SCCSUBDESC				\$02
573	1 30502006	Conveyor & Transfer Po	ints (RAP) [From RAP Sc	RAP Convey	or (-)			
574	1 30500205				Rotary Dry	er (Nat. Ga	ıs)		0.15884023
575	2 30500205				Rotary Dry	er (Fuel Oi	.1)		0.00000000
576	3 30500205				Rotary Dry	er (Waste O)il)		0.00000000
577	1 30500204		,		Aggregate	•	r		
578	1 30500203	· · · · · · · · · · · · · · · · · · ·			Stockpile(•
579	1 30502006		ints (RAP) [From RAP Re	RAP Convey				•
580	1 30502099		, , -		-	t (Truck) 0	9 01		•
581	1 30502007					ilė(s) 09 0			
582	1 30502099					t (Loader)			•
583	1 30502099	() (· · · · · · · · · · · · · · · · · · ·		ing Hopper			,
A 1							•		
0bs		NO2 PM25_FI	L	PM_CON	PM25_PRI				
573		0.0001221	8 0.	00052954	0.00065				
574	1.21466			10307823	3.17502				
575	0.00000			00000000	0.00000				
576	0.00000	0000000.0	0 0.	00000000	0.00000				
577		0.0478676	7 0.	31490595	0.36277				
578		0.0156215		10276919	0.11839				
579	•	0.0001221		00052954	0.00065				
580		0.0220786		00002331	0.02218				
581		0.0033000		02380952	0.02711				
582		0.0085786		00003782	0.00862				
583	•	0.0003788		00000757	0.00005				
000	•	0.0000428		00000101	J.00000				

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

		COUNTYN=E	Bullitt ALTFACID=2102909	9186 MASAINAN contir)		hers Contrac	ting - Port	able		
				MASTER_						
Obs		MASAIN	NAME	AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	SIC1	PTID
584	Flynn B	rothers Contr	racting - Portable	85396	2102909186	asphalt	Bullitt	21029	2951	10 01
585	Flynn B	rothers Contr	racting - Portable	85396	2102909186	asphalt	Bullitt	21029	2951	10 02
586	-		racting - Portable	85396	2102909186	asphalt	Bullitt	21029	2951	10 03
587	-		racting - Portable	85396	2102909186	•	Bullitt	21029	2951	10 04
MASAINAME										
ALTFACID										
0bs	SEGID	scc	SUBITEMDESC			SCCSUBDES	С			S02
584	1	30502001	Crusher (RAP) [From RA	AP Conveyor 1	o RAP Conve	RAP Crush	er 10 01			,
585	1	30502006	Conveyor & Transfer Po			RAP Conve				•
586	1	30502015	Screen (RAP) [From Two	, , ,		RAP Scree	•			·
587	1	30502006	Conveyor & Transfer Po			RAP Conve				
MASAINAME ALTFACID										0.15884023 0.15884023
Obs		NO	2 PM25 F3	IL	PM CON	PM25_PRI				
0.00		,,,,								
584			0.0000010	00 0	.00026477	0.00027				
585		•	0.000122	18 0	.00052954	0.00065				
586			0.0060050	03 0	.00567368	0.01168				
587		•	0.000122	18 0	.00052954	0.00065				
MASAINAME		1.21466059	9 0.1759293	37 3	.55276226	3.72869				
ALTFACID		1.21466059	9 0.1759293	37 3	. 55276226	3.72869				

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

					-			_	
					MASTER				
0bs		MAS	GAINAME		AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
588	_			Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
589				Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
590	=			Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
591				Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
592				Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
593				Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
594	-			Screening Unit	99372	2102909199	Asphalt	Bullitt	2102 9
595				Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
596	-			Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
597	_			Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
598	Mago Constr	uction Co LL	.C - Portable	Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
								•	
Obs	SIC1 PTI	D SEGID	scc	SUBITEMDESC			SCCSU	JBDESC	
			000	3551725233					•
588	1429 010	1 1	30502099	Loadout A (to	stockpile B)		Loado	out A (to sto	ckpile B)
589	1429 010	2 1	30502099	Loadout C (to	recieving hopper	01)	Loado	out C to Reci	leving hopper
590	1429 010	3 . 1	30502099	Truck Loadout	• .,	·		Loadout (F)	
591	1429 010	4 1	30502099	Truck Loadout	• •			Loadout (I)	
592	1429 010	5 1	30502099	Truck Loadout	(L)		Truck	Loadout (L)	1
593	1429 010	6 1	30502007	Stockpile B	` ,		\$tock	pile B	
594	1429 010	7 1	30502007	Stockpile E			Stock	pile E	
595	1429 010	8 1	30502007	Stockpile H			Stock	pile H	
596	1429 010	9 1	30502007	Stockpile K				pile K	
597	1429 011	0 1	30502099	· ·	per(01) (to belt f	feeder 02)	Recie	ving Hopper	01
598	1429 011	1 1	30502006		yor J (to stockpi			king Conveyor	
				Ū		ŕ			
0bs		S02		N02	PM25_FIL	-	PM_CON	PM25_PRI	
588					0.00374850	0.0	0001653	0.003765	
589					0.00374850	0.0	0001653	0.003765	
590					0.00108000	0.0	0000476	0.001085	
591					0.00049500		0000218	0.000497	
592					0.00031500		0000139	0.000316	
593					0.00018810		0135714	0.001545	
594					0.00022220		0160317	0.001825	
595					0.00008030		0057937	0.000660	
596					0.00042570		0307143	0.003497	
597				•	0.00001874		0000331	0.000022	
598					0.00000842		00023036	0.000239	

Bullitt County

Process Level (SCC) Information

COUNTYN=Bullitt ALTFACID=2102909199 MASAINAME=Mago Construction Co LLC - Portable Screening Unit (continued)

•					(COIIE)	inded)				
Obs			MAS	AINAME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS
500	uaaa C		را ده مدن	D	December No.11	00070	0100000100	A-shalt	Bullitt	21029
599 600	-				Screening Unit	99372	2102909199	Asphalt Asphalt	Bullitt	21029
601	-				Screening Unit Screening Unit	99372 99372	2102909199 2102909199	Asphalt	Bullitt	21029
602					Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
602	-				Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
604	-				Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
605	-				Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
606					Screening Unit	99372	2102909199	Asphalt	Bullitt	21029
MASAINAME					. •					
Obs	SIC1	PTID	SEGID	SCC	SUBITEMDESC			SCCSU	BDESC	
500	4400	0110		00500000	Danabian Camana	0 /** -**!-	4 T = 143	Ctook	ing Conveyor	
599 600	142 9 1429	0112 0113	1 1	30502006		/or G (to stockp /or D (to stockp			ing Conveyor ing Conveyor	
601	1429	0201	1	30502006 30502006		to double deck)	,		Feeder (to (
602	1429	0201	1	30502006		or 04 (to disch			ery conveyor	•
603	1429	0202	1	30502006		eyor 05 (to stac	-		arge conveyo	
604	1429	0204	1	30502006		eyor 06 (to stac			arge convey	
605	1429	0205	1	30502006	•	eyor 00 (to stac			arge convey	
606	1429	0206	1	30502006		reen 03 (to coll			e Deck Scre	
MASAINAME										
a r						21125 54		DI 0011	DUGE DRI	
0bs			S02		N02	PM25_FI	L	PM_CON	PM25_PRI	
599						0.0000015	9 0.00	0004345	0.000045	
600					•	0.0000043	9 0.00	0012024	0.000125	
601						0.0000533	9 0.00	0023139	0.000285	
602						0.0000258	9 0.00	0011222	0.000138	
603						0.0000129	5 0.00	0005611	0.000069	
604						0.0000046	8 0.00	0002028	0.000025	•
605						0.0000248	0.00	0010750	0.000132	
606		•			•	0.0004323	9 0.00	0211310	0.002545	
MASAINAME		0.00	000000	0	.00000000	0.0108905	4 0.00	0969045	0.020581	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

COUNTYN=Bullitt ALTFACID=2102909199 MASAINAME=Mago Construction Co LLC - Portable Screening Unit -------------(continued) MASTER 0bs AI_ID MASAINAME ALTFACID PRIPROD COUNTYN FIPS ALTFACID 0bs SIC1 PTID SEGID SCC SUBITEMDESC SCCSUBDESC ALTFACID 0bs S02 N02 PM25_FIL PM_CON PM25_PRI ALTFACID 0.00000000 0.00000000 0.01089054 0.00969045 0.020581

Process Level (SCC) Information

06						MASTER_					
Obs			MASAINA	ME		AI_ID	ALTFACID	PRIP	ROD	COUNTYN	FIPS
607	Mago	Construction	n Co LLC	- HMA Portabl	e Plant	99804	2102909202	crushed	stone	Bullitt	21029
608	Mago	Construction	n Co LLC	- HMA Portabl	e Plant	99804	2102909202	crushed	stone	Bullitt	21029
609	Mago	Construction	n Co LLC	- HMA Portabl	e Plant	99804	2102909202	crushed	stone	Bullitt	21029
610	Mago	Construction	n Co LLC	- HMA Portabl	e Plant	99804	2102909202	crushed	stone	Bullitt	21029
611	Mago	Construction	n Co LLC	- HMA Portabl	e Plant	99804	2102909202	crushed	stone	Bullitt	21029
612	Mago	Construction	n Co LLC	- HMA Portabl	e Plant	99804	2102909202	crushed	stone	Bullitt	21029
613	Mago	Construction	n Co LLC	- HMA Portabl	e Plant	99804	2102909202	crushed	stone	Bullitt	21029
614	Mago	Construction	n Co LLC	- HMA Portabl	e Plant	99804	2102909202	crushed	stone	Bullitt	21029
615	_			- HMA Portabl		99804	2102909202	crushed	stone	Bullitt	21029
SAINAME											
0bs	SIC1	PTID	SEGID	scc		SUBITEM	DESC		SCCSU	BDESC	
607	1429	01 01	1	30502099	Loadout (-)	[From Truck	to RAP Raw Mat	erial S	Loado	ut (-)	
608	1429	01 02	1	30502007	Stockpile(s) (RAP Raw Ma	terial) (-) [F	rom Loa	RAP R	aw Material	Stockpile
609	1429	01 03	1	30502099	Loadout (-)	[From RAP Ra	w Material Sto	ckpile	Loado	ut (-) to Re	c Hopper
610	1429	01 04	1	30502099	Receiving H	opper (RAP) (A) [From Loado	out (-)	Recei	ving Hopper	(A)
611	1429	01 05	1	30502006	Conveyor &	Transfer Poin	ts (External)	(60"-St	Conve	yor (C) (60"	')
612	1429	01 06	1	30502007	Stockpile(s) (RAP Produc	t) (E) [From (Conveyor	RAP P	roduct Stock	(pile (-)
613	1429	01 07	1	30502099	Loadout (F)	[From RAP Pr	oduct Stockpil	le (Ë)]	Loado	ut (F)	
614	1429	02 01	1	30502001	Primary Cru	sher (B) (Pro	to Grind-1200)	[From	Prima	ry Crusher ((B)
615	1429	03 01	1				406-425 HP) (F		Diese:	l Engine	
SAINAME											
Obs			S02		NO2	PM	25_FIL	PM_C	ON PI	M25_PRI	
607		-				0.00	495000	0.0000218	33 (0.00497	
608				-			550000	0.039682		0.04518	
609				•			000000	0.0000000		0.0000	
610							007650	0.0000134		0.00009	
611							007395	0.0020238		0.00210	
612				•			374000	0.026984		0.03072	
613		-		•			395000	0.000061		0.01401	
614		•		•			000179	0.000472		0.00047	•
615		0.0469	4157	0.34	649199		533902	0.001170		0.04651	

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY) Bullitt County

Process Level (SCC) Information

		COUNTYN=	=Bullitt Al	_TFACID=2	102909202 MASAIN ()	NAME=Mago Const continued)	ruction Co LL	C - HMA Portab	le Plant		
Obs			MASAINA	AME		MASTER_ AI_ID	ALTFACID	PRIPROD	COUNTYN	FIPS	
ALTFACID											
Obs	SIC1	PTID	SEGID	scc		SUBITEMD	ESC	SCC	SUBDESC		
ALTFACID											
Obs			S02		NO2	PM2	5_FIL	PM_CON	PM25_PRI		
ALTFACID		0.046	694157		0.34649199	0.073	6312 6	0.07042956	0.14406		

96.12985901

162.94174230

259.072

Redesignation Request for the Kentucky Portion of the Louisville Annual PM25 Area 2008 Kentucky Division for Air Quality Actual Point Source Emissions (TPY)

Bullitt County

Process Level (SCC) Information

507.15831676

COUNTYN=Bullitt ALTFACID=2102909222 MASAINAME=Concrete Industries Inc - Portable Batch Plant ------MASTER Obs MASAINAME COUNTYN FIPS SIC1 PTID SEGID SCC SUBITEMDESC AI ID ALTFACID PRIPROD 3273 101 30501107 Cement Silo Concrete Industries Inc - Portable Batch Plant 101134 2102909222 concrete Bullitt 21029 616 Bullitt 21029 3273 102 2 30501107 Fly Ash Silo Concrete Industries Inc - Portable Batch Plant 101134 2102909222 concrete 201 1 30501108 Weigh Hopper Concrete Industries Inc - Portable Batch Plant Bullitt 21029 3273 618 101134 2102909222 concrete Bullitt 21029 3273 202 2 30501111 Truck Loadout Concrete Industries Inc - Portable Batch Plant 101134 2102909222 concrete 3 30501199 Aggregate Handling Concrete Industries Inc - Portable Batch Plant 101134 2102909222 concrete Bullitt 21029 3273 203 3273 30501199 Stockpiles Concrete Industries Inc - Portable Batch Plant 101134 2102909222 concrete Bullitt 21029 204 4 621 MASAINAME ALTFACID COUNTYN SCCSUBDESC S02 NO2 PM25_FIL PM_CON PM25_PRI 0bs 0.00000000 0.00000000 0.000 Cement Silo 616 0.00000000 0.000 Fly Ash Silo 0.00000000 0.00000000 0.000 Weight Hopper 0.00000000 0.000 619 Truck Loadout 0.00000000 0.00000000 0,00000000 0.000 0.00000000 620 Aggregate Handling 0.00000000 0.000 621 Stockpiles 0.00000000 . - - - - - -MASAINAME 0.00000000 0.00000000 0.00000000 0.00000000 0.000 0.00000000 0.000 ALTFACID 0.00000000 0.00000000 0.00000000 COUNTYN 96.12985901 259.072 507.15831676 288.39857380 162.94174230 _____ ======= _____ ______

288.39857380

DEVELOPMENT OF 2005 BASE YEAR GROWTH AND CONTROL FACTORS FOR LAKE MICHIGAN AIR DIRECTORS CONSORTIUM (LADCO)

FINAL REPORT

PECHAN

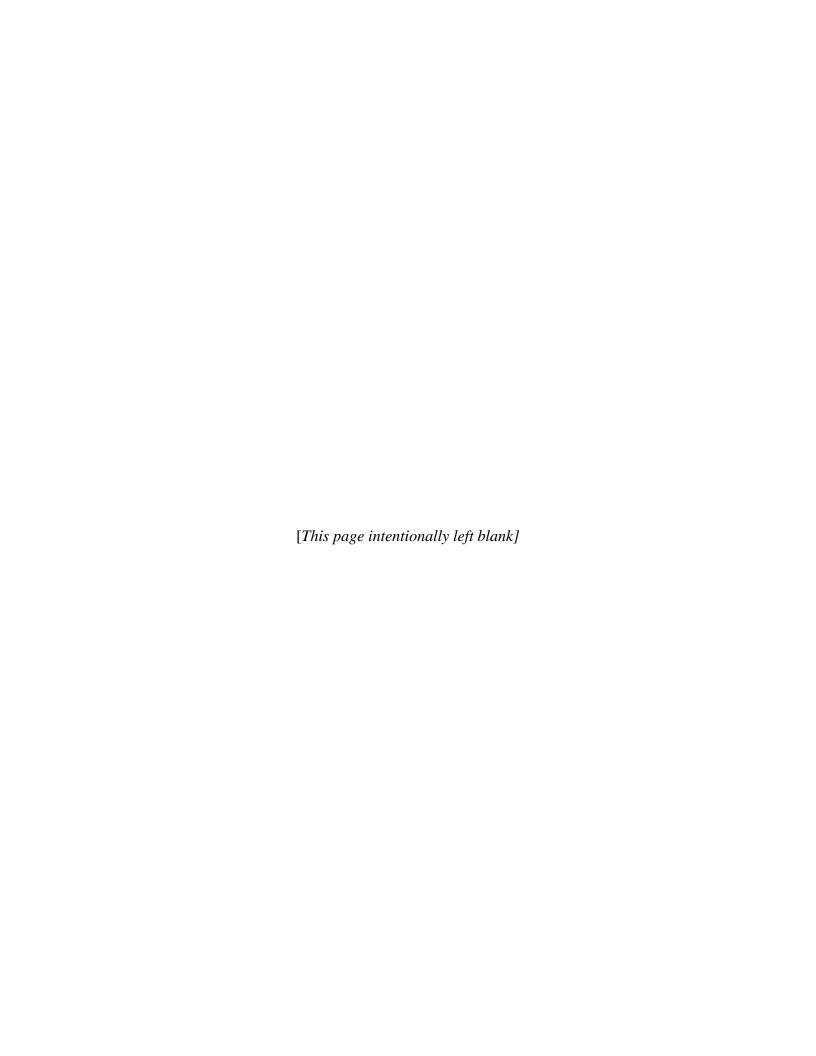
3622 Lyckan Parkway Suite 2005 Durham, NC 27707

919-493-3144 telephone 919-493-3182 facsimile

5528-B Hempstead Way Springfield, VA 22151

703-813-6700 telephone 703-813-6729 facsimile

Prepared for:


Mr. Michael Koerber Executive Director Lake Michigan Air Directors Consortium 9501 West Devon Avenue, Suite 701 Rosemont, IL 60018

Prepared by:

Andrew D. Bollman James H. Wilson E.H. Pechan & Associates, Inc. 3622 Lyckan Parkway, Suite 2005 Durham, NC 27707

September 2007

Pechan Report No. 07.09.001/9458.000

CONTENTS

	<u>Page</u>
TABLES	iv
ACRONYMS AND ABBREVIATIONS	v
SECTION I. BACKGROUND	1
SECTION II. EMISSION ACTIVITY GROWTH DATA	3
A. OVERVIEW	3
B. AREA SOURCE/MAR CATEGORIES	3
C. NON-EGU POINT SOURCES	14
D. NONROAD MODEL SOURCES	23
SECTION III. UPDATED EMISSION CONTROL DATA	27
A. NON-EGU POINT SOURCE CONTROLS	27
1. NO _x SIP Call	27
2. MACT Standards	27
3. Consent Decrees	27
4. On-the-Books (OTB) Control Additions	35
5. Best Available Retrofit Technology (BART)	35
B. AREA SOURCE/MAR CONTROLS	
1. Area Sources	40
2. MAR Sources (Locomotives and Marine Vessels)	44
SECTION IV. PREPARATION OF GROWTH AND CONTROL FILES	49
A. GROWTH FACTORS	49
B. CONTROL FACTORS	51
1. Point Source Control Factors	51
2. Area Source and MAR Control Factors	52
SECTION V. REFERENCES	55

TABLES

Table II-1. Priority Emission Activity Area Source/MAR Categories	4
Table II-2. Growth Indicators for Priority Area Source/MAR Categories	7
Table II-3. Priority Emission Activity Point Source Categories	15
Table II-4. Growth Indicators for Priority Point Source Categories	19
Table II-5. Priority Emission Activity NONROAD Model Source Categories	24
Table II-6. Growth Indicators for Priority NONROAD Model Source Categories	25
Table III-1. RICE Engines in Illinois Affected by NO _x SIP Call	28
Table III-2. Post-2005 MACT Standards and Expected VOC, NOx, and PM Reductions	29
Table III-3. LADCO State Non-EGU Point Sources Affected by Consent Decree Requirem	ents
and Other On-the-Books Controls	32
Table III-4. Ohio RACT Rule Summary Cleveland/Akron 8-Hour Ozone Nonattainment A	rea 35
Table III-5. BART Eligible Non-EGU Sources	36
Table III-6. Residential Wood Combustion NSPS Emission Reductions	43
Table III-7. Locomotive Emissions Reported in EPA Draft RIA	45
Table III-8. Percentage Reductions Associated with Federal Locomotive Standards	46
Table III-9. Percentage Reductions Associated with Federal CMV Standards	47
Table III-10. Commercial Marine Vessel Rule Penetration Values	48
Table IV-1. RPO Data Exchange Protocol Format for Growth/Control Data	50
Table IV-2. Fields Populated in Growth Factor File	51
Table IV-3. Fields Populated in Point Source Control Factor File	53
Table IV-4. Fields Populated in Area Source/MAR Control Factor File	54

ACRONYMS AND ABBREVIATIONS

AEO Annual Energy Outlook

AIM architectural and industrial maintenance

BART best available retrofit technology

CE control efficiency

CMV commercial marine vessel

DEQ Department of Environmental Quality

DOE Department of Energy

EGAS Economic Growth Analysis System

EGU electric generating unit

EPA United States Environmental Protection Agency

FAA Federal Aviation Administration FCCUs fluid catalytic cracking units

FCU fluid coking units
FGR flue gas recirculation
HAP hazardous air pollutant
IC internal combustion

LADCO Lake Michigan Air Directors Consortium

LAER lowest achievable emission rate

LNB low NO_x burner

MACT maximum achievable control technology

MAR marine, aircraft, and railroad MSAT mobile source air toxics

NAAQS national ambient air quality standards

NH3 ammonia

NMIM National Mobile Inventory Model

NO_x oxides of nitrogen

NSPS new source performance standard

OTB on-the-books

OWB outdoor wood boiler

Pechan E.H. Pechan & Associates, Inc.

PFC portable fuel container
PM particulate matter

PM-2.5 particulate matter less than or equal to 2.5 micrometers

RACT reasonably available control technology

RE rule effectiveness

REMI Regional Economic Models, Inc. RIA Regulatory Impact Analysis

RICE reciprocating internal combustion engines

ROG reactive organic gases
RP rule penetration

RPO Regional Planning Organization

SCC source classification code

SIC standard industrial classification

SIP State Implementation Plan

tpy tons per year SO₂ sulfur dioxide

VOC volatile organic compound

SECTION I. BACKGROUND

E.H. Pechan & Associates, Inc. (Pechan) is supporting the Lake Michigan Air Directors Consortium's (LADCO) efforts to forecast anthropogenic emissions for the purpose of assessing progress for air quality goals, including goals related to regional haze and attainment of the ozone national ambient air quality standards (NAAQS). Under a previous contract with LADCO, Pechan prepared emission activity growth and emission control data for all non-electric generating unit (EGU) point, area, and nonroad source categories relative to a base year (2002) inventory supplied by LADCO. In December 2004, Pechan submitted emissions activity growth and control factor files for use by LADCO in emissions modeling. A December 14, 2004 Pechan report documents the contents and derivation of these files (Pechan, 2004). Revised files were later provided to LADCO in March 2005.

In September 2005, LADCO contracted with Pechan to conduct the following two tasks to develop updated growth and control factors needed to support future year control strategy analyses for regional haze, particulate matter less than or equal to 2.5 micrometers (PM-2.5), and ozone:

Task 1: Update control factors to reflect current information pertaining to:

- (a) Petroleum refinery cases and settlements;
- (b) Maximum achievable control technology (MACT) standard control efficiency assumptions;
- (c) Residential wood combustion unit lifetime; and
- (d) Regional Planning Organization (RPO) inventories.

Task 2: Develop non-EGAS default-based emission activity growth factors for:

- (a) Priority point source categories; and
- (b) Priority area source categories.

A December 2005 report describes Pechan efforts to perform these tasks, which resulted in updated emissions activity growth and control factor files (Pechan, 2005). The updates reflect the use of more recent and/or more detailed information than that used in the earlier study. As with the earlier study, this effort involved the preparation of emission activity growth and control information relative to a 2002 base year inventory for future years of interest. Control information was developed for 2007, 2008, 2009, 2012, and 2018 (e.g., 2018 is the first milestone for regional haze reasonable progress demonstrations). Because the incremental level of effort required to develop emission activity growth factors for each year over the 2003-2018 period was nominal, Pechan prepared non-EGU point and area and nonroad source growth factors for each year over this entire period.

For the current study, LADCO requested that Pechan develop growth and control factor files to support emission projections from a recently compiled 2005 base year inventory for the following LADCO states: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. LADCO requested that Pechan provide files representing changes in emission activity and emission control between the base year and 2009, 2012, and 2018. As with the previous studies, Pechan provided updated point/area source and marine, aircraft, and railroad (MAR) category

growth factors for each year over the 2006-2018 period. Control factor development focused on the modeling years of interest, or in the case of point source controls, the specific anticipated implementation date within the forecast period.

This report is organized into this Background section and:

- Section II, which describes the development of the emission activity growth data;
- Section III, which discusses how the updated emission control data were compiled;
- Section IV, which describes the preparation of the updated growth and control factor files; and
- Section V, which presents the references consulted in preparing this report.

SECTION II. EMISSION ACTIVITY GROWTH DATA

OVERVIEW Α.

As with the two previous studies, Pechan relied on the data incorporated into Version 5.0 of the Economic Growth Analysis System (EGAS) as the default growth factor data source. The EGAS 5.0 projections data are typically derived from two main resources: (1) version 5.5 of Regional Economic Models Incorporated (REMI)'s state-level economic models; and (2) the Department of Energy (DOE)'s Annual Energy Outlook (AEO) 2004. While socioeconomic growth indicators from the REMI models provide state-level growth rates, the DOE energy forecasts provide regional or national growth rates (e.g., the same growth rate is applied to each LADCO state because each of these states is included in the DOE's East North Central division). Instead of relying on REMI's population forecasts, Pechan developed growth factors from county-level population projections available from each LADCO region state.

LADCO requested that Pechan review the growth indicators applied to particular source classification codes (SCCs) in the 2005 base year inventory. For these "priority" source categories, Pechan evaluated alternative growth methodologies and data sources before selecting a forecasting approach. The balance of this section describes the emission activity growth data developed in this study. Section IV discusses how these data were compiled into the file format required by LADCO.

В. AREA SOURCE/MAR CATEGORIES

LADCO provided Pechan with a list of priority point/area source and MAR categories for which emission activity projection improvements were to be evaluated. For these source categories, Pechan reviewed U.S. Environmental Protection Agency (EPA) SCC documentation and emission estimation guidance to identify the emissions activity (throughput) data associated with each SCC. Pechan then investigated the availability of LADCO state-specific projections for these data.

Table II-1 presents the descriptions and emissions activity for each priority area source/MAR category. The last column in this table identifies each category's growth indicator assignment under the previous Pechan forecast effort (Pechan, 2005). Table II-2 displays the assigned growth indicator for each priority area/MAR source category and any alternative indicators that were considered. This table also presents the percentage growth rates for the assigned indicators over two forecast periods: 2005-2009 and 2005-2018.

In addition to population data from the LADCO states and REMI employment data, the following information sources supplied data used in estimating emission activity growth for the priority area source/MAR categories:

¹ Information on these EGAS 5.0 data sources is provided in the report documenting the earliest study Pechan performed for LADCO (Pechan, 2004).

PECHAN

Table II-1. Priority Emission Activity Area Source/MAR Categories

POLLUTANT	SCC	DESC2	DESC3	DESC4	EMISSIONS ACTIVITY	CURRENT GROWTH BASIS
NH3	2805047100	Agriculture Production - Livestock	Swine production - deep- pit house operations (unspecified animal	Confinement	Annual average number of swine	REMI Farm sector value added
NH3	2805039200	Agriculture Production - Livestock	Swine production - operations with lagoons (unspecified animal	Manure handling and storage	Annual average number of swine	REMI Farm sector value added
NH3	2805047300	Agriculture Production - Livestock	Swine production - deep- pit house operations (unspecified animal	Land application of manure	Annual average number of swine	REMI Farm sector value added
NH3	2805001100	Agriculture Production - Livestock	Beef cattle - finishing operations on feedlots (drylots)	Confinement	Annual average number of beef cattle	REMI Farm sector value added
NH3	2805039100	Agriculture Production - Livestock	Swine production - operations with lagoons (unspecified animal	Confinement	Annual average number of swine	REMI Farm sector value added
NH3	2805003100	Agriculture Production - Livestock	Beef cattle - finishing operations on pasture/range	Confinement	Annual average number of beef cattle	REMI Farm sector value added
NH3	2805001300	Agriculture Production - Livestock	Beef cattle - finishing operations on feedlots (drylots)	Land application of manure	Annual average number of beef cattle	REMI Farm sector value added
NH3	2630020000	Wastewater Treatment	Public Owned	Total Processed	Volume of wastewater processed	REMI Water and Sanitation sector output
NH3	2805007100	Agriculture Production - Livestock	Poultry production - layers with dry manure management system	Confinement	Annual average number of poultry	Regression with Food/Kindred Products sector value added as explanatory variable
NH3	2805021300	Agriculture Production - Livestock	Dairy cattle - scrape dairy	Land application of manure	Annual average number of dairy cattle	Regression with Farm sector employment as explanatory variable
NH3	2805030000	Agriculture Production - Livestock	Poultry Waste Emissions	Not Elsewhere Classified (see also 28- 05-007 -008-009)	Annual average number of poultry	REMI Farm sector value added
NH3	2805021200	Agriculture Production - Livestock	Dairy cattle - scrape dairy	Manure handling and storage	Annual average number of dairy cattle	Regression with Farm sector employment as explanatory variable
NH3	2104008070	Residential	Wood	Outdoor Boiler	Amount of wood burned	
NOX	2285002006	Railroad Equipment	Diesel	Line Haul Locomotives: Class I Operations	Amount of diesel consumed by Class I line-haul locomotives	AEO Freight rail distillate (nat'l) adjusted for relative state growth in REMI Total output
NOX	2280002023	Marine Vessels Commercial	Diesel	Push Boats	Amount of diesel consumed by commercial push boats	AEO Shipping distillate (nat'l) adjusted for relative state growth in REMI Water Transportation sector output
NOX	2102006001	Industrial	Natural Gas	All Boiler Types	Volume of natural gas burned by industrial area source boilers	AEO Industrial natural gas

PECHAN

Table II-1 (continued)

POLLUTANT	SCC	DESC2	DESC3	DESC4	EMISSIONS ACTIVITY	CURRENT GROWTH BASIS
NOX	2275020000	Aircraft	Commercial Aircraft	Total: All Types	Number of commercial aircraft landing-takeoff cycles	Federal Aviation Administration (FAA) itinerant air carrier Landing and Take-Off (LTO) forecasts by state
NOX	2285002010	Railroad Equipment	Diesel	Yard Locomotives	Amount of diesel consumed by yard locomotives	AEO Freight rail distillate (nat'l) adjusted for relative state growth in REMI Total output
NOX	2104006000	Residential	Natural Gas	Total: All Combustor Types	Volume of residential natural gas consumed	AEO Residential natural gas
NOX	2285002009	Railroad Equipment	Diesel	Line Haul Locomotives: Commuter Lines	Amount of diesel consumed by commuter locomotives	AEO Commuter rail diesel (nat'l) adjusted for relative growth in population
NOX	2280003200	Marine Vessels Commercial	Residual	Underway emissions	Amount of residual oil consumed by CMV during underway operations	AEO Shipping residual oil (nat'l) adjusted for relative state growth in REMI Water Transportation sector output
NOX	2102006000	Industrial	Natural Gas	Total: Boilers and IC Engines	Volume of natural gas burned by industrial area source boilers and IC engines	AEO Industrial natural gas
NOX	2104008070	Residential	Wood	Outdoor Boiler	Amount of wood burned	
ROG	2461850000	Miscellaneous Non-industrial: Commercial	Pesticide Application: Agricultural	All Processes	(Not listed for this SCC)	Region V employment projections for "Pesticide Handlers, Sprayers"
ROG	2461020000	Miscellaneous Non-industrial: Commercial	Asphalt Application: All Processes	Total: All Solvent Types	Amount of solvent used	Region V employment projections for "Paving, Surfacing, & Tamping Operators"
ROG	2401200000	Surface Coating	Other Special Purpose Coatings	Total: All Solvent Types	Amount of solvent used	Population
ROG	2401001000	Surface Coating	Architectural Coatings	Total: All Solvent Types	Amount of solvent used	Regression with Population (inc. county level) as explanatory variable + projected solvent content change
ROG	2460100000	Miscellaneous Non-industrial: Consumer and Commercial	All Personal Care Products	Total: All Solvent Types	Amount of solvent used	Population (county-level for LADCO states)
ROG	2501011010	Petroleum and Petroleum Product Storage	Portable Gas Cans	Residential	Volume of gasoline stored	REMI, Gas and Oil Expenditures
ROG	2501060100	Petroleum and Petroleum Product Storage	Gasoline Service Stations	Stage 2: Total	Volume of gasoline pumped by stations	Regression with Gas and Oil Expenditures as explanatory variable
ROG	2460800000	Miscellaneous Non-industrial: Consumer and Commercial	All FIFRA Related Products	Total: All Solvent Types	Amount of solvent used	Regression with Population (county-level for LADCO states) as explanatory variable
ROG	2501060050	Petroleum and Petroleum Product Storage	Gasoline Service Stations	Stage 1: Total	Volume of gasoline pumped into stations	REMI, Gas and Oil Expenditures
ROG	2460400000	Miscellaneous Non-industrial: Consumer and Commercial	All Automotive Aftermarket Products	Total: All Solvent Types	Amount of solvent used	Population (county-level for LADCO states)
ROG	2425000000	Graphic Arts	All Processes	Total: All Solvent Types	Amount of solvent used	REMI, Printing and Publishing sector output
ROG	2401005000	Surface Coating	Auto Refinishing: SIC 7532	Total: All Solvent Types	Amount of solvent used	REMI, Automobile Parking, Repair, Services sector output
ROG	2460500000	Miscellaneous Non-industrial: Consumer and Commercial	All Coatings and Related Products	Total: All Solvent Types	Amount of solvent used	Population (county-level for LADCO states)

Table II-1 (continued)

POLLUTANT	SCC	DESC2	DESC3	DESC4	EMISSIONS ACTIVITY	CURRENT GROWTH BASIS
ROG	2460200000	Miscellaneous Non-industrial:	All Household Products	Total: All Solvent	Amount of solvent used	Population (county-level for LADCO
		Consumer and Commercial		Types		states)
ROG	2415020000	Degreasing	Fabricated Metal Products	Total: All Solvent	Amount of solvent used	REMI, Fabricated Metals sector
			(SIC 34): All Processes	Types		employment
ROG	2415025000	Degreasing	Industrial Machinery and	Total: All Solvent	Amount of solvent used	REMI, Machinery and Computer
			Equipment (SIC 35): All	Types		Equipment sector employment
			Processes			
ROG	2460600000	Miscellaneous Non-industrial:	All Adhesives and Sealants	Total: All Solvent	Amount of solvent used	Population (county-level for LADCO
		Consumer and Commercial		Types		states)
ROG	2420000370	Dry Cleaning	All Processes	Special Naphthas	Amount of special naphthas	SCC is not in current growth file; similar
					used	SCC (2420010370) is in file w/ REMI
DOC	0000040000	\Masteriates Transfer and	le di catalal	Total Processed	Volume of wastewater	Laundry sector output
ROG	2630010000	Wastewater Treatment	Industrial	Total Processed	Total training of training training	Projected LADCO NEEDS industrial flow
ROG	2501060101	Petroleum and Petroleum	Gasoline Service Stations	Ctoro O	processed Volume of gasoline pumped via	design forecast Regression with Gas and Oil
ROG	2501060101	Product Storage	Gasoline Service Stations	Stage 2: Displacement	uncontrolled	Expenditures as explanatory variable
		Product Storage		Loss/Uncontrolled	uncontrolled	Experiorures as explanatory variable
ROG	2415360000	Degreasing	Auto Repair Services (SIC	Total: All Solvent	Amount of solvent used	REMI, Automobile Parking, Repair,
ROG	2413300000	Degreasing	75): Cold Cleaning	Types	Amount of solvent used	Services sector output
ROG	2401002000	Surface Coating	Architectural Coatings -	Total: All Solvent	Amount of solvent used	REMI, Housing expenditures
ROO	2401002000	Ourrace Coaling	Solvent-based	Types	Amount of solvent used	TCMI, Flousing experiances
ROG	2401003000	Surface Coating	Architectural Coatings -	Total: All Solvent	Amount of solvent used	REMI, Housing expenditures
1100	210100000	Curiado Coating	Water-based	Types	7 tillount of convent acca	ream, riodollig experialitates
ROG	2104008070	Residential	Wood	Outdoor Boiler	Amount of wood burned	
SO2	2601020000	On-site Incineration	Commercial/Institutional	Total	Amount of material burned	REMI, Commercial sector employment
SO2	2102004000	Industrial	Distillate Oil	Total: Boilers and IC	Amount of distillate oil burned	AEO Industrial distillate
				Engines	by area source industrial	
				9	boilers/IC engines	
SO2	2103004000	Commercial/Institutional	Distillate Oil	Total: Boilers and IC	Amount of distillate oil burned	No growth based on historical energy
				Engines	by area source commercial	data
					boilers/IC engines	
SO2	2275020000	Aircraft	Commercial Aircraft	Total: All Types	See NOX entry	FAA itinerant air carrier LTO forecasts by
					·	state
SO2	2102005000	Industrial	Residual Oil	Total: All Boiler	Amount of residual oil burned	AEO Industrial residual
				Types	by area source industrial boilers	
SO2	2102002000	Industrial	Bituminous/Subbituminous	Total: All Boiler	Amount of bit/sub coal burned	AEO Industrial steam coal
			Coal	Types	by area source industrial boilers	
SO2	2285002006	Railroad Equipment	Diesel	Line Haul	See NOX entry	AEO Freight rail distillate (nat'l) adjusted
				Locomotives: Class I		for relative state growth in Total output
				Operations		
SO2	2104008070	Residential	Wood	Outdoor Boiler	Amount of wood burned	

PECHAN

Table II-2. Growth Indicators for Priority Area Source/MAR Categories

		Total %	Change			
		2005-	2005-			
Pollutant	SCC	2009	2018	Growth Indicator Basis	Alternatives Considered	Comment
NH3	2805047100	-1.7	6.2			Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805039200	-2.3	4.4	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805047300	-1.6	6.4	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805001100	5.2	16.7	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805039100	-1.6	6.4	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805003100	3.2	3.5	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805001300	5.2	16.7	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2630020000	2.8	9.5	Municipal design flow forecasts from Drinking Water Infrastructure Needs		
				Survey		
NH3	2805007100	-4.5	8.3	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805021300	-10.2	-39.0	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805030000	-5.3	6.8	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2805021200	-10.2	-39.0	Interpolated SCC/state-level animal count projections from EPA NH3		Forecast data are state-level
				inventory of Animal Husbandry Operations		
NH3	2104008070	78.0	84.3			
				growth) thru 2006; linear growth thru 2008; 2009+ based on rural		
				population growth rate		
NOX	2285002006	0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -1.4% per year; AEO	Note that post-2001 trend has
					forecast = 1.4% per year	been upward and that
						historical data shows several
						ups and downs
NOX	2280002023	4.3	9.9		1998-2004 fuel consumption data for	Forecast data are state-level
				LADCO region growth in REMI Water Transportation sector output	barge traffic on regional rivers indicates	
				relative to nation	similar annual growth rate (1.0%)	
NOX	2102006001	0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -0.01% per year;	
					AEO forecast = 1.4% per year	
NOX	2275020000	0.0	0.0	No growth due to contradictory historic and forecast trends (Federal	FAA 1990-2005 = -0.01% per year; FAA	
				Aviation Administration commercial aircraft landing and take-offs data)	forecast = 1.7% per year	
NOX	2285002010	0.0	0.0		1996-2004 = -1.6% per year	
				based on 1996-2002 regional Switch and Terminal Services employment)	employment decrease; AEO forecast =	
					1.4% per year	
NOX	2104006000	1.7	2.8	AEO residential natural gas consumption forecast	DOE 1990-2004 = 0.5% annual; AEO	
					forecast = 0.2%	

Table II-2 (continued)

		Total % C	Change			
	_	2005-	2005-			
Pollutant	SCC	2009	2018	Growth Indicator Basis	Alternatives Considered	Comment
NOX	2285002009	7.4	26.1	Annual growth rate (1.8%) from 2005-2009 diesel fuel consumption projections reported in Marta 2007 budget		
NOX	2280003200	0.4	1.3	1995-2005 Great Lakes region ton-miles trend (0.1% annual growth)	AEO forecasts national Domestic Shipping residual oil consumption +1.1% per year	Used historical growth rate since region-specific
NOX	2102006000	0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -0.01% per year; AEO forecast = 1.4% per year	
NOX	2104008070	78.0	84.3	Extrapolation of national 1999-2004 trend in OWB sales (exponential growth) thru 2006; linear growth thru 2008; 2009+ based on rural population growth rate		
ROG	2461850000	4.8	16.1	Regional employment projections for "Pesticide Handlers, Sprayers" combined with projected solvent content change from Freedonia's "Solvents to 2010-Agricultural Chemical Market for Solvents" (-0.4% per year)		Forecast data are state-level
ROG	2461020000	-1.9	-6.0	No employment growth assumption due to contradictory historic and forecast trends in "Paving, Surfacing, & Tamping Operators" employment, combined with projected solvent content change from Freedonia's "Solvents to 2010-Asphalt Production Market for Solvents" (-0.5% per year)		Forecast data are state-level
ROG	2401200000	-6.5	-16.1	Population forecast combined with projected change in paint solvent content from Freedonia's "Solvents to 2010-Paints/Coatings Market for Solvents" (-1.9% per year)		Forecast data are county-level
ROG	2401001000	-9.9	-9.3	Regression with Population forecast as explanatory variable combined with Freedonia projected change in proportion of total Architectural coatings that are solvent-based (-2.0% per year)		Forecast data are county-level
ROG	2460100000	-3.9	-11.6	Population forecast combined with projected solvent content change from Freedonia's "Solvents to 2010-Cosmetics & Toiletries Market for Solvents" (-1.5% per year)		Forecast data are county-level
ROG	2501011010	0.2	0.3	Regression equation with Gas and Oil Expenditures as explanatory variable		Forecast data are state-level
ROG	2501060100	0.2	0.3	Regression equation with Gas and Oil Expenditures as explanatory variable		Forecast data are state-level
ROG	2460800000	-10.5	-15.6	Regression equation with Population as explanatory variable		Forecast data are county-level
ROG	2501060050	0.2	0.3	Regression equation with Gas and Oil Expenditures as explanatory variable		Forecast data are state-level
ROG	2460400000	0.1	3.3	Population forecast combined with projected change in solvent use/vehicle from Freedonia's "Solvents to 2010-Transportation Markets for Solvents" (-0.4% per year)		Forecast data are county-level
ROG	2425000000	0.0	0.0	No employment growth assumption due to contradictory historic and forecast trends for "Printing Machine Operators" employment, and no projected change in solvent content of ink from Freedonia's "Solvents to 2010-Printing Ink Market for Solvents"		
ROG	2401005000	-12.9	-38.9	Employment projections for "Automotive Body and Related Repairers" combined w/ change in proportion of automotive coatings that are solvent-based from Freedonia's "Automotive Coatings, Adhesives & Sealants-Automotive Coatings Demand by Formulation and Substrate" (-4.3% per year)		Forecast data are state-level
ROG	2460500000	-6.5	-16.1	Population forecast combined with projected change in paint solvent content from Freedonia's "Solvents to 2010-Paints/Coatings Market for Solvents" (-1.9% per year)		Forecast data are county-level

Table II-2 (continued)

		Total % C	Change			
	_	2005-	2005-			
Pollutant	SCC	2009	2018	Growth Indicator Basis	Alternatives Considered	Comment
ROG	2460200000	0.6	6.8	Population forecast combined with projected change in cleaning product solvent content from Freedonia's "Solvents to 2010-Cleaning Product Market for Solvents" (-0.1% per year)		Forecast data are county-level
ROG	2415020000	-15.0	-35.9	Fabricated Metals sector employment forecast combined with projected change in solvent use from Freedonia's "Solvents to 2010-Metal Processing Market for Solvents" (-3.7% per year)		Forecast data are state-level
ROG	2415025000	0.2	-11.4	Machinery and Computer Equipment sector employment forecast combined with projected change in solvent use from Freedonia's "Solvents to 2010-Metal Processing Market for Solvents" (-3.7% per year)		Forecast data are state-level
ROG	2460600000	-10.0	-24.4	Population forecast combined with projected change in solvent content from Freedonia's "Solvents to 2010-Adhesives and Sealants Market for Solvents" (-2.7% per year)		Forecast data are county-level
ROG	2420000370	-1.6	-0.4	Regional employment projections for "Laundry and Dry Cleaning Workers" (+0.7% per year) combined with projected solvent content from Freedonia's "Solvents to 2010-Dry Cleaning and Other Markets for Solvents" (-0.7%)		
ROG	2630010000	4.1	13.8	Growth rate from regional industrial wastewater flow design forecast from Drinking Water Infrastructure Needs Survey		
ROG	2501060101	0.2	0.3	Regression equation with Gas and Oil Expenditures as explanatory variable		Forecast data are state-level
ROG	2415360000	2.4	10.3	Regional employment projections for "Automotive Service Technicians and Mechanics" combined with forecast change in solvent use from "Solvents to 2010-Transportation Markets for Solvents" (-0.4% per year)		
ROG	2401002000	-9.9	-9.3	Regression with Population forecast as explanatory variable combined with Freedonia projected change in proportion of total Architectural coatings that are solvent-based (-2.0% per year)		Forecast data are state-level
ROG	2401003000	3.6	12.3	Regression equation with Population as explanatory variable		Forecast data are state-level
ROG	2104008070	78.0	84.3	Extrapolation of national 1999-2004 trend in OWB sales (exponential growth) thru 2006; linear growth thru 2008; 2009+ based on rural population growth rate		
SO2	2601020000	7.2	15.0	Commercial sector employment forecast		Forecast data are state-level
SO2	2102004000	0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = +0.5% per year; AEO forecast = -0.3% per year	
SO2	2103004000	0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -2.0% per year; AEO forecast = 0.8% per year	
SO2	2275020000	0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.7% per year	
SO2	2102005000	-49.4	-49.6	AEO forecast for industrial sector residual oil consumption	DOE 1990-2004 = -6.6% per year; AEO forecast = -5.1% per year	
SO2	2102002000	2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	

Table II-2 (continued)

		Total % Change				•
Pollutant	scc	2005- 2009	2005- 2018	Growth Indicator Basis	Alternatives Considered	Comment
SO2	2285002006	0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -1.4% per year; AEO forecast = +1.4% per year	Note that post- 2001 trend is upward & historical data has several ups/downs
SO2	2104008070	78.0	84.3	Extrapolation of national 1999-2004 trend in OWB sales (exponential growth) thru 2006; linear growth thru 2008; 2009+ based on rural population growth rate		

- Animal Husbandry: projected number of animals from EPA's ammonia emission forecasts for animal husbandry operations (EPA, 2004);
- Marine Vessels Commercial, Diesel–Push Boats: historical (1998-2004) fuel consumption for barge traffic on rivers in LADCO region (ENVIRON, 2007a);
- Multiple Fuel Combustion categories: DOE East North Central region energy forecasts from *AEO 2007* and 1990-2004 LADCO region energy consumption data (DOE, 2007a and 2007b);
- Commercial Aircraft: state-level itinerant aircraft operations (FAA, 2007);
- Diesel Line Haul Locomotives—Commuter Lines: Metra diesel fuel expenditure/price projections (Metra, 2007);
- Pesticide Application–Agricultural: LADCO region projected number of "pesticide handlers, sprayers, and applicators, vegetation" (BLS, 2007);
- Commercial Asphalt Application—All Processes: LADCO region projected number of "paving, surfacing, and tamping operators" (BLS, 2007);
- Graphic Arts –All Processes: LADCO region projected number of "printing machine operators" (BLS, 2007);
- Surface Coating—Auto Refinishing: SIC 7532: LADCO region projected number of "Automotive Body and Related Repairers" (BLS, 2007);
- Dry Cleaning, All Processes–Special Naphthas: LADCO region projected number of "Laundry and Dry Cleaning Workers" (BLS, 2007);
- Wastewater Treatment-Industrial: LADCO region projected wastewater treatment industrial design flow (EPA, 2007a); and
- Degreasing—Auto Repair Services (SIC 75): Cold Cleaning: LADCO region projected number of "Automotive Service Technicians and Mechanics" (BLS, 2007).

Many of the above are solvent use categories for which Pechan also incorporated projected solvent content changes as forecast by The Freedonia Group, Inc. (Freedonia, 2006).

In cases where energy consumption is the emissions activity, a common growth factor development approach was to compare available regional historical (1990-2004) energy consumption data to *AEO* 2007 forecast data to determine if the forecast growth rates appear suspect relative to historical trends. Pechan conducted similar historical/forecast activity trend comparisons for the non-fuel combustion priority categories whenever historical trend data were readily available (e.g., occupational employment data). In selecting from alternative data

sources/trend data, the general decision-making hierarchy was as follows, listed in order of preference:

1. If the forecast and historical trends were in the same direction, Pechan relied on forecast data (an exception was made, however, in cases where forecast data were only available on a national-level, but historical data were available for the LADCO region).

2. If the forecast and historical trends were in different directions (e.g., forecast trend is for an increase in activity, but historical trend was a decrease), Pechan applied a no growth assumption.

Outdoor Wood Boilers

Residential Wood Combustion from Outdoor Wood Boilers (SCC 2104008070) was not originally identified as a source category for growth indicator review because this category was only recently added to LADCO's emissions inventory. Outdoor Wood Boilers (OWBs) have become much more prevalent in the last several years as homeowners seek ways to avoid recent large increases in natural gas and home heating oil prices. This source category does not exist in EPA's official SCC list, and there is no current EPA emission inventory preparation guidance for this sector. Pechan assumed that this category's emissions are based on the estimated number of wood boilers, the average amount of wood burned in each boiler, and emission factors that are related to the amount of wood burned.

Investigations indicate little historical and forecast OWB data exist to assist in identifying future trends in LADCO region OWB use: state-specific sales from nine manufacturers obtained by EPA from nine manufacturers, and national sales data obtained by the New York Attorney General's Office via subpoena of 21 manufacturers. These sales data are for 1999-2004. Because of the much greater manufacturer coverage for the national data, and because the state estimates indicate that the majority of recent OWBs sales have occurred in the LADCO states, Pechan focused the historical trend analysis on the national data. These data indicate an extremely high average growth rate of 41 percent per year over the 1999-2004 period. Manufacturers indicate that although OWBs have been available for sale since the 1980s, the very large OWB sales growth rates are new phenomenon. The growth rates appear to mainly result from homeowner reactions to recent large increases in residential heating prices (e.g., between 1999 and 2004, residential natural gas and distillate oil prices rose 61 and 87 percent, respectively). Because DOE data indicate that natural gas accounts for the majority of residential energy consumption in the LADCO States, and increases in residential natural gas prices continued through 2006 (the average annual price for residential natural gas increased 28 percent between 2004 and 2006), Pechan forecast the national number of OWBs through 2006 via extrapolation of the 1999-2004 national OWB trend. In particular, Pechan fit an exponential equation to the 1994-2004 data, and used the equation to estimate 2005 and 2006 OWB counts.

Next, Pechan reviewed *AEO* 2007 projections of residential natural gas prices for the East North Central region (which includes 5 of the 6 LADCO region States) to identify whether recent increases are expected to continue. The *AEO* 2007 projects the average 2007 price for residential

natural gas in the East North Central region to be 4 percent lower than in 2006, and forecasts continued price decreases through the 2008-2018 period (see table below).

Year	Residential Natural Gas Price (\$/million Btu)	% Change from 2006
2006	12.08	
2007	10.92	-4.1
2008	10.80	-5.1
2009	10.28	-9.7
2010	10.02	-11.9
2011	9.61	-15.5
2012	9.48	-16.9
2013	9.28	-18.4
2014	9.32	-18.1
2015	9.27	-18.6
2016	9.37	-17.7
2017	9.60	-15.7
2018	9.56	-20.8

Given the projected modest price decreases thru 2008, and the fact that distillate oil prices are forecast to increase 6.1 percent between 2006 and 2008, and because one expects a time lag in responding to energy price changes, Pechan assumes that OWB sales will continue to increase at a significant rate through 2008. Pechan specifically fit a linear trend line to the 1999-2004 OWB, and projected OWBs in 2007 and 2008 by extending the trend through 2008, and applying each year's growth rate to the estimated count of OWBs in 2006.

By 2009, Pechan projects that the larger projected declines in natural gas prices, and forecasted decreases in other heating fuel prices, will significantly restrain OWB growth. In addition, because of neighborhood smoke nuisance concerns, and the need for ready access to inexpensive wood, it is expected that the market for OWBs will be generally constrained to heavily-wooded rural areas. Therefore, Pechan forecasts post-2008 year OWB growth to more closely trend with population growth in these areas. To approximate this growth, Pechan compiled 1990 and 2000 total and rural area population data for the LADCO region. These data indicate that rural area population grew at approximately 60 percent of the rate of total population over this period. Pechan estimated rural area population growth for the LADCO region by multiplying this adjustment factor by the forecasted growth rate for total population in the LADCO region. The following table displays the projected count of OWBs in the LADCO region for 2005, 2009, 2002, and 2018.

Estimated # of OWBs
81,082
144,356
145,911
149,421

It is important to note that it is particularly challenging to forecast OWB activity given the extremely high OWB sales growth rates that have occurred in recent years. LADCO will want to closely monitor activity and emission trends for this category given its relative importance in the emissions inventory, recent historical growth rates, and additional unique characteristics.

Finally, Pechan reviewed the complete list of area/MAR source categories in the LADCO base year inventory to identify the priority category growth indicators that could be applied to non-priority area/MAR categories. This step yielded priority category growth indicator assignments for an additional 26 area/MAR categories.

C. NON-EGU POINT SOURCES

Table II-3 displays the priority point source categories, including the description and emissions activity associated with each category. The last column in this table identifies each category's growth indicator assignment under the previous growth and control factor contract. Table II-4 presents the assigned growth indicator for each priority point source category and identifies any alternative growth indicators that were considered. Pechan first considered the use of historical throughput data from LADCO state point source inventories to identify recent trends that provided sufficient support for extrapolation. As mentioned above, for energy consumption sectors, Pechan compared regional historical (1990-2004) energy consumption data to *AEO* 2007 forecast data to determine if the forecast growth rates appear suspect relative to historical trends.

In selecting from alternative growth indicator data sources, the general decision-making hierarchy was as follows, listed in order of preference:

- (1) If throughput data were available for states representing a majority of emissions for a given category, and these data indicated a consistent trend, the historical throughput trend was extended thru 2009, and held constant thereafter (two reasons for not extending the trend throughput the entire forecast period are that throughput data are only available for a three or a six-year period, and in some cases the historical throughput decrease was so large that it would eventually result in no activity);
- (2) If the forecast and historical trends were in the same direction, Pechan relied on the forecast data (an exception was made, however, if the forecast data were only available on a national-level, but the historical data were available for the LADCO region); and

If the forecast and historical trends were in different directions (e.g., forecast trend is for an increase in activity, but historical trend was a decrease), Pechan applied a no growth assumption.

PECHAN

Table II-3. Priority Emission Activity Point Source Categories

POLLUTANT	SCC	DESC2	DESC3	DESC4	EMISSIONS ACTIVITY	CURRENT GROWTH BASIS
NH3	10200601	Industrial	Natural Gas	> 100 Million Btu/hr	Volume of natural gas burned in industrial pt source boilers of >100 MMBtu	No growth based on historical (1990-2001) energy data
NH3	30102599	Chemical Manufacturing	Cellulosic Fiber Production	Other Not Classified	Amount of cellulosic fiber produced	Avg of REMI employment & output GFs for Plastics, Materials, & Synthetics sector
NH3	10200602	Industrial	Natural Gas	10-100 Million Btu/hr	Volume of natural gas burned in industrial pt source boilers of 10-100 MMBtu	No growth based on historical energy data
NH3	30199999	Chemical Manufacturing	Other Not Classified	Specify in Comments Field	Amount of (unknown) chemical products produced	Avg of REMI employment & output GFs for Chemicals sector
NH3	10200204	Industrial	Bituminous/Subbituminous Coal	Spreader Stoker	Amount of bituminous coal burned in spreader stoker industrial pt source boilers	AEO Industrial steam coal
NOX	20200202	Industrial	Natural Gas	Reciprocating	Volume of natural gas burned in industrial pt source reciprocating engines	No growth based on historical energy data
NOX	30500606	Mineral Products	Cement Manufacturing (Dry Process)	Kilns	Amount of cement produced via dry process	LADCO region historical cement production growth rate
NOX	30600201	Petroleum Industry	Catalytic Cracking Units	Fluid Catalytic Cracking Unit	Amount of fresh feed processed via fluid catalytic cracking units (FCCU)	AEO Refined Petroleum Products Supplied (national)
NOX	30600104	Petroleum Industry	Process Heaters	Gas-fired	Volume of gas burned in petroleum industry pt source process heaters	AEO Refining sector natural gas (national)
NOX	10200202	Industrial	Bituminous/Subbituminous Coal	Pulverized Coal: Dry Bottom	Amount of bituminous coal burned in dry bottom industrial pt source boilers	AEO Industrial steam coal
NOX	10200601	Industrial	Natural Gas	> 100 Million Btu/hr	Volume of natural gas burned in industrial pt source boilers of >100 MMBtu	No growth based on historical energy data
NOX	30300304	Primary Metal Production	By-product Coke Manufacturing	Quenching	Amount of coal charged to manufacture coke	REMI output for Blast Furnaces and Basic Steel products sector
NOX	10200217	Industrial	Bituminous/Subbituminous Coal	Atmospheric Fluidized Bed Combustion: Bubbling Bed (Bituminous	Amount of bituminous coal burned in bubbling bed industrial pt source boilers	AEO Industrial steam coal
NOX	10200707	Industrial	Process Gas	Coke Oven Gas	Volume of process gas burned in coke ovens	AEO Metallurgical coal consumption projections (national)
NOX	10200602	Industrial	Natural Gas	10-100 Million Btu/hr	Volume of natural gas burned in industrial pt source boilers of 10-100 MMBtu	No growth based on historical energy data

Table II-3 (continued)

POLLUTANT	SCC	DESC2	DESC3	DESC4	EMISSIONS ACTIVITY	CURRENT GROWTH BASIS
NOX	20200254	Industrial	Natural Gas	4-cycle Lean Burn	Volume of natural gas burned in industrial sector 4-cycle lean burn IC engines	No growth based on historical energy data
NOX	20100102	Electric Generation	Distillate Oil (Diesel)	Reciprocating	Amount of distillate oil burned in reciprocating engines for electricity	AEO Electric Generation distillate oil
NOX	20200201	Industrial	Natural Gas	Turbine	Volume of natural gas burned in industrial sector turbines	No growth based on historical energy data
NOX	39000689	In-process Fuel Use	Natural Gas	General	Volume of industrial process pt source natural gas burned	No growth based on historical energy data
NOX	10200201	Industrial	Bituminous/Subbituminous Coal	Pulverized Coal: Wet Bottom	Amount of bituminous coal burned in wet bottom industrial pt source boilers	AEO Industrial steam coal
NOX	10200701	Industrial	Process Gas	Petroleum Refinery Gas	Volume of petroleum refinery (still) gas burned	No growth based on historical energy data
ROG	30100399	Chemical Manufacturing	Ammonia Production	Other Not Classified	Amount of ammonia produced	REMI output for Agricultural Chemicals sector
ROG	30201916	Food and Agriculture	Vegetable Oil Processing	Oil Extraction	Amount of extractor feed cake produced	REMI output for Grain Mill Products and Fats and Oils sector
ROG	40500511	Printing/Publishing	General	Gravure: 2754	Amount of solvent in ink used by pt sources	REMI output for Commercial Printing and Business Forms sector
ROG	30199999	Chemical Manufacturing	Other Not Classified	Specify in Comments Field	Amount of (unknown) chemical products produced	Avg of REMI employment & output GFs for Chemicals sector
ROG	30125099	Chemical Manufacturing	Methanol/Alcohol Production	Other Not Classified	Amount of methanol/alcohol produced	REMI output for Industrial Chemicals sector
ROG	40201301	Surface Coating Operations	Paper Coating	Coating Operation	Amount of solvent in coating used by pt sources	No growth based on historical LADCO emissions trend
ROG	40200101	Surface Coating Operations	Surface Coating Application - General	Paint: Solvent-base	Amount of coating mix applied by pt sources	No growth based on historical LADCO emissions trend
ROG	30102599	Chemical Manufacturing	Cellulosic Fiber Production	Other Not Classified	Amount of cellulosic fiber produced	Avg of REMI employment & output GFs for Plastics, Materials, & Synthetics sector
ROG	30500201	Mineral Products	Asphalt Concrete	Rotary Dryer: Conventional Plant (see 3-05-002-50 to -53 for	Amount of hot mix asphalt produced by pt sources	Avg of REMI employment & output GFs for Misc. Petroleum and Coal Products sector
ROG	30201906	Food and Agriculture	Vegetable Oil Processing	Corn Oil: General	Amount of extractor feed cake produced	REMI output for Grain Mill Products and Fats and Oils sector
ROG	30201919	Food and Agriculture	Vegetable Oil Processing	Fugitive Leaks	Amount of extractor feed cake produced	REMI output for Grain Mill Products and Fats and Oils sector
ROG	40200110	Surface Coating Operations	Surface Coating Application - General	Paint: Solvent-base	Amount of solvent-based coatings applied by pt sources	Historical LADCO throughput data trend
ROG	40201899	Surface Coating Operations	Metal Coil Coating	Other Not Classified	Amount of solvent in coating used by pt sources	REMI output for Nonferrous Rolling and Drawing sector
ROG	40388801	Petroleum Product Storage at Refineries	Fugitive Emissions	Specify in Comments Field	Petroleum product storage capacity at refineries	AEO Refined Petroleum Products Supplied (national)
ROG	40200701	Surface Coating Operations	Surface Coating Application - General	Adhesive Application	Amount of adhesive coatings applied by pt sources	REMI output for Total Manufacturing sector

Table II-3 (continued)

POLLUTANT	SCC	DESC2	DESC3	DESC4	EMISSIONS ACTIVITY	CURRENT GROWTH BASIS
SO2	30600201	Petroleum Industry	Catalytic Cracking Units	Fluid Catalytic Cracking Unit	Amount of fresh feed processed via FCCU	AEO Refined Petroleum Products Supplied (national)
SO2	10200202	Industrial	Bituminous/Subbituminous Coal	Pulverized Coal: Dry Bottom	Amount of bituminous coal burned in dry bottom industrial pt source boilers	AEO Industrial steam coal
SO2	30600805	Petroleum Industry	Fugitive Emissions	Miscellaneous: Sampling/Non-Asphalt Blowing/Purging/etc.	Barrels of refinery feed processed	AEO Refined Petroleum Products Supplied (national)
SO2	30199999	Chemical Manufacturing	Other Not Classified	Specify in Comments Field	Amount of (unknown) chemical products produced	Avg of REMI employment & output GFs for Chemicals sector
SO2	10200217	Industrial	Bituminous/Subbituminous Coal	Atmospheric Fluidized Bed Combustion: Bubbling Bed (Bituminous	Amount of bituminous coal burned in bubbling bed industrial pt source boilers	AEO Industrial steam coal
SO2	10200201	Industrial	Bituminous/Subbituminous Coal	Pulverized Coal: Wet Bottom	Amount of bituminous coal burned in wet bottom industrial pt source boilers	AEO Industrial steam coal
SO2	10200225	Industrial	Bituminous/Subbituminous Coal	Traveling Grate (Overfeed) Stoker (Subbituminous Coal)	Amount of subbituminous coal burned in overfeed stoker industrial pt source boilers	AEO Industrial steam coal
SO2	30500606	Mineral Products	Cement Manufacturing (Dry Process)	Kilns	Amount of cement produced via dry process	LADCO region historical cement production growth
SO2	30600401	Petroleum Industry	Blowdown Systems	Blowdown System with Vapor Recovery System with Flaring	Barrels of refinery feed processed	AEO Refined Petroleum Products Supplied (national)
SO2	10200204	Industrial	Bituminous/Subbituminous Coal	Spreader Stoker	Amount of bituminous coal burned in spreader stoker industrial pt source boilers	AEO Industrial steam coal
SO2	10300217	Commercial/Institutional	Bituminous/Subbituminous Coal	Atmospheric Fluidized Bed Combustion: Bubbling Bed (Bitumin.)	Amount of bituminous coal burned in bubbling bed commercial pt source boilers	AEO Commercial coal
SO2	39000701	In-process Fuel Use	Process Gas	Coke Oven or Blast Furnace	Volume of coke oven or blast furnace gas burned	AEO Metallurgical coal consumption projections (national)
SO2	30103201	Chemical Manufacturing	Elemental Sulfur Production	Mod. Claus: 2 Stage w/o Control (92-95% Removal)	Amount of 100% sulfur produced	REMI output for Industrial Chemicals sector
SO2	10300225	Commercial/Institutional	Bituminous/Subbituminous Coal	Traveling Grate (Overfeed) Stoker (Subbituminous Coal)	Amount of subbituminous coal burned in overfeed stoker commercial pt source boilers	AEO Commercial coal
SO2	10300209	Commercial/Institutional	Bituminous/Subbituminous Coal	Spreader Stoker (Bituminous Coal)	Amount of bituminous coal burned in spreader stoker commercial pt source boilers	AEO Commercial coal
SO2	10200401	Industrial	Residual Oil	Grade 6 Oil	Amount of residual oil (No. 6) burned in industrial pt source boilers	No growth based on historical energy data

Table II-3 (continued)

POLLUTANT	SCC	DESC2	DESC3	DESC4	EMISSIONS ACTIVITY	CURRENT GROWTH BASIS
EMISSION TR	END ANALY	SIS CATEGORIES NOT LI	STED ABOVE WITH CONSISTE	ENT THROUGHPUT TREN	os .	
VOC	40202201	Petroleum and Solvent Evaporation	Surface Coating Operations	Plastic Parts: Coating Operation	Amount of solvent used in coating applied	Historical LADCO throughput data trend
NOX	39000699	In Process Fuel Use	Natural Gas	General	Amount of nat gas used in industrial processes	No growth based on historical energy data

Table II-4. Growth Indicators for Priority Point Source Categories

		Emissions	Total %	Change			
Pollutant	scc	Priority Category	2005- 2009	2005- 2018	Growth Indicator Basis	Alternatives Considered	Comment
NH3	10200601	NOx	-11.5	-11.5	Historic throughput trend from 3 states (-3.0% per year) extended thru 2009; post-2009 held constant.	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.4% per year	
NH3	30102599		4.9	18.2	Avg of REMI employment & output growth factors for Plastics, Materials, & Synthetics sector	·	Forecast data are state-level
NH3	10200602	NOx	-12.2	-12.2	Historic throughput trend from 4 states (-3.2% per year) extended thru 2009; post-2009 held constant.	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.4% per year	
NH3	30199999		8.9	25.6	Avg of REMI employment & output growth factors for Chemicals sector		Forecast data are state-level
NH3	10200204	NOx	2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	Did not use throughput since available states represent <50% of regional emissions
NOX	20200202	NOx	0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.4% per year	Did not use throughput since available state represent <50% of regional emissions
NOX	30500606		8.2	29.4	LADCO region historical cement production growth rate (+2.0% per year)		
NOX	30600201	SO2	0.4	0.4	AEO refinery distillation projections for Petroleum Administration District (PAD) II, which includes all LADCO states plus additional surrounding states	Similar 1990-2005 data also includes states not in LADCO region and shows very small growth rate	Did not use throughput since available states represent <50% of regional emissions
NOX	30600104		5.9	20.6	1991-2002 Midwest Census region Refining sector natural gas consumption growth rate (+1.5% per year)	AEO National Refining sector natural gas consumption forecast is +2.7% per year	Used historical growth rate because it is regional and of similar direction to AEO national forecast
NOX	10200202	NOx	2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	Did not use throughput since available states represent <50% of regional emissions
NOX	10200601	NOx	-11.5	-11.5	Historic throughput trend from 3 states (-3.0% per year) extended thru 2009; post-2009 held constant.	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.4% per year	
NOX	30300304		-6.2	-19.8	AEO forecast for metallurgical coal consumption	DOE 1990-2004 = -3.0% per year; AEO forecast = -1.7% per year	
NOX	10200217		2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	
NOX	10200707		-6.2	-19.8	AEO forecast for metallurgical coal consumption	DOE 1990-2004 = -3.0% per year; AEO forecast = -1.7% per year	
NOX	10200602	NOx	-12.2	-12.2	Historic throughput trend from 4 states (-3.2% per year) extended thru 2009; post-2009 held constant.	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.4% per year	
NOX	20200254		0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.4% per year	

Table II-4 (continued)

		Emissions	Total %	Change			
		Priority	2005-	2005-			
Pollutant	SCC	Category	2009	2018	Growth Indicator Basis	Alternatives Considered	Comment
NOX	20100102		1.7	5.5	DOE 1990-2004 historic trend (+0.4%)	AEO forecast = +5.0% per year thru 2009, but near equivalent decrease from 2009 to 2018	Used historic trend because of large difference between 2009 and 2018 forecast, & historic growth rate is in between the 2 forecast values
NOX	20200201		0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.4% per year	
NOX	39000689		0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -0.01% per year; AEO forecast = +1.4% per year	
NOX	10200201	SO2	2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	No throughput data available
NOX	10200701		-1.3	-4.1	DOE 1990-2004 historic trend (-0.3% per year)	AEO forecast = 2009 (-1.0% per year) and 2018 (-0.1% per year)	Used historic trend because is region- specific (forecast is national), and historic change is in between the 2009 & 2018 AEO growth rates
ROG	30100399		-19.7	-28.6	Freedonia's "Chemical Catalysts to 2009-Ammonia Catalyst Demand" - national projections adjusted for relative state growth in REMI output for Agricultural Chemicals sector		Forecast data are state- level
ROG	30201916		2.2	11.9	Avg of REMI employment & output growth factors for Grain Mill Products and Fats and Oils sector		Forecast data are state- level
ROG	40500511		0.0	0.0	No growth due to contradictory historic trend versus forecast trend in regional employment for "Printing Machine Operators"		Freedonia's "Solvents to 2010-Printing Ink Market for Solvents" indicates no projected change in solvent content of ink
ROG	30199999		8.9	25.6	Avg of REMI employment & output growth factors for Chemicals sector		Forecast data are state- level
ROG	30125099		1.1	5.3	Freedonia's "Chemical Catalysts to 2009-Alcohols Catalyst Demand by Application" - national projections adjusted for relative state growth in REMI output for Industrial Chemicals sector		Forecast data are state- level
ROG	40201301		0	0	No growth based on consistent historic LADCO emissions trend		2005 emissions data confirm previous no growth approach
ROG	40200101	VOC	-6.4	-21.4	Regional employment projections for "Coating, Painting, and Spraying Machine Operators, and Tenders" adjusted for solvent content of paints and coatings from Freedonia's "Solvents to 2010-Paints and Coatings Market for Solvents" (-1.9% per year)		Forecast data are state- level; adopted approach believed better than available historic throughput data

Table II-4 (continued)

		Emissions	Total %	Change			
Pollutant	scc	Priority Category	2005- 2009	2005- 2018	Growth Indicator Basis	Alternatives Considered	Comment
ROG	30102599	catogory	4.9	18.2	Avg of REMI employment & output growth factors for Plastics,	Alternatives Considered	Forecast data are state-
1100	00102000		1.0	10.2	Materials, & Synthetics sector		level
ROG	30500201		8.3	21.5	Avg of REMI employment & output growth factors for Misc.		Forecast data are state-
					Petroleum and Coal Products sector		level
ROG	30201906		2.2	11.9	Avg of REMI employment & output growth factors for Grain Mill Products and Fats and Oils sector		Forecast data are state- level
ROG	30201919		2.2	11.9	Avg of REMI employment & output growth factors for Grain Mill Products and Fats and Oils sector		Forecast data are state- level
ROG	40200110	VOC	-6.4	-21.4	Regional employment projections for "Coating, Painting, and Spraying Machine Operators, and Tenders" adjusted for solvent content of paints and coatings from Freedonia's "Solvents to 2010-Paints and Coatings Market for Solvents" (-1.9% per year)		Forecast data are state- level; adopted approach believed better than available historic throughput data
ROG	40201899		6.9	26.0	Freedonia's "Protective Coatings to 2009-Demand for Coil Coatings" - national projections adjusted for relative state growth in REMI output for Nonferrous Rolling and Drawing sector, adjusted for projected solvent content information for paints and coatings from "Solvents to 2010-Paints/Coatings Market for Solvents" (-1.9% per year)		Forecast data are state- level; coil coating has seen significant growth historically, and such growth is projected to continue in the future
ROG	40388801		0.4	0.4	AEO refinery distillation projections for Petroleum Administration District (PAD) II, which includes all LADCO states plus additional surrounding states	1990-2005 data also includes states not in LADCO region and shows similar very small growth rate	
ROG	40200701		-1.6	-1.0	Freedonia's "Solvents to 2010-Adhesives & Sealants Market for Solvents" national projections, adjusted for relative state growth in REMI output in Total Manufacturing sector		
SO2	30600201	SO2	0.4	0.4	AEO refinery distillation projections for Petroleum Administration District (PAD) II, which includes all LADCO states plus additional surrounding states	1990-2005 data also includes states not in LADCO region and shows similar very small growth rate	Did not use throughput since available state represent <50% of regional emissions
SO2	10200202	NOx	2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	No throughput data available
SO2	30600805	SO2	0.4	0.4	AEO refinery distillation projections for Petroleum Administration District (PAD) II, which includes all LADCO states plus additional surrounding states	1990-2005 data also includes states not in LADCO region and shows similar very small growth rate	No throughput data available
SO2	30199999		8.9	25.6	Avg of REMI employment & output GFs for Chemicals sector	·	Forecast data are state- level
SO2	10200217		2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	
SO2	10200201	SO2	2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	No throughput data available
SO2	10200225		2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	
SO2	30500606		8.2	29.4	LADCO region historical cement production growth rate (+2.0% per year)	. ,	

Table II-4 (continued)

		Emissions	Total %	Change			
Pollutant	scc	Priority Category	2005- 2009	2005- 2018	Growth Indicator Basis	Alternatives Considered	Comment
SO2	30600401		0.4	0.4	AEO refinery distillation projections for Petroleum Administration District (PAD) II, which includes all LADCO states plus additional surrounding states	1990-2005 data also includes states not in LADCO region and shows similar very small growth rate	
SO2	10200204	NOx	2.9	-0.6	AEO forecast for other industrial coal combustion	DOE 1990-2004 = -1.5% per year; AEO forecast = <-0.1% per year	Did not use throughput since available states represent <50% of regional emissions
SO2	10300217		0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -1.2% per year; AEO forecast = +0.0% per year	
SO2	39000701		-6.2	-19.8	AEO forecast for metallurgical coal consumption	DOE 1990-2004 = -3.0% per year; AEO forecast = -1.7% per year	
SO2	30103201		2.5	8.2	1996-2005 recovered elemental sulfur production growth rate (+0.6% per year) for IL + MI + MN + OH	·	
SO2	10300225		0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -1.2% per year; AEO forecast = +0.0% per year	
SO2	10300209		0.0	0.0	No growth due to contradictory historic and forecast trends	DOE 1990-2004 = -1.2% per year; AEO forecast = +0.0% per year	
SO2	10200401	SO2	-49.4	-49.6	AEO forecast for industrial residual oil consumption (-5.1% per year)	DOE 1990-2004 = -6.6% per year	Used AEO forecast due to similarity with AEO historical trend and throughput trend (-6.1%)
	RITY CATEG		ED IN EMI	SSION TR	END ANALYSIS WITH CONSISTENT THROUGHPUT TRENDS:		
VOC	40202201	VOC	-33.5	-33.5	Historic throughput trend from 3 states (-9.7%) extended thru 2009; post-2009 held constant.		
NOX	39000699	NOx	-15.8	-15.8	Historic throughput trend from 3 states (-4.2%) extended thru 2009; post-2009 held constant.		

Table II-4 also presents the 2005-2009 and 2005-2018 growth rates for the final assigned point source growth indicators. In addition, Pechan reviewed the complete list of point SCCs in the LADCO base year inventory to identify the priority category growth indicators that could be applied to non-priority point source categories. This step yielded priority category growth indicator assignments for an additional 539 point source categories.

D. NONROAD MODEL SOURCES

At LADCO's request, Pechan analyzed potential improvements to the default growth indicators for the 25 NONROAD model priority source categories displayed in Table II-5. With the exception of the all-terrain vehicle, offroad motorcycle, and snowmobile categories, 1989-1996 national equipment population trends form the basis for the NONROAD growth rates. For these other three categories, NONROAD relies on national equipment population forecasts prepared by a relevant trade association (see Table II-5 for details).

Table II-6 reports this study's growth indicator assignments for priority NONROAD model source categories. Given the acknowledged shortcomings of the NONROAD growth rates (use of 1989-1996 national equipment populations to project future equipment populations in each region of the country), the growth factor improvements generally reflect the use of regional/state-level forecast data that are expected to correlate with use of the equipment (i.e., regional occupational employment projections, state-level economic sector employment forecasts, or state-level landing/take-off projections). Table II-6 also displays any alternative growth indicators that were considered. For the three categories for which NONROAD relies on forecasts rather than historical 1989-1996 trends, Pechan compiled available recent historical equipment population estimates. This information was used to revise the current national forecast approach to reflect more recent information, and whenever possible, recent LADCO region-specific equipment population trends.

Although the NONROAD model growth rates are fuel-specific, Pechan was unable to develop fuel-specific forecast data. Therefore, Pechan updated a priority category's growth rates only when the 1989-1996 national equipment populations indicated that the category's fuel-specific growth rate had traditionally been similar to the overall sector's equipment population growth rate. Table II-6 identifies instances where the past fuel-specific growth rate substantially differed from the overall sector's growth rate. In these cases, Pechan retained the NONROAD model fuel-specific forecast approach. Section IV.A. describes how Pechan incorporated the updated equipment population growth rates into the NONROAD model

Table II-5. Priority Emission Activity NONROAD Model Source Categories

SCC	DESCRIPTION SUMMARY	EMISSIONS ACTIVITY	CURRENT GROWTH BASIS
2260001030	2-Stroke ATV	Population of 2-stroke gasoline ATVs	NONROAD (Motorcycle Industry Council national 2-stroke gasoline ATV projections)
2265001030	4-Stroke ATV	Population of 4-stroke gasoline ATVs	NONROAD (Motorcycle Industry Council national 4-stroke gasoline ATV projections)
2260001010	2-Stroke Offroad Motorcycles	Population of 2-stroke gasoline offroad motorcycles	NONROAD (Motorcycle Industry Council national off-highway motorcycle population projections)
2265001010	4-Stroke Offroad Motorcycles	Population of 4-stroke gasoline offroad motorcycles	NONROAD (Motorcycle Industry Council national off-highway motorcycle population projections)
2267006000	LPG Light Commercial	Population of light commercial LPG-fueled equipment	NONROAD (national 1989-1996 LPG light commercial equipment population growth rate)
2270004000	Diesel Lawn & Garden Equipment	Population of lawn & garden diesel-fueled equipment	NONROAD (national 1989-1996 diesel lawn & garden equipment population growth rate)
2270008000	Diesel Airport Service Equipment	Population of airport service diesel-fueled equipment	NONROAD (national 1989-1996 diesel airport service equipment population growth rate)
2267008000	LPG Airport Service Equipment	Population of airport service LPG-fueled equipment	NONROAD (national 1989-1996 total airport service equipment population growth rate)
2268008000	CNG Airport Service Equipment	Population of airport service CNG-fueled equipment	NONROAD (national 1989-1996 total airport service equipment population growth rate)
2260001020	2-Stroke Snowmobiles	Population of 2-stroke gasoline snowmobiles	NONROAD national growth (see below) with state adjustment based on real disposable income forecasts
2265001020	4-Stroke Snowmobiles	Population of 4-stroke gasoline snowmobiles	NONROAD (International Snowmobile Manufacturers Association national snowmobile population projections)
2260007000	2-Stroke Logging Equipment	Population of logging 2-stroke gasoline equipment	NONROAD (national 1989-1996 gasoline logging equipment population growth rate)
2265007000	4-Stroke Logging Equipment	Population of logging 4-stroke gasoline equipment	NONROAD (national 1989-1996 gasoline logging equipment population growth rate)
2270006000	Diesel Light Commercial	Population of light commercial diesel-fueled equipment	NONROAD (national 1989-1996 diesel light commercial equipment population growth rate)
2268006000	CNG Light Commercial	Population of light commercial CNG-fueled equipment	NONROAD (national 1989-1996 CNG light commercial equipment population growth rate)
2267007000	LPG Logging Equipment	Population of logging LPG-fueled equipment	NONROAD (national 1989-1996 logging equipment population growth rate)
2268007000	CNG Logging Equipment	Population of logging CNG-fueled equipment	NONROAD (national 1989-1996 logging equipment population growth rate)
2285002000	Diesel Railway Maintenance	Population of railway maintenance diesel-fueled equipment	NONROAD (national 1989-1996 diesel railway maintenance equipment population growth rate)
2260006000	2-Stroke Light Commercial	Population of light commercial 2-stroke gasoline equipment	NONROAD (national 1989-1996 gasoline light commercial equipment population growth rate)
2265006000	4-Stroke Light Commercial	Population of light commercial 4-stroke gasoline equipment	NONROAD (national 1989-1996 gasoline light commercial equipment population growth rate)
2270002000	Diesel Construction Equipment	Population of construction diesel-fueled equipment	NONROAD national growth with state adjustment based on Construction employment forecasts
2270003000	Diesel Industrial Equipment	Population of industrial diesel-fueled equipment	NONROAD (national 1989-1996 diesel industrial equipment population growth rate)
2267003000	LPG Industrial Equipment	Population of industrial LPG-fueled equipment	NONROAD (national 1989-1996 LPG industrial equipment population growth rate)
2270001000	Diesel Recreational Vehicles	Population of diesel recreational vehicles	NONROAD (national 1989-1996 diesel recreational equipment population growth rate)
2282020000	Diesel Recreational Marine	Population of diesel recreational marine vessels	NONROAD (national 1989-1996 diesel recreational equipment population growth rate)

Table II-6. Growth Indicators for Priority NONROAD Model Source Categories

	Total %	Change			
	2005-	2005-			
SCC	2009	2018	Growth Indicator Basis	Alternatives Considered	Comment
2260001030	10.8	39.7	50% higher growth rate than overall LADCO region "Recreational Vehicle Service Technicians" employment projections, which is 1.7%/yr, based on premise that ATV market is less mature than market for other recreation vehicles	Available ATV/OHV registration data for MI+MN+WI indicate avg. annual growth of 14.6% between 2000 and 2005; however, 2006 data for each state is only +1 or +1.1%; NONROAD shows 2005-2006 = +10.5%. National ATV sales (not population) of +3.8% per year for 2000-2005; 2005-2006 sales = -4.2%	Did not use long-term historical trend as ATV market appears to be maturing based on most recent data (this is predicted by NONROAD model, but not until post-2010; NONROAD shows 2010-2018 = +2.7%/yr)
2265001030	10.8	39.7	50% higher growth rate than overall LADCO region "Recreational Vehicle Service Technicians" employment projections, which is 1.7%/yr, based on premise that ATV market is less mature than market for other recreation vehicles	Available ATV/OHV registration data for MI+MN+WI indicate avg. annual growth of 14.6% between 2000 and 2005; however, 2006 data for each state is only +1 or +1.1%; NONROAD shows 2005-2006 = +10.5%. National ATV sales (not population) of +3.8% per year for 2000-2005; 2005-2006 sales = -4.2%	Did not use long-term historical trend as ATV market appears to be maturing based on most recent data (this is predicted by NONROAD model, but not until post-2010; NONROAD shows 2010-2018 = +2.7%/yr)
2260001010	5.1	17.7	LADCO region employment projections for "Motorcycle Mechanics"	Unable to compile regional registration trends; national off- road motorcycle sales for 2000-2006 = +2.3%, but 2001- 2006 = -1.6%	Employment projections are LADCO region-specific and fall in-between recent national sales trends
2265001010	5.1	17.7	LADCO region employment projections for "Motorcycle Mechanics"	Unable to compile regional registration trends; national off- road motorcycle sales for 2000-2006 = +2.3%, but 2001- 2006 = -1.6%	Employment projections are LADCO region-specific and fall in-between recent national sales trends
2267006000	19.8	57.5	NONROAD (national 1989-1996 LPG light commercial equipment population growth rate)	REMI Commercial sector employment forecast for LADCO region (2005-2009=+1.8%yr; 2005-2018 = +1.1%/yr)	Did not use alternative because historical period indicates substantially different growth rate for LPG than overall sector
2270004000	5.8	20.1	LADCO region employment projections for "Landscaping and Groundskeeping Workers"		
2270008000	-0.7	18.0	State-level FAA itinerant air carrier + air taxi landing and take-off (LTO) forecast (updated as of December 2006)		
2267008000	-0.7	18.0	State-level FAA itinerant air carrier + air taxi landing and take-off (LTO) forecast (updated as of December 2006)		
2268008000	-0.7	18.0	State-level FAA itinerant air carrier + air taxi landing and take-off (LTO) forecast (updated as of December 2006)		
2260001020	3.5	11.9	50% lower growth rate than overall LADCO region "Recreational Vehicle Service Technicians" employment projections, which is 1.7%/yr, based on premise that snowmobile market is more mature than market for other recreation vehicles	Annual growth in snowmobile registrations for states representing 92% of 2006 LADCO region registrations: 2000-2006 = +0.0%	No growth assumption not adopted because lack of snowfall often cited as major contributing factor for recent stagnation in snowmobile registrations
2265001020	3.5	11.9	50% lower growth rate than overall LADCO region "Recreational Vehicle Service Technicians" employment projections, which is 1.7%/yr, based on premise that snowmobile market is more mature than market for other recreation vehicles	Annual growth in snowmobile registrations for states representing 92% of 2006 LADCO region registrations: 2000-2006 = +0.0%	No growth assumption not adopted because lack of snowfall often cited as major contributing factor for recent stagnation in snowmobile registrations

Table II-6 (continued)

		Change			
SCC	2005- 2009	2005- 2018	Growth Indicator Basis	Alternatives Considered	Comment
2260007000	2.2	7.3			
2265007000	2.2	7.3	LADCO region employment projections for "Logging Equipment Operators"		
2270006000	7.2	15.0	REMI Commercial sector employment forecast for LADCO region		
2268006000	7.2	15.0	REMI Commercial sector employment forecast for LADCO region		
2267007000	2.2	7.3	LADCO region employment projections for "Logging Equipment Operators"		
2268007000	2.2	7.3	LADCO region employment projections for "Logging Equipment Operators"		
2285002000	12.2	36.7	NONROAD (national 1989-1996 diesel railway maintenance equipment population growth rate)	LADCO region employment projections for "Rail-Track Laying & Maintenance Equipment Operators" (-1.6%/yr)	Did not use alternative because historical period indicates substantially different growth rate for diesel than overall sector
2260006000	7.2	15.0	REMI Commercial sector employment forecast for LADCO region		
2265006000	7.2	15.0	REMI Commercial sector employment forecast for LADCO region		
2270002000	4.7	16.2	LADCO region employment projections for "Operating Engineers and Other Construction Equipment Operators"		
2270003000	0.1	0.2	LADCO region employment projections for "Industrial Machinery Mechanics"		
2267003000	0.1	0.2	LADCO region employment projections for "Industrial Machinery Mechanics"		
2270001000	10.4	31.5	NONROAD (national 1989-1996 diesel recreational equipment population growth rate)	LADCO region employment projections for "Recreational Vehicle Service Technicians" (+1.7%/yr)	Did not use alternative because historical period indicates substantially different growth rate for diesel than overall sector
2282020000	10.4	31.5	NONROAD (national 1989-1996 diesel recreational equipment population growth rate)	Two options: 1996-2005 LADCO region recreational boat registration growth rate (0.8%/yr) and LADCO region employment projections (+1.5%/yr) for "Motorboat Mechanics"	Did not use alternatives because historical period indicates substantially different growth rate for diesel than overall sector.

SECTION III. UPDATED EMISSION CONTROL DATA

A. NON-EGU POINT SOURCE CONTROLS

1. NO_x SIP Call

All states in the LADCO region affected by the NO_x (oxides of nitrogen) SIP (State Implementation Plan) Call requirements (OH, IN, IL, MI) indicated that their sources were complying in 2005. The only exception to this is for reciprocating internal combustion engines (RICE) in Illinois. The State of Illinois recommended that an 82 percent NO_x control efficiency be applied to large RICE engines that are affected by the SIP Call. The RICE engine requirement in Illinois has a January 1, 2008 compliance date. Table III-1 lists these engines and the associated NO_x control efficiencies applied in the emission projections. This requirement is expected to affect NO_x emissions in all projection years.

2. MACT Standards

Table III-2 summarizes the control factors used to estimate the post-2005 effects of MACT emission standards on volatile organic compounds (VOC), NO_x, and PM emissions in the projection years. The information in this table was developed from EPA guidance on estimating the criteria pollutant emission benefits of MACT standards (Page, 2007). Any post-2005 MACT standards that have no expected criteria pollutant emission reductions according to the draft EPA guidance were not included in Table III-2. Table III-2 was circulated to the states for review, and Wisconsin provided its own estimates of the expected VOC and PM emission reductions from these MACT standards in its state. The State of Michigan concurred with the emission reduction estimates made by Wisconsin. Those VOC and PM emission reduction percentages are shown in the two right-most columns of Table III-2. So, the control factor file reflects the EPA estimated values for IL, IN, MN, and OH, and the Wisconsin-provided estimates for MI and WI.

3. Consent Decrees

Previous Pechan-developed control efficiencies by source (Pechan, 2005) and pollutant were merged with the LADCO state 2005 point source file and control factors assigned accordingly. The 2005 point source control efficiencies (CEs) for sulfur dioxide (SO₂) and NO_x for fluid catalytic cracking units (FCCUs) and heaters and boilers were checked to see whether there is any compliance by 2005. Pechan also added all MACTEC revisions/additions from their earlier report to the control factor file (MACTEC incorporated cases and settlements control factors for refineries that were not evaluated for the 812 study) and made any changes/additions that were provided by the state air pollution control agencies. Table III-3 lists all of the LADCO state Non-EGU Point Sources affected by consent decrees. These sources all have post-2005 control factors applied in the analysis. There are two refineries in the study area who had either complied with their consent decrees or curtailed applicable operations by 2005, so no future year control factors were applied in this analysis. These two refineries are Premcor Refining in IL and the Flint Hills Refinery in MN.

Table III-1. RICE Engines in Illinois Affected by NO_{x} SIP Call

ld Number	Dovico	Process	Device Description	Pollutant	% Poduction	Comments
027807AAC	0003		ENGINES 09-ENG AND 10-ENG	NOX	59	50/50 for 2 engines = .5+.5(.18) = 59% reduction
041804AAC	0009	01	ENGINE 1213	NOX	82	, ,
041804AAC	0010	01	ENGINE 1214	NOX	82	
041804AAC	0011	01	ENGINE 1215	NOX	82	
041804AAC	0012	01	ENGINE 1216	NOX	82	
041804AAC	0013	01	ENGINE 1217	NOX	82	
073816AAA	0001	01	WORTHINGTON MLV-10 COMPRESSOR & GAS FIRED ENGINE #12	NOX	82	
073816AAA	0004	01	CLARK TCV-10 COMPRESSOR & GAS FIRED ENGINE ENGINE #9	NOX	82	
073816AAA	0012	01	WORTHINGTON MLV-10 COMPRESSOR AND GAS FIRED ENGINE NO. 13	NOX	82	
073816AAA	0013	01	WORTHINGTON MLV-10 COMPRESSOR AND GAS FIRED ENGINE NO. 14	NOX	82	
073816AAA	0014	01	WORTHINGTON MLV-10 COMPRESSOR AND GAS FIRED ENGINE NO. 15	NOX	82	
073816AAA	0015	01	WORTHINGTON MLV-14 ENGINE #10	NOX	82	
085809AAA	0010	01	3 CLARK COMPRESSORS	NOX	82	
093802AAF	0003	01	ENGINE E-1008	NOX	82	
113817AAA	0002	01	ENGINE EC21	NOX	82	
113817AAA	0003	01	ENGINE IC11	NOX	82	
113821AAA	0002	01	ENTERPRISE RECIP COMP EC-21 4000 MP EF 3.3.2-1	NOX	82	
113821AAA	0005	01	COOPER COMPRESSOR CC22 EF 3.3.2-1 4000 HP	NOX	82	
149820AAB	0002		2 RECIPROCATING ENGINES (1013 - 1014)	NOX	59	50/50 for 2 engines = .5+.5(.18) = 59% reduction
149820AAB	0003	01	3 RECIPROCATING ENGINES (1015 - 1017)	NOX	82	
167801AAA	0001	01	ENGINES 1116 AND 1117	NOX	82	
167801AAA	0003	01	1-COOPER RECIPROCATING ENGINE, 4000HP, 1115	NOX	82	
167801AAA	8000	01	ENGINES 1118 AND 1119	NOX	59	50/50 for 2 engines = .5+.5(.18) = 59% reduction

Table III-2. Post-2005 MACT Standards and Expected VOC, NO_x, and PM Reductions

MACT Standard – Source Category	Code of Federal Regulations Subpart	Compliance Date (existing sources)		NO _x (% Reduction)	Total PM (% Reduction)	Affected SCCs	MACT Code	Wiscon: Michigar	
		•						VOC	PM
Asphalt Processing and Asphalt Roofing Manufacture	LLLLL	5/1/2006	85			30505001, 30500101, 30500102, 30505010, 30601101	0418	10	0
Auto and Light Duty Trucks	IIII	4/26/2007	40			40201601 to 40201632; 40201699	0702	0	0
Coke Ovens: Pushing, Quenching and Battery Stacks	CCCCC	4/14/2006	0			30300304; 30300303	0303	10	0
Fabric Printing, Coating & Dyeing	0000	5/29/2006	60			40201101 to 40201199; 40201201; 40201210	0713	10	0
Integrated Iron and Steel	FFFFF	5/20/2006	(5)		20	30301501 to 30301596	0305	0	10
Iron and Steel Foundries	EEEEE	4/22/2007	5			304003XX, 304007XX	0308	5	0
Lime Manufacturing	AAAAA	1/5/2007			23	305016XX	0408	0	10
Metal Can	KKKK	11/13/2006	70			40201702; 40201703 to 40201799	0707	0	0
Metal Furniture	RRRR	5/23/2006	0			402020XX		10	0
Misc. Coating Manufacturing	ННННН	12/11/2006	64			402026XX	1642	10	0
Misc. Metal Parts and Products	MMMM	1/2/2007	0			402025XX		10	0
Misc. Organic Chemical Production and Processes (MON)	FFF	11/10/2006	66			645200XX; 30113001 to 30113007; 684300XX; 30101005 to 30101099; 68445001; 68445010; 68445013; 68445020; 68445013; 30110002 to 30110099; 6482001; 6482001; 6482001; 6482001; 6482001; 64823010; 68510010; 68510011; 68582001; 68582599; 30101837; 64610301 to 64610350; 64610310 to 64610350; 64610101 to 64610150;	1641	10	0

Table III-2 (continued)

MACT Standard – Source Category	Code of Federal Regulations Subpart	Compliance Date (existing sources)	VOC (% Reduction)	NO _x (% Reduction)	Total PM (% Reduction)	Affected SCCs	MACT Code		n Values
						64610201 to 64610250; 64615001 to 64615030; 64620001 to 64620038; 64630001 to 64630083; 64631001 to 64631083; 64632001 to 64632083; 64682001; 64682001; 64682002; 64682501; 64682502; 64682599; 64130001 to 64130025; 64130101 to 64130125; 64130101 to 64130125; 6413001 to 64130225; 64130101 to 6413030; 64132001 to 6413030; 64132001 to 64132030; 64182002; 64182599; 64615001; 64620001;		VOC	PM
Organic Liquids Distribution	EEEE	2/3/2007	70			65135001 40300102, 40300104, 40300106, 40300107, 40301010-40301021	0602	10	0
Plastic Parts	PPPP	4/19/2007	0			402022XX		10	0
Plywood and Composite Wood Products	DDDD	10/1/2007	54			307007XX; 30700921 to 30700971; 30701001 to 30701057; 30700602 to 30700661	1624	- 19	-
Refractory Products Manufacturing	SSSSS	4/17/2006	81	0			0406	10	0
Reinforced Plastic Composites Production	WWWW	4/21/2006	39	0			1337	10	0
Site Remediation	GGGGG	10/8/2006	50	0		504001XX; 50400201, 50400202; 504002XX; 504100XX; 504101XX; 504102XX; 504103XX; 504102XX; 504103XX; 04104XX; 504105XX; 504106XX; 504107XX; 50480001; 50482001; 50482002; 50482599; 50480004	0805	10	0

Table III-2 (continued)

MACT Standard – Source Category	Code of Federal Regulations Subpart	Date (existing		NO _x (% Reduction)	Total PM (% Reduction)	Affected SCCs	MACT Code	Wiscon Michigar	
								VOC	PM
Stationary Combustion Turbines	YYYY	3/5/2007	13	17		20100101, 20100201, 20200101, 20200103, 20200201, 20200203, 20200901, 20300102, 20300202, 20300203	0105	0	0
Taconite Iron Ore Processing	RRRRR	10/30/2006	0	0	62	32302371 to 32302399	0411	0	10
Wood Building Products	QQQQ	5/28/2006	63	0		40202101 to 40202199	0703	10	0

^{**}Based on organic hazardous air pollutant (HAP) emission reductions

Table III-3. LADCO State Non-EGU Point Sources Affected by Consent Decree Requirements and Other On-the-Books Controls

	Identification	on Codes				FCCU Requ	irements	Heater/Boile	r Requirements
State	County	Facility*	Company	Location	State	SO ₂	NO _x	SO ₂	NO _x
18	089	00003	BP Amoco	Whiting		FCU 500: Install wet gas scrubber; FCU 600: Use SO₂ adsorbing catalyst additive and/or hydrotreatment.		Elimination of oil burning and restricting H₂S in refinery fuel gas	Use qualifying controls to reduce NO _x emissions by 9632 tons per year (tpy).
39	095	0448010246	BP Amoco	Toledo	ОН	SO ₂ catalyst additive	,	Elimination of oil burning and restricting H ₂ S in refinery fuel gas	Use qualifying controls to reduce NO _x emissions by 9632 tpy.
17	197	197090AAI	CITGO Global Refinery	Lemont	IL	New wet gas scrubber	Low NO _x combustion promoter (20 ppmvd limit)	Comply with NSPS Subparts A and J for fuel gas combustion devices. Eliminate fuel oil burning.	Use qualifying controls to reduce NO _x emissions from listed units by at least 50% of the revised baseline
17	119	119090AAA	Conoco Philips Global Refinery	Roxanna (Wood River)	IL	Install new wet gas scrubber (25 ppmvd or lower)	FCCU 1: Scrubber- based NO _x emission reduction technology to achieve 20 ppmvd	Subject to NSPS Subparts A and J for fuel gas combustion devices	Use qualifying controls to reduce NO _x emissions from combustion units by 4951 tpy
17	119	119090AAA	Conoco Philips Global Refinery	Hartford (Wood River)	IL	Install new wet gas scrubber (25 ppmvd or lower)	FCCU 2: Enhanced SNCR	Subject to NSPS Subparts A and J for fuel gas combustion devices	Use qualifying controls to reduce NO _x emissions from combustion units by 4951 tpy
17	197	197800AAA	Exxon-Mobil Refinery	Joliet	IL	Install new wet gas scrubber (25 ppmvd or lower)	SCR system	Accept NSPS Subpart J applicability for heaters and boilers and reduce or eliminate fuel oil firing	Use qualifying controls to reduce NO _x emissions from combustion units
17	033	033808AAB	Marathon Ashland Refinery	Robinson		Existing wet gas scrubber		applicability for heaters and boilers and reduce or eliminate fuel oil firing	Reduce overall NO _x emissions from the controlled heaters and boilers at MAP refineries by 4,000 tpy. Control methods can include: SCR or SNCR; ULNB; technologies to reach 0.040 lbs per MMBtu or lower; alternate SO ₂ single burner technology to achieve 0.055 lbs per MMBtu or lower; unit shutdowns.

Table III-3 (continued)

Ide	ntification	Codes				FCCU Req	uirements	Heater/Boiler	Requirements
State	County	Facility*	Company	Location	State	SO ₂	NO _x	SO ₂	NO _x
26	163	A9831	Marathon Ashland Refinery	Detroit	MI	SO₂ catalyst additive		Accept NSPS Subpart J applicability for heaters and boilers and reduce or eliminate fuel oil firing	Reduce overall NO _x emissions from the controlled heaters and boilers at MAP refineries by 4,000 tpy. Control methods can include: SCR or SNCR; ULNB; technologies to reach 0.040 lbs per MMBtu or lower; alternate SO ₂ single burner technology to achieve 0.055 lbs per MMBtu or lower; unit shutdowns.
27	163		Marathon Ashland Refinery	St Paul Park		New wet gas scrubber on unit 1; catalyst additive on other unit	,	Accept NSPS Subpart J applicability for heaters and boilers and reduce or eliminate fuel oil firing	Reduce overall NO _x emissions from the controlled heaters and boilers at MAP refineries by 4,000 tpy. Control methods can include: SCR or SNCR; ULNB; technologies to reach 0.040 lbs per MMBtu or lower; alternate SO ₂ single burner technology to achieve 0.055 lbs per MMBtu or lower; unit shutdowns.
39	151	1576000301	Marathon Ashland Refinery	Canton		SO₂ catalyst additive		Accept NSPS Subpart J applicability for heaters and boilers and reduce or eliminate fuel oil firing	Reduce overall NO _x emissions from the controlled heaters and boilers at MAP refineries by 4,000 tpy. Control methods can include: SCR or SNCR; ULNB; technologies to reach 0.040 lbs per MMBtu or lower; alternate SO ₂ single burner technology to achieve 0.055 lbs per MMBtu or lower; unit shutdowns.
39	095		Sunoco Petroleum Refinery	Toledo		Install new wet gas scrubber to meet 25 ppmvd SO ₂	or alternate	Accept NSPS Subpart J applicability and reduce or eliminate fuel oil burning	

Table III-3 (continued)

Ide	Identification Codes					
State	State County Facility*		Company	Location	State	Notes
17	115	115015AAE	ADM	Decatur	IL	Settlement agreement
17	143	143065AJE	ADM	Peoria	IL	Settlement agreement
17	001	001815AAF	ADM	Quincy	IL	Settlement agreement
18	173	00002	Alcoa	Warrick Units 1,2,3	IN	Settlement agreement

^{*}Facility identification codes are those used in the 2002 point source files.

The Michigan Department of Environmental Quality (DEQ) provided information about the expected emissions reductions associated with settlements affecting Michigan sources. The information from Michigan DEQ was provided for Severstal (iron and steel), US Steel, and Marathon refinery. For Severstal, the key information provided indicated that NO_x emissions after the summer 2007 would be reduced at the blast furnace B and C stoves via a low NO_x burner (LNB) installation. A 50 percent NO_x control factor was applied with 2007 implementation year based on information in the Ozone Transport Rulemaking analysis about the expected emission reduction of LNB applied to a blast furnace. For US Steel, the Michigan DEQ-provided information indicated that PM controls would be installed during 2005 or 2006 on the basic oxygen furnace and blast furnace B, so it was assumed that these were base year controls and no future year control factor was applied. For the Marathon refinery in Michigan, the Michigan DEQ estimated that catalyst additives applied to the FCCU would reduce NO_x emissions by 25-50 percent and SO₂ emissions by 60-80 percent. The midpoint of each range was used to estimate post-2005 control factors for this refinery. All other expected controls at Marathon are to reduce PM emissions and were assumed to have occurred by 2005, so no future year PM control factors were applied.

4. On-the-Books (OTB) Control Additions

Table III-3 lists on-the-books controls that were applied to individual facilities/sources in the future year control factor file. This information was developed from the OTB updated control factor file provided by LADCO from the 2002 base year projections. The compliance date information in this file was used to eliminate controls that had compliance dates of 2005 or earlier. Ohio EPA provided information about the expected effects of NO_x Reasonably Available Control Technology (RACT) rules in achieving post-2005 emission reductions in the Cleveland-Akron, Ohio 8-hour ozone nonattainment area. Table III-4 summarizes the source categories, associated emission control equipment to meet the requirements, and the estimated NO_x control percentages.

Table III-4. Ohio RACT Rule Summary Cleveland/Akron 8-Hour Ozone Nonattainment Area

Source Category	Unit Size (MMBtu/hour)	NO _x Control	Estimated NO _x Control Efficiency
RICE Engines	All	Low Emission Combustion	80%
ICI Boilers	20-49	Burner Tune-up	10%
ICI Boilers	50-99	LNB+FGR	61%
ICI Boilers	100-249	LNB+FGR	61%
ICI Boilers	>250	LNB+FGR	61%
Combustion Turbine	All	Dry LNB	70%

SOURCE: Ohio EPA Division of Air Pollution Control.

5. Best Available Retrofit Technology (BART)

Table III-5 lists the BART-eligible sources for the states in the LADCO study region. In instances where criteria air pollutant control percentages (for SO_2 and NO_x) are listed in this table, those control percentages were applied in estimating 2018 emissions.

Table III-5. BART Eligible Non-EGU Sources

									Est. Emission	n Reduction
State	State ID	Source Name	County	County ID	Source ID	BART Emission Unit ID	Description	Stack ID	SO ₂	NO _x
ILLINOIS	17	Conoco Phillips	Madison	11D	119090AAA					
ILLINOIS	17	Exxon Mobil	Will	197	197800AAA					
ILLINOIS	17	CITGO	Will	197	197090AAI					
ILLINOIS	17	National Steel – Granite City	Madison	119	119813AAI					
INDIANA	18	AGC DIVISION- ALCOA POWER GENERATING	Warrick	173	2	Boiler #2	Dry Bottom, pulverized coal-fired boiler	241-242	95	90
						Boiler #3	Dry Bottom pulverized coal-fired boiler	242	95	90
						Boiler #4	Dry Bottom, pulverized coal-fired boiler	243	95	90
INDIANA	18	Alcoa Inc. – Warrick	Warrick	173	7	105m.1, 10	POTLINE #3. ROOMS 105 AND 106 gtc	105M	95	40
						107M, 108M	POTLINE #4. ROOMS 107 AND 108 GTC	107M	95	40
						109M,110M	POTLINE #5, ROOMS 109 AND 110, A-398	109M	95	40
						111M,112M,	POTLINE #6		95	40
						130m.1,104	potline #2, Rooms 103 and 104, A-398	103m.1	95	40
						134.63	HDC FURNACE COMLEXES	1EH	0	40
						134.71	OFFLINES #2	134.71	0	40
INDIANA	18	ESSROC CEMENT CORP. (Speed)	Clark	19	8	EU20	Kiln #1		95	70
						EU21	Kiln #2		95	70
INDIANA	18	GE PLASTICS MT. VERNON INC.	Posey	129	2	08-706	CO AND ORGANIC SULFIDE STREAM FROM PHOSGENE FED	08-706 707	95	0
						09-001	B&W NATURAL GAS AND OIL FIRED BOILER	09-001	0	70
-						09-001	Riley Boiler	12-001	95	70
						12-001	Hot Oil Heater		0	0
						09-002	LASKER BOILER	09-002	95	75
			<u> </u>			09-002	ERIE BOILER	09-002	95	75

Table III-5 (continued)

									Est. Emission Reduct	
State	State ID	Source Name	County	County	Source ID	BART Emission Unit ID	Description	Stack ID		NO _x
INDIANA	18	ISG-BURNS HARBOR (Formerly Beth. Steel)	Porter	127	1	460-01	#7 Boiler	4	95	75
						46002	#8 Boiler	5	95	75
						460-03	#9 Boiler	6	95	75
						460-04	#10 Boiler	7	95	75
						460-05	Boiler #11	8	95	75
						460-06	#12 Boiler	9	95	75
						512-06	#1 COKE BATTERY PUSHING	11	0	0
						512-08	#1 Coke Battery Underfire	13	95	75
						512-14	#2 COKE BATTERY PUSHING	12	0	0
						512-16	#2 COKE BATTERY UNDERFIRE STACK	14	95	75
						520	BLAST FURNACE FUGITIVES		0	0
						520-04	SINTER WINDBOX STACK	25	95	75
						520-18	BLAST FURNACE D CASTHOUSE EMISSIONS	33	0	0
						520-18	C BLAST FURNACE STOVES	31	0	0
						520-19	BLAST FURNACE D STOVES	34	0	0
						520-19	BLAST FURNACE C CASTHOUSE	33	0	0
						534	STEELMAKING FUGITIVES		0	0
						534-01	STEELMAKING HMD STATION #1	57	0	0
						534-02	STEELMAKING HMD #2	59	0	0
						534-10	STEELMAKING VESSELS #1 & #2	62	0	0
						534-11	STEELMAKING VESSELS	64	0	0
						534-23	STEELMAKING FM BOILER	65	0	0

Table III-5 (continued)

									Est. Emission	n Reduction
State	State ID	Source Name	County	County	Source ID	BART Emission Unit ID	Description	Stack ID	SO ₂	NO _x
							CASTER #1	80	0	0
						670-05	HOT STRIP FURNACE #1	90	95	75
						670-07	HOT STRIP #3 FURNACE	92	95	75
						670-07	HOT STRIP	91	95	75
						673-14	160" OKATE MILL FURNACE #1	112	0	75
						673-15	160" PLATE MILL FURNACE #2	113	0	75
						673-16.17	160" PLATE MILL FURNACES 4&5	110	0	0
						673-18.19	160" PLATE MILL FURNACES 6&7	111	0	0
						673-20	160" PLATE MILL FURNACE #8	114	0	0
						674.26,27	110" PLATE MILL FURNACES #1	122	0	0
MICHIGAN	26	Lafarge Midwest Inc.	Alpena	7	B1477	Kilns #1-#5				
MICHIGAN	26	Stone Container Corp.	Ontonagon	131	A5754	Riley Boiler				
						Paper Machine #2				
MICHIGAN	26	Tilden Mining Co	Marquette	103	B4885	Pelletizing Line #1, includes kiln, furnace, cooler, dryer				
						Boiler #2				
						Primary crusher				
MICHIGAN	26	Empire Iron Mining	Marquette	103	B1827	Pelletizing Lines #1 - #3 furnace				
						Boilers #1 - #3				
						Primary crusher				
MICHIGAN	26	St. Mary's Cement (CEMEX)	Charlevoix	29	B1559	Kiln and pre-calciner				
MICHIGAN	26	New Page Paper (Escanaba)	Delta	41	A0884	Boiler #8				
						Boiler #9				
						Recovery furnace				
						Lime kiln				
MINNESOTA	27	lpsat Inland	St. Louis	137	2713700062					
MINNESOTA	27	EVTAC-Fairlane	St. Louis	137	2713700113					
MINNESOTA	27	National Steel (Keewatin)	St. Louis	137	2713700063					
MINNESOTA	27	Hibbing Taconite	St. Louis	137	2713700061					
MINNESOTA	27	USS Minntac	St. Louis	137	2713700005					
MINNESOTA	27	Northshore Mining	Lake	75	2707500003					

Table III-5 (continued)

State		Source Name	County	County ID	Source ID				Est. Emission	n Reduction
	State ID					BART Emission Unit ID	Description	Stack ID	SO ₂	NO _x
N. DAKOTA	38	Great River Energy – Coal Creek	McLean	55	17					
N. DAKOTA	38	Basin Electric Power – Leland Olds	Mercer	57	1					
N. DAKOTA	38	Great River Energy – Stanton	Mercer	57	4					
N. DAKOTA	38	Minnkota Power – MR Young	Oliver	65	1					
OHIO	39	Mead Paper Division	Ross	67	671010028					
WISCONSIN	55	Georgia-Pacific Consumer Products (Formerly Fort James)	Brown	9	405032870	Boiler B26	stoker (coal, tire and other fuels), 350 mmBtu/hr	S10	85	50
		,				Boiler B27	cyclone, 615 mmBtu/hr	S10	85	88

B. AREA SOURCE/MAR CONTROLS

1. Area Sources

Pechan worked with the LADCO states to determine how to estimate the effect of federal/state/local rules on area source category emissions. The sub-sections below describe the results of this effort.

a. VOC Solvent Categories

For VOC emissions from consumer products and architectural and maintenance coatings, it was decided to estimate post-2005 VOC emission reduction credits using EPA guidance to states for estimating the benefits of three Federal rules being promulgated during calendar year 2007 (Harnett, 2007). These rules will establish or amend VOC content limits for (1) aerosol coatings (new rule), (2) architectural and industrial maintenance (AIM) coatings (amendments), and (3) household and institutional consumer products (amendments).

EPA estimated that the aerosol coatings rule will achieve the equivalent of a 19 percent reduction in mass VOC emissions from the 1990 baseline. The year 1990 represents the baseline, since there has been no previous Federal rulemaking for aerosol coatings. The creditable reduction that may be claimed is 0.114 pounds per capita. In the LADCO state 2005 emission inventory, this VOC emission reduction is applied to SCC 2460500000, which are Coatings and related products. A 12 percent VOC emission reduction is applied to SCC 2460500000 in each forecast analysis year (i.e., 2009, 2012, and 2018) to estimate the benefit of the federal aerosol coatings rule. This percentage is lower than the equivalent value estimated by EPA because the aerosol coatings rule is a subset of the Coatings and related products category represented by SCC 2460500000.

For AIM coatings, EPA estimates that the amended Federal AIM rule will achieve a reduction of 31 percent from the post-1998 Federal rule baseline of 3.6 pounds per capita. This is a creditable reduction of 1.1 pounds per capita. AIM coating emission reductions are applied to the following SCCs in the base year LADCO inventory for each analysis year: 2401001000; 2401003000; 2401008000; 2401008999.²

For consumer products, EPA has calculated that the amended Federal rule will achieve a VOC reduction of approximately 29 percent beyond that achieved by the 1998 Federal rule. This is a creditable reduction of 0.9 pounds per capita. Emission reductions from the Federal rule are applied to all Consumer Product source categories (SCCs 2460*) in each analysis year.

b. Portable Fuel Containers

For portable fuel containers (PFCs), while there are state-by-state differences in likely rule adoption dates, all state's control factors are based on the EPA mobile source air toxics (MSAT) rule requirements. EPA adopted emission standards for portable fuel containers (such as gas

² Note that subsequent to delivery of the area source/MAR control file, Wisconsin stated that this last SCC should not be included for their state.

cans) under the consumer products authority of the Clean Air Act. Starting with containers manufactured in 2009, the standard limits evaporation and permeation emissions from these containers to 0.3 grams of hydrocarbons per gallon per day. EPA also adopted test procedures and a certification and compliance program in order to ensure that containers meet the emission standard over a range of in-use conditions.

The VOC emission reduction benefits were estimated assuming that the new rule affects PFC sales starting during 2009, and that each PFC that meets the MSAT standard has 75 percent lower emissions than the PFC being replaced.

To account for the fact that growth in the portable fuel container population and turnover from old to new containers will be affected by the MSAT rule,³ Pechan calculated projection year emissions using the following equation:

$$Q_{N} = Q_{O} \left\{ \left[\left(G_{N} \right) - 1 \right] F_{n} + \left[\left(1 - R_{i} \right)^{e} \right] F_{e} + \left[1 - \left(1 - R_{i} \right)^{e} \right] F_{n} \right\}$$
 (Eq. 1)

where:

 Q_N = emissions in projection year

Q_o = emissions in base year R_i = annual retirement rate

 F_e = emission factor ratio for existing sources (1.0)

 G_N = projection year growth factor (projection year activity/base year activity)

 F_n = emission factor ratio for new sources relative to existing sources t = number of years between base year (2002) and projection year

The first term in the equation represents new source growth and controls, the second term accounts for retirement and controls for existing sources, and the third term accounts for replacement source controls. Because retirement was not estimated using a constant annual rate (5 percent were assumed to be retired in the first year, with 10 percent retired in each additional forecast year), Pechan replaced the $(1-R_i)^t$ terms in this equation with the appropriate proportion of containers retired between the base year and the appropriate forecast year. Pechan then computed an overall emission reduction for each future year of interest by comparing the forecast year controlled emissions calculated from this equation to the forecast year uncontrolled emissions. For example, an overall VOC emission reduction of 26.4 percent was computed for Illinois. Pechan then back-calculated the appropriate rule penetration (RP) value for each forecast year based on the overall emissions reduction, the 75 percent CE value, and an rule effectiveness (RE) of 100 percent (e.g., the calculated RP for Illinois for 2012 is 35.2 percent).

⁻

³ Note that to simplify the analysis Pechan assumed that all post-2005 new container growth would be affected by the MSAT rule (due to low growth rates, this assumption does not have a significant impact on the overall emission reduction estimates of this rule).

c. Residential Wood Heating (Woodstoves and Fireplace Inserts)

Pechan developed control factors by pollutant and year to account for the effect of the replacement of retired wood stoves/inserts that emit at pre-residential wood heater new source performance standard (NSPS) levels,. These control factors were developed using an annual 2 percent retirement rate for wood stoves/fireplaces along with pre- and post-NSPS wood stove and fireplace emission factors. SCCs for "controlled" wood stoves and fireplace inserts have no control factors applied. Pechan developed updated residential wood combustion control factors for the LADCO states using the same algorithms applied previously (Pechan, 2004). Table III-6 displays the emission reduction, control efficiency, and rule penetration percentages modeled.

d. Stage II Vehicle Refueling

Pechan developed updated (2005 base year) Stage II vehicle refueling control factors via MOBILE runs for the LADCO states. Onroad refueling control factors were calculated based on the percentage difference between the projection year (2009, 2012, and 2018) MOBILE6 refueling emission factors and the 2005 MOBILE6 refueling emission factors.

MOBILE6 emission factors were calculated at January and July temperature and fuel conditions. July emission factors were used as the surrogate for the five-month ozone season (May through September) and the January emission factors were used as the surrogates for the remaining seven months. Temperatures modeled were the January and July average daily monthly maximum and minimum temperatures for each state (i.e., Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin) based on 30-year average temperature data, as used in EPA's second Section 812 Prospective analysis. MOBILE6 input files were created for each unique combination of: January and July Reid vapor pressure, reformulated gasoline, oxygenated fuel, gasoline sulfur, and Stage II control programs for each of the states mentioned above. Fuel data and Stage II control program information for each state and corresponding projection year were based on EPA's National Mobile Inventory Model (NMIM) County Database (version NDC20060201). Data extracted from NMIM's County Database for these input parameters were based on January and July values.

Stage II control programs for IL, IN, and WI began in 1998 with a phase-in year of one year and with a percent efficiency value of 86.0 percent for LDGVs and LDGTs in the program. Similarly, the HDGVs in the program have 86.0 percent efficiency. For Ohio, these control programs began in 1993 with a two-year phase-in and 77.0 percent efficiency for both the LDGVs + LDGTs and HDGVs in the program.

Modeling these temperature, fuel, and Stage II control inputs (where applicable), Pechan calculated MOBILE6 emission factors for calendar years 2005, 2009, 2012, and 2018.

The resulting MOBILE6 emission factors were first weighted according to the default MOBILE6 VMT mix to determine the weighted average refueling emission factor for all gasoline vehicle types. The resulting January and July emission factors were weighted together according to the number of days in the seven-month season (212 days) and the five-month ozone season (153).

Table III-6. Residential Wood Combustion NSPS Emission Reductions (percentage values)

				2009			2012			2018		
scc	SCC Description	Pollutant	Reduction	Control Efficiency	Rule Penetration	Reduction	Control Efficiency	Rule Penetration	Reduction	Control Efficiency	Rule Penetration	
2104008001	Total Fireplaces	CO	2.9	55.0	5.3	4.9	55.0	8.9	8.5	55.0	15.5	
2104008010	Total Woodstoves	CO	3.1	55.0	5.6	5.2	55.0	9.5	9.0	55.0	16.4	
2104008000	Total Fireplaces & Woodstoves	CO	3.0	55.0	5.5	5.1	55.0	9.3	8.9	55.0	16.2	
2104008001	Total Fireplaces	NOX	1.9	28.6	6.6	3.3	28.6	11.5	5.6	28.6	19.6	
2104008010	Total Woodstoves	NOX	2.0	28.6	7.0	3.4	28.6	11.9	5.8	28.6	20.3	
2104008000	Total Fireplaces & Woodstoves	NOX	2.0	28.6	7.0	3.3	28.6	11.5	5.8	28.6	20.3	
2104008001	Total Fireplaces	PM10-PRI	2.3	35.9	6.4	4.0	35.9	11.1	6.9	35.9	19.2	
2104008010	Total Woodstoves	PM10-PRI	2.5	35.9	7.0	4.2	35.9	11.7	7.2	35.9	20.1	
2104008000	Total Fireplaces & Woodstoves	PM10-PRI	2.4	35.9	6.7	4.1	35.9	11.4	7.1	35.9	19.8	
2104008001	Total Fireplaces	PM25-PRI	2.3	35.9	6.4	4.0	35.9	11.1	6.9	35.9	19.2	
2104008010	Total Woodstoves	PM25-PRI	2.5	35.9	7.0	4.2	35.9	11.7	7.2	35.9	20.1	
2104008000	Total Fireplaces & Woodstoves	PM25-PRI	2.4	35.9	6.7	4.1	35.9	11.4	7.1	35.9	19.8	
2104008001	Total Fireplaces	VOC	5.9	77.4	7.6	9.8	77.4	12.7	17.1	77.4	22.1	
2104008010	Total Woodstoves	VOC	5.6	77.4	7.2	9.4	77.4	12.1	16.4	77.4	21.2	
2104008000	Total Fireplaces & Woodstoves	VOC	5.4	77.4	7.0	9.2	77.4	11.9	16.0	77.4	20.7	

Note: Rule effectiveness (RE) of 100 percent for each SCC/year.

After this was done for all of the modeled years and state or sub-state areas, the overall control efficiency for refueling, due to fleet turnover, was calculated based on the percentage difference between the 2005 and corresponding projection year emission factors. These control efficiencies were then assigned to individual counties, based on the mapping of fuel and Stage II control parameters to those modeled in the MOBILE6 files.

2. MAR Sources (Locomotives and Marine Vessels)

EPA issued a proposed rule this spring affecting future criteria pollutant emissions from railroad locomotives and commercial marine vessels (CMVs) (EPA, 2007b). These are the two off-road source categories that are addressed in this report. Base year emissions (2005) information for these two source categories was developed by ENVIRON under contract to LADCO (ENVIRON, 2007a and b).

Control factors for criteria air pollutants were developed using Chapter 3 (Emissions Inventory) of EPA's "Draft Regulatory Impact Analysis: Control of Emissions of Air Pollution from Locomotive Engines and Marine Compression-Ignition Engines Less than 30 Liters per Cylinder" (EPA, 2007b). This chapter presents EPA's analysis of the emissions impact of the proposed rule for three source categories affected: commercial marine diesel engines, recreational marine diesel engines, and locomotives. The proposed control requirements include NOx and PM emission standards for Category 1 and Category 2 commercial marine diesel engines (both above and below 37 kilowatts). New NOx and PM emission standards would also apply to all recreational diesel engines and locomotives. There are no new standards for HC or CO; however, the PM standards are also expected to decrease HC emissions.

For locomotives, the EPA Regulatory Impact Analysis (RIA) chapter was used to develop 2009, 2012 and 2018 estimates of baseline and post-control emissions by pollutant by locomotive usage. This information is summarized in Table III-7. The RIA examined the effect of the proposed rule on emissions for (1) large line haul, (2) large switch, (3) small railroads, and (4) passenger commuter trains. Each of these four usage types was assigned to the base year 2005 emission inventory SCCs. The SCC assignments are shown at the bottom of Table III-7.

Table III-7. Locomotive Emissions Reported in EPA Draft RIA

	Large Li	ine Haul	Large :	Switch	Small Ra	ilroads	Passenger Commuter		
Year	Baseline	Controlled	Baseline	Controlled	Baseline	Controlled	Baseline	Controlled	
			Vo	olatile Organic C	ompounds				
2006	43,874		5,501		2,891		1,609		
2009	43,486	42,008	5,696	5,552	3,032	3,032	1,546	1546	
2012	42,891	35,890	5,898	5,364	3,179	3,179	1,476	1301	
2018	41,684	23,607	6,325	5,066	3,497	3,497	1,332	771	
PM-2.5									
2006	27,082		2,202		907		992		
2009	24,216	23,661	2,120	2,070	870	870	861	861	
2012	23,800	20,672	2,188	2,006	912	912	819	738	
2018	22,542	14,516	2,309	1,896	991	991	719	466	
				PM-10					
2006	27,919		2,270		935		1,023		
2009	24,965	24,393	2,185	2,134	897	897	888	888	
2012	24,536	21,311	2,256	2,068	940	940	845	761	
2018	23,240	14,965	2,380	1,954	1,022	1,022	741	480	
				Oxides of Nit	rogen				
2006	779,842		86,861		37,690		38,466		
2009	755,490	751,364	88,573	87,999	39,528	39,528	32,338	32,338	
2012	730,031	692,606	88,909	86,614	41,456	41,456	27,212	25,933	
2018	708,525	608,010	90,875	84,612	44,299	44,299	22,559	19,496	
SCC(s)			02007	2285002008;	2285002009				

Because the federal locomotive emission standards modeled under previous LADCO contracts will continue to achieve emission reductions, it was necessary for Pechan to adjust the information in the new RIA to estimate the total post-base year reductions from the effects of both the existing and proposed locomotive standards. Pechan computed a revised set of projected emissions for modeling years 2009, 2012, and 2018 that reflect application of EPA's assumed locomotive growth rate (1.6 percent per year) to the base year (2006) emissions from their analysis. This step was used to estimate the emissions for each modeling year excluding the effects of both sets of emission standards. Next, Pechan computed the percentage reduction in emissions between the revised emissions in each modeling year and the controlled emissions reported in EPA's draft RIA. Table III-8 shows how the revised baseline and percent reduction for each modeling year. For example, for large line haul railroads, the baseline 2009 uncontrolled VOC emissions are estimated to be 46,014 tons nationally. Controlled emissions of 42,008 tons represent an 8.7 percent VOC reduction from this uncontrolled emission estimate (46,014-42,008=4,010;4,010/46,014*100=8.7).

Table III-8. Percentage Reductions Associated with Federal Locomotive Standards

	Large Li	ne Haul	Large	Switch	Small R	ailroads	Passenger	Commuter			
Year	Revised Baseline	% Reduction	Revised Baseline	% Reduction	Revised Baseline	% Reduction	Revised Baseline	% Reduction			
	Volatile Organic Compounds										
2006											
2009	46,014	8.7%	5,769	3.8%	3,032	0.0%	1,687	8.4%			
2012	48,258	25.6%	6,051	11.3%	3,180	0.0%	1,770	26.5%			
2018	53,080	55.5%	6,655	23.9%	3,498	0.0%	1,947	60.4%			
	PM-2.5										
2006											
2009	28,403	16.7%	2,309	10.4%	951	8.5%	1,040	17.2%			
2012	29,788	30.6%	2,422	17.2%	998	8.6%	1,091	32.4%			
2018	32,765	55.7%	2,664	28.8%	1,097	9.7%	1,200	61.2%			
				PM-10							
2006											
2009	29,281	16.7%	2,381	10.4%	981	8.5%	1,073	17.2%			
2012	30,709	30.6%	2,497	17.2%	1,028	8.6%	1,125	32.4%			
2018	33,777	55.7%	2,746	28.9%	1,131	9.7%	1,238	61.2%			
			(Oxides of Nitrog	en						
2006											
2009	817,877	8.1%	91,097	3.4%	39,528	0.0%	40,342	19.8%			
2012	857,766	19.3%	95,540	9.3%	41,456	0.0%	42,310	38.7%			
2018	943,477	35.6%	105,087	19.5%	45,599	2.8%	46,537	58.1%			
SCC(s)	22850	02006	22850	02010	22850	002007	2285002008;	2285002009			

Note: emissions reported in short tons.

Analogous control factor calculations to those described above for locomotives were used to compute total CMV emission reduction values representing the effects of both existing and proposed emission standards. Table III-9 presents the EPA baseline emissions, Pechan's revised baseline emissions (computed using EPA's 0.9 percent annual growth assumption), EPA's controlled emissions, and the percentage reduction estimates applied in this analysis. For example, the CMV standards are expected to reduce VOC emissions by 33.9 percent in 2018.

Table III-9. Percentage Reductions Associated with Federal CMV Standards

	Emissions (short tons)								
		Revised		%					
Year	Baseline	Baseline	Controlled	Reduction					
	Vol	atile Organic	Compounds						
2005	17,295								
2009	16,870	17,926	16,863	5.9%					
2012	16,495	18,414	16,344	11.2%					
2018	16,034	19,431	12,851	33.9%					
	PM-2.5								
2005	30,042								
2009	27,327	31,138	27,324	12.2%					
2012	26,657	31,987	26,582	16.9%					
2018	22,553	33,753	19,308	42.8%					
	PM-10								
2005	30,972								
2009	28,172	32,102	28,169	12.3%					
2012	27,481	32,977	27,403	16.9%					
2018	23,251	34,798	19,905	42.8%					
		Oxides of N	Nitrogen						
2005	825,229								
2009	781,105	855,341	781,105	8.7%					
2012	743,915	878,643	742,453	15.5%					
2018	686,966	927,171	591,991	36.2%					
		Sulfur Di	oxide						
2005	82,543								
2009	46,838	85,555	46,839	45.3%					
2012	42,515	87,886	42,515	51.6%					
2018	6,054	92,740	5,630	93.9%					
		Carbon Mo	onoxide						
2005	153,499								
2009	149,966	159,100	149,966	5.7%					
2012	146,227	163,434	146,227	10.5%					
2018	140,443	172,461	140,443	18.6%					

For commercial marine diesel engines, the RIA examines expected rule emission benefits for four different engine types/sizes. The total CMV emission benefits in each year were used and applied equally to most of the affected SCCs in the 2005 inventory. However, Pechan applied rule penetration (RP) values to two CMV SCCs based on an ENVIRON table indicating RP values of less than 100 percent for these SCCs (see Table III-10).

Table III-10. Commercial Marine Vessel Rule Penetration Values

Source	C		Can manhin	Percentage	of Engines A	ffected by Pro	posed EPA	Standards
Category Code (SCC)	Source Definition	Purpose	Geographic Area	NOx	PM-10	НС	СО	SOx
2280002023	Push Boats	Barge Freight	River Traffic	100%	100%	100%	100%	100%
			Lake Traffic	100%	100%	100%	100%	100%
2280002021	Tugs	Vessel assist and support functions	Near port	100%	100%	100%	100%	100%
2280003200	Deep draft	Laker and ocean-going	Mid-Great Lakes	85%	81%	86%	86%	77%
2280003100		large vessels	Near port	81%	71%	87%	83%	63%
2280002022	Ferries	River or lake ferrying	Regular routes	100%	100%	100%	100%	100%
2280002024	Other Commercial Vessels	Excursion boats primarily	Near dock	100%	100%	100%	100%	100%
2280002025	Dredges	Dredging projects	Varies	100%	100%	100%	100%	100%
2280002029	Support Vessels	General work boats	Near port	100%	100%	100%	100%	100%
2280002030, 2280004030 ¹	Commercial Fishing	Market fishing	Great Lakes	100%	100%	100%	100%	100%
2280002040, 2280004040 ¹	Military	Coast Guard and Navy	Great Lakes	100%	100%	100%	100%	100%

SECTION IV. PREPARATION OF GROWTH AND CONTROL FILES

This section describes the contents of the growth and control factor files submitted to LADCO earlier this month. The first subsection discusses the preparation of the point and area source/MAR factor file and the revised NONROAD model growth file. The final subsection describes the contents of the control factor files.

Table IV-1 presents the RPO Data Exchange Protocol Format for reporting emission growth and control data. Pechan utilized this format to create growth and control factor files for LADCO. Because the growth factors (unlike the control factors) do not differ by pollutant, Pechan developed a separate file containing only the point and area source/MAR growth factors. Pechan revised the growth packet portion of the NONROAD model growth file (*NATION.GRW*) to replace the default model equipment population growth rates with growth rates based on more recent/more region-specific information. Two sets of control factor files were prepared: one for area source/MAR categories and one for point source categories. The point and area source/MAR growth and control files were developed in fixed field ascii format. The format of the default NONROAD model growth file was retained in the revised version prepared for LADCO. The following subsections describe the contents of the growth and control factor files.

A. GROWTH FACTORS

Pechan compiled the LADCO region growth factor information into the file \$LADCO_2005_GF_Final_RPO.txt. Table IV-2 displays the RPO Data Exchange Protocol Format fields and identifies the fields that were populated in this file. The file contains separate records for each SCC/state for each year between 2006 and 2018 (population-based growth indicator records are reported by SCC/state/county because population projections were available at the county-level).

Pechan revised the input file used by the NONROAD model (*NATION.GRW*) to reflect historical equipment population changes and to estimate future equipment population changes. In particular, Pechan incorporated LADCO state-specific records to the GROWTH packet portion of this file. The fixed field format of the data in this packet is as follows:

Characters	<u>Description</u>
1-5	FIPS code $(00000 = applies to entire nation; ss000 = applies to all of state ss)$
6-10	subregion code (left blank)
11-15	year of estimate (4-digit year)
17-20	indicator code (alphanumeric code identified within NONROAD)
26-45	value for indicator

Table IV-1. RPO Data Exchange Protocol Format for Growth/Control Data

Field Name	Field Description	Field Length
RECORD TYPE	A code that identifies the type of record (G for growth, C for control)	2
COUNTRY CODE	A code that identifies the country (US = United States)	2
STATE PROVINCE TRIBAL CODE	The code for the state/province/tribe	4
COUNTY FIPS	The FIPS code for the county	3
SIC	4-digit SIC, or 2 digit SIC with remaining digits blank (not zero)	4
SCC	EPA source classification code or a fraction of the code	10
SITE ID	Unique state/local/tribal ID reported consistently over time	15
EMISSION UNIT ID	Unique state/local/tribal ID reported consistently over time	6
EMISSION RELEASE POINT ID	State/ local/tribal ID for point /location where emissions are released to ambient air	6
POLLUTANT CODE	Pollutant code	9
PROCESS ID	Unique state/local/tribal ID reported consistently over time	6
BASE DATE	Date that the control strategy comes into effect	6
FUTURE DATE	Future date that the control strategy affects	6
PRIMARY CONTROL EQUIPMENT CODE	Primary control equipment code	10
BASE DATE CONTROL EFFICIENCY	Base year % control efficiency(60% reduction = 60)	6
FUTURE DATE CONTROL EFFICIENCY	Future year % control efficiency(60% reduction = 60)	6
FUTURE DATE GROWTH FACTOR	Growth factor based on changes in throughput, economic growth (unrelated to controls). This is an absolute growth rate not an annual growth rate.	11
CONTROL TYPE	MACT, RACT, LAER, SIPCALL, BART, etc	10
FUTURE DATE CHEMICAL SPECIATION PROFILE	Code matching speciate chemical speciation profile unless in base year	6
ALLOWABLE EMISSIONS CAP	Allowable emissions cap units must be in TONS/day	10
MARKET PENETRATION OF NEW SPECIATION PROFILE	Fraction of future year emissions using new speciation profile	6
RESERVED FOR FUTURE USE FIELD 3	(Field used to enter future year control efficiency value where available)	10
RESERVED FOR FUTURE USE FIELD 2	(Field used to enter future year rule effectiveness value where available)	10
RESERVED FOR FUTURE USE FIELD 1	(Field used to enter future year RP value where available)	10
CONTROL DESCRIPTION	A text description of the control	80
PRIMARY CONTACT	Email address of the primary contact/developer of this record	30

Table IV-2. Fields Populated in Growth Factor File

Field Name	Populated in Growth Factor File?		
RECORD TYPE	Yes		
COUNTRY CODE	Yes		
STATE PROVINCE TRIBAL CODE	Yes		
COUNTY FIPS	Yes (with "000" except for population data)		
SIC	No		
SCC	Yes		
SITE ID	No		
EMISSION UNIT ID	No		
EMISSION RELEASE POINT ID	No		
POLLUTANT CODE	No		
PROCESS ID	No		
BASE DATE	Yes		
FUTURE DATE	Yes		
PRIMARY CONTROL EQUIPMENT CODE	No		
BASE DATE CONTROL EFFICIENCY	No		
FUTURE DATE CONTROL EFFICIENCY	No		
FUTURE DATE GROWTH FACTOR	Yes		
CONTROL TYPE	No		
FUTURE DATE CHEMICAL SPECIATION PROFILE	No		
ALLOWABLE EMISSIONS CAP	No		
MARKET PENETRATION OF NEW SPECIATION PROFILE	No		
RESERVED FOR FUTURE USE FIELD 3 (future year CE)	No		
RESERVED FOR FUTURE USE FIELD 2 (future year RE)	No		
RESERVED FOR FUTURE USE FIELD 1 (future year RP)	No		
CONTROL DESCRIPTION	No		
PRIMARY CONTACT	Yes		

B. CONTROL FACTORS

Pechan compiled control factors for the LADCO states in two sets of ascii files: one set for point source controls (*LADCO 2005 Base Year Point Control File.txt*), and the other set for area source/MAR controls (*LADCO 2005 Base Year Area Source and MAR Control File.txt*).

1. Point Source Control Factors

The *LADCO 2005 Base Year Point Control File.txt* file reports control information at the Process ID-level and for the specific date that each control is expected to be implemented. Note that the Base Date Control Efficiency field is populated with a zero for every record because Pechan did not have any base year control information other than that reported in the base year inventory supplied by LADCO. LADCO should rely on the control information in the base year inventory to identify the base year level of control. For MACT standards, the point source control factors are incremental to base year control levels. Because all other point source control

factors represent absolute control levels, LADCO should subtract any existing 2005 inventory level of control from the control factor level of control to determine net reductions for non-MACT controls. Pechan found very few point source records with control information, so LADCO should expect very little control overlap between the 2005 inventory and the control file. Table IV-3 identifies the RPO Data Exchange Protocol fields that are populated in the point source control file.

2. Area Source and MAR Control Factors

Pechan compiled the area source and MAR control factor information into a single ascii file that reports the level of control for each year of interest (2009, 2012, and 2018). In cases where there is no change in emission reduction after the initial implementation year, the level of control is repeated for each year. For controls where emission reductions increase over time (due to increased levels of RP), the level of control increases for each successive modeling year. Except for the single control for which emission reductions are county-specific (Stage II Vehicle Refueling), the area source and MAR control factor file is expressed at the state-level. In cases where it was feasible to do so, Pechan populated the 5th, 4th, and 3rd fields from the end of each control factor file ("RESERVED FOR FUTURE USE" in the RPO Data Exchange Protocol Format) with future year CE, RE, and RP values, respectively (the field "FUTURE DATE CONTROL EFFICIENCY" was populated with the overall percentage emission reduction). Table IV-4 identifies the RPO Data Exchange Protocol fields that are populated in this file.

Table IV-3. Fields Populated in Point Source Control Factor File

	Populated in Point Source Control
RPO Data Exchange Protocol Format Field Name	Factor File
RECORD TYPE	Yes
COUNTRY CODE	Yes
STATE PROVINCE TRIBAL CODE	Yes
COUNTY FIPS	Yes
SIC	Yes
SCC	Yes
SITE ID	Yes
EMISSION UNIT ID	Yes
EMISSION RELEASE POINT ID	Yes
POLLUTANT CODE	Yes
PROCESS ID	Yes
BASE DATE	Yes
FUTURE DATE ¹	Yes
PRIMARY CONTROL EQUIPMENT CODE	No
BASE DATE CONTROL EFFICIENCY ²	Yes
FUTURE DATE CONTROL EFFICIENCY ³	Yes
FUTURE DATE GROWTH FACTOR	No
CONTROL TYPE	Yes
FUTURE DATE CHEMICAL SPECIATION PROFILE	No
ALLOWABLE EMISSIONS CAP	No
MARKET PENETRATION OF NEW SPECIATION PROFILE	No
RESERVED FOR FUTURE USE FIELD 3 (future year CE)	No
RESERVED FOR FUTURE USE FIELD 2 (future year RE)	No
RESERVED FOR FUTURE USE FIELD 1 (future year RP)	No
CONTROL DESCRIPTION	Yes
PRIMARY CONTACT	Yes

Represents date that control is first implemented.

All records populated with "0" - LADCO should rely on control information reported in base year inventory.

³ Populated with overall percentage emission reduction.

Table IV-4. Fields Populated in Area Source/MAR Control Factor File

RPO Data Exchange Protocol Format Field Name	Populated in Area Source/MAR Control Factor File
RECORD TYPE	Yes
COUNTRY CODE	Yes
STATE PROVINCE TRIBAL CODE	Yes
COUNTY FIPS	Yes
SIC	No
SCC	Yes
SITE ID	No
EMISSION UNIT ID	No
EMISSION RELEASE POINT ID	No
POLLUTANT CODE	Yes
PROCESS ID	No
BASE DATE	Yes
FUTURE DATE	Yes
PRIMARY CONTROL EQUIPMENT CODE	No
BASE DATE CONTROL EFFICIENCY	Yes
FUTURE DATE CONTROL EFFICIENCY ¹	Yes
FUTURE DATE GROWTH FACTOR	No
CONTROL TYPE	No
FUTURE DATE CHEMICAL SPECIATION PROFILE	No
ALLOWABLE EMISSIONS CAP	No
MARKET PENETRATION OF NEW SPECIATION PROFILE	No
RESERVED FOR FUTURE USE FIELD 3 (future year CE)	Yes ²
RESERVED FOR FUTURE USE FIELD 2 (future year RE)	Yes ²
RESERVED FOR FUTURE USE FIELD 1 (future year RP)	Yes ²
CONTROL DESCRIPTION	Yes
PRIMARY CONTACT	Yes

¹ Populated with overall percentage emission reduction (product of CE, RE, and RP).
² Not populated for Federal locomotive standards or Stage II Vehicle Refueling control program.

SECTION V. REFERENCES

BLS, 2007: U.S. Bureau of Labor Statistics, "State Occupational Employment Projections, Long-Term," accessed from http://www.projectionscentral.com/projections.asp, Office of Employment Projections, Washington, DC. Accessed May 2007.

- DOE, 2007a: U.S. Department of Energy, "Annual Energy Outlook 2007, with Projections through 2030," DOE/EIA-0383(2007), Energy Information Administration, Office of Integrated Analysis and Forecasting, Washington, DC. February 2007.
- DOE, 2007b: U.S. Department of Energy, "State Energy Consumption, Price, and Expenditure Estimates (SEDS)," accessed from http://www.eia.doe.gov/emeu/states/_seds.html, Energy Information Administration, Office of Integrated Analysis and Forecasting, Washington, D.C. Accessed April 2007.
- ENVIRON, 2007a: ENVIRON International Corporation, "Draft LADCO 2005 Commercial Marine Emissions," prepared for Lake Michigan Air Directors Consortium, Des Plaines, IL, March 2, 2007.
- ENVIRON, 2007b: ENVIRON International Corporation, "Draft LADCO 2005 Locomotive Emissions," prepared for Lake Michigan Air Directors Consortium, Des Plaines, IL, February 2007.
- EPA, 2004: U.S. Environmental Protection Agency, "National Emission Inventory—Ammonia Emissions from Animal Husbandry Operations, Draft Report," (no further identifying information available). January 2004.
- EPA, 2007a: U.S. Environmental Protection Agency, "Clean Watersheds Needs Survey 2000," data for LADCO states accessed from http://www.epa.gov/owm/mtb/cwns/index.htm, Office of Wastewater Management, Washington, DC. Accessed May 2007.
- EPA, 2007b: U.S. Environmental Protection Agency, "Draft Regulatory Impact Analysis: Control of Emissions of Air Pollution from Locomotive Engines and Marine Compression-Ignition Engines Less than 30 Liters per Cylinder Chapter 3: Emission Inventory," Assessment and Standards Division, Office of Transportation and Air Quality, EPA420-D-07-001, March 2007.
- FAA, 2007: U.S. Federal Aviation Administration, "Terminal Area Forecast System," data for LADCO states accessed from http://www.apo.data.faa.gov/main/taf.asp, Office of Aviation Policy and Plans, Washington, DC. Accessed March 2007.
- Freedonia, 2006: The Freedonia Group, Inc., "Solvents to 2010, U.S. Industry Study with Forecasts to 2010 & 2015," Study #2055, Cleveland, OH, April 2006.

Harnett, 2007: William T. Harnett, "Guidance for Estimating VOC and NO_x Emission Changes from MACT Standards," Memorandum to Regional Air Division Directors, U.S. Environmental Protection Agency, Research Triangle Park, NC, May 11, 2007.

- Metra, 2007: Metra, "2007 Metra Program and Budget," accessed from http://metrarail.com/Budget/2007BudgetBook.pdf, Chicago, IL, May 2007.
- Page, 2007: Stephen D. Page, "Emission Reduction Credit for Three Federal Rules for Categories of Consumer and Commercial Products under Section 183(e) of the Clean Air Act," Memorandum to Air Division Directors, U.S. Environmental Protection Agency, Research Triangle Park, NC, May 30, 2007.
- Pechan, 2004: E.H. Pechan & Associates, Inc., "Development of Growth and Control Factors for Lake Michigan Air Directors Consortium (LADCO) Final Report," Durham, NC, prepared for Lake Michigan Air Directors Consortium, Des Plaines, IL, December 15, 2004.
- Pechan, 2005: E.H. Pechan & Associates, Inc., "Development of Updated Growth and Control Factors for Lake Michigan Air Directors Consortium (LADCO) Draft Report," Durham, NC, prepared for Lake Michigan Air Directors Consortium, Des Plaines, IL, December 29, 2005.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4
ATLANTA FEDERAL CENTER
61 FORSYTH STREET
ATLANTA, GEORGIA 30303-8960

August 18, 2010

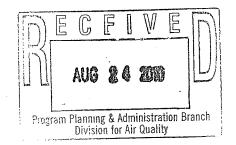
Ms. Melissa Duff, Supervisor Department for Environmental Protection Division for Air Quality 200 Fair Oaks Lane, 1st Floor Frankfort, Kentucky 40601-1403

Dear Ms. Duff:

Thank you for the March 23, 2010, email requesting our review of the emissions inventory (EI) quality assurance project plan (QAPP) for Kentucky. We also appreciate the June 21, 2010, hardcopy version of the email attachment with original signatures. The QAPP was developed and submitted by the Kentucky Division for Air Quality per a section 105 Air Planning Agreement grant condition. The U.S. Environmental Protection Agency (EPA) has completed our review and recommends that the point source EI QAPP be approved.

Enclosed with the QAPP approval letter is the signed QAPP and our review checklist. If you have any comments or questions, please contact Brenda Johnson of the EPA Region 4 staff at (404) 562-9037.

Sincerely,


R. Scott Davis

Chief

Air Quality Modeling and Transportation Section

Enclosures

cc: Lynorae Benjamin, RDS

Appendix C

Mobile Source Emissions Inventory for the Louisville, KY-IN 1997 PM_{2.5} Nonattainment Area

APCD Technical Documentation for Using EPA Motor Vehicle Emission Simulator (MOVES) 2010 to Develop Mobile Source Emissions May 2011

Adjustment Factors for Travel Model Output

The VMT and speeds from the travel demand model were adjusted before being used in the calculation of regional emissions. The purpose of these adjustments was to reconcile the model output with travel estimates from other sources, such as the Highway Performance Monitoring System (HPMS) estimates of VMT. To perform this adjustment, factors were developed for the year of the HPMS or other estimates and applied to model output for other years.

The outputs of the travel demand model were compared to estimates of speed based on: (1) the equations of the Highway Economic Reporting System (HERS) and (2) the use of data from the Automatic Continuous Traffic Recorders (ATRs) of the Kentucky Transportation Cabinet (KYTC). The HERS equations were used to estimate speeds on 402 sections of urban roadways for five functional classifications. The speeds from these roadway sections were used to determine the average speed for each of five functional classes. The speeds used in the travel model were also averaged for each urban functional class. The speed adjustment factor for each urban functional class was calculated as the ratio of the average speed using the HERS equations to the average speed using the travel model data.

The KYTC ATR data was used to estimate speeds on 84 sections of rural roadways for four functional classifications. The speeds from these roadway sections were used to determine the average speed for each of four functional classes. The speeds used in the travel model were also averaged for each rural functional class. The speed adjustment factor for each rural functional class was calculated as the ratio of the average speed using the ATR data to the average speed using the travel model data.

The procedures described above produced speed adjustment factors for all functional classes except rural minor collectors and rural and urban local roads and ramps. (Ramps are not officially a separate functional class, but the speed behavior of traffic on ramps is not expected to be like that of any other functional class. Therefore, the ramps were treated as a separate "functional class.") There was not sufficient data to estimate speeds for the roadways of these classes. For the rural minor collectors and rural and local roads, the speed adjustment factor of the next higher functional class was used. For ramps, the speeds in the travel model were used without adjustment (i.e. the speed adjustment factor for ramps = 1).

MOVES

The following table (Table 1) summarizes the MOVES specifications for the runs used to produce data for the four Louisville Metro area counties to develop SIP PM2.5 MVEB's. VMT data for the runs was supplied by KIPDA's TDFM. The summary reflects the format of the MOVES input panels, in addition to the 13 input files that the County Database Manager (CDM) requires. A complete collection the CDM local input files, as well as the specification files, input databases, and output databases is included separately, along with sample MySQL script and a linked excel workbook. The file Documentation_main.docx lists the contents of the folders. MOVES was run in the inventory mode ("calculation type" in the "Scale" input panel) in order to provide the quickest and most accurate emission totals, given the data development schedule requirements.

MOVES RunSpecs: PM2.5 Redesignation SIP MVEB data; Louisville, KY PM2.5 Area

ACPD - cb 4/12/11

MOVES RunSpec Parameter	Settings / Assumptions
MOVES Version	n 2010a, MOVES default database 20100830
Analysis Years Run	2002, 2009, 2012, 2020, 2030; post-process interpolated to 2005, 2008, 2015, 2025
Scale	County, Emission Inventory mode
Time Span	Time aggregation = Hour; 12 months; All hours of day; weekdays & weekends
Meteorology	All 12 months were input, representing (historical) average annual temperatures and humidity for each month. Local temperature and humidity data was collected from NOAA weather stations in Louisville by APCD. Hourly distributions were then propagated using the EPA MOBILE6-MOVES conversion workbook customized by APCD, and used for all four counties.
Geographic Bounds	2 Indiana counties (Clark, Floyd), 2 Kentucky counties (Bullitt, Jefferson) - all run separately and for each analysis year. The small area in Madison Township, Jefferson Co., IN was calculated by IDEM (contracted - using MOVES with assistance and data supplied by APCD).
Vehicles/Equipment	All source types, gasoline and diesel; CNG population was set to 0 for transit buses using the AFV input file.
Fuel Supply Formulations	From most recent (2006) EPA data as well as IAC agreement for each county. Jefferson Co, KY: RFG, Clark & Floyd Co.'s IN: RVP, Bullitt Co., KY: conventional
I/M Programs	2005 runs for Floyd and Clark Co., IN; otherwise none for any county (last active was 2002 (KY) and 2006 (IN)).

Vehicle Populations & Age Distributions	Local county vehicle registration was used to derive vehicle populations and age distributions for Bullitt & Jefferson Counties (KY); 2002 VIN-decoded registration data supplied by IDEM was used for Floyd & Clark Counties (IN); pass-through heavy duty vehicle population and age distribution was developed using national data. MOBILE6 formatted data was converted using the EPA MOBILE6-MOVES converter workbooks, customized by APCD.
Vehicle VMT	Vehicle VMT was derived from earlier MOBILE6 modeling work, which used MOBILE6 default mileage accumulation rates and FHWA 1997 VMT. Fleet VMT mixes in MOBILE6 input format were then converted using the EPA MOBILE6-MOVES converter workbooks, customized by APCD.
VMT Distributions	Monthly=default, Hourly Profile=default, Road Type=data from KIPDA's TDFM (converted from MOBILE6 format), Speed=data from KIPDA's TDFM (converted from MOBILE6 format),
Ramp Fractions	Specific to each county from KIPDA supplied data.
Road Type	All road types including off-network
Pollutants and Processes	NOx, All PM _{2.5} categories, SO ₂ , Total Energy Consumption
Strategies	Modified AVFT strategy file to reflect 0% CNG buses in the transit fleet
General Output	Units= grams, joules and miles
Output Emissions	Time = annual; Location = county; onroad inventory emission totals by process and pollutant.
Advanced Performance	none

Table 1: MOVES input summary

LMAPCD executed the MOVES runs to produce the onroad emissions data, and also post-processed the data to calculate the emission totals by county. Totals were calculated by using MSExcel workbooks that were linked to exported Excel files produced with the MySQL browser – part of the MOVES 2010a installation suite of programs – which operated on SQL MOVES output databases created for each run. Inputs were formatted for the MOVES CDM by making use of the EPA conversion workbooks, customized by APCD for easier 'cut and paste' transference. Only VMT input data was supplied by KIPDA's TDFM (and converted from MOBILE6 format to MOVES CDM input records). LMAPCD maintains a 'suite' of data with the most recent local data for its *APCD Mobile Suite*. This was used as a source for the MOVES runs required for the MVEB data (*Mobile Suite version g6*). For the Indiana Counties (Clark and Floyd) two sets of runs were made to provide data using both the older '2004' Indiana fleet data (actually 2002 fleet data, updated in 2004), and the new, but as yet not quality assured 2009 Indiana fleet data. *To date, the older (2002) Indiana fleet data was used in development of the SIP MVEB*'s.

Louisville Metro APCD data and associated analysis for ICG discussion for setting MVEB's for PM2.5 redesignation request SIP. Orange tab sheet contains primary data under consideration currently. hat and other sheets listed below. -3/22/11 CB

IN2004fleet Primary data under consideration - calculated using 2004 Indiana fleet data

IN2009fleet Emission totals calculated using 2009 Indiana fleet data; for future MVEB update when QA'd

compare Comparison of emission totals (IN2004fleet & IN2009fleet)

2040 Analysis of a projected 2040 data set
AllData Consolidation of all data in this workbook

Charts Charts graphing data to analyze trends for setting MVEB margins, etc.

VMTtrends Area VMT trends - VMT input used for calculations

MOB6vsMOVES Approximate comparison of MOBILE6 vs. MOVES with the same input set

MOBILE6 Data: same year KIPDA plan inputs run with MOBIL6 - used to compare on sheet above

LOUISVILLE AQ NON-ATTAINMENT/MAINTENANCE AREA ANNUAL ONROAD MOBILE EMISSION TOTALS: TONS per YEAR KIPDA VMT inputs: 10PlanA (July, 2010); APCD Mobile Suite g6a (MOVES); 2004 Indiana fleet data

APCD 2/22/11 cb

											20	2
		2002			2008			2015			2025	
	NOX	PM2.5	802	NOX	PM2.5	802	NOx	PM2.5	802	NOx	PM2.5	202
Clark, IN	Clark, IN 4,106.81	263.47	20.72	3,444.07	225.95	22.22	1,843.80	112.38	22.83	975.12	58.79	21.70
Floyd, IN	2,922.90	193.61	14.03	2,397.70	159.34	14.58	1,306.71	80.50	15.38	726.78	45.02	15.30
Bullitt, KY	Bullitt, KY 2,952.07	165.41	12.11	2,820.80	167.76	13.28	1,782.71	107.96	15.01	948.69	54.78	16.33
Jefferson, KY 22,241.72	22,241.72	1,408.81	95.26	19,094.05	1,218.29	101.00	10,259.60	639.95	102.55	5,336.69	333.04	101.81
Madison Township, Jefferson Co., IN	521.05	15.11	2.10	403.83	11.23	2.09	199.31	4.88	1.97	109.90	2.65	2.01
Total:	Total: 32,744.56 2,046.41 144.23	2,046.41	144.23	28,160.45 1,782.56	1,782.56	153.18	153.18 15,392.13 945.67	945.67	157.75	157.75 8,097.18	494.28	157.15

data supplied by:
APCD INDOT LOUISVILLE AQ NON-ATTAINMENT/MAINTENANCE AREA ANNUAL ONROAD MOBILE EMISSION TOTALS: TONS per YEAR KIPDA VMT inputs: 10PlanA (July, 2010); APCD Mobile Suite v1a (MOVES); 2009 Indiana fleet data

APCD 2/22/11 cb

					THE PROPERTY OF		STATE OF THE PARTY	STATE STATE OF THE PARTY OF THE			ALCD ZIZZIII CD	Z/ 11/Z
		2002			2008			2015			2025	
	NOX	PM2.5	202	NOx	PM2.5	802	NOx	PM2.5	202	NOx	PM2.5	202
Clark, IN	Clark, IN 4,223.29	256.03	20.03	3,677.03	211.06	20.83	2,104.93	119.11	21.77	1,030.55	65.40	20.61
Floyd, IN	3,011.87	189.28	13.58	2,575.65	150.67	13.68	1,504.35	85.56	14.61	804.38	52.62	15.23
Bullitt, KY	2,952.07	165.41	12.11	2,820.80	167.76	13.28	1,782.71	107.96	15.01	948.69	54.78	16.33
Jefferson, KY 22,241.72 1,408.81	22,241.72	1,408.81	95.26	19,094.05	1,218.29	101.00	10,259.60	639.95	102.55	5,336.69	333.04	101.81
Madison Township, Jefferson Co., IN	510.11	14.95	2.11	413.76	11.43	2.07	240.94	5.57	2.01	120.38	2.94	2.04
Total:	Total: 32,939.07 2,034.47 143.10	2,034.47	143.10	28,581.28 1,759.20	1,759.20	150.87	150.87 15,892.52	958.16	155.95	958.16 155.95 8,240.69	508.78	156.02

data supplied by:

APCD

LOUISVILLE AQ NON-ATTAINMENT/MAINTENANCE AREA ANNUAL ONROAD MOBILE EMISSION TOTALS: TONS per YEAR

DATA SET COMPARISON

KIPDA VMT inputs: 10PlanA (July, 2010); Calculated with MOVES 2010a

APCD Mobile Suite: G6a; with 2004 Indiana fleet data vs. V1a; with 2009 Indiana fleet data

(V1a-G6a)/G6a 2

2004 data --> 2009 data

											APCD 3	APCD 3/15/11 cb
		2005			2008			2015			2025	
	NOx	PM2.5	S02	NOx	PM2.5	202	NOx	PM2.5	802	NOx	PM2.5	802
Clark, IN	2.84%	-2.83%	-3.35%	892.9	-6.59%	-6.26%	14.16%	2.99%	-4.67%	2.68%	11.25%	-5.01%
Floyd, IN	3.04%	-2.24%	-3.21%	7.42%	-5.44%	-6.17%	15.12%	6.30%	-5.01%	10.68%	16.88%	-0.48%
Bullitt, KY	%00'0	%00.0	%00.0	%00.0	%00.0	%00.0	%00.0	%00.0	%00.0	%00.0	%00.0	0.00%
Jefferson, KY	%00'0	%00.0	%00.0	%00.0	%00.0	0.00%	%00.0	%00.0	%00.0	%00.0	%00.0	0.00%
Madison Township, Jefferson Co., IN	-2.10%	-1.04%	0.49%	2.46%	1.78%	-0.91%	20.89%	14.09%	1.83%	9.53%	10.91%	1.55%
Total:	0.59%	-0.58%	-0.79%	1.49%	-1.31%	-1.51%	3.25%	1.32%	-1.14%	1.77%	2.93%	-0.72%

data supplied by:

APCD

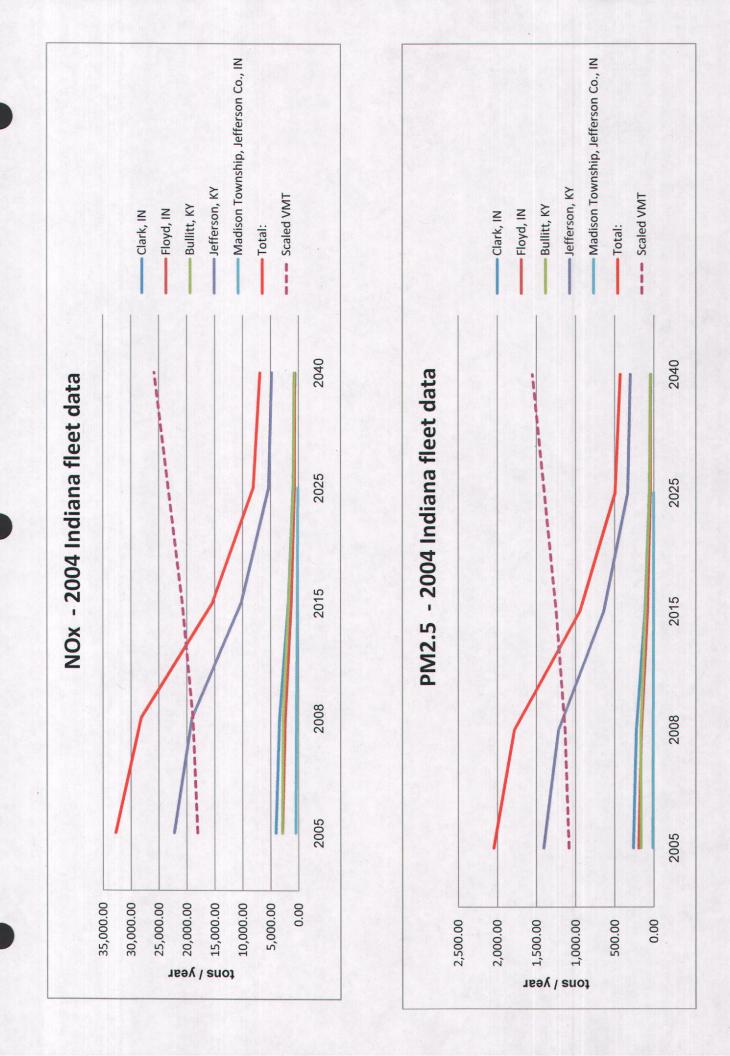
PM/Annual Tons/Year using draft/unofficial KIPDA VMT 2004 Indiana Fleet Data (APCD Mobile Suite G6)

PM/Annual Tons/Year using draft/unofficial KIPDA VMT

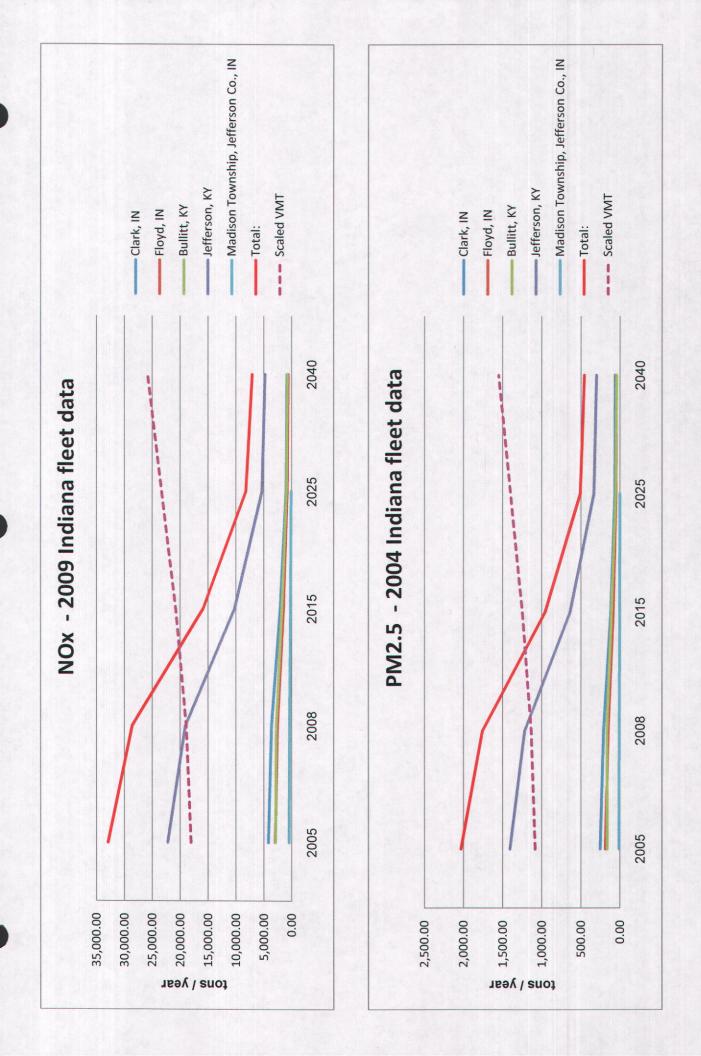
		2040	
1	NOx	PM2.5	802
Clark	618.83	38.65	15.88
Floyd	693.06	44.93	17.34
Bullitt	771.30	45.85	17.77
Jefferson	4797.67	300.55	107.99

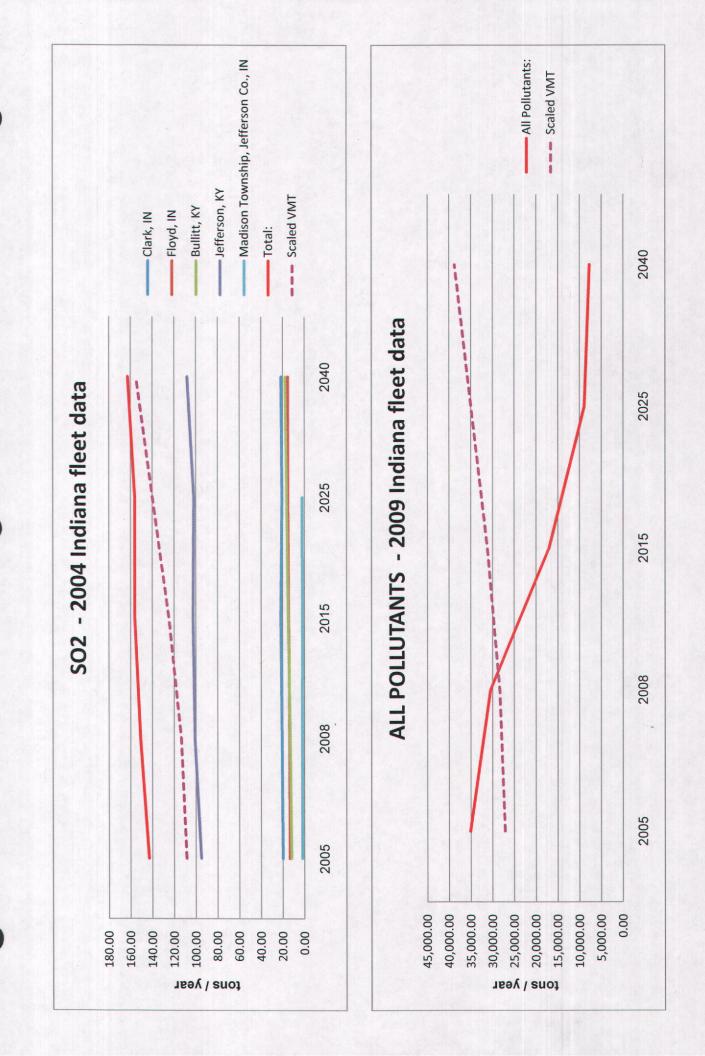
2009 Ir	diana Fleet	2009 Indiana Fleet Data (APCD Mobile Suite v1)	D Mobile Su	lite v1)
		2040		
	XON	PM2.5	S02	
Clark	874.09	96.09	21.56	
Floyd	648.02	48.32	15.23	
Bullitt	771.30	45.85	17.77	
Jefferson	4797.67	300.55	107.99	

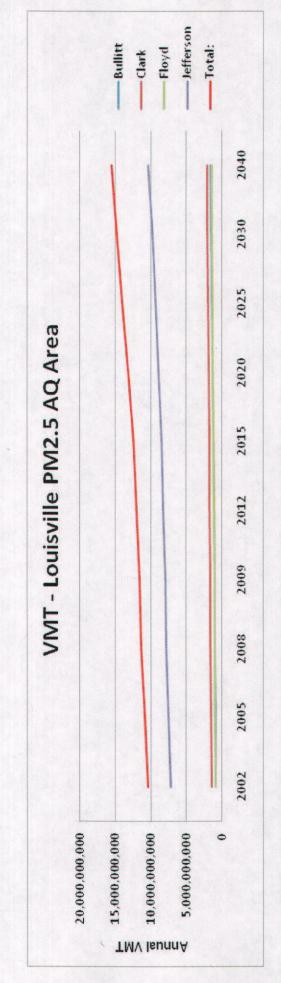
(v1-g6/g6)
> 2009
2004
Differences


,		2040	
	NOx	PM2.5	802
Clark	41.25%	57.73%	35.79%
Floyd	-6.50%	7.55%	-12.12%
Bullitt	%00.0	0.00%	%00'0
Jefferson	0.00%	0.00%	%00'0


MOBILE EMISSIONS TOTALS: LOUISVILLE PM2.5 NONATTAINMENT AREA (MOVES model) 2004 INDIANA FLEET DATA


	2005	2008	2015	2025	2040
NOx					
Clark, IN	4,106.81	3,444.07	1,843.80	975.12	618.83
Floyd, IN	2,922.90	2,397.70	1,306.71	726.78	693.06
Bullitt, KY	2,952.07	2,820.80	1,782.71	948.69	771.30
Jefferson, KY	22,241.72	19,094.05	10,259.60	5,336.69	4797.67
Madison Township,					
Jefferson Co., IN	521.05	403.83	199.31	109.90	
Total:	32,744.56	28,160.45	15,392.13	8,097.18	6880.87
PM2.5					
Clark, IN	263.47	225.95	112.38	58.79	38.65
Floyd, IN	193.61	159.34	80.50	45.02	44.93
Bullitt, KY	165.41	167.76	107.96	54.78	45.85
Jefferson, KY	1,408.81	1,218.29	639.95	333.04	300.55
Madison Township,					
Jefferson Co., IN	15.11	11.23	4.88	2.65	
Total:	2,046.41	1,782.56	945.67	494.28	429.98
SO2					
Clark, IN	20.72	22.22	22.83	21.70	15.88
Floyd, IN	14.03	14.58	15.38	15.30	17.34
Bullitt, KY	12.11	13.28	15.01	16.33	17.77
Jefferson, KY	95.26	101.00	102.55	101.81	107.99
Madison Township,					
Jefferson Co., IN	2.10	2.09	1.97	2.01	
Total:	144.23	153.18	157.75	157.15	158.97
All Pollutants:	34,935.20	30,096.19	16,495.55	8,748.61	7,469.82
All Foliutailts.	34,933.20	30,096.19	10,493.33	0,740.01	7,403.82
2009 INDIANA FLEET DATA					
2003 INDIANA I ELEI DATA	2005	2008	2015	2025	2040
NOx	2003	2008	2013	2023	2040
Clark, IN	4,223.29	3,677.03	2,104.93	1,030.55	874.09
Floyd, IN	3,011.87	2,575.65	1,504.35	804.38	648.02
Bullitt, KY	2,952.07	2,820.80	1,782.71	948.69	771.30
Jefferson, KY					4797.67
Madison Township,	22,241.72	19,094.05	10,259.60	5,336.69	4/9/.0/
Jefferson Co., IN	510.11	413.76	240.94	120.38	
Total:	32,939.07	28,581.28	15,892.52	8,240.69	7091.09
PM2.5					
Clark, IN	256.03	211.06	119.11	65.40	60.96
Floyd, IN	189.28	150.67	85.56	52.62	48.32
Bullitt, KY	165.41	167.76	107.96	54.78	45.85
Jefferson, KY	1,408.81	1,218.29	639.95	333.04	300.55
Madison Township,	1,400.01	1,210.23	033.33	333.04	300.33
Jefferson Co., IN	14.95	11.43	5.57	2.94	
Total:	2,034.47	1,759.20	958.16	508.78	455.68
SO2					
Clark, IN	20.03	20.83	21.77	20.61	21.56
등 하게 살아보다 하는 것이 얼마나 아름다면 가게 되었다.					


Floyd, IN	13.58	13.68	14.61	15.23	15.23
Bullitt, KY	12.11	13.28	15.01	16.33	17.77
Jefferson, KY	95.26	101.00	102.55	101.81	107.99
Madison Township,					
Jefferson Co., IN	2.11	2.07	2.01	2.04	
Total:	143.10	150.87	155.95	156.02	162.55
All Pollutants:	35,116.63	30,491.35	17,006.63	8,905.49	7,709.32


VMT:	10,852,277,299	11,347,241,232	12,470,739,328	13,982,952,546	15,500,457,256
Scaled VMT					
NOx	18,087	18,912	20,785	23,305	25,834
PM2.5	1,085	1,135	1,247	1,398	1,550
SO2	109	113	125	140	155
All Pollutants	27,131	28,368	31,177	34,957	38,751

VMT from KIPDA 10PlanA (July, 2010)

MOBILE6 vs. MOVES (2004 Indiana fleet data)

NOTE: data input conversions from MOBILE6 to MOVES can contribute to some of the variations based on readily available data - Madison Township omitted
MOBILE6 --> MOVES (MOVES-MOBILE6)/MOBILE6

				MOBI	LE6> MO	VES (IN	OVES-MOBI	MOBILE6> MOVES (MOVES-MOBILE6)/MOBILE6	E6			
		2005			2008			2015			2025	
	NOx	PM2.5	802	NOX	PM2.5	802	NOx	PM2.5	802	NOx	PM2.5	\$02
Clark, IN	3.50%	331.20%		6.29%	339.74%		10.91%	229.26%		14.77%	103.43%	
Floyd, IN	16.34%	389.66%		19.79%	392.16%		24.10%	261.61%		26.53%	128.05%	
Bullitt, KY	%08'6	354.87%		24.60%	24.60% 422.39%		45.54%	360.60%		44.88%	161.12%	
Jefferson, KY	7.98%	357.00%		13.24%	361.72%		19.29%	264.70%		26.30%	136.20%	
Madison Township,	1	1	1	1	- 1	1	1	1	1	1	1	ì
Jefferson Co., IN												
Total:	Total: 8.25%	356.18%	1	13.91%	13.91% 366.47%	1	21.15%	21.15% 268.50%	1	26.70% 133.42%	133.42%	1

NOX									
	2002	2005	2008	2009	2012		2020		2030
lark, IN	4,695.8	3,968.1	3,240.3	2,997.7	2,113.8		910.2	849.6	789.0
loyd, IN	3,023.3	2,512.5	2,001.6	1,831.4	1,305.5		632.0	574.4	516.7
sullitt, KY	3,113.2	2,688.5	2,263.8	2,122.3	1,531.6		713.8	654.8	595.8
efferson, KY	24,335.6	20,598.7	16,861.7	15,616.0	10,922.7	8,600.3	4,729.6	4,225.4	3,721.2
otals:	35,168.0	29,767.8	24,367.5	22,567.4	15,873.6		6,985.7	6,304.2	5,622.8

	2002	2005		2009	2012	2015			2030
Clark, IN	4,695.8	3,968.1	3,240.3	2,997.7	2,113.8 1,662.5	1,662.5	910.2	849.6	789.0
Floyd, IN	3,023.3	2,512.5		1,831.4	1,305.5	1,052.9		574.4	516.7
Bullitt, KY	3,113.2	2,688.5		2,122.3	1,531.6	1,224.9		654.8	595.8
Jefferson, KY	24,335.6	20,598.7		15,616.0	10,922.7	8,600.3		4,225.4	3,721.2
Totals:	35,168.0	29,767.8		22,567.4	15,873.6	12,540.6		6,304.2	5,622.8
PM2.5									
	2002	2005	~	2009	2012	2015	2020	2025	2030
Clark, IN	70.8	61.1		48.1	38.1		27.5	28.9	30.3
Floyd, IN	46.7	39.5		30.0	24.0		19.3	19.7	20.1
Bullitt, KY	40.6	36.4		30.7	25.6		19.8	21.0	22.1
Jefferson, KY	352.7	308.3	263.9	249.1	197.5	175.5	138.8	141.0	143.2
Totals:	510.8	445.3		357.9	285.2		205.4	210.6	215.8

Louisville Metro APCD

from data below vvvv 3 APCD Onroad Mobile emissions estimates for July 2010 annual PM2.5 TIP Conformity using countywide VMT and emission factors

Count	> -	Kg/d	72	46	31	215	15	300	330	321	336	20	34	22	161	11	000	067	238	750	17	28	18	132	6	207	197	207
pare with	PM 2.5	tons/yr	40.6	70.8	46.7	352.7			610.0	510.8		30.7	48.1	30.0	249.1				357.9		25.6	38.1	24.0	197.5			285.2	
Use to compare with	XON	tons/yr	3,113.2	4,695.8	3,023.3	24,335.6			35 160 0	32,108.0		2,122.3	2,997.7	1,831.4	15,616.0				22,567.4		1,531.6	2,113.8	1,305.5	10,922.7			15,873.6	
	CO	tons/yr	17,653.5	28,210.5	18,753.1	129,498.1			3041153	7,611,461		13,319.3	21,527.0	13,386.2	100,075.5				148,308.0	The state of the s	12,535.7	19,510.0	12,213.1	90,338.8			134,597.7	
	NOC	tons/yr	1,089.7	1,890.7	1,287,2	8,656.0			1 650 64	12,923.5		814.4	1,397.8	888.1	6,501.6				9,601.8		6.707	1,161,1	749,3	5,334.3			7,952.6	
																		NA STATE OF STREET										The state of the s
	PM 2.5	g/mi	0.0451	0.0460	0.0461	0.0443	0.0449					0.0286	0.0271	0.0272	0.0285	0.0286					0.0219	0.0205	0.0205	0.0218	0.0219			
	NOX	g/mi	3.4570	3.0500	2.9830	3.0560	3.3000					1.9780	1.6900	1.6580	1.7870	1.8930					1.3090	1.1360	1.1150	1.2040	1.2690			
MOBILE6 Emission Factors From APCD suite A_M6SEG6	8	g/mi	19.6030	18.3230	18.5030	16.2620	18.7510					12.4140	12.1360	12.1190	11.4520	11.9970					10.7140	10.4850	10.4310	9.9580	10.4020			
IOBILE6 Er rom APCD	VOC	g/mi	1.2100	1.2280	1.2700	1.0870	1.2020					0.7590	0.7880	0.8040	0.7440	0.7590					0.6050	0.6240	0.6400	0.5880	0.5990			
		/MI/Year	816968550	1396723235	919448505	7224131465			775757575	1035/2/1/55		973345500	1609180245	1002040340	7927618230				11512184315		1061438615	1688051270	1062176645	8229971090				
VMT from KIPDA TDM Current July 2010	KIPDA	Year VMI/day VMI/Year	2238270	3826639	2519037	19792141	1279567	2000000	2002 29655654	780978770087	29655654	2666700	4408713	2745316	21719502	1510251	CONOLOGIC	33020482	31540231	33050482	2908051	4624798	2910073	22547866	1620079	34610867	2012 32990788	34610867
VMT from KIPDA Current July 2010		Year	2002	2002	2002	2002	2002	2000	2002	7007	2002	2009	2009	2009	5000	2009	0000	5003		5007	2012	2012	2012	2012	2012	2012	2012	2012
County			Bullitt, KY	Clark, IN	Floyd, IN	Jefferson, KY	Oldham, KY		5-County Area	PMZ.5 NAA	8-Hr O3 NAA	Bullitt, KY	Clark, IN	Floyd, IN	Jefferson, KY	Oldham, KY		5-County Area	PM2.5 NAA	8-Hr U3 NAA	Bullitt, KY	Clark, IN	Floyd, IN	Jefferson, KY	Oldham, KY	5-County Area	PM2.5 NAA	8-Hr O3 NAA

07/21/2010 RCB

w
_
ssior
-
ဟ
S
mis
ш
_
\$
Coun
=
~
~
O

VOC	9	NOX	PM 2.5	VOC	9	NOX	PM 2.5
kg/day	kg/day	kg/day	kg/day	TPD		TPD	TPD
2708	43877	7738	101	2.99	48.37	8.53	0.11
4699	70116	11671	176	5.18	77.29	12.87	0.19
3199	46610	7514	116	3.53	51.38	8.28	0.13
21514	321860	60485	877	23.71	354.78	66.67	0.97
1538	23993	4223	57	1.70	26.45	4.65	90.0
33659	506455	91631	1327	37.10	558.26	101.00	1.46
32121	482462	87408	1270	35.41	531.81	96.35	1.40
33659	506455	91631	1327	37.10	558.26	101.00	1.46
2024	33104	5275	9/	2.23	36.49	5.81	0.08
3474	53504	7451	120	3.83	58.98	8.21	0.13
2207	33270	4552	75	2.43	36.67	5.02	0.08
16159	248732	38813	619	17.81	274.18	42.78	99.0
1146	18118	2859	43	1.26	19.97	3.15	0.05
25011	386729	58949	933	27.57	426.29	64.98	1.03
23865		26090	688	26.31	406.32	61.83	96.0
25011	386729	58949	933	27.57	426.29	64.98	1.03
1759	31157	3807	64	1.94	34.34	4.20	0.07
2886	48491	5254	95	3.18	53.45	5.79	0.10
1862	30355	3245	09	2.05	33.46	3.58	0.07
13258	224532	27148	491	14.61	247.50	29.92	0.54
970	16852	2056	35	1.07	18.58	2.27	0.04
20736	351387	41509	744	22.86	387.33	45.75	0.82
19766	334534	39453	602	21.79	368.75	43.49	0.78
20736	20736 351387	41509	744	22.86		45.75	0.82

Ī		
ŧ	=	
ł	6	
-	=	
	ĕ	
	a	
	-	
	Σ	
	>	
	0	
	ᅙ	
	3	
	using countyy	
	Ξ	
	=	
	8	
	ng county	
	ĕ	
	100	
	3	
	>	
	=	
	=	
	ō	
	=	
	ly 2010 annual PM2.5 TIP Conformity	
	Ü	
	0	
	≡	
	-	
	uly 2010 annual PM2.5	
	=	
	5	
	=	
	<u>a</u>	
	=	
	Ξ	
	a	
	0	
	5	
	7	
	>	
	=	
	7	
	=	
	=	
	S	
	프	
	a	
	Ξ	
	St	
	ë	
	40	
	E	
	.0	
	SS	
	missions e	
	=	
1		
ı		
	_	
	2	
	D	
	0	
	=	
	5	
	=	
	9	
	Š	
	7	
	-	

County	VMT fror	VMT from KIPDA TDM Current July 2010		MOBILE6 En From APCD	MOBILE6 Emission Factors From APCD suite A_M6SEG6						THE PARTY OF THE P	County Em
	Year	KIPDA Year VMT/day		VOC g/mi	CO g/mi	NOx g/mi	PM 2.5 g/mi					VOC kg/day
Bullitt, KY	2020	3465115	1264766975	0.3840	8.7750	0.5120	0.0142	535.4	12,233.8	713.8	19.8	1331
Clark, IN	2020	2020 4917888	1795029120	0.4000	8.5880	0.4600	0.0139	791.5			27.5	1967
Floyd, IN	2020	3452527	1260172355	0.4040	8.5310	0.4550	0.0139	561.2	11,850.4		19.3	1395
Jefferson, KY	2020	2020 24287700	8865010500	0.3710	8.5020	0.4840	0.0142	3,625.4	80,140.1	4,729.6	138.8	9011
5-County Area	2020	2020 38032198										14423 3
PM2.5 NAA	2020	2020 36123230	13184978950					5,513,4	121,217.2	6,985.7	205.4	13703
8-Hr O3 NAA	2020	2020 38032198						Octomorphist (partitional application Asia)				14423
Bullitt, KY	2030	2030 4136497	1509821405	0.3400	8.3930	0.3580	0.0133	565.9	13,968.4	8:565	22.1	1406
Clark, IN	2030	5734310	2093023150	0.3620	8.2790	0.3420	0.0131	835,2	19,101.0	0.687	30.3	2076
Floyd, IN	2030	2030 3811110	1391055150	0.3590	8.1740	0.3370	0.0131	520,5	12,533.8	516.7	20.1	1368
Jefferson, KY	2030	2030 26808090	9784952850	0.3290	7.8820	0.3450	0.0133	3,548.6	85,015.7	3,721.2	143.2	8820
Oldham, KY	2030	2030 2282428		0.3330	8.1220	0.3490	0.0133					092
5-County Area	2030	2030 42772435										14430 3
PM2.5 NAA	2030	2030 40490007	1477885255					5,500.1	130.618.8	5 622 8	215.8	13670 3

PM 2.5	TPD	0.05	0.08	0.05	0.38	0.03	0.59	0.56	0.59	90.0	0.08	90.0	0.39	0.03	0.62	0.59	0.62
NOX	TPD	1.96	2.49	1.73	12.96	1.04	20.18	19.14	20.18	1.63	2.16	1.42	10.19	0.88	16.28	15.40	16.28
8	ТРО	33.52	46.56	32.47	219.56	17.89	349.99	332.10	349.99	38.27	52.33	34.34	232.92	20.43	378.29	357.85	378.29
VOC	TPD	1.47	2.17	1.54	9.93	0.79	15.90	15.11	15.90	1.55	2.29	1.51	9.72	0.84	15.91	15.07	15.91
PM 2.5	kg/day	49	89	48	345	27	538	511	538	55	75	20	356	30	292	536	295
NOX	kg/day	1774	2262	1571	11755	947	18309	17363	18309	1481	1961	1284	9249	797	14772	13975	14772
8	kg/day	30406	42235	29454	199183	16230	317508	301278	317508	34718	47474	31152	211301	18538	343183	324645	343183
VOC	kg/day	1331	1967	1395	9011	720			14423	1406	2076	1368	8820		14430	13670	14430

Appendix D

VISTAS and LADCO

Technical Support Documents (TSD)

Regional Air Quality Analyses for Ozone, PM_{2.5}, and Regional Haze:

Final Technical Support Document

April 25, 2008

States of Illinois, Indiana, Michigan, Ohio, and Wisconsin

Table of Contents

	Section-Title	Page
Execu	tive Summary	iii
1.0 1.1 1.2 1.3	Introduction SIP Requirements Organization Technical Work: Overview	1 1 2 3
2.0 2.1 2.2 2.3	Ambient Data Analyses Ozone PM _{2.5} Regional Haze	4 4 21 35
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Air Quality Modeling Selection of Base Year Future Years of Interest Modeling System Domain/Grid Resolution Model Inputs: Meteorology Model Inputs: Emissions Base Year Modeling Results	46 46 46 47 47 48 51 60
4.0 4.1 4.2 4.3 4.4	Attainment Demonstration for Ozone and PM _{2.5} Future Year Modeling Results Supplemental Analyses Weight of Evidence Determination for Ozone Weight of Evidence Determination for PM _{2.5}	71 71 82 82 90
5.0 5.1 5.2 5.3	Reasonable Progress Assessment for Regional Haze Class I Areas Impacted Future Year Modeling Results Weight of Evidence Determination for Regional Haze	93 93 96 104
6.0	Summary	111
7.0	References	114
Appe	ndix I Ozone and PM _{2.5} Modeling Results ndix II Ozone Source Apportionment Modeling Results ndix III PM _{2.5} Source Apportionment Modeling Results ndix IV Haze Source Apportionment Modeling Results	S

EXECUTIVE SUMMARY

States in the upper Midwest face a number of air quality challenges. More than 50 counties are currently classified as nonattainment for the 8-hour ozone standard and 60 for the fine particle (PM_{2.5}) standard (1997 versions). A map of these nonattainment areas is provided in the figure below. In addition, visibility impairment due to regional haze is a problem in the larger national parks and wilderness areas (i.e., Class I areas). There are 156 Class I areas in the U.S., including two in northern Michigan.

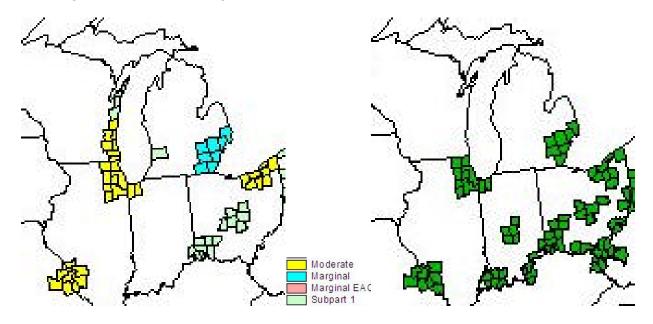


Figure i. Current nonattainment counties for ozone (left) and PM_{2.5} (right)

To support the development of State Implementation Plans (SIPs) for ozone, PM_{2.5}, and regional haze in the States of Illinois, Indiana, Michigan, Ohio, and Wisconsin, technical analyses were conducted by the Lake Michigan Air Directors Consortium (LADCO), its member states, and various contractors. The analyses include preparation of regional emissions inventories and meteorological data, evaluation and application of regional chemical transport models, and collection and analysis of ambient monitoring data.

Monitoring data were analyzed to produce a conceptual understanding of the air quality problems. Key findings of the analyses include:

Ozone

- Current monitoring data (2005-2007) show about 20 sites in violation of the 8-hour ozone standard of 85 parts per billion (ppb). Historical ozone data show a steady downward trend over the past 15 years, especially since 2001-2003, due likely to federal and state emission control programs.
- Ozone concentrations are strongly influenced by meteorological conditions, with more high ozone days and higher ozone levels during summers with above normal temperatures.

• Inter- and intra-regional transport of ozone and ozone precursors affects many portions of the five states, and is the principal cause of nonattainment in some areas far from population or industrial centers.

$PM_{2.5}$

- Current monitoring data (2005-2007) show 30 sites in violation of the annual PM_{2.5} standard of 15 ug/m³. Nonattainment sites are characterized by an elevated regional background (about 12 14 ug/m³) and a significant local (urban) increment (about 2 3 ug/m³). Historical PM_{2.5} data show a slight downward trend since deployment of the PM_{2.5} monitoring network in 1999.
- PM_{2.5} concentrations are also influenced by meteorology, but the relationship is more complex and less well understood compared to ozone.
- On an annual average basis, PM_{2.5} chemical composition consists mostly of sulfate, nitrate, and organic carbon in similar proportions.

Haze

- Current monitoring data (2000-2004) show visibility levels in the Class I areas in northern Michigan are on the order of 22 – 24 deciviews. The goal of EPA's visibility program is to achieve natural conditions, which is about 12 deciviews for these Class I areas, by the year 2064.
- Visibility impairment is dominated by sulfate and nitrate.

Air quality models were applied to support the regional planning efforts. Two base years were used in the modeling analyses: 2002 and 2005. Basecase modeling was conducted to evaluate model performance (i.e., assess the model's ability to reproduce observed concentrations). This exercise was intended to build confidence in the model prior to its use in examining control strategies. Model performance for ozone and PM_{2.5} was found to be generally acceptable.

Future year strategy modeling was conducted to determine whether existing ("on the books") controls would be sufficient to provide for attainment of the standards for ozone and $PM_{2.5}$ and if not, then what additional emission reductions would be necessary for attainment. Based on the modeling and other supplemental analyses, the following general conclusions can be made:

- Existing controls are expected to produce significant improvement in ozone and PM_{2.5} concentrations and visibility levels.
- The choice of the base year affects the future year model projections. A key difference between the base years of 2002 and 2005 is meteorology. 2002 was more ozone conducive than 2005. The choice of which base year to use as the basis for the SIP is a policy decision (i.e., how much safeguard to incorporate).
- Modeling suggests that most sites are expected to meet the current 8-hour ozone standard by the applicable attainment date, except for sites in western Michigan and, possibly, in eastern Wisconsin and northeastern Ohio.

 Modeling suggests that most sites are expected to meet the current PM_{2.5} standard by the applicable attainment date, except for sites in Detroit, Cleveland, and Granite City.

The regional modeling for $PM_{2.5}$ does not include air quality benefits expected from local controls. States are conducting local-scale analyses and will use these results, in conjunction with the regional-scale modeling, to support their attainment demonstrations for $PM_{2.5}$.

- These findings of residual nonattainment for ozone and PM_{2.5} are supported by current (2005 2007) monitoring data which show significant nonattainment in the region (e.g., peak ozone design values on the order of 90 93 ppb, and peak PM_{2.5} design values on the order of 16 17 ug/m³). It is unlikely that sufficient emission reductions will occur in the next couple of years to provide for attainment at all sites.
- Attainment at most sites by the applicable attainment date is dependent on actual
 future year meteorology (e.g., if the weather conditions are consistent with [or
 less severe than] 2005, then attainment is likely) and actual future year
 emissions (e.g., if the emission reductions associated with the existing controls
 are achieved, then attainment is likely). If either of these conditions is not met,
 then attainment may be less likely.
- Modeling suggests that the new PM_{2.5} 24-hour standard and the new lower ozone standard will not be met at several sites, even by 2018, with existing controls.
- Visibility levels in a few Class I areas in the eastern U.S. are expected to be greater than (less improved than) the uniform rate of visibility improvement values in 2018 based on existing controls, including those in northern Michigan and some in the northeastern U.S. Visibility levels in many other Class I areas in the eastern U.S. are expected to be less than (more improved than) the uniform rate of visibility improvement values in 2018. These results, along with information on the costs of compliance, time necessary for compliance, energy and non air quality environmental impacts of compliance, and remaining useful life of existing sources, should be considered by the states in setting reasonable progress goals for regional haze.

Section 1.0 Introduction

This Technical Support Document summarizes the final air quality analyses conducted by the Lake Michigan Directors Consortium (LADCO)¹ and its contractors to support the development of State Implementation Plans (SIPs) for ozone, fine particles (PM_{2.5}), and regional haze in the States of Illinois, Indiana, Michigan, Ohio, and Wisconsin. The analyses include preparation of regional emissions inventories and meteorological modeling data for two base years (2002 and 2005), evaluation and application of regional chemical transport models, and analysis of ambient monitoring data.

Two aspects of the analyses should be emphasized. First, a regional, multi-pollutant approach was taken in addressing ozone, $PM_{2.5}$, and haze for technical reasons (e.g., commonality in precursors, emission sources, atmospheric processes, transport influences, and geographic areas of concern), and practical reasons (e.g., more efficient use of program resources). Furthermore, EPA has consistently encouraged multi-pollutant planning in its rule for the haze program (64 FR 35719), and its implementation guidance for ozone (70 FR 71663) and $PM_{2.5}$ (72 FR 20609). Second, a weight-of-evidence approach was taken in considering the results of the various analyses (i.e., two sets of modeling results -- one for a 2002 base year and one for a 2005 base year -- and ambient data analyses) in order to provide a more robust assessment of expected future year air quality.

The report is organized in the following sections. This Introduction provides an overview of regulatory requirements and background information on regional planning. Section 2 reviews the ambient monitoring data and presents a conceptual model of ozone, $PM_{2.5}$, and haze for the region. Section 3 discusses the air quality modeling analyses, including development of the key model inputs (emissions inventory and meteorological data), and basecase model performance evaluation. A modeled attainment demonstration for ozone and $PM_{2.5}$ is presented in Section 4, along with relevant data analyses considered as part of the weight-of-evidence determination. Section 5 documents the reasonable progress assessment for regional haze, along with relevant data analyses considered as part of the weight-of-evidence determination. Finally, key study findings are reviewed and summarized in Section 6.

1.1 SIP Requirements

For ozone, EPA promulgated designations on April 15, 2004 (69 FR 23858, April 30, 2004). In the 5-state region, more than 100 counties were designated as nonattainment.² The designations became effective on June 15, 2004. SIPs for ozone were due no later than three years from the effective date of the nonattainment designations (i.e., by June 2007). The attainment date for ozone varies as a function of nonattainment classification. For the region, the attainment dates are either June 2007 (marginal nonattainment areas), June 2009 (basic nonattainment areas), or June 2010 (moderate nonattainment areas).

¹ A sub-entity of LADCO, known as the Midwest Regional Planning Organization (MRPO), is responsible for the regional haze activities of the multi-state organization.

² Based on more recent air quality data, many counties in Indiana, Michigan, and Ohio were subsequently redesignated as attainment. As of December 31, 2007, there are 53 counties designated as nonattainment in the region.

For PM_{2.5}, EPA promulgated designations on December 17, 2004 (70 FR 944, January 5, 2005). In the 5-state region, 70 counties were designated as nonattainment.³ The designations became effective on April 5, 2005. SIPs for PM_{2.5} are due no later than three years from the effective date of the nonattainment designations (per section 172(b) of the Clean Air Act) (i.e., by April 2008) and for haze no later than three years after the date on which the Administrator promulgated the PM_{2.5} designations (per the Omnibus Appropriations Act of 2004) (i.e., by December 2007). The applicable attainment date for PM_{2.5} nonattainment areas is five years from the date of the nonattainment designation (i.e., by April 2010).

For haze, the Clean Air Act sets "as a national goal the prevention of any future, and the remedying of any existing, impairment of visibility in Class I areas which impairment results from manmade air pollution." There are 156 Class I areas, including two in northern Michigan: Isle Royale National Park and Seney National Wildlife Refuge⁴. EPA's visibility rule (64 FR 35714, July 1, 1999) requires reasonable progress in achieving "natural conditions" by the year 2064. As noted above, the first regional haze SIP was due in December 2007 and must address the initial 10-year implementation period (i.e., reasonable progress by the year 2018). SIP requirements (pursuant to 40 CFR 51.308(d)) include setting reasonable progress goals, determining baseline conditions, determining natural conditions, providing a long-term control strategy, providing a monitoring strategy (air quality and emissions), and establishing BART emissions limitations and associated compliance schedule.

1.2 Organization

LADCO was established by the States of Illinois, Indiana, Michigan, and Wisconsin in 1989. The four states and EPA signed a Memorandum of Agreement (MOA) that initiated the Lake Michigan Ozone Study (LMOS) and identified LADCO as the organization to oversee the study. Additional MOAs were signed by the States in 1991 (to establish the Lake Michigan Ozone Control Program), January 2000 (to broaden LADCO's responsibilities), and June 2004 (to update LADCO's mission and reaffirm the commitment to regional planning). In March 2004, Ohio joined LADCO. LADCO consists of a Board of Directors (i.e., the State Air Directors), a technical staff, and various workgroups. The main purposes of LADCO are to provide technical assessments for and assistance to its member states, and to provide a forum for its member states to discuss regional air quality issues.

MRPO is a similar entity led by the five LADCO States and involves the federally recognized tribes in Michigan and Wisconsin, EPA, and Federal Land Managers (i.e., National Park Service, U.S. Fish & Wildlife Agency, and U.S. Forest Service). In October 2000, the States of Illinois, Indiana, Michigan, Ohio, and Wisconsin signed an MOA that established the MRPO. An operating principles document for MRPO, which describe the roles and responsibilities of states, tribes, federal agencies, and stakeholders, was issued in March 2001. MRPO has a similar purpose as LADCO, but is focused on visibility impairment due to regional haze in the Federal Class I areas located inside the borders of the five states, and the impact of emissions from the five states on visibility impairment due to regional haze in the Federal Class I areas located outside the borders of the five states. MRPO works cooperatively with the Regional Planning Organizations (RPOs) representing other parts of the country. The RPOs sponsored several

³ USEPA subsequently adjusted the final designations, which resulted in 63 counties in the region being designated as nonattainment (70 FR 19844, April 15, 2005).

⁴ Although Rainbow Lake in northern Wisconsin is also a Class I area, the visibility rule does not apply because the Federal Land Manager determined that visibility is not an air quality related value there.

joint projects and, with assistance by EPA, maintain regular contact on technical and policy matters.

1.3 Technical Work: Overview

To ensure the reliability and effectiveness of its planning process, LADCO has made data collection and analysis a priority. More than \$7M in RPO grant funds were used for special purpose monitoring, preparing and improving emissions inventories, and conducting air quality analyses⁵. An overview of the technical work is provided below.

Monitoring: Numerous monitoring projects were conducted to supplement on-going state and local air pollution monitoring. These projects include rural monitoring (e.g., comprehensive sampling in the Seney National Wildlife Refuge and in Bondville, IL); urban monitoring (e.g., continuation of the St. Louis Supersite); aloft (aircraft) measurements; regional ammonia monitoring; and organic speciation sampling in Seney, Bondville, and five urban areas.

Emissions: Baseyear emissions inventories were prepared for 2002 and 2005. States provided point source and area source emissions data, and MOBILE6 input files and mobile source activity data. LADCO and its contractors developed the emissions data for other source categories (e.g., select nonroad sources, ammonia, fires, and biogenics) and processed the data for input into an air quality model. To support control strategy modeling, future year inventories were prepared. The future years of interest include 2008 (planning year to address the 2009 attainment year for basic ozone nonattainment ares), 2009 (planning year to address the 2010 attainment year for PM_{2.5} and moderate ozone nonattainment areas), 2012 (planning to address a 2013 alternative attainment date), and 2018 (first milestone year for regional haze).

Air Quality Analyses: The weight-of-evidence approach relies on data analysis and modeling. Air quality data analyses were used to provide both a conceptual model (i.e., a qualitative description of the ozone, PM_{2.5}, and regional haze problems) and supplemental information for the attainment demonstration. Given uncertainties in emissions inventories and modeling, especially for PM_{2.5}, these data analyses are a necessary part of the overall technical support.

Modeling includes baseyear analyses for 2002 and 2005 to evaluate model performance and future year strategy analyses to assess candidate control strategies. The analyses were conducted in accordance with EPA's modeling guidelines (EPA, 2007a). The PM/haze modeling covers the full calendar year (2002 and 2005) for an eastern U.S. 36 km domain, while the ozone modeling focuses on the summer period (2002 and 2005) for a Midwest 12 km subdomain. The same model (CAMx) was used for ozone, PM_{2.5}, and regional haze.

3

⁵ Since 1999, MRPO has received almost \$10M in RPO grant funds from USEPA.

Section 2.0 Ambient Data Analyses

An extensive network of air quality monitors in the 5-state region provides data for ozone (and its precursors), PM_{2.5} (both total mass and individual chemical species), and visibility. These data are used to determine attainment/nonattainment designations, support SIP development, and provide air quality information to public (see, for example, www.airnow.gov).

Analyses of the data were conducted to produce a conceptual model, which is a qualitative summary of the physical, chemical, and meteorological processes that control the formation and distribution of pollutants in a given region. This section reviews the relevant data analyses and describes our understanding of ozone, PM_{2.5}, and regional haze with respect to current conditions, data variability (spatial, temporal, and chemical), influence of meteorology (including transport patterns), precursor sensitivity, and source culpability.

2.1 Ozone

In 1979, EPA adopted an ozone standard of 0.12 ppm, averaged over a 1-hour period. This standard is attained when the number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is equal to or less than 1.0, averaged over a 3-year period, which generally reflects a design value (i.e., the 4th highest daily 1-hour value over a 3-year period) less than 0.12 ppm.

In 1997, EPA tightened the ozone standard to 0.08 ppm, averaged over an 8-hour period⁶. The standard is attained if the 3-year average of the 4th-highest daily maximum 8-hour average ozone concentrations (i.e., the design value) measured at each monitor within an area is less than 0.08 ppm (or 85 ppb).

Current Conditions: A map of the 8-hour ozone design values at each monitoring site in the region for the 3-year period 2005-2007 is shown in Figure 1. The "hotter" colors represent higher concentrations, where yellow and orange dots represent sites with design values above the standard. Currently, there are 19 sites in violation of the 8-hour ozone NAAQS in the 5-state region, including sites in the Lake Michigan area, Detroit, Cleveland, Cincinnati, and Columbus.

Table 1 provides the 4th-highest daily 8-hour ozone values and the associated design values since 2001 for several high monitoring sites throughout the region.

⁶ On March 12, 2008, USEPA further tightened the 8-hour ozone standard to increase public health protection and prevent environmental damage from ground-level ozone. USEPA set the primary (health) standard and secondary (welfare) standard at the same level: 0.075 ppm (75 ppb), averaged over an 8-hour period.

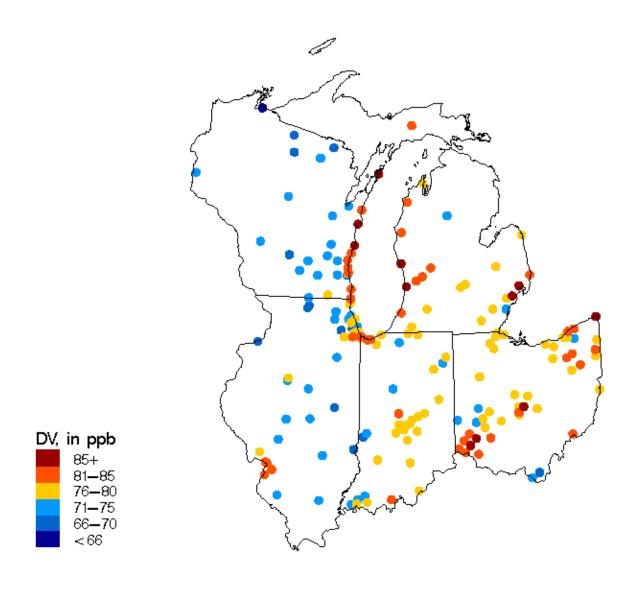


Figure 1. 8-hour ozone design values (2005-2007)

Key Sites		4th H	ligh 8-l	hour V	alue				Design \	/alues		
,	'01	'02	'03	'04	'05	'06	'07	'01-'03	'02-'04	'03-'05	'04-'06	'05-'07
Lake Michigan Area												
Chiwaukee	99	116	88	78	93	79	85	101	94	86	83	85
Racine	92	111	82	69	95	71	77	95	87	82	78	8′
Milwaukee-Bayside	93	99	92	73	93	73	83	94	88	86	79	83
Harrington Beach	102	93	99	72	94	72	84	98	88	88	79	83
Manitowoc	97	83	92	74	95	78	85	90	83	87	82	86
Sheboygan	102	105	93	78	97	83	88	100	92	89	86	
Kewaunee	90	92	97	73	88	76	85	93	87	86	79	83
Door County	95	95	93	78	101	79	92	94	88	90	86	
Hammond	90	101	81	67	87	75	77	90	83	78	76	
Whiting				64	88	81	88				77	85
Michigan City	90	107	82	70	84	75	73	93	86	78	76	
Ogden Dunes	85	101	77	69	90	70	84	87	82	78	76	
Holland	92	105	96	79	94	91	94	97	93	89	88	93
Jenison	86	93	91	69	86	83	88	90	84	82	79	85
Muskegon	95	96	94	70	90	90	86	95	86	84	83	88
Indianapolis Area												
Noblesville	88	101	101	75	87	77	84	96	92	87	79	82
Fortville	89	101	92	72	80	75	81	94	88	81	75	78
Fort B. Harrison	87	100	91	73	80	76	83	92	88	81	76	79
Detroit Area												
New Haven	95	95	102	81	88	78	93	97	92	90	82	86
Warren	94	92	101	71	89	78	91	95	88	87	79	
Port Huron	84	100	87	74	88	78	89	90	87	83	80	85
Cleveland Area												
Ashtabula (Conneaut)	97	103	99	81	93	86	92	99	94	91	86	90
Notre Dame (Geauga)	99	115	97	75	88	70	68	103	95	86	77	75
Eastlake (Lake)	89	104	92	79	97	83	74	95	91	89	86	
Akron (Summit)	98	103	89	77	89	77	91	96	89	85	81	85
Cincinnati Area												
Wilmington (Clinton)	93	99	96	78	83	81	82	96	91	85	80	
Sycamore (Hamilton)	88	100	93	76	89	81	90	93	89	86	82	
Hamilton (Butler)	83	100	94	75	86	79	91	92	89	85	80	
Middleton (Butler)	87	98	83	76	88	76	91	89	85	82	80	
Lebanon (Warren)	85	98	95	81	92	86	88	92	91	89	86	88
Columbus Area												
London (Madison)	84	97	90	75	81	76	83	90	87	82	77	80
New Albany (Franklin)	90	103	94	78	92	82	87	95	91	88	84	
Franklin (Franklin)	83	99	84	73	86	79	79	88	85	81	79	81
01: 04 :												
Ohio Other Areas						. .	0.0		•	2 .	2.5	
Marietta (Washington)	85	95	80	77	88	81	86	86	84	81	82	85
Ot Lawia A												
St. Louis Area	0.5	00	0.4		00	0.4	00					-
W. Alton (MO)	85	99	91	77	89	91	89	91	89	85	85	
Orchard (MO)	88	98	90	76	92	92	83	92	88	86	86	
Sunset Hills (MO)	88	98	88	70	89	80	89	91	85	82	79	
Arnold (MO)	86	93	82	70	92	79	87	87	81	81	80	
Margaretta (MO)	80	98	90	72	91	76	91	89	86	84	79	86

Meteorology and Transport: Most pollutants exhibit some dependence on meteorological factors, especially wind direction, because that governs which sources are upwind and thus most influential on a given sample. Ozone is even more dependent, since its production is driven by high temperatures and sunlight, as well as precursor concentrations (see, for example, Figure 2).

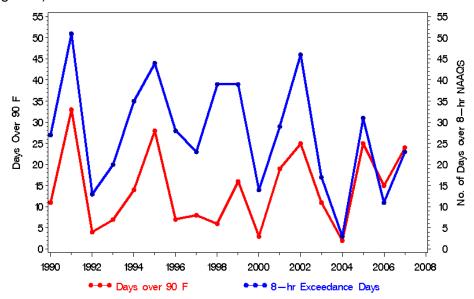


Figure 2. Number of hot days and 8-hour "exceedance" days in 5-state region

Qualitatively, ozone episodes in the region are associated with hot weather, clear skies (sometimes hazy), low wind speeds, high solar radiation, and southerly to southwesterly winds. These conditions are often a result of a slow-moving high pressure system to the east of the region. The relative importance of various meteorological factors is discussed later in this section.

Transport of ozone (and its precursors) is a significant factor and occurs on several spatial scales. Regionally, over a multi-day period, somewhat stagnant summertime conditions can lead to the build-up in ozone and ozone precursor concentrations over a large spatial area. This pollutant air mass can be advected long distances, resulting in elevated ozone levels in locations far downwind. An example of such an episode is shown in Figure 3.

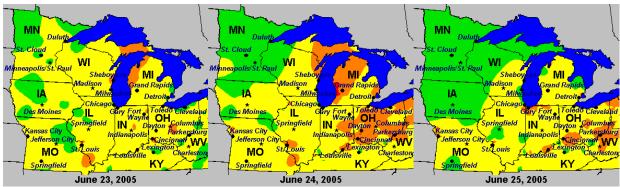


Figure 3. Example of elevated regional ozone concentrations (June 23 – 25, 2005)

Note: hotter colors represent higher concentrations, with orange representing concentrations above the 8-hour standard

Locally, emissions from urban areas add to the regional background leading to ozone concentration hot spots downwind. Depending on the synoptic wind patterns (and local land-lake breezes), different downwind areas are affected (see, for example, Figure 4).

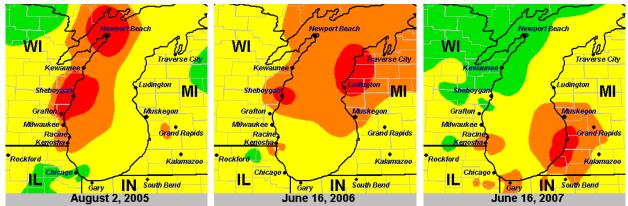


Figure 4. Examples of recent high ozone days in the Lake Michigan area

Note: hotter colors represent higher concentrations, with orange representing concentrations above the 8-hour standard

Aloft (aircraft) measurements in the Lake Michigan area also provide evidence of elevated regional background concentrations and "plumes" from urban areas. For one example summer day (August 20, 2003 – see Figure 5), the incoming background ozone levels were on the order of 80 – 100 ppb and the downwind ozone levels over Lake Michigan were on the order of 100 - 150 ppb (STI, 2004).

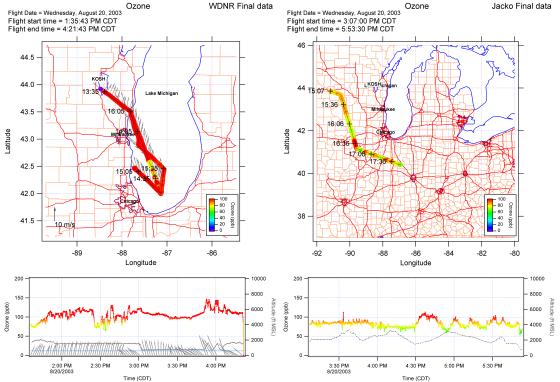


Figure 5. Aircraft ozone measurements over Lake Michigan (left) and along upwind boundary (right) – August 20, 2003 (Note: aircraft measurements reflect instantaneous values)

As discussed in Section 4, residual nonattainment is projected in at least one area in the 5-state region –i.e., western Michigan. To understand the source regions likely impacting high ozone concentrations in western Michigan and estimate the impact of these source regions, two simple transport-related analyses were performed.

First, back trajectories were constructed using the HYSPLIT model for high ozone days (8-hour peak > 80 ppb) during the period 2002-2006 in western Michigan to characterize general transport patterns. Composite trajectory plots for all high ozone days based on data from three sites (Cass County, Holland, and Muskegon) are provided in Figure 6. The plots point back to areas located to the south-southwest (especially, northeastern Illinois and northwestern Indiana) as being upwind on these high ozone days.

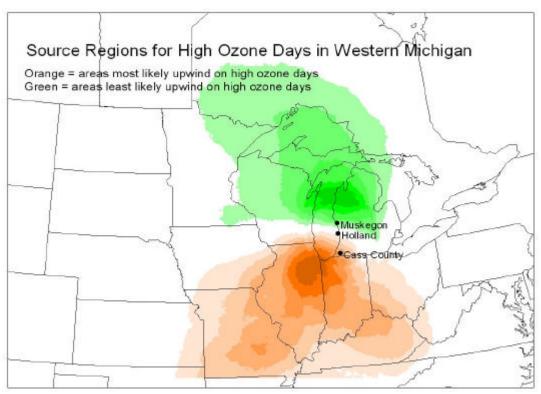


Figure 6 Back trajectory analysis showing upwind areas associated with high ozone concentrations

Second, to assess the impact from Chicago/NW Indiana, Blanchard (2005a) compared ozone concentrations upwind (Braidwood, IL), within Chicago (ten sites in the City), and downwind (Holland and Muskegon) for days in 1999 – 2002 with southwesterly winds - i.e., transport towards western Michigan. Figure 7 shows the distribution of daily peak 8-hour ozone concentrations by day-of-week, with a line connecting the mean values. The difference between day-of-week mean values at downwind and upwind sites indicates that Chicago/NW Indiana contributes about 10-15 ppb to downwind ozone levels.

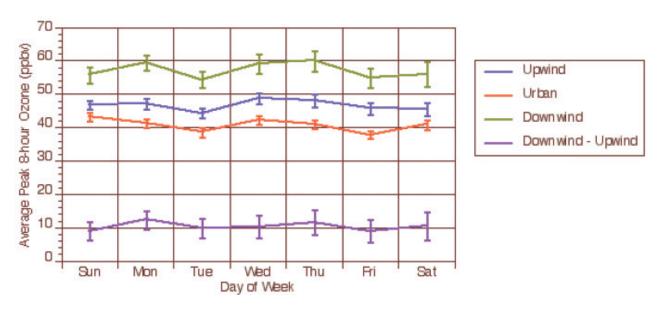


Figure 7. Mean day-of-week peak 8-hour ozone concentrations at sites upwind, within, and downwind of Chicago, 1999 – 2002 (southwesterly wind days)

Based on this information, the following key findings related to transport can be made:

- Ozone transport is a problem affecting many portions of the eastern U.S. The Lake
 Michigan area (and other areas in the LADCO region) both receive high levels of
 incoming (transported) ozone and ozone precursors from upwind source areas on many
 hot summer days, and contribute to the high levels of ozone and ozone precursors
 affecting downwind receptor areas.
- The presence of a large body of water (i.e., Lake Michigan) influences for the formation and transport of ozone in the Lake Michigan area. Depending on large-scale synoptic winds and local-scale lake breezes, different parts of the area experience high ozone concentrations. For example, under southerly flow, high ozone can occur in eastern Wisconsin, and under southwesterly flow, high ozone can occur in western Michigan.
- Downwind shoreline areas around Lake Michigan are affected by both regional transport
 of ozone and subregional transport from major cities in the Lake Michigan area.
 Counties along the western shore of Michigan (from Benton Harbor to Traverse City, and
 even as far north as the Upper Peninsula) are impacted by high levels of incoming
 (transported) ozone.

Data Variability: Since 1980, considerable progress has been made to meet the previous 1-hour ozone standard. Figure 8 shows the decline in both the 1-hour and 8-hour design values for the 5-state LADCO region over the last 25 years.

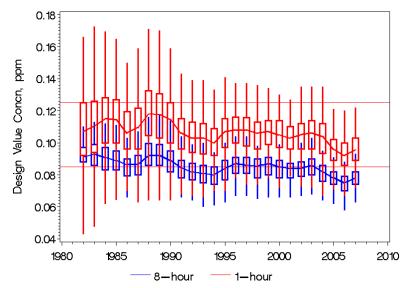


Figure 8 Ozone design value trends in 5-State region

The trend is more dramatic for the higher ozone sites in the 5-state region (see Figure 9). This plot shows a pronounced downward trend in the design value since the 2001-2003 period, due, in part, to the very low 4th high values in 2004.

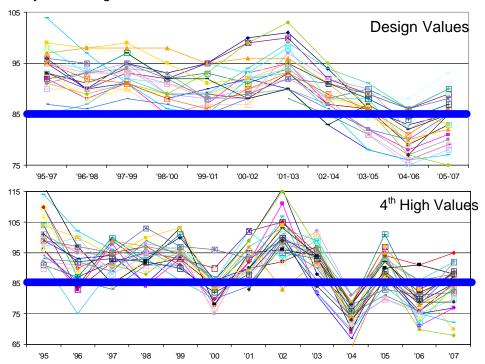
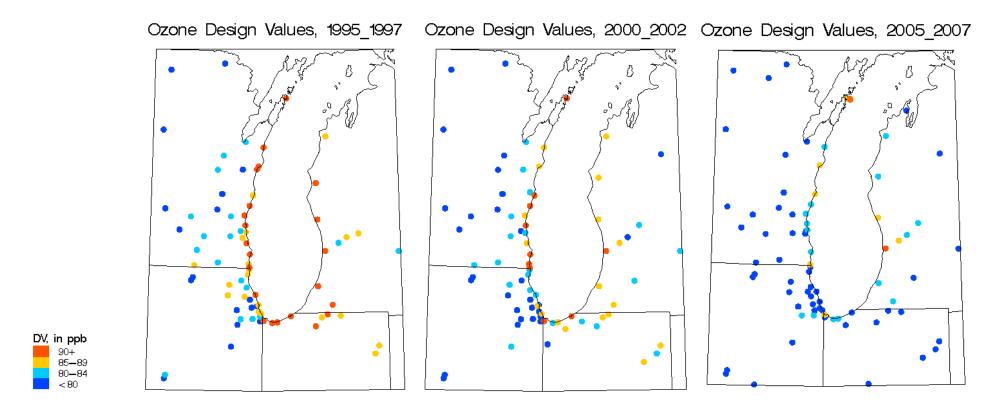
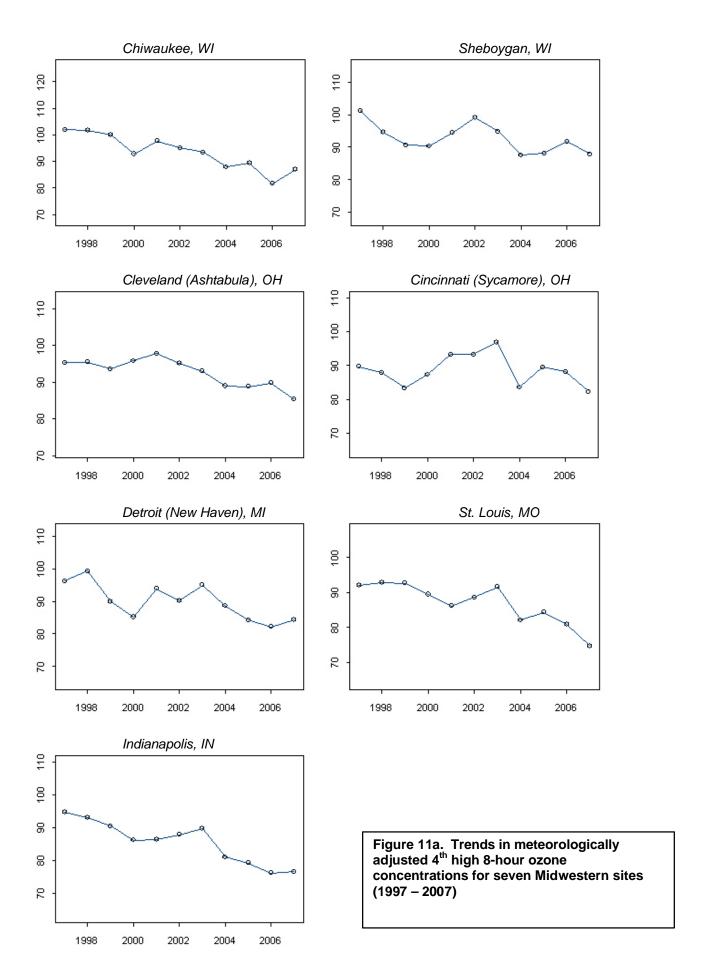
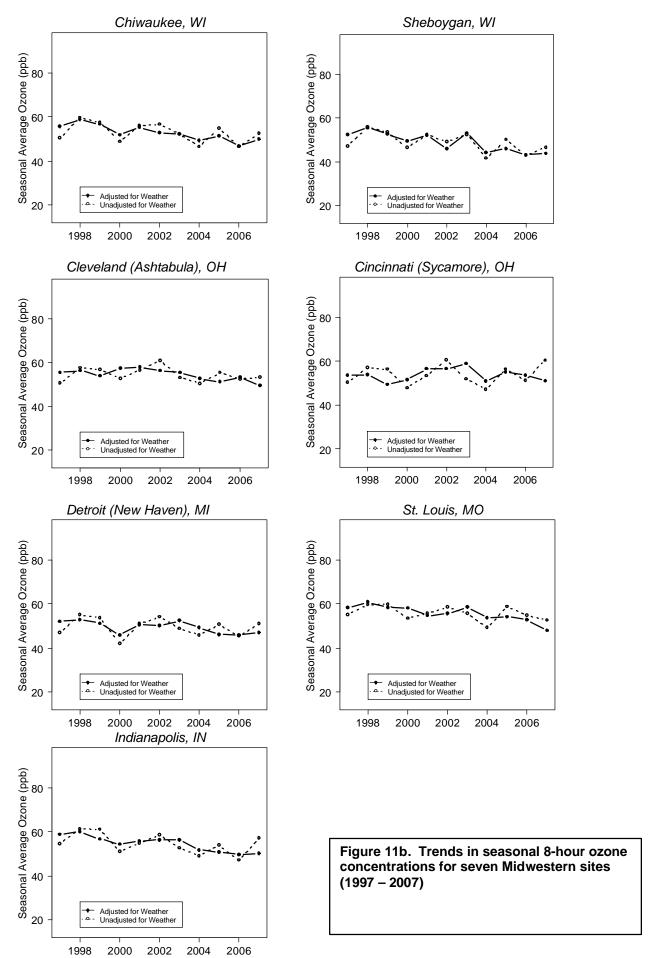


Figure 9. Trend in ozone design values and 4th high values for higher ozone sites in region

The improvement in ozone concentrations is also seen in the decrease in the number of sites measuring nonattainment over the past 15 years in the Lake Michigan area (see Figure 10).




Figure 10. Ozone design value maps for 1995-1997, 2000-2002, and 2005-2007

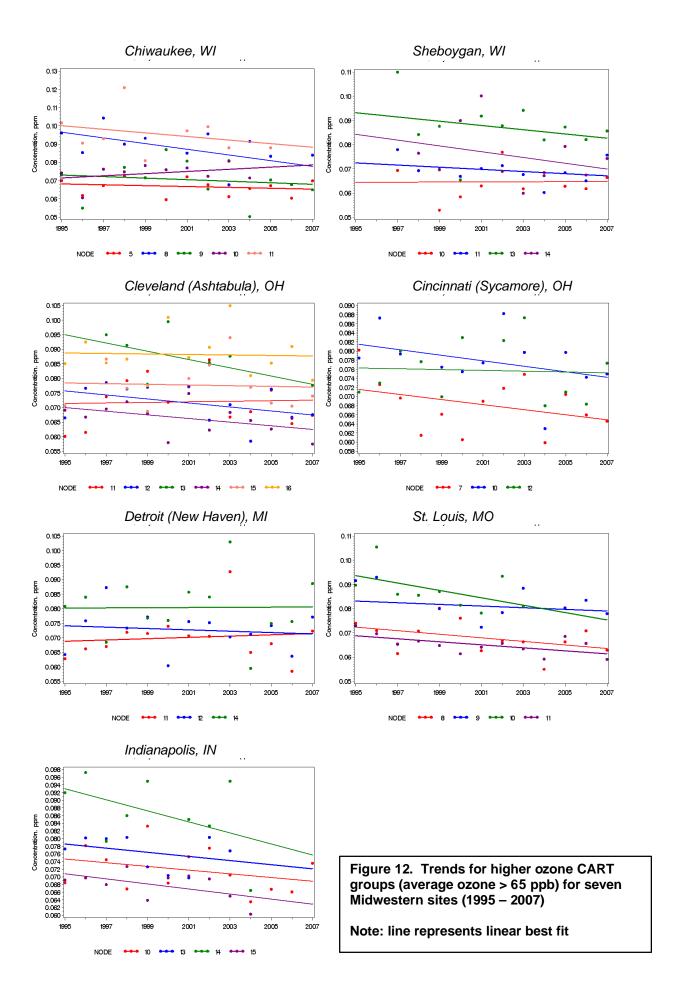

Given the effect of meteorology on ambient ozone levels, year-to-year variations in meteorology can make it difficult to assess trends in ozone air quality. Two approaches were considered to adjust ozone trends for meteorological influences: an air quality-meteorology statistical model developed by EPA (i.e., Cox method), and statistical grouping of meteorological variables performed by LADCO (i.e., Classification and Regression Trees, or CART).

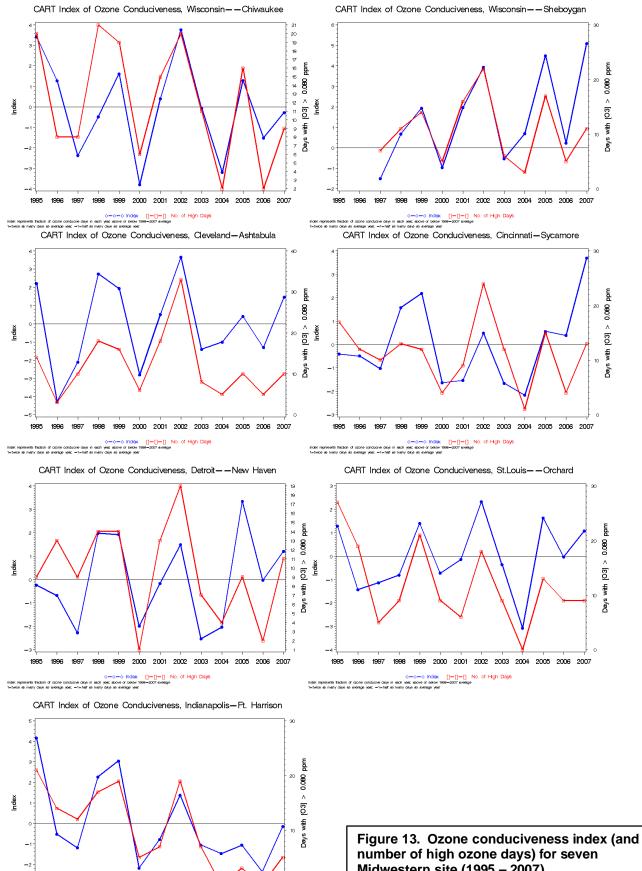
Cox Method: This method uses a statistical model to 'remove' the annual effect of meteorology on ozone (Cox and Chu, 1993). A regression model was fit to the 1997-2007 data to relate daily peak 8-hour ozone concentrations to six daily meteorological variables plus seasonal and annual factors (Kenski, 2008a). Meteorological variables included were daily maximum temperature, mid-day average relative humidity, morning and afternoon wind speed and wind direction. The model is then used to predict 4th high ozone values. By holding the meteorological effects constant, the long term trend can be examined independently of meteorology. Presumably, any trend reflects changes in emissions of ozone precursors.

Figure 11a shows the meteorologically-adjusted 4th high ozone concentrations for several monitors near major urban areas in the region. The plots indicate a general downward trend since the late 1990s for most cities, indicating that recent emission reductions have had a positive effect in improving ozone air quality.

A similar model was run to examine meteorologically adjusted trends in seasonal average ozone. This model incorporates more meteorological variables, including rain and long-distance transport (direction and distance). Model development was documented in Camalier et al., 2007. The seasonal average trends are shown in Figure 11b. Trends determined by seasonal model for the same set of sites examined above are consistent with those developed by the 4th high model.

CART: Classification and Regression Tree (CART) analysis is another statistical technique which partitions data sets into similar groups (Breiman et al., 1984). CART analysis was performed using data for the period 1995-2007 for 22 selected ozone monitors with current 8-hour design values close to or above the standard (Kenski, 2008b). The CART model searches through 60 meteorological variables to determine which are most efficient in predicting ozone. Although the exact selection of predictive variables changes from site to site, the most common predictors were temperature, wind direction, and relative humidity. Only occasionally were upper air variables, transport time or distance, lake breeze, or other variables significant. (Note, the ozone and meteorological data for the CART analysis are the same as used in the EPA/Cox analysis.)


For each monitor, regression trees were developed that classify each summer day (May-September) by its meteorological conditions. Similar days are assigned to nodes, which are equivalent to branches of the regression tree. Ozone time series for the higher concentration nodes are plotted for select sites in Figure 12. By grouping days with similar meteorology, the influence of meteorological variability on the trend in ozone concentrations is partially removed; the remaining trend is presumed to be due to trends in precursor emissions or other non-meteorological influences. Trends over the 13-year period at most sites were found to be declining, with the exception of Detroit which showed fairly flat trends. Comparison of the average of the high concentration node values for 2001-2003 v. 2005-2007 showed an improvement of about 5 ppb across all sites (even Detroit).


The effect of meteorology was further examined by using an ozone conduciveness index (Kenski, 2008b). This metric reflects the variability from the 13-year average in the number of days in the higher ozone concentration nodes (see Figure 13). Examination of these plots indicates:

- 2002 and 2005 were both above normal, with 2002 tending to be more severe; and
- 2001-2003 and 2005-2007 were both above normal, with no clear pattern in which period was more severe (i.e., ozone conduciveness values were similar at most sites, 2001-2003 values were higher at a few sites, and 2005-2007 values were higher at a few sites).

Given the similarity in ozone conduciveness between 2001-2003 and 2005-2007, the improvement in ozone levels noted above is presumed to be due to non-meteorological factors (i.e., emission reductions).

In conclusion, all three statistical approaches (CART and the two nonlinear regression models) show a similar result; ozone in the urban areas of the LADCO region has declined during the 1997-2007 period, even when meteorological variability is accounted for. The decreases are present whether seasonal average ozone, peak values (annual 4th highs), or a subset of high days with similar meteorology are considered. The consistency in results across models is a good indication that these trends reflect impacts of emission control programs.

Midwestern site (1995 - 2007)

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Precursor Sensitivity: Ozone is formed from the reactions of hydrocarbons and nitrogen oxides under meteorological conditions that are conducive to such reactions (i.e., warm temperatures and strong sunlight). In areas with high VOC/NOx ratios, typical of rural environments (with low NOx), ozone tends to be more responsive to reductions in NOx. Conversely, in areas with low VOC/NOx ratios, typical of urban environments (with high NOx), ozone tends to be more responsive to VOC reductions.

An analysis of VOC and NO_x-limitation was conducted with the ozone MAPPER program, which is based on the Smog Production (SP) algorithm (Blanchard, et al., 2003). The "Extent of Reaction" parameter in the SP algorithm provides an indication of VOC and NOx sensitivity:

Extent Range	Precursor Sensitivity			
< 0.6	VOC-sensitive			
0.6 - 0.8	Transitional			
> 0.8	NOx-sensitive			

A map of the Extent of Reaction values for high ozone days is provided in Figure 14. As can be seen, ozone is usually VOC-limited in cities and NOx-limited in rural areas. (Data from aircraft measurements suggest that ozone is usually NO_x -limited over Lake Michigan and away from urban centers on days when ozone in the urban centers is VOC-limited.) The highest ozone days were found to be NO_x -limited. This analysis suggests that a NOx reduction strategy would be effective in reducing ozone levels. Examination of day-of-week concentrations, however, raises some question about the effectiveness of NOx reductions.

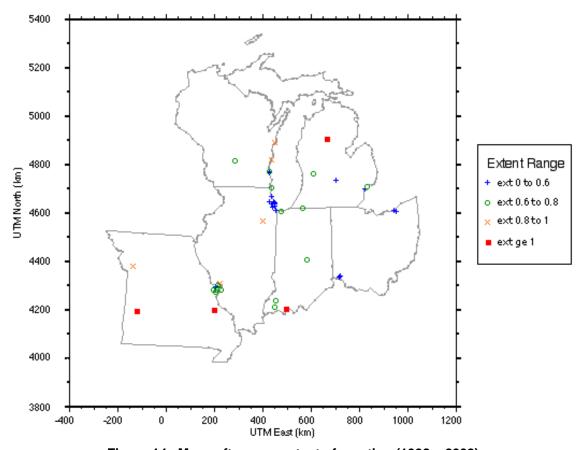


Figure 14. Mean afternoon extent of reaction (1998 – 2002)

Blanchard (2004 and 2005a) examined weekend-weekday differences in ozone and NO_x in the Midwest. All urban areas in these two studies exhibited substantially lower (40-60%) weekend concentrations of NO_x compared to weekday concentrations. Despite lower weekend NO_x concentrations, weekend ozone concentrations were not lower; in fact, most urban sites had higher concentrations of ozone, although the increase was generally not statistically significant (see Figure 15). This small but counterproductive change in **local** ozone concentrations suggests that **local** urban-scale NO_x reductions alone may not be very effective.

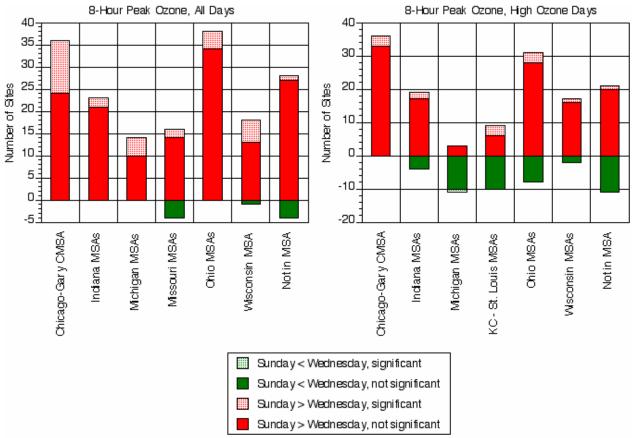


Figure 15. Weekday/weekend differences in 8-hour ozone – number of sites with weekend increase (positive values) v. number of sites with weekend decreases (negative values)

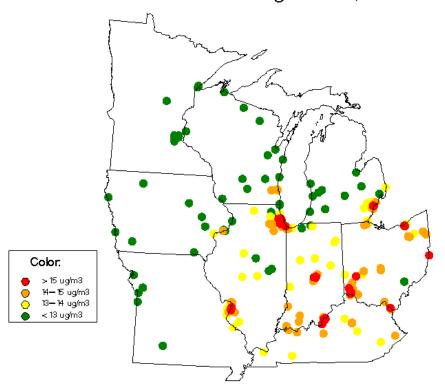
Two additional analyses, however, demonstrate the positive effect of NOx emission reductions on downwind ozone concentrations. First, Blanchard (2005a) looked at the effect of changes in precursor emissions in Chicago on downwind ozone levels in western Michigan. For the transport days of interest (i.e., southwesterly flow during the summers of 1999 - 2002), mean NOx concentrations in Chicago are about 50% lower and mean ozone concentrations at the (downwind) western Michigan sites are about 1.5 - 5.2 ppb (3 - 8%) lower on Sunday compared to Wednesday. This degree of change in downwind ozone levels suggests a positive, albeit non-linear response to urban area emission reductions.

Second, Environ (2007a) examined the effect of differences in day-of-week emissions in southeastern Michigan on downwind ozone levels. This modeling study found that weekend changes in ozone precursor emissions cause both increases and decreases in Southeast Michigan ozone, depending upon location and time:

- Weekend increases in 8-hour maximum ozone occur in and immediately downwind of the Detroit urban area (i.e., in VOC-sensitive areas).
- Weekend decreases in 8-hour maximum ozone occur outside and downwind of the Detroit urban area (i.e., in NOx-sensitive areas).
- At the location of the peak 8-hour ozone downwind of Detroit, ozone was lower on weekends than weekdays.
- Ozone benefits (reductions) due to weekend emission changes in Southeast Michigan can be transported downwind for hundreds of miles.
- Southeast Michigan benefits from lower ozone transported into the region on Saturday through Monday because of weekend emission changes in upwind areas.

In summary, these analyses suggest that urban VOC reductions and regional (urban and rural) NOx reductions will be effective in lowering ozone concentrations. Local NOx reductions can lead to local ozone increases (i.e., NOx disbenefits), but this effect does not appear to pose a problem with respect to attainment of the standard. It should also be noted that urban VOC and regional NOx reductions are likely to have multi-pollutant benefits (e.g., both lower ozone and $PM_{2.5}$ impacts).

2.2 PM_{2.5}


In 1997, EPA adopted the $PM_{2.5}$ standards of 15 ug/m³ (annual average) and 65 ug/m³ (24-hour average). The annual standard is attained if the 3-year average of the annual average $PM_{2.5}$ concentration is less than or equal to the level of the standard. The daily standard is attained if the 98th percentile of 24-hour $PM_{2.5}$ concentrations in a year, averaged over three years, is less than or equal to the level of the standard.

In 2006, EPA revised the $PM_{2.5}$ standards to 15 ug/m^3 (annual average) and 35 ug/m^3 (24-hour average).

Current Conditions: Maps of annual and 24-hour $PM_{2.5}$ design values for the 3-year period 2005-2007 are shown in Figure 16. The "hotter" colors represent higher concentrations, where red dots represent sites with design values above the annual standard. Currently, there are 30 sites in violation of the annual $PM_{2.5}$ standard.

Table 2 provides the annual PM_{2.5} concentrations and associated design values since 2003 for several high monitoring sites throughout the region.

PM2.5 FRM Annual Design Values, 2005-2007

PM2.5 FRM 98th Percentile Concentration, 2005-2007

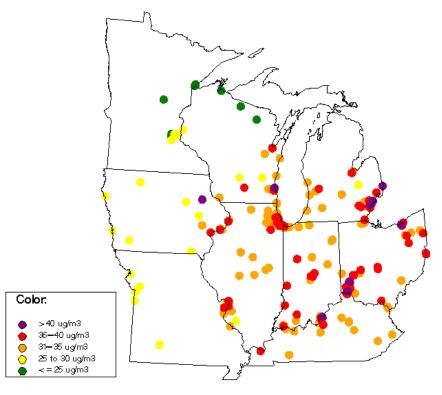


Figure 16. PM_{2.5} design values - annual average (top) and 24-hour average (bottom) (2005-2007)

Table 2. PM2.5 Data for Select Sites in 5-State Region												
			Annual Average Conc. Design Values					2005 BY Average	2002 BY Average			
Key Site	County	Site ID	'03	'04	'05	'06	'07	'03 - '05	'04 - '06	'05 - '07	w/ 2007	Average
Chicago - Washington HS	Cook	170310022	15.6	14.2	16.9	13.2	15.7	15.6		15.3	15.2	15.9
Chicago - Mayfair	Cook	170310052	15.9	15.3	17.0	14.5	15.5	16.1		15.7	15.8	17.1
Chicago - Springfield	Cook	170310057	15.6	13.8	16.7	13.5	15.1	15.4		15.1	15.0	15.6
Chicago - Lawndale	Cook	170310076	14.8	14.2	16.6	13.5	14.3	15.2		14.8	14.9	15.6
Blue Island	Cook	170312001	14.9	14.1	16.4	13.2	14.3	15.1		14.6	14.8	15.6
Summit	Cook	170313301	15.6	14.2	16.9	13.8	14.8	15.6		15.2	15.2	16.0
Cicero	Cook	170316005	16.8	15.2	16.3	14.3	14.8	16.1		15.1	15.5	16.4
Granite City	Madison	171191007	17.5	15.4	18.2	16.3	15.1	17.0		16.5	16.7	17.3
E. St. Louis	St. Clair	171630010	14.9	14.7	17.1	14.5	15.6	15.6		15.7	15.6	16.2
E. St. Louis	St. Ciali	171030010	14.9	14.7	17.1	14.5	15.0	15.0	13.4	13.7	13.0	10.2
Jeffersonville	Clark	180190005	15.8	15.1	18.5	15.0	16.5	16.5	16.2	16.7	16.4	17.2
Jasper	Dubois	180372001	15.7	14.4	16.9	13.5	14.4	15.7	14.9	14.9	15.2	15.5
Gary	Lake	180890031			16.8	13.3	14.5	16.8	15.1	14.9	15.6	
Indy - Washington Park	Marion	180970078	15.5	14.3	16.4	14.1	15.8	15.4	14.9	15.4	15.3	16.2
Indy - W 18th Street	Marion	180970081	16.2	15.0	17.9	14.2	16.1	16.4		16.1	16.0	
Indy - Michigan Street	Marion	180970083	16.3	15.0	17.5	14.1	15.9	16.3		15.8	15.9	16.6
, ,												
Allen Park	Wayne	261630001	15.2	14.2	15.9	13.2	12.8	15.1	14.4	14.0	14.5	15.8
Southwest HS	Wayne	261630015	16.6	15.4	17.2	14.7	14.5	16.4	15.8	15.5	15.9	17.3
Linwood	Wayne	261630016	15.8	13.7	16.0	13.0	13.9	15.2	14.2	14.3	14.6	15.5
Dearborn	Wayne	261630033	19.2	16.8	18.6	16.1	16.9	18.2		17.2	17.5	19.3
Wyandotte	Wayne	261630036	16.3	13.7	16.4	12.9	13.4	15.5	14.3	14.2	14.7	16.6
	,											
Middleton	Butler	390170003	17.2	14.1	19.0	14.1	15.4	16.8	15.7	16.2	16.2	16.5
Fairfield	Butler	390170016	15.8	14.7	17.9	14.0	14.9	16.1		15.6	15.8	15.9
Cleveland-28th Street	Cuyahoga	390350027	15.4	15.6	17.3	13.0	14.5	16.1		14.9	15.4	16.5
Cleveland-St. Tikhon	Cuyahoga	390350038	17.6	17.5	19.2	14.9	16.2	18.1		16.8	17.4	18.4
Cleveland-Broadway	Cuyahoga	390350045	16.4	15.3	19.3	14.0	15.3	17.0		16.2	16.5	16.7
Cleveland-E14 & Orange	Cuyahoga	390350060	17.2	16.4	19.4	15.0	15.9	17.7		16.8	17.1	17.6
Newburg Hts - Harvard Ave	Cuyahoga	390350065	15.6	15.2	18.6	13.1	15.8	16.5		15.8	16.0	16.2
Columbus - Fairgrounds	Franklin	390490024	16.4	15.0	16.4	13.6	14.6	15.9		14.9	15.3	16.5
Columbus - Ann Street	Franklin	390490025	15.3	14.6	16.4	13.6	14.7	15.4		14.9	15.1	16.0
Columbus - Maple Canyon	Franklin	390490081	14.9	13.6	14.6	12.9	13.1	14.4		13.5	13.9	16.0
Cincinnati - Seymour	Hamilton	390610014	17.0	15.9	19.8	15.5	16.5	17.6		17.3	17.3	17.7
Cincinnati - Taft Ave	Hamilton	390610040	15.5	14.6	17.5	13.6	15.1	15.9		15.4	15.5	15.7
Cincinnati - 8th Ave	Hamilton	390610042	16.7		19.1			17.3		16.6	16.9	17.3
Sharonville	Hamilton	390610043	15.7	14.9				15.8		15.4	15.6	16.0
Norwood	Hamilton	390617001	16.0	15.3				16.6		15.9	16.2	16.3
St. Bernard	Hamilton	390618001	17.3					17.9		17.3	17.6	17.3
Steubenville	Jefferson	390810016	17.7	15.9		13.8		16.7		15.5	15.8	17.7
Mingo Junction	Jefferson	390811001	17.3	16.2		14.6		17.2		16.1	16.5	17.5
Ironton	Lawrence	390870010	14.3	13.7	17.0	14.4	15.0	15.0		15.4	15.2	15.7
Dayton	Montgomery	391130032	15.9	14.5				15.9		15.5	15.5	15.7
New Boston	Scioto	391450013	14.7	13.0				14.6		14.8	14.7	17.1
Canton - Dueber	Stark	391510017	16.8					16.7		16.1	16.3	17.3
Canton - Market	Stark	391510017	15.0	14.1	16.6			15.2		14.3	14.6	15.7
Akron - Brittain	Summit	391510020	15.4	15.0				15.2		14.8	15.1	16.4
Akron - W. Exchange	Summit	391530023	14.2	13.9	15.7	12.8	13.7	14.6	14.1	14.1	14.3	15.6

When EPA initially set the 24-hour standard at 65 μg/m³, it also adopted the following concentration ranges for its Air Quality Index (AQI) scale:

Good	< 15 ug/m ³
Moderate	$15-40 \mu g/m^3$
Unhealthy for Sensitive Groups (USG)	$40-65 \mu g/m^3$
Unhealthy	65-150 µg/m ³

Figure 17 shows the frequency of these AQI categories for major metropolitan areas in the region. Daily average concentrations are often in the moderate range and occasionally in the USG range. Moderate and USG levels can occur any time of the year.

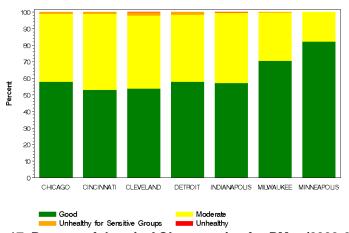


Figure 17. Percent of days in AQI categories for PM_{2.5} (2002-2004)

Data Variability: PM_{2.5} concentrations vary spatially, temporally, and chemically in the region. This variability is discussed further below.

On an annual basis, $PM_{2.5}$ exhibits a distinct and consistent spatial pattern. As seen in Figure 16, across the Midwest, annual concentrations follow a gradient from low values (5-6 μ g/m³) in northern and western areas (Minnesota and northern Wisconsin) to high values (17-18 μ g/m³) in Ohio and along the Ohio River. In addition, concentrations in urban areas are higher than in upwind rural areas, indicating that local urban sources add a significant increment of 2-3 μ g/m³ to the regional background of 12 - 14 μ g/m³ (see Figure 18).

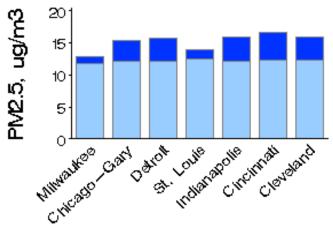
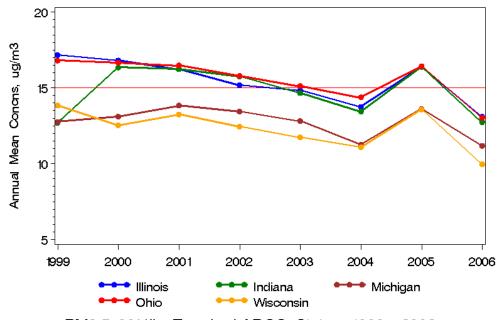



Figure 18. Regional (lighter shading) v. local components (darker shading) of annual average $PM_{2.5}$ concentrations

Because monitoring for $PM_{2.5}$ only began in earnest in 1999, after promulgation of the $PM_{2.5}$ standard, limited data are available to assess trends. Time series based on federal reference method (FRM) $PM_{2.5}$ -mass data show a downward trend in each state (see Figure 19)⁷.

PM2.5 Annual Mean Trends, LADCO States, 1999-2006

PM2.5 98%ile Trends, LADCO States, 1999-2006

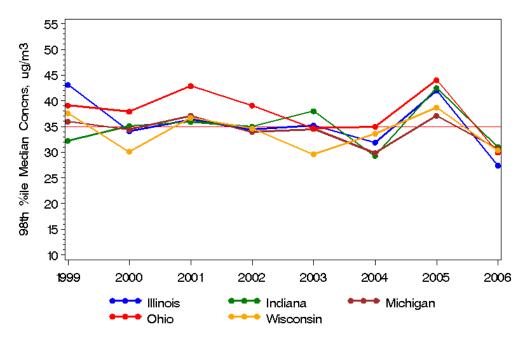


Figure 19. PM_{2.5} trends in annual average (top) and daily concentrations (bottom)

25

⁷ Despite the general downward trend since 1999, all states experienced an increase during 2005. Further analyses are underway to understand this increase (e.g., examination of meteorological and emissions effects).

A statistical analysis of $PM_{2.5}$ trends was performed using the nonparametric Theil test for slope (Hollander and Wolfe, 1973). Trends were generally consistent around the region, for both PM mass and for the individual components of mass. Figure 20 shows trends for $PM_{2.5}$ based on FRM data at sites with six or more years of data since 1999. The size and direction of each arrow shows the size and direction of the trend for each site; solid arrows show statistically significant trends and open arrows show trends that are not significant. Region-wide decreases are widespread and consistent; all sites had decreasing concentration trends (13 of the 38 were statistically significant). The average decrease for this set of sites is -0.24 $ug/m^3/year$.

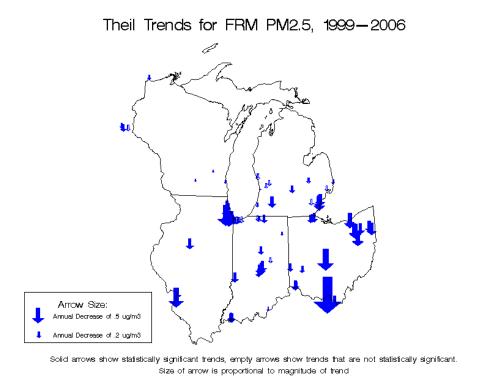
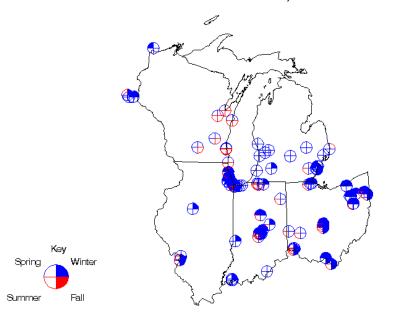



Figure 20. Annual trends in PM_{2.5} mass (1999 – 2006)

Seasonal trends show mostly similar patterns (Figure 21). Trends were downward at most sites and seasons, with overall seasonal averages varying between -0.15 to -0.56 ug/m³/year. The strongest and most significant decreases took place during the winter quarter (January - March). No statistically significant increasing trends were observed.

Seasonal Theil Trends for FRM PM2.5, 1999-2006

Based on Seasonal Daily Data

Solid quarters show statistically significant trends, empty quarters show trends that are not statistically significant. Blue quarters show decreasing concentrations, red shows increasing concentrations

Figure 21. Seasonal trends in PM_{2.5} mass (1999 – 2006)

 $PM_{2.5}$ shows a slight variation from weekday to weekend, as seen in Figure 22. Although most cities have slightly lower concentrations on the weekend, the difference is usually less than 1 $\mu g/m^3$. There is a more pronounced weekday/weekend difference at monitoring sites that are strongly source-influenced. Rural monitors tend to show less of a weekday/weekend pattern than urban monitors.

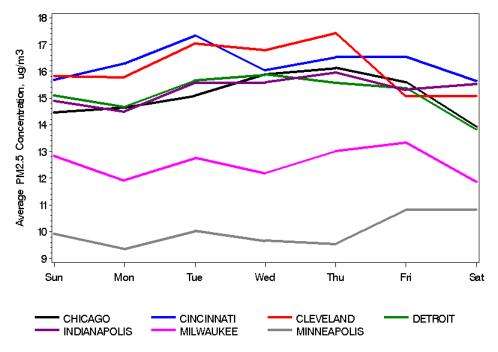


Figure 22 Day-of-week variability in PM_{2.5} (2002-2004)

In the Midwest, $PM_{2.5}$ is made up of mostly ammonium sulfate, ammonium nitrate, and organic carbon in approximately equal proportions on an annual average basis. Elemental carbon and crustal matter (also referred to as soil) contribute less than 5% each.

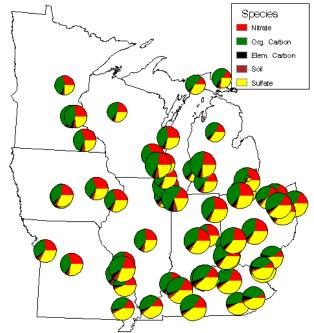


Figure 23. Spatial map of PM_{2.5} chemical composition in the Midwest (2002-2003)

The three major components vary spatially (Figure 23), including notable urban and rural differences (Figure 24). The components also vary seasonally (Figure 25). These patterns account for much of the annual variability in PM_{2.5} mass noted above.

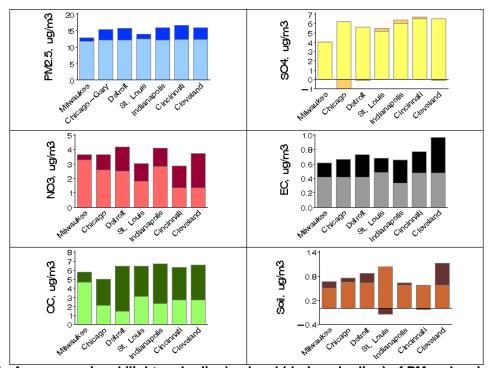


Figure 24. Average regional (lighter shading) v. local (darker shading) of PM_{2.5} chemical species

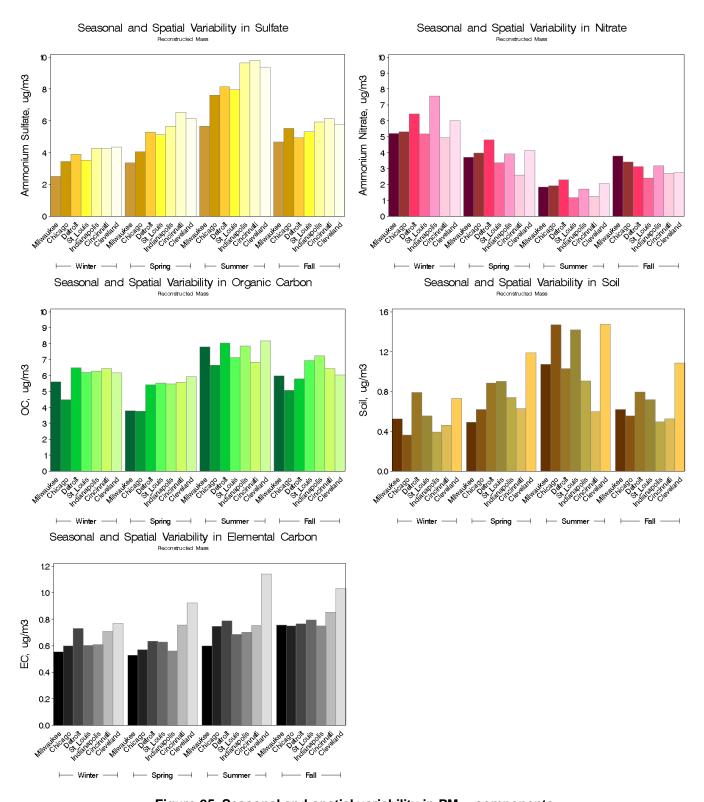


Figure 25 Seasonal and spatial variability in PM_{2.5} components

Ammonium sulfate peaks in the summer and is highest in the southern and eastern parts of the Midwest, closest to the Ohio River Valley. Sulfate is primarily a regional pollutant; concentrations are similar in rural and urban areas and highly correlated over large distances. It is formed when sulfuric acid (an oxidation product of sulfur dioxide) and ammonia react in the atmosphere, especially in cloud droplets. Coal combustion is the primary source of sulfur dioxide; ammonia is emitted primarily from animal husbandry operations and fertilizer use.

Ammonium nitrate has almost the opposite spatial and seasonal pattern, with the highest concentrations occurring in the winter and in the northern parts of the region. Nitrate seems to have both regional and local sources, because urban concentrations are higher than rural upwind concentrations. Ammonium nitrate forms when nitric acid reacts with ammonia, a process that is enhanced when temperatures are low and humidity is high. Nitric acid is a product of the oxidation of nitric oxide, a pollutant that is emitted by combustion processes.

Organic carbon is more consistent from season to season and city to city, although concentrations are generally slightly higher in the summer. Like nitrate, organic carbon has both regional and local components. Particulate organic carbon can be emitted directly from cars and other fuel combustion sources or formed in a secondary process as volatile organic gases react and condense. In rural areas, summer organic carbon has significant contributions from biogenic sources.

Precursor Sensitivity: Data from the Midwest ammonia monitoring network were analyzed with thermodynamic equilibrium models to assess the effect of changes in precursor gas concentrations on PM_{2.5} concentrations (Blanchard, 2005b). These analyses indicate that particle formation responds in varying degrees to reductions in sulfate, nitric acid, and ammonia. Based on Figure 26, which shows PM_{2.5} concentrations as a function of sulfate, nitric acid (HNO3), and ammonia (NH3), several key findings should be noted:

- PM_{2.5} mass is sensitive to reductions in sulfate at all times of the year and all parts of the region. Even though sulfate reductions cause more ammonia to be available to form ammonium nitrate (PM-nitrate increases slightly when sulfate is reduced), this increase is generally offset by the sulfate reductions, such that PM_{2.5} mass decreases.
- PM_{2.5} mass is also sensitive to reductions in nitric acid and ammonia. The greatest PM_{2.5} decrease in response to nitric acid reductions occurs during the winter, when nitrate is a significant fraction of PM_{2.5}.
- Under conditions with lower sulfate levels (i.e., proxy of future year conditions), PM_{2.5} is more sensitive to reductions in nitric acid compared to reductions in ammonia.
- Ammonia becomes more limiting as one moves from west to east across the region.

Examination of weekend/weekday difference in PM-nitrate and NOx concentrations in the Midwest demonstrate that reductions in local (urban) NOx lead to reductions, albeit non-proportional reductions, in PM-nitrate (Blanchard, 2004). This result is consistent with analyses of continuous PM-nitrate from several US cities, including St. Louis (Millstein, et al, 2007).

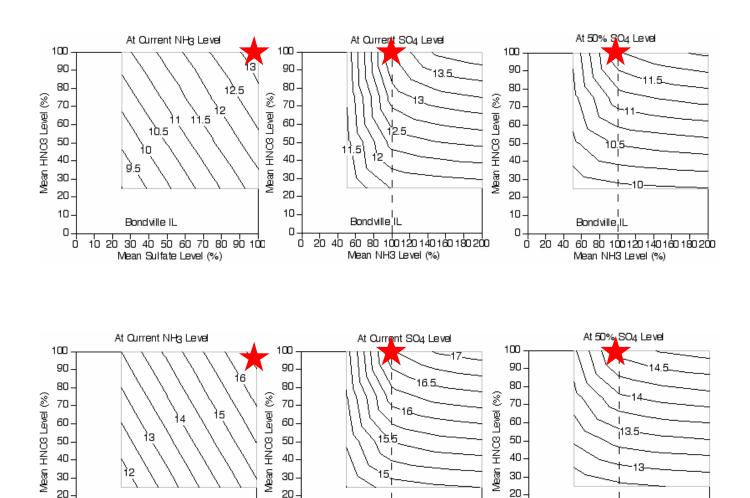


Figure 26. Predicted mean PM fine mass concentrations at Bondville, IL (top) and Detroit (Allen Park), MI (bottom) as functions of changes in sulfate, nitric acid (HNO3), and ammonia (NH3)

Detroit (Allen Park) MI

Mean NH3 Level (%)

60 80 100120140160180200

10

d

20 40

10

0

Detroit (Allen Park) MI

10 20 30 40 50 60 70 80 90 100

Mean Sulfate Level (%)

10

Detroit (Allen Park) MI

20 40 60 80 100120140160180200

Mean NH3 Level (%)

Note: starting at the baseline values (represented by the red star), either moving downward (reductions in nitric acid) or moving leftward (reductions in sulfate or ammonia) results in lower PM_{2.5} values

Meteorology: $PM_{2.5}$ concentrations are not as strongly influenced by meteorology as ozone, but the two pollutants share some similar meteorological dependencies. In the summer, conditions that are conducive to ozone (hot temperatures, stagnant air masses, and low wind speeds due to stationary high pressure systems) also frequently give rise to high $PM_{2.5}$. In the case of PM, the reason is two-fold: (1) stagnation and limited mixing under these conditions cause $PM_{2.5}$ to build up, usually over several days, and (2) these conditions generally promote higher conversion of important precursors (SO_2 to SO_4) and higher emissions of some precursors, especially biogenic carbon. Wind direction is another strong determinant of $PM_{2.5}$; air transported from polluted source regions has higher concentrations.

Unlike ozone, $PM_{2.5}$ has occasional winter episodes. Conditions are similar to those for summer episodes, in that stationary high pressure and (seasonally) warm temperatures are usually factors. Winter episodes are also fueled by high humidity and low mixing heights.

PM_{2.5} chemical species show noticeable transport influences. Trajectory analyses have demonstrated that high PM-sulfate is associated with air masses that traveled through the sulfate-rich Ohio River Valley (Poirot, et al, 2002 and Kenski, 2004). Likewise, high PM-nitrate is associated with air masses that traveled through the ammonia-rich Midwest. Figure 27 shows results from an ensemble trajectory analysis of 17 rural eastern IMPROVE sites.

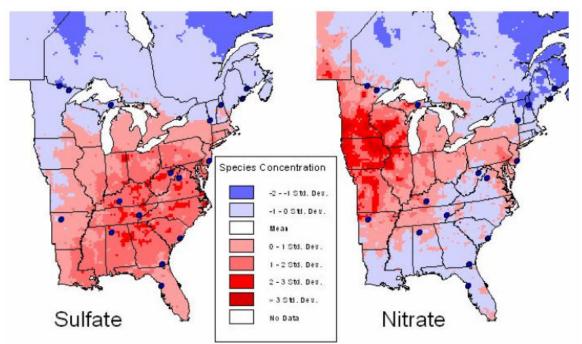


Figure 27. Sulfate and nitrate source regions based on ensemble trajectory analysis

When these results are considered together with analyses of precursor sensitivity (e.g., Figure 26), one possible conclusion is that ammonia control in the Midwest could be effective at reducing nitrate concentrations. The thermodynamic equilibrium modeling shows that ammonia reductions would reduce PM concentrations in the Midwest, but that nitric acid reductions are more effective when the probable reductions in future sulfate levels are considered.

Source Culpability: Three source apportionment studies were performed using speciated $PM_{2.5}$ monitoring data and statistical analysis methods (Hopke, 2005, STI, 2006, and STI, 2008). Figure 28 summarizes the source contributions from these studies. The studies show that a large portion of $PM_{2.5}$ mass consists of secondary, regional impacts, which cannot be attributed to individual facilities or sources (e.g., secondary sulfate, secondary nitrate, and secondary organic aerosols). Nevertheless, wind analyses (e.g., Figure 27) provide information on likely source regions. Regional- or national-scale control programs may be the most effective way to deal with these impacts. EPA's CAIR, for example, will provide for substantial reductions in SO2 emissions over the eastern half of the U.S., which will reduce sulfate (and $PM_{2.5}$) concentrations and improve visibility levels.

The studies also show that a smaller, yet significant portion of PM_{2.5} mass is due to emissions from nearby (local) sources. Local (urban) excesses occur in many urban areas for organic and elemental carbon, crustal matter, and, in some cases, sulfate. The statistical analysis methods help to identify local sources and quantify their impact. This information is valuable to states wishing to develop control programs to address local impacts. A combination of national/regional-scale and local-scale emission reductions may be necessary to provide for attainment.

The carbon sources are not easily identified in complex urban environments. LADCO's Urban Organics Study (STI, 2006) identified four major sources of organic carbon: mobile sources, burning, industrial sources, and secondary organic aerosols. Additional sampling and analysis is underway in Cleveland and Detroit to provide further information on sources of organic carbon.

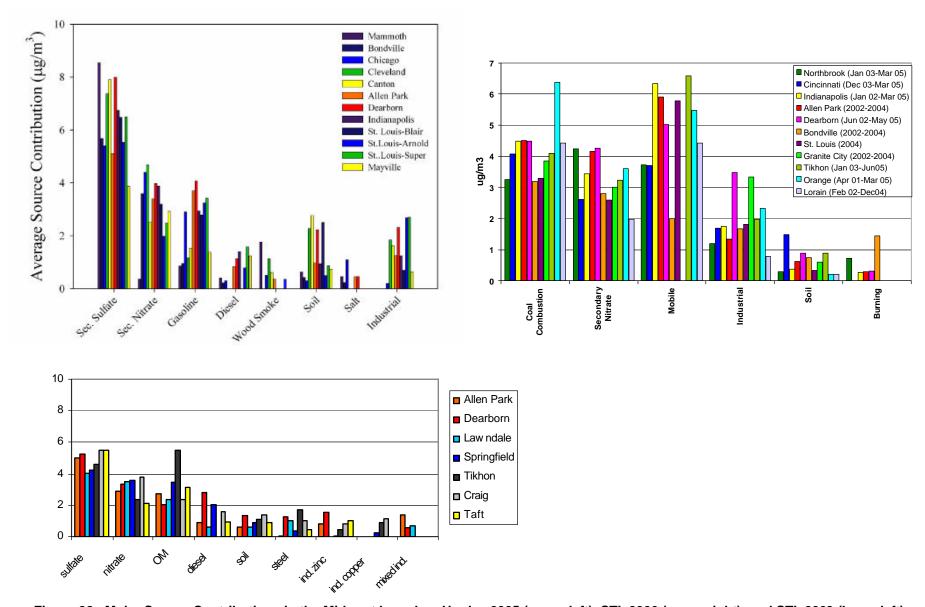


Figure 28. Major Source Contributions in the Midwest based on Hopke, 2005 (upper left), STI, 2006 (upper right), and STI, 2008 (lower left) (Note: the labeling of similar source types varies between studies – e.g., organic carbon/mobile sources are named gasoline and diesel by Hopke, mobile by STI 2006, and OM and diesel by STI 2008)

2.3 Haze

Section 169A of the Clean Air Act sets as a national goal "the prevention of any future, and the remedying of any existing, impairment of visibility in mandatory Class I Federal areas which impairment results from manmade air pollution". To implement this provision, in 1999, EPA adopted regulations to address regional haze visibility impairment (USEPA, 1999). EPA's rule requires states to "make reasonable progress toward meeting the national goal". Specifically, states must establish reasonable progress goals, which provide for improved visibility on the most impaired (20% worst) days sufficient to achieve natural conditions by the year 2064, and for no degradation on the least impaired (20% best) days.

The primary cause of impaired visibility in the Class I areas is pollution by fine particles that scatter light. The degree of impairment, which is expressed in terms of visual range, light extinction (1/Mm), or deciviews (dv), depends not just on the total PM_{2.5} mass concentration, but also on the chemical composition of the particles and meteorological conditions.

Current Conditions: A map of the average light extinction values for the most impaired (20% worst) visibility days for the 5-year baseline period (2000-2004) is shown in Figure 29.

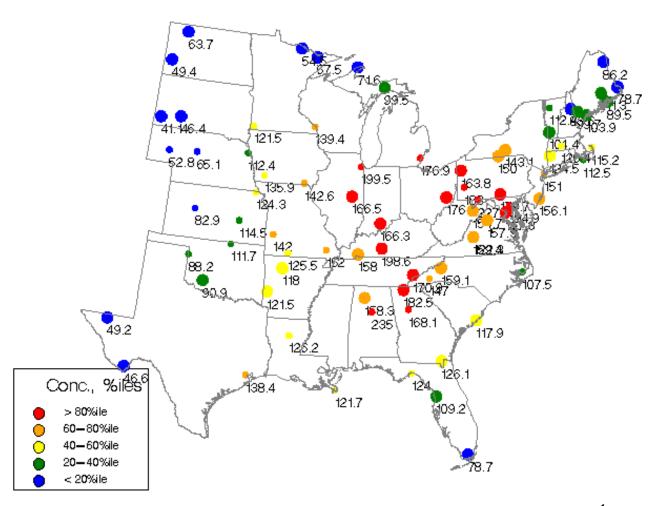


Figure 29. Baseline Visibility Levels for 20% Worst Days (2000 – 2004), units: Mm⁻¹

Initially, the baseline (2000 – 2004) visibility condition values were derived using the average for the 20% worst and 20% best days for each year, as reported on the VIEWS website: http://vista.cira.colostate.edu/views/Web/IMPROVE/SummaryData.aspx. These values were calculated using the original IMPROVE equation for reconstructed light extinction.

Three changes were made to the baseline calculations to produce a new set of values. First, the reconstructed light extinction equation was revised by the IMPROVE Steering Committee in 2005. The new IMPROVE equation was used to calculate updated baseline values.

Second, due to sampler problems, the 2002-2004 data for Boundary Waters were invalid for certain chemical species. (Note, sulfate and nitrate data were valid.) A "substituted" data set was developed by using values from Voyageurs for the invalid species.

Third, LADCO identified a number of days during 2000-2004 where data capture at the Class I monitors was incomplete (Kenski, 2007b). The missing data cause these days to be excluded from the baseline calculations. However, the light extinction due to the remaining measured species is significant (i.e., above the 80th percentile). It makes sense to include these days in the baseline calculations, because they are largely dominated by anthropogenic sources. (Only one of these days is driven by high organic carbon, which might indicate non-anthropogenic aerosol from wildfires.) As seen in Table 3, inclusion of these days in the baseline calculation results in a small, but measurable, effect on the baseline values (i.e., values increase from 0.2 to 0.8 dv).

Table 3. Average of 20% worst days, with and without missing data days

	Average Worst Day	Average Worst Day DV,	Difference
	DV, per RHR	with Missing Data Days	
BOWA	19.59	19.86	0.27
ISLE	20.74	21.59	0.85
SENE	24.16	24.38	0.22
VOYA	19.27	19.48	0.21

A summary of the initial and updated baseline values for the Class I areas in northern Michigan and northern Minnesota are presented in Table 4. The updated baseline values reflect the most current, complete understanding of visibility impairing effects and, as such, will be used for SIP planning purposes.

Table 4. Summary of visibility metrics (deciviews) for northern Class I areas

Old IMPROVE	Equation (Cite: VIE	WS, Nov	ember 2	005)			
		20%	Worst E	Days				
	2000	2001	2002	2003	2004	Baseline Value	2018 URI Value	Natural Conditions
Voyageurs	18.50	18.00	19.00	19.20	17.60	18.46	16.74	11.09
BWCA	19.85	19.99	19.68	19.73	17.65	19.38	17.47	11.21
Isle Royale	20.00	22.00	20.80	19.50	19.10	20.28	18.17	11.22
Seney	22.60	24.90	24.00	23.80	22.60	23.58	20.73	11.37
		200	/ Post D	01/0				
	20% Best Days 2000 2001 2002 2003 2004				Baseline Value		Natural Conditions	
Voyageurs	6.30	6.20	6.70	7.00	5.40	6.32		3.41
BWCA	5.90	6.52	6.93	6.67	5.61	6.33		3.53
Isle Royale	5.70	6.40	6.40	6.30	5.30	6.02		3.54
Seney	5.80	6.10	7.30	7.50	5.80	6.50		3.69
New IMPRO	OVE Equat	•			006)			
		20%	Worst D	Days				
	2000	2001	2002	2002 2003 2004		Baseline Value	2018 URI Value	Natural Conditions
Voyageurs	19.55	18.57	20.14	20.25	18.87	19.48	17.74	12.05
BWCA	20.20	20.04	20.76	20.13	18.18	19.86	17.94	11.61
Isle Royale	20.53	23.07	21.97	22.35	20.02	21.59	19.43	12.36
Seney	22.94	25.91	25.38	24.48	23.15	24.37	21.64	12.65
		000	/ Daat D					
	2000	2001	% Best D 2002	2003	2004	Baseline Value		Natural Conditions
Voyageurs	7.01	7.12	7.53	7.68	6.37	7.14		4.26
BWCA	6.00	6.92	7.00	6.45	5.77	6.43		3.42
Isle Royale	6.49	7.16	7.07	6.99	6.12	6.77		3.72
Seney	6.50	6.78	7.82	8.01	6.58	7.14		3.73
Notes (1) BMCA								

URI = uniform rate of improvement

Notes: (1) BWCA values for 2002 - 2004 reflect "substituted" data.
(2) New IMPROVE equation values include Kenski, 2007 adjustment for missing days

As noted above, the goal of the visibility program is to achieve natural conditions. Initially, the natural conditions values for each Class I area were taken directly from EPA guidance (EPA, 2003). These values were calculated using the original IMPROVE equation. This equation was revised by the IMPROVE Steering Committee in 2005, and the new IMPROVE equation was used to calculate updated natural conditions values. The updated values are reported on the VIEWS website.

A summary of the initial and updated natural conditions values are presented in Table 4. The updated natural conditions values (based on the new IMPROVE equation) will be used for SIP planning purposes.

Data Variability: For the four northern Class I areas, the most important $PM_{2.5}$ chemical species are ammonium sulfate, ammonium nitrate, and organic carbon. The contribution of these species on the 20% best and 20% worst visibility days (based on 2000 - 2004 data) is provided in Figure 30. For the 20% worst visibility days, the contributions are: sulfate = 35-55%, nitrate = 25-30%, and organic carbon = 12-22%. Although the chemical composition is similar, sulfate increases in importance from west to east and concentrations are highest at Seney (the easternmost site). It should also be noted that sulfate and nitrate contribute more to light extinction than to $PM_{2.5}$ mass because of their hygroscopic properties.

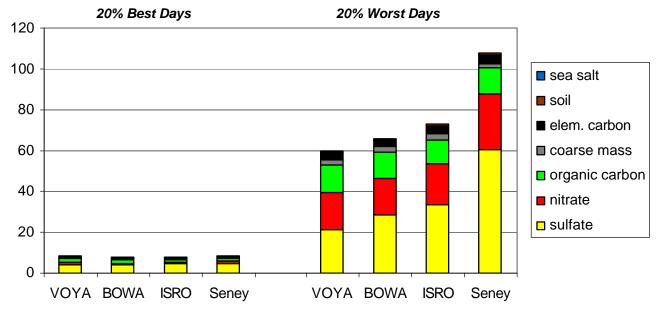


Figure 30. Chemical composition of light extinction for 20% best visibility days (left) and 20% worst visibility days (right) in terms of Mm⁻¹

Analysis of PM_{2.5} mass and chemical species for rural IMPROVE (and IMPROVE-protocol) sites in the eastern U.S. showed a high degree of correlation between PM_{2.5}-mass, sulfate, and nitrate levels (see Figure 31). The Class I sites in northern Michigan and northern Minnesota, in particular, are highly correlated for PM_{2.5} mass, sulfates, and organic carbon mass (AER, 2004).

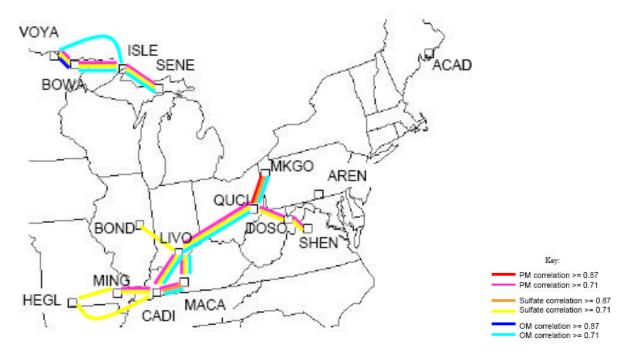


Figure 31. Correlations among IMPROVE (and IMPROVE-protocol) monitoring sites in Eastern U.S.

Long-term trends at Boundary Waters (the only regional site with a sufficient data record) show significant decreases in total $PM_{2.5}$ (-0.005 ug/year) and SO4 (-0.04 ug/year) and an increase in NO3 (+0.01 ug/year). These $PM_{2.5}$ and SO4 trends are generally consistent with long-term trends at other IMPROVE sites in the eastern U.S., which have shown widespread decreases in SO4 and $PM_{2.5}$ (DeBell, et al, 2006). Detecting changes in nitrate has been hampered by uncertainties in the IMPROVE data for particular years and, thus, this estimate should be considered tentative.

Haze in the Midwest Class I areas has no strong seasonal pattern. Poor visibility days occur throughout the year, as indicated in Figure 32. (Note, in contrast, other parts of the country, such as Shenandoah National Park in Virginia, show a strong tendency for the worst air quality days to occur in the summer months.) This figure and Figure 33 (which presents the monthly average light extinction values based on all sampling days) also show that sulfate and organic carbon concentrations are higher in the summer, and nitrate concentrations are higher in the winter, suggesting the importance of different sources and meteorological conditions at different times of the year.

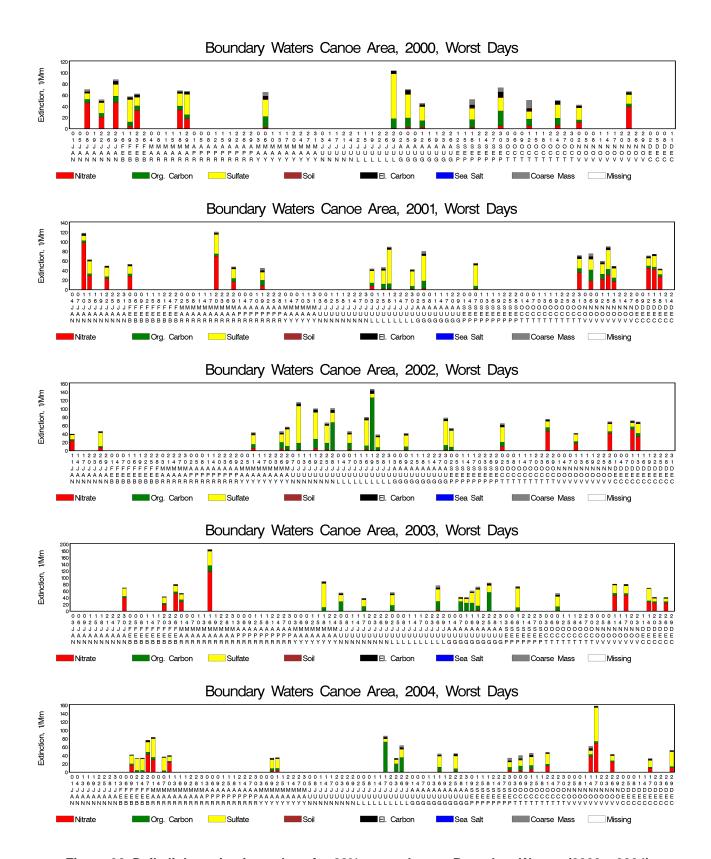


Figure 32. Daily light extinction values for 20% worst days at Boundary Waters (2000 – 2004)

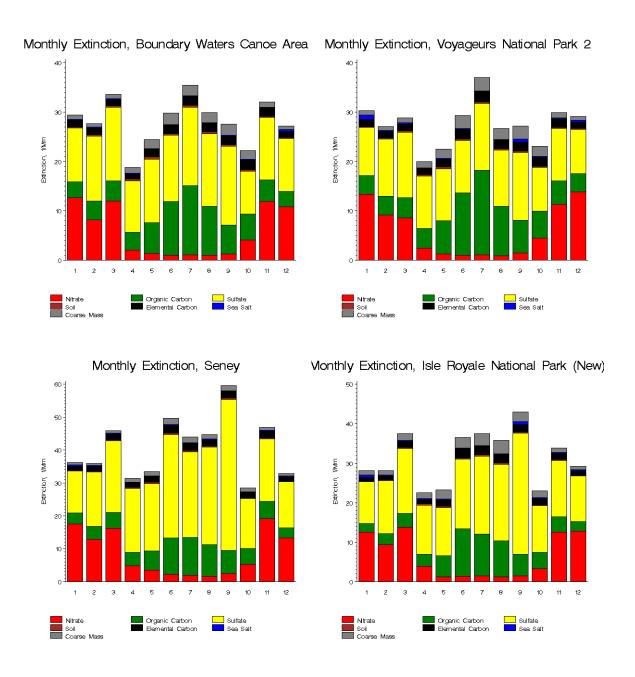


Figure 33. Monthly average light extinction values for northern Class I areas

Precursor Sensitivity: Results from two analyses using thermodynamic equilibrium models provide information on the effect of changes in precursor concentrations on $PM_{2.5}$ concentrations (and, in turn, visibility levels) in the northern Class I areas. First, a preliminary analysis using data collected at Seney indicated that $PM_{2.5}$ there is most sensitive to reductions in sulfate, but is also sensitive to reductions in nitric acid (Blanchard, 2004).

Second, an analysis was performed using data from the Midwest ammonia monitoring network for a site in Minnesota -- Great River Bluffs, which is the closest ammonia monitoring site to the northern Class I areas (Blanchard, 2005b). Figure 34 shows PM_{2.5} concentrations as a function of sulfate, nitric acid (HNO3), and ammonia (NH3). Reductions in sulfate (i.e., movement to the left of baseline value [represented by the red star]), as well as reductions in nitric acid (i.e., movement downward) and NH3 (i.e., movement to the left), result in lower PM_{2.5} concentrations. Thus, reductions in sulfate, nitric acid, and ammonia will lower PM_{2.5} concentrations and improve visibility in the northern Class I areas.

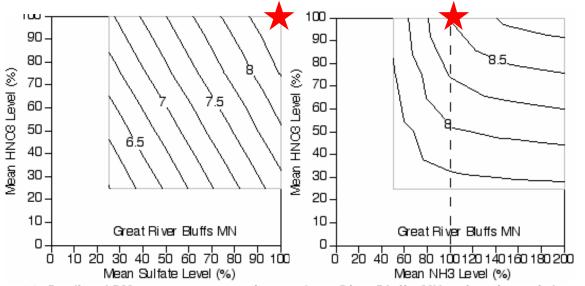


Figure 34. Predicted $PM_{2.5}$ mass concentrations at Great River Bluffs, MN as functions of changes in sulfate, nitric acid, and ammonia

Meteorology and Transport: The role of meteorology in haze is complex. Wind speed and wind direction govern the movement of air masses from polluted areas to the cleaner wilderness areas. As noted above, increasing humidity increases the efficiency with which sulfate and nitrate aerosols scatter light. Temperature and humidity together govern whether ammonium nitrate can form from its precursor gases, nitric acid and ammonia. Temperature and sunlight also play an indirect role in emissions of biogenic organic species that condense to form particulate organic matter; emissions increase in the summer daylight hours.

Trajectory analyses were performed to understand transport patterns for the 20% worst and 20% best visibility days. The composite results for the four northern Class I areas are provided in Figure 35. The orange areas are where the air is most likely to come from, and the green areas are where the air is least likely to come from. As can be seen, bad air days are generally associated with transport from regions located to the south, and good air days with transport from Canada.

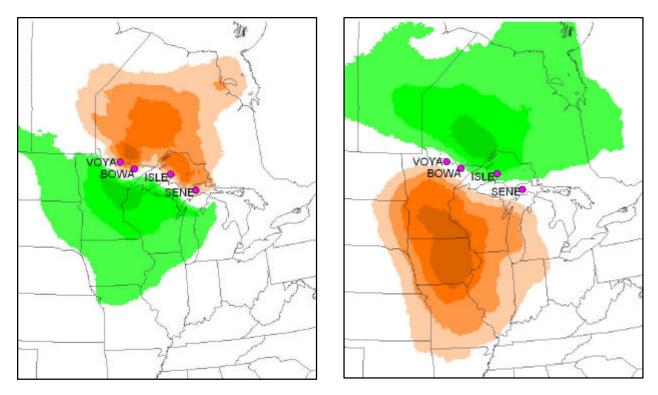


Figure 35. Composite back trajectories for light extinction- 20% best visibility days (left) and 20% worst visibility days (right) (2000 – 2005)

Source Culpability: Air quality data analyses (including the trajectory analyses above) and dispersion modeling were used to provide information on source region and source sector contributions to regional haze in the northern Class I areas (see MRPO, 2008). Based on this information, the most important contributing states are Michigan, Minnesota, and Wisconsin, as well as Missouri, North Dakota, Iowa, Indiana and Illinois (see, for example, Figure 35 above). The most important contributing pollutants and source sectors are SO2 emissions from electrical generating units (EGUs) and certain non-EGUs, which lead to sulfate formation, and NOx emissions from a variety of source types (e.g., motor vehicles), which lead to nitrate formation. Ammonia emissions from livestock waste and fertilizer applications are also important, especially for nitrate formation.

A source apportionment study was performed using monitoring data from Boundary Waters and statistical analysis methods (DRI, 2005). The study shows that a large portion of $PM_{2.5}$ mass consists of secondary, regional impacts, which cannot be attributed to individual facilities or sources (e.g., secondary sulfate, secondary nitrate, and secondary organic aerosols). Industrial sources contribute about 3-4% and mobile sources about 4-7% to $PM_{2.5}$ mass.

A special study was performed in Seney to identify sources of organic carbon (Sheesley, et al, 2004). As seen in Figure 36, the highest PM_{2.5} concentrations occurred during the summer, with organic carbon being the dominant species. The higher summer organic carbon concentrations were attributed mostly to secondary organic aerosols of biogenic origin because of the lack of primary emission markers, and concentrations of know biogenic-related species (e.g., pinonic acid – see Figure 36) were also high during the summer.

Figure 36. Monthly concentrations of $PM_{2.5}$ species (top), and secondary and biogenic-related organic carbon species in Seney (bottom)

Although the Seney study showed that biomass burning was a relatively small contributor to organic carbon on an annual average basis, episodic impacts are apparent (see, for example, high organic carbon days in Figure 32). To assess further whether burning is a significant contributor to visibility impairment in the northern Class I areas, the PM_{2.5} chemical speciation data were examined for days with high organic carbon and elemental carbon concentrations, which are indicative of biomass burning impacts. Only a handful of such days were identified:

Table 5. Days with high OC and EC concentrations in northern Class I areas

Site	2000	2001	2002	2003	2004
Voyageurs			Jun 1	Aug 25	Jul 17
			Jun 28		
			Jul 19		
Boundary Waters			Jun 28	Aug 25	Jul 17
			Jul 19		
Isle Royale			Jun 1	Aug 25	
			Jun 28		
Seney			Jun 28		

Back trajectories on these days point mostly to wildfires in Canada. Elimination of these high organic carbon concentration days has a small effect in lowering the baseline visibility levels in the northern Class I areas (i.e., Minnesota Class I areas change by about 0.3 deciviews and Michigan Class I areas change by less than 0.2 deciviews). This suggests that fire activity, although significant on a few days, is on average a relatively small contributor to visibility impairment in the northern Class I areas.

In summary, these analyses show that organic carbon in the northern Class I is largely uncontrollable.

Section 3.0 Air Quality Modeling

Air quality models are relied on by federal and state regulatory agencies to support their planning efforts. Used properly, models can assist policy makers in deciding which control programs are most effective in improving air quality, and meeting specific goals and objectives. For example, models can be used to conduct "what if" analyses, which provide information for policy makers on the effectiveness of candidate control programs.

The modeling analyses were conducted in accordance with EPA's modeling guidelines (EPA, 2007a). Further details of the modeling are provided in two protocol documents: LADCO, 2007a and LADCO, 2007b.

This section reviews the development and evaluation of the modeling system used for the multipollutant analyses. Application of the modeling system (i.e., attainment demonstration for ozone and $PM_{2.5}$, and reasonable progress assessment for haze) is covered in the following sections.

3.1 Selection of Base Year

Two base years were used in the modeling analyses: 2002 and 2005. EPA's modeling guidance recommends using 2002 as the baseline inventory year, but also allows for use of an alternative baseline inventory year, especially a more recent year. Initially, LADCO conducted modeling with a 2002 base year (i.e., Base K/Round 4 modeling, which was completed in 2006). A decision was subsequently made to conduct modeling with a 2005 base year (i.e., Base M/Round 5, which was completed in 2007). As discussed in the previous section, 2002 and 2005 both had above normal ozone conducive conditions, although 2002 was more severe compared to 2005. Examination of multiple base years provides for a more complete technical assessment. Both sets of model runs are discussed in this document.

3.2 Future Years of Interest

To address the multiple attainment requirements for ozone and PM_{2.5}, and reasonable progress goals for regional haze, several future years are of interest:

- 2008 Planning year for ozone basic nonattainment areas (attainment date 2009)⁸
- 2009 Planning year for ozone moderate nonattainment areas and PM_{2.5} nonattainment areas (attainment date 2010)
- 2012 Planning year for ozone moderate nonattainment areas and PM_{2.5} nonattainment areas, with 3-year extension (attainment date 2013)
- 2018 First milestone year for regional haze planning

⁸ According to USEPA's ozone implementation rule (USEPA, 2005), emission reductions needed for attainment must be implemented by the beginning of the ozone season immediately preceding the area's attainment date. The PM2.5 implementation rule contains similar provisions – i.e., emission reductions should be in place by the beginning of the year preceding the attainment date (USEPA, 2007c). The logic for requiring emissions reductions by the year (or season) immediately preceding the attainment year follows from language in the Clean Air Act, and the ability for an area to receive up to two 1-year extensions. Therefore, emissions in the year preceding the attainment year should be at a level that is consistent with attainment. It also follows that the year preceding the attainment year should be modeled for attainment planning purposes.

Detailed emissions inventories were developed for 2009 and 2018. To support modeling for other future years, less rigorous emissions processing was conducted (e.g., 2012 emissions were estimated for several source sectors by interpolating between 2009 and 2018 emissions).

3.3 Modeling System

The air quality analyses were conducted with the CAMx model, with emissions and meteorology generated using EMS (and CONCEPT) and MM5, respectively. The selection of CAMx as the primary model is based on several factors: performance, operator considerations (e.g., ease of application and resource requirements), technical support and documentation, model extensions (e.g., 2-way nested grids, process analysis, source apportionment, and plume-ingrid), and model science. CAMx model set-up for Base M and Base K is summarized below:

Base M (2005)

- CAMx v4.50
- CB05 gas phase chemistry
- SOA chemistry updates
- AERMOD dry deposition scheme
- ISORROPIA inorganic chemistry
- SOAP organic chemistry
- RADM aqueous phase chemistry
- PPM horizontal transport

Base K (2002)

- * CAMx 4.30
- * CB-IV with updated gas-phase chemistry
- * No SOA chemistry updates
- * Wesley-based dry deposition
- ISORROPIA inorganic chemistry
- SOAP organic chemistry
- RADM aqueous phase chemistry
- PPM horizontal transport

3.4 Domain/Grid Resolution

The National RPO grid projection was used for this modeling. A subset of the RPO domain was used for the LADCO modeling. For $PM_{2.5}$ and haze, the large eastern U.S. grid at 36 km (see box on right side of Figure 36) was used. A $PM_{2.5}$ sensitivity run was also performed for this domain at 12 km. For ozone, the smaller grid at 12 km (see shaded portion of the box on the right side of Figure 37) was used for most model runs. An ozone sensitivity run was also performed with a 4km sub-grid over the Lake Michigan area and Detroit/Cleveland.

The vertical resolution in the air quality model consists of 16 layers extending up to 15 km, with higher resolution in the boundary layer.

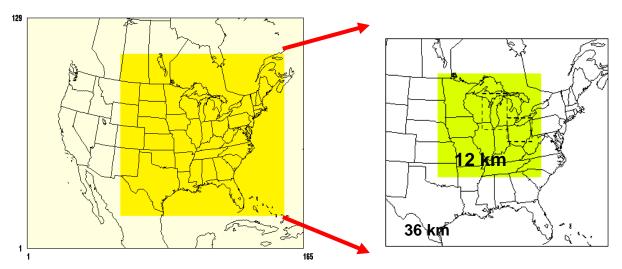


Figure 37. Modeling grids - RPO domain (left) and LADCO modeling domain (right)

3.5 Model Inputs: Meteorology

Meteorological inputs were derived using the Fifth-Generation NCAR/Penn State Meteorological Model (MM5) – version 3.6.3 for the years 2001–2003, and version 3.7 for the year 2005. The MM5 modeling domains are consistent with the National RPO grid projections (see Figure 38).

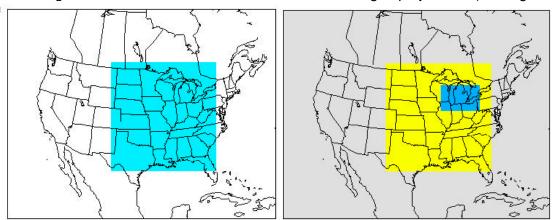


Figure 38. MM5 modeling domain for 2001-2003 (left) and 2005 (right)

The annual 2002 36 km MM5 simulation was completed by Iowa DNR. The 36/12 km 2-way nested simulation for the summers of 2001, 2002, and 2003 were conducted jointly by Illinois EPA and LADCO. The 36 km non-summer portion of the annual 2003 simulation was conducted by Wisconsin DNR. The annual 2005 36/12 km (and summer season 4 km) MM5 modeling was completed by Alpine Geophysics. Wisconsin DNR also completed 36/12 km MM5 runs for the summer season of 2005.

Model performance was assessed quantitatively with the METSTAT tool from Environ. The metrics used to quantify model performance include mean observation, mean prediction, bias, gross error, root mean square error, and index of agreement. Model performance metrics were calculated for several sub-regions of the modeling domain (Figure 39) and represent hourly spatial averages of multiple monitor locations. Additional analysis of rainfall is done on a monthly basis.

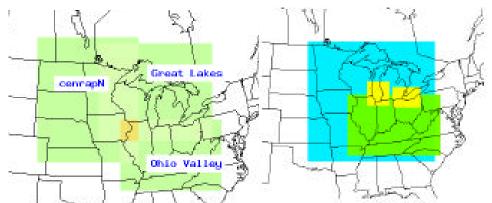


Figure 39. Sub-domains used for model performance for 2001-2003 (left) and 2005 (right)

A summary of the performance evaluation results for the meteorological modeling is provided below. Further details are provided in two summary reports (LADCO, 2005 and LADCO, 2007c).

Temperature: The biggest issue with the performance in the upper Midwest is the existence of a cool diurnal temperature bias in the winter and warm temperature bias over night during the summer (see Figure 40). These features are common to other annual MM5 simulations for the central United States and do not appear to adversely affect model performance.

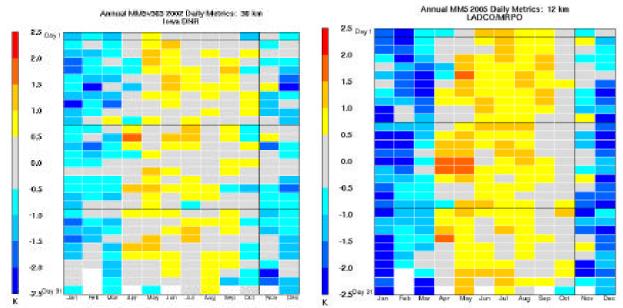


Figure 40. Daily temperature bias for 2002 (left) and 2005 (right) with hotter colors (yellow/orange/red) representing overestimates and cooler colors (blues) representing underestimates

Note: months are represented from left to right (January to December) and days are represented from top to bottom (1 to 30(31) – i.e., upper left hand corner is January 1 and lower right hand corner is December 31

Wind Fields: The wind fields are generally good. Wind speed bias is less than 0.5 m/sec and wind speed error is consistently between 1.0 and 1.5 m/sec. Wind direction error is generally within 15-30 degrees.

Mixing Ratio: The mixing ratio (a measure of humidity) is over-predicted in the late spring and summer months, and mixing ratio error is highest during this period. There is little bias and error during the cooler months when there is less moisture in the air.

Rainfall: The modeled and observed rainfall totals show good agreement spatially and in terms of magnitude in the winter, fall, and early spring months. There are, however, large overpredictions of rainfall in the late spring and summer months (see Figure 41). These overpredictions are seen spatially and in magnitude over the entire domain, particularly in the Southeast United States, and are likely due to excessive convective rainfall being predicted in MM5. This over-prediction of rainfall in MM5 does not necessarily translate into over-prediction of wet deposition in the photochemical model. CAMx does not explicitly use the convective and non-convective rainfall output by MM5, but estimates wet scavenging by hydrometeors using cloud, ice, snow, and rain water mixing ratios output by MM5. Nevertheless, this could have an effect on model performance for PM_{2.5}, as discussed in Section 3.7, and may warrant further attention.

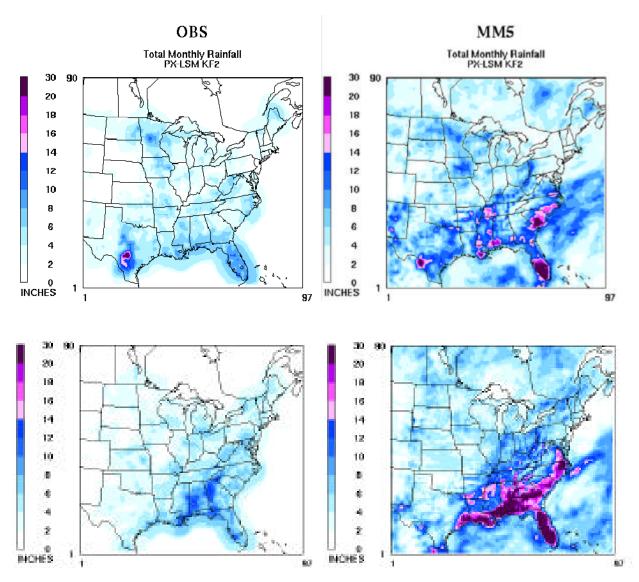


Figure 41. Comparison of observed (left column) and modeled (right column) monthly rainfall for July 2002 (top) and July 2005 (bottom)

3.6 Model Inputs: Emissions

Emission inventories were prepared for two base years: 2002 (Base K) and 2005 (Base M), and several future years: 2008, 2009, 2012, and 2018. Further details of the emission inventories are provided in two summary reports (LADCO, 2006a and LADCO, 2008a) and the following pages of the LADCO web site:

http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm http://www.ladco.org/tech/emis/r5/round5_reports.htm

For on-road, nonroad, ammonia, and biogenic sources, emissions were estimated by models. For the other sectors (point sources, area sources, and MAR [commercial marine, aircraft, and railroads]), emissions were prepared using data supplied by the LADCO States and other RPOs.

Base Year Emissions: State and source sector emission summaries for 2002 (Base K) and 2005 (Base M) are compared in Figure 42. Additional detail is provided in Tables 6a (all sectors – tons per day) and 6b (EGUs – tons per year).

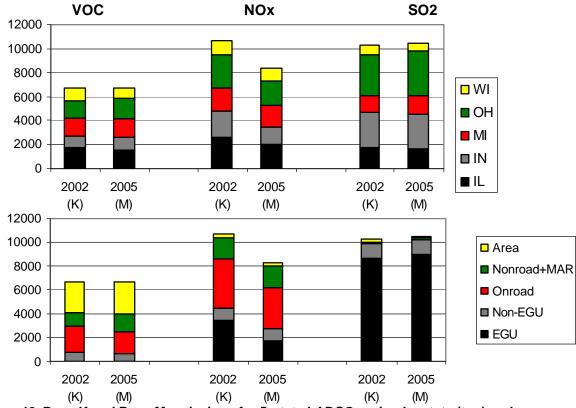


Figure 42. Base K and Base M emissions for 5-state LADCO region by state (top) and source sector (bottom), units: tons per summer weekday

A summary of the base year emissions by sector for the LADCO States is provided below.

No. 1964 1965 1966 1		VOC	Base M	BaseK	Base M	BaseK	BaseK	Base M	NOx	Base M	BaseK	Base M	BaseK	BaseK	Base M	SOX	Base M	BaseK	Base M	BaseK	BaseK	Base M	PM2.5	Base M Bas	seK Base M	BaseK	BaseK	Base M
Normal	July																											
Color	- ·	2002	2000	2000	2000	20.2	20.0	2010	2002	2000	2000	2000	2012	20.0	2010	2002	2000	2000	2000	20.2	20.0	2010	2002	2000 20	2000	20.2	20.0	20.0
N. 156 148 148 149 266 276 292 292 292 293 294 295 292 293 294 294 295 294 294 295 294 294 294 294 294 294 294 294 294 294	II	224	321	164	257	149	130	213	324	333	263	275	224	154	155	31	33	5	5	0.6	0.4	0.4		30	24	l		14
Second S	IN																		3									7
Second Property	MI																		3									11
No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.																			5									
Same From 133 154 696 584 696 584 696 584 696																		· ·	3									7
USA TOWARD																			10	_								F2
MAR L. 10 11 12 18 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10						840							151															
IL NO. 51 0 11 0 10 0 10 0 10 0 10 0 10 0 10	U.S. 10tal	8463	9815	5442	8448		5244	1860	6041	9060	6057	8120		5832	5100	505	654	117	153		104	13		5/3	750	,		4/5
IL NO. 51 0 11 0 10 0 10 0 10 0 10 0 10 0 10	1440																											
No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	MAR 																							_				
Section Property	IL				10											-				_					6			4
Secondary Seco			5		5			3																	2			2
No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		· ·	7		7			7												_					3	3		2
Some Fortion Same		8	7	8	7	8											14		12	_					4			2
US From 307 317 32° 15° 32° 346 334 456 466 467 470			4		4														6						2	2		1
Chematana L. 1979 1. 1979 1. 1989 1																												
E. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	U.S. Total	307	317	321	157	329	346	334	4968	4515	4002	1813	3964	3919	3812	620	512	509	122	509	503	290		147	57			165
E. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.																												
N	OtherArea																											
M	IL			688		700	738		62					73						_					64	ļ ,		69
Detail Column C	F			365		373	398	384	62	56				69												2		2
VI	MI	518	652	516	562	520	541	549	49	49	52	50	53	54	51	71	29	68	29	68	68	28		111	114	1		
SSMETONIAL 2550 2550 2570 2586 2310 2826 2776 2796 2500 278 031 284 280 304 271 95 273 105 276 278 100 185 185 277 278 100 287 289 289 289 289 289 289 289 289 289 289	ОН	546	604	550	506	558	593	487	50	93	59	108	60	62	108	22	6	34	15	35	35	14		19	35	5		
U.S. Toual 17876 21093 18608 08608	WI	458	315	467	290	474	506	293	32	37	34	37	34	35	37	9	17	9	13	10	10	13		11	12	2		12
Control Cont	5-State Total	2555	2637	2586	2310	2625	2776	2295	255	283	278	301	284	293	304	271	95	273	105	276	279	103		183	227	•		237
IL	U.S. Total	17876	21093	18638	18683		20512	24300	3856	4899	4100	4220		4418	5357	2075	2947	2062	2559		2189	2709		2735	2621			2570
IL																												
N	On-Road																											
MI	IL	446	341	314	268	260	197	151	890	748	578	528	474	300	201		9		4			3		13	10)		6
OH	IN	405	282	237	235	193	150	138	703	541	425	402	313	187	173		11		3			2		9	7	•		2
NI	MI	522	351	335	269	303	217	163	926	722	680	501	619	385	204		14		4			3		12	9)		3
NI	ОН	574	680	365	424	340	238	242	1035	934	609	693	512	270	274		18		4			4		16	12			4
S-Stellar Total 2186 1829 1395 1315 1213 890 762 4035 3402 2595 2446 2144 1260 990 61 17	WI	238				117				457		322		118			9		2			2		8	6	;		2
U.S. Total 14263	5-State Total																61		17			14		58	44			17
EGU																												
L																												
L	EGU																											
N 6 6 6 6 6 7 7 6 8 830 333 406 370 424 283 255 2499 2614 1267 1033 1263 1048 1036 16 73 74 74 11 12 6 11 4 11 12 4 448 393 218 242 219 247 243 1103 125 1022 667 1031 1058 725 115 25 29 29 110 12 6 11 12 13 11 12 12 13 14 11 12 12 13 14 11 12 12 13 14 12 13 14 11 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	11	9	7	8	6	8	9	7	712	305	227	275	244	231	224	1310	1158	944	958	789	810	869		13	34			77
MI 12 6 11 4 11 12 4 448 393 218 242 219 247 243 1103 1251 1022 667 1031 1058 725 15 25 29 20 OH 5 4 6 5 7 7 7 6 1139 408 330 280 322 271 285 3131 3405 1463 1326 994 701 983 228 994 880 WI 3 5 5 3 2 4 4 3 293 213 146 163 139 147 177 1000 1000 1000 1000 1000 1000 1	IN		6	6	6			6																				
OH	F		6		4																							
Wi			4		5																							
5-State Total 35 28 34 23 37 38 26 3422 1712 1327 1332 1348 1179 1184 8645 8973 5208 4444 4569 4117 4046 72 248 285 U.S. Total 214 140 195 124 197 215 138 14371 10316 7746 7274 7721 7007 6095 31839 34545 20163 16903 17629 14727 14133 6855 1131 1571 Non-EGU IL 313 221 286 218 305 350 256 366 330 334 218 338 343 235 373 423 251 335 257 249 346 16 17 19 19 18N 150 130 160 137 170 199 167 238 179 212 175 216 225 178 292 218 270 216 274 290 180 355 36 36 444 MI 123 116 115 119 122 133 140 216 240 208 242 214 229 271 162 158 166 146 171 185 163 20 21 21 225 178 189 189 189 188 84 97 87 104 120 106 98 97 91 93 92 94 81 163 156 154 152 155 156 85 0 0 0.1 0.1 0.1 5-State Total 751 635 733 648 780 898 775 1085 1021 1002 894 1020 1058 943 1230 1244 1072 1139 1067 1996 1067 98 102 1241 U.S. Total 4087 3877 4409 4700 5378 6446 6730 6129 6435 6952 5759 5630 6093 6340 6970 1251 119 155 189 IN 1045 1009 867 901 843 853 826 2134 1453 1339 1250 1248 999 819 2966 2902 1690 1294 1691 1492 1256 81 133 133 131 131 190 190 190 190 190 190 190 190 190 19			5		<u>ງ</u>																							
U.S. Total 214 140 195 124 197 215 138 14371 10316 7746 7274 7721 7007 6095 31839 34545 20163 16903 17629 14727 14133 685 1131 1571 IL 313 221 286 218 305 350 258 356 330 334 218 338 343 235 373 423 251 335 257 249 346 16 17 19 IN 150 130 160 137 170 199 167 238 179 212 175 216 225 178 292 218 270 216 274 290 180 35 35 36 MI 123 116 115 119 122 139 140 216 240 208 242 214 229 271 162 158 166 148 171 185 163 20 21 25 OH 77 84 75 87 79 90 104 177 175 157 166 160 167 178 240 289 231 288 210 216 293 27 28 333 WI 88 84 97 87 104 120 106 98 97 91 93 92 94 81 163 156 154 152 155 156 85 0 0.1 U.S. Total 4087 3877 4409 4700 5378 6446 6730 6129 6435 6952 5799 5630 6993 6340 6970 1251 119 1251 119 155 189 IN 1045 1099 867 901 843 853 826 2134 1453 1339 1250 1248 999 819 2966 2902 1690 1294 1691 1492 1256 81 133 190 WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54 47			28		23	- 1														_								
Non-EGU Non-EGU Non-E																												
IL 313 221 286 218 305 350 258 356 330 334 218 338 343 235 373 423 251 335 257 249 346 16 17 19 19 1077 170 199 167 238 179 212 175 216 225 178 292 218 270 216 274 290 180 35 36 36 44 44 18 171 181 19 122 139 140 216 240 208 242 214 229 271 162 158 166 148 171 185 163 20 21 1 25 163 163 160 177 175 177 177	5.5. Total	214	170	133	124	137	210	100	1-101 1	10010	, , , , 0	1214	, , , , ,	, 507	0000	5 1009	0-10-10	20103	10000	11023	17121	14100		555	1131			1071
IL 313 221 286 218 305 350 258 356 330 334 218 338 343 235 373 423 251 335 257 249 346 16 17 19 19 1077 170 199 167 238 179 212 175 216 225 178 292 218 270 216 274 290 180 35 36 36 44 44 18 171 181 19 122 139 140 216 240 208 242 214 229 271 162 158 166 148 171 185 163 20 21 1 25 16 25 178 240 289 21 288 210 216 293 277 28 33 248 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 33 288 210 216 293 277 28 28 210 216 293 277 28 28 210 216 293 277 28 28 210 216 293 277 28 28 210 216 293 277 28 28 210 216 293 277 28 28 210 216 293 277 28 28 210 216 293 277 28 28 210 216 293 277 28 29 218 270 216 270 270 270 270 270 270 270 270 270 270	Non-FGII														+								1					
IN 150 130 160 137 170 199 167 238 179 212 175 216 225 178 292 218 270 216 274 290 180 35 36 44 44 MI 123 116 115 119 122 139 140 216 240 208 242 214 229 271 162 158 166 148 171 185 163 20 21 25 25 25 25 25 25 25 25 25 25 25 25 25	II	212	224	206	210	20F	250	250	256	220	224	210	220	242	225	272	422	254	225	257	240	346		16	47			10
MI 123 116 115 119 122 139 140 216 240 208 242 214 229 271 162 158 166 148 171 185 163 20 21 25 CH 25 CH 27 CH 28 CH 27 CH 28	IN																											13
OH 77 84 75 87 79 90 104 177 175 157 166 160 167 178 240 289 231 288 210 216 293 27 28 33 WI 88 84 97 87 104 120 106 98 97 91 93 92 94 81 163 156 154 152 155 156 85 0 0 0.1 0.1 5-State Total 751 635 733 648 780 898 775 1085 1021 1002 894 1020 1058 943 1230 1244 1072 1139 1067 1096 1067 98 102 121 U.S. Total 4087 3877 4409 4700 5378 6446 6730 6129 6435 6952 5759 5630 6093 6340 6970 1444 1777 IL 1681 1576 1470 1353 1432 1434 1217 2621 2010 1671 1572 1545 1287 1029 1725 1656 1212 1337 1059 1072 1251 119 155 189 IN 1045 1009 867 901 843 853 826 2134 1453 1339 1250 1248 989 819 2966 2902 1690 1294 1691 1492 1256 81 133 133 130 131 MI 1530 1546 1291 1311 1239 1139 1134 1958 1730 1429 1314 1349 1118 946 1356 1495 1260 865 1271 1312 927 183 190 190 OH 1432 1735 1165 1323 1137 1062 1082 2831 2048 1478 1619 1342 1001 1074 3416 3761 1732 1650 1240 953 1304 121 195 166 WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 355 54																												25
WI 88 84 97 87 104 120 106 98 97 91 93 92 94 81 163 156 154 152 155 156 86 0 0 0.1 0.1 0.1 5-State Total 751 635 733 648 780 898 775 1085 1021 1002 894 1020 1058 943 1230 1244 1072 1139 1067 1096 1067 98 102 121 U.S. Total 4087 3877 4409 4700 5378 6446 6730 6129 6435 6952 5759 5630 6093 6340 6970 1444 1444 1777 1144 1777 1144 1217 2621 2010 1671 1572 1545 1287 1029 1725 1656 1212 1337 1059 1072 1251 119 155 189 11N 1045 1009 867 901 843 853 826 2134 1453 1339 1250 1248 989 819 2966 2902 1690 1294 1691 1492 1256 81 133 133 131 101 1239 1134 1958 1730 1429 1314 1349 1118 946 1356 1495 1260 866 1271 1312 927 183 190 190 190 190 101 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54																												
5-State Total 751 635 733 648 780 898 775 1085 1021 1002 894 1020 1058 943 1230 1244 1072 1139 1067 1096 1067 98 102 121 121 125 125 125 125 126 121 125 125 125 125 125 126 121 125 125 125 125 125 125 125 125 125																												
U.S. Total 4087 3877 4409 4700 5378 6446 6730 6129 6435 6952 5759 5630 6093 6340 6970 1444 1777 IL 1681 1576 1470 1353 1432 1434 1217 2621 2010 1671 1572 1545 1287 1029 1725 1656 1212 1337 1059 1072 1251 119 155 189 IN 1045 1009 867 901 843 853 826 2134 1453 1339 1250 1248 989 819 2966 2902 1690 1294 1691 1492 1256 81 133 131 MI 1530 1546 1291 1311 1239 1139 1134 1958 1730 1429 1314 1349 1118 946 1356 1495 1260 865 1271 1312 927 183 190 OH 1432 1735 1165 1323 1137 1062 1082 2831 2048 1478 1619 1342 1001 1074 3416 3761 1732 1650 1240 953 1304 121 195 166 WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54																												
IL 1681 1576 1470 1353 1432 1434 1217 2621 2010 1671 1572 1545 1287 1029 1725 1656 1212 1337 1059 1072 1251 119 155 189 IN 1045 1009 867 901 843 853 826 2134 1453 1339 1250 1248 989 819 2966 2902 1690 1294 1691 1492 1256 81 133 133 131 MI 1530 1546 1291 1311 1239 1139 1134 1958 1730 1429 1314 1349 1118 946 1356 1495 1260 865 1271 1312 927 183 190 190 OH 1432 1735 1165 1323 1137 1062 1082 2831 2048 1478 1619 1342 1001 1074 3416 3761 1732 1650 1240 953 1304 121 195 166 WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54 47					648							894			943							1067		98				
IN 1045 1009 867 901 843 853 826 2134 1453 1339 1250 1248 989 819 2966 2902 1690 1294 1691 1492 1256 81 133 131 MI 1530 1546 1291 1311 1239 1139 1134 1958 1730 1429 1314 1349 1118 946 1356 1495 1260 865 1271 1312 927 183 190 190 OH 1432 1735 1165 1323 1137 1062 1082 2831 2048 1478 1619 1342 1001 1074 3416 3761 1732 1650 1240 953 1304 121 195 166 WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54 47	U.S. Total	4087	3877	4409		4/00	5378		6446	6/30	ь129		6435	6952		5/59	5630	6093	-	6340	b9/0				1444			1///
IN 1045 1009 867 901 843 853 826 2134 1453 1339 1250 1248 989 819 2966 2902 1690 1294 1691 1492 1256 81 133 131 MI 1530 1546 1291 1311 1239 1139 1134 1958 1730 1429 1314 1349 1118 946 1356 1495 1260 865 1271 1312 927 183 190 190 OH 1432 1735 1165 1323 1137 1062 1082 2831 2048 1478 1619 1342 1001 1074 3416 3761 1732 1650 1240 953 1304 121 195 166 WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54 47		400:		4	40=0	4 105	4 ***	40:-	600	0015	40=	4	4= -=	400-	4000	4=00	40=-	40		40=5	40=0	4071		4.00				
MI 1530 1546 1291 1311 1239 1139 1134 1958 1730 1429 1314 1349 1118 946 1356 1495 1260 866 1271 1312 927 183 190 190 OH 1432 1735 1165 1323 1137 1062 1082 2831 2048 1478 1619 1342 1001 1074 3416 3761 1732 1650 1240 953 1304 121 195 166 WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54 47	IL 																											
OH 1432 1735 1165 1323 1137 1062 1082 2831 2048 1478 1619 1342 1001 1074 3416 3761 1732 1650 1240 953 1304 121 195 166 WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54 47																												
WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54 47																												
	5-State Total	6693	6687	5702	5593	5529	5350	4889	10672	8260	6664	6555	6131	4915	4419	10263	10564	6581	5781	5928	5504	5280		539	727	1		723

		Table 6b. EGU Emi	ssions for Midwe	st States (2018)		
	Heat Input (MMBTU/year)	Scenario	SO2 (tons/year)	SO2 (Ib/MMBTU)	NOx (tons/year)	NOx (lb/MMBTU)
IL	980,197,198	2001 - 2003 (average)	362,417	0.74	173,296	0.35
	300,137,130	IPM 2.1.9	241,000	0.14	73,000	0.00
	1,310,188,544	IPM3.0 (base)	277,337	0.423	70,378	0.107
	.,0.0,100,0.1	IPM3.0 - will do	140,296	0.214	62,990	0.096
		IPM3.0 - may do	140,296	0.214	62,990	0.096
IN	1,266,957,401	2001 - 2003 (average)	793,067	1.25	285,848	0.45
		IPM 2.1.9	377,000		95,000	
	1,509,616,931	IPM3.0 (base)	361,835	0.479	90,913	0.120
		IPM3.0 - will do	417,000	0.552	94,000	0.125
		IPM3.0 - may do	417,000	0.552	94,000	0.125
МІ	756,148,700	2001 - 2003 (average)	346,959	0.92	132,995	0.35
		IPM 2.1.9	399,000		100,000	
	1,009,140,047	IPM3.0 (base)	244,151	0.484	79,962	0.158
		IPM3.0 - will do	244,151	0.484	79,962	0.158
		IPM3.0 - may do	244,151	0.484	79,962	0.158
ОН	1,306,296,589	2001 - 2003 (average)	1,144,484	1.75	353,255	0.54
		IPM 2.1.9	216,000		84,000	
	1,628,081,545	IPM3.0 (base)	316,883	0.389	96,103	0.118
		IPM3.0 - will do	348,000		101,000	
		IPM3.0 - may do	348,000		101,000	
WI	495,475,007	2001 - 2003 (average)	191,137	0.77	90,703	0.36
		IPM 2.1.9	155,000		46,000	
	675,863,447	IPM3.0 (base)	127,930	0.379	56,526	0.167
		IPM3.0 - will do	150,340	0.445	55,019	0.163
		IPM3.0 - may do	62,439	0.185	46,154	0.137
IA	390,791,671	2001 - 2003 (average)	131,080	0.67	77,935	0.40
	504.004.044	IPM 2.1.9	147,000	0.404	51,000	0.004
	534,824,314	IPM3.0 (base) IPM3.0 - will do	115,938 115.938	0.434	59,994	0.224
		IPM3.0 - may do	100,762	0.434 0.377	59,994 58,748	0.224 0.220
MN	401,344,495	2001 - 2003 (average)	101,605	0.50	85,955	0.42
	401,044,400	IPM 2.1.9	86,000	0.00	42,000	0.42
	447,645,758	IPM3.0 (base)	61,739	0.276	41,550	0.186
	117,616,766	IPM3.0 - will do	54,315	0.243	49,488	0.221
		IPM3.0 - may do	51,290	0.229	39,085	0.175
МО	759,902,542	2001 - 2003 (average)	241,375	0.63	143,116	0.37
	,,	IPM 2.1.9	281,000		78,000	
	893,454,905	IPM3.0 (base)	243,684	0.545	72,950	0.163
	, , , , , ,	IPM3.0 - will do	237,600	0.532	72,950	0.163
		IPM3.0 - may do	237,600	0.532	72,950	0.163
ND	339,952,821	2001 - 2003 (average)	145,096	0.85	76,788	0.45
		IPM 2.1.9	109,000		72,000	
	342,685,501	IPM3.0 (base)	41,149	0.240	44,164	0.258
		IPM3.0 - will do	56,175	0.328	58,850	0.343
		IPM3.0 - may do	56,175	0.328	58,850	0.343
SD	39,768,357	2001 - 2003 (average)	12,545	0.63	15,852	0.80
		IPM 2.1.9	12,000		15,000	
	44,856,223	IPM3.0 (base)	4,464	0.199	2,548	0.114
		IPM3.0 - will do	4,464	0.199	2,548	0.114
		IPM3.0 - may do	4,464	0.199	2,548	0.114

On-road Sources: For 2002, EMS was run by LADCO using VMT and MOBILE6 inputs supplied by the LADCO States. EMS was run to generate 36 days (weekday, Saturday, Sunday for each month) at 36 km, and 9 days (weekday, Saturday, Sunday for June – August) at 12 km. For 2005, CONCEPT was run by a contractor (Environ) using transportation data (e.g., VMT and vehicle speeds) supplied by the state and local planning agencies in the LADCO States and Minnesota for 24 networks. These data were first processed with T3 (Travel Demand Modeling [TDM] Transformation Tool) to provide input files for CONCEPT to calculate link-specific, hourly emission estimates (Environ, 2008). CONCEPT was run with meteorological data for a July and January weekday, Saturday, and Sunday (July 15 – 17 and January 16 – 18). A spatial plot of emissions is provided in Figure 43.

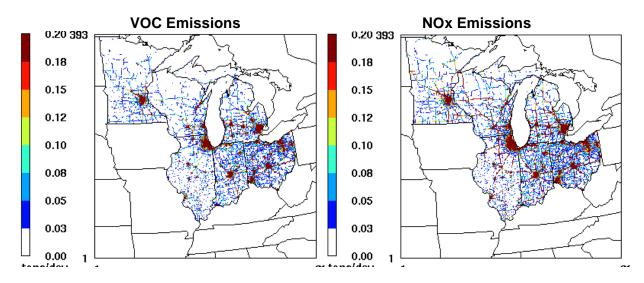


Figure 43. Motor vehicle emissions for VOC (left) and NOx (right) for a July weekday (2005)

Off-road Sources: For 2002 and 2005, NMIM and NMIM2005, respectively, were run by Wisconsin DNR. Additional off-road sectors (i.e., commercial marine, aircraft, and railroads [MAR]) were handled separately. Local data for agricultural equipment, construction equipment, commercial marine, recreational marine, and railroads were prepared by contractors (Environ, 2004, and E.H. Pechan, 2004). For Base M, updated local data for railroads and commercial marine were prepared by a contractor (Environ, 2007b, 2007c). Table 7 compares the Base M 2005 and Base K 2002 emissions. Compared to 2002, the new 2005 emissions reflect substantially lower commercial marine emissions and lower locomotive NOx emissions.

Table 7. Locomotive and commercial marine emissions for the five LADCO States (2002 v. 2005)

	Railroad	ls (TPY)	Commercial Marine (TPY)				
	2002	2005	2002	2005			
VOC	7,890	7,625	1,562	828			
СО	20,121	20,017	8,823	6,727			
NOx	182,226	145,132	64,441	42,336			
PM	5,049	4,845	3,113	1,413			
SO2	12,274	12,173	25,929	8,637			
NH3	86	85					

Area Sources: For 2002 and 2005, EMS was run by LADCO using data supplied by the LADCO States to produce weekday, Saturday, and Sunday emissions for each month. For 2005, special attention was given to two source categories: industrial adhesive and sealant solvents (which were dropped from the inventory to avoid double-counting) and outdoor wood boilers (which were added to the inventory).

Point Sources: For 2002 and 2005, EMS was run by LADCO using data supplied by the LADCO States to produce weekday, Saturday, and Sunday emissions for each month. For EGUs, the annual and summer season emissions were temporalized for modeling purposes using profiles prepared by Scott Edick (Michigan DEQ) based on CEM data.

Biogenics: For Base M, a contractor (Alpine) provided an updated version of the CONCEPT/MEGAN biogenics model. Compared to the previous (EMS/BIOME) emissions, there is more regional isoprene using MEGAN compared to the BIOME estimates used for Base K (see Figure 44). Also, with the secondary organic aerosol updates to the CAMx air quality model, Base M includes emissions for monoterpenes and sesquiterpenes, which are precursors of secondary $PM_{2.5}$ organic carbon mass.

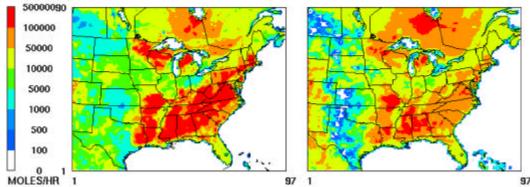


Figure 44. Isoprene emissions for Base M (left) v. Base K (right)

Ammonia: For Base M, the CMU-based 2002 (Base K) ammonia emissions were projected to 2005 using growth factors from the Round 4 emissions modeling. These emissions were then adjusted by applying temporal factors by month based on the process-based ammonia emissions model (Zhang, et al, 2005, and Mansell, et al, 2005). A plot of average daily emissions by state and month is provided in Figure 45. A spatial plot of emissions is provided in Figure 46, which shows high emissions densities in the central U.S.

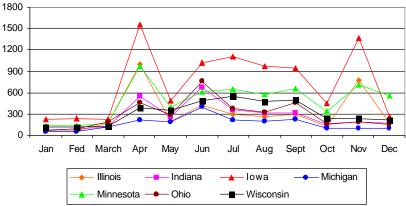


Figure 45. Average daily ammonia emissions for Midwest States by month (2005) - (units: average daily emissions – tons per day)

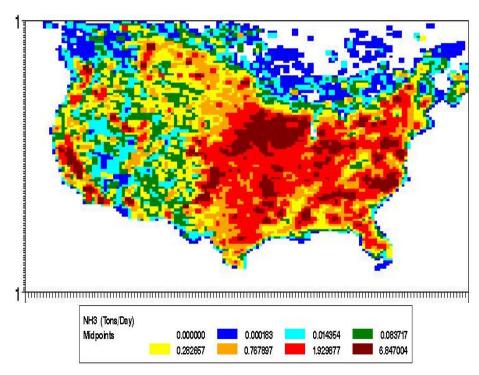


Figure 46. Ammonia emissions for a July weekday (2005) - 12 km modeling domain

Canadian Emissions: For Base M, Scott Edick (Michigan DEQ) processed the 2005 Canadian National Pollutant Release Inventory, Version 1.0 (NPRI). Specifically, a subset of the NPRI data (emissions and stack parameters) relevant to the air quality modeling were reformatted. The resulting emissions represent a significant improvement in the base year emissions.

A spatial plot of point source SO2 and NOx emissions is provided in Figure 47. Additional plots and emission reports are available on the LADCO website (http://www.ladco.org/tech/emis/basem/canada/index.htm).

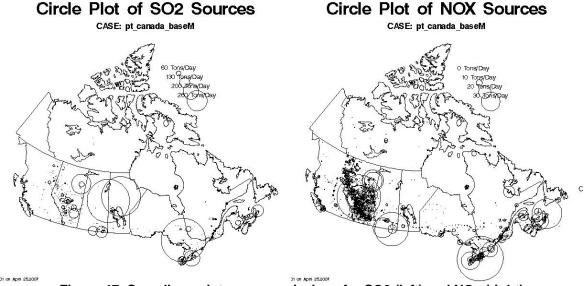


Figure 47. Canadian point source emissions for SO2 (left) and NOx (right)

Fires: For Base K, a contractor (EC/R, 2004) developed a 2001, 2002, and 2003 fire emissions inventory for eight Midwest States (five LADCO states plus Iowa, Minnesota, and Missouri), including emissions from wild fires, prescribed fires, and agricultural burns. Projected emissions were also developed for 2010 and 2018 assuming "no smoke management" and "optimal smoke management" scenarios. An early model sensitivity run showed very little difference in modeled $PM_{2.5}$ concentrations. Consequently, the fire emissions were not included in subsequent modeling runs (i.e., they were not in the Base K or Base M modeling inventories).

Future Year Emissions: Complete emission inventories were developed for several future years: Base K - 2009, 2012, and 2018, and Base M - 2009 and 2018. In addition, 2008 (Base K and Base M) and 2012 (Base M) proxy inventories were estimated based on the 2009 and 2018 data. (Note, the EGU emissions for the Base M 2012 inventory were based on EPA's IPM3.0 modeling.)

Source sector emission summaries for the base years and future years are shown in Figure 48. Additional detail is provided in Tables 6a and 6b.

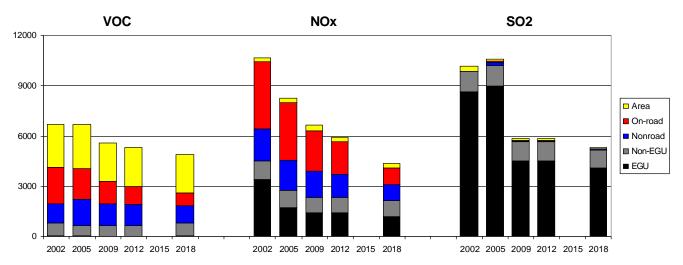


Figure 48. Base year and future year emissions for 5-State LADCO Region (TPD, July weekday)

For on-road, and nonroad, the future year emissions were estimated by models (i.e., EMS/CONCEPT and NMIM, respectively). One adjustment was made to the 2009 and 2018 motor vehicle emission files prepared by Environ with CONCEPT. To reflect newer transportation modeling conducted by CATS for the Chicago area, emissions were increased by 9% in 2009 and 2018. The 2005 base year and adjusted 2009 and 2018 motor vehicle emissions are provided in Table 8.

Table 8. Motor Vehicle Emissions Produced by CONCEPT Modeling (July weekday – tons per day)

Year	State	Sum of CO	Sum of TOG	Sum of NOx	Sum of PM2.5	Sum of SO2	Sum of NH3	Sum of VMT
2005	IL	3,684.3	341.5	748.2	12.9	9.6	35.9	344,087,819.6
	IN	3,384.9	282.0	541.1	8.9	11.1	25.7	245,537,231.9
	MI	4,210.3	351.9	722.0	12.4	13.9	35.3	340,834,025.9
	MN	2,569.1	218.7	380.5	6.3	7.6	17.7	170,024,599.7
	ОН	6,113.4	679.8	933.6	16.2	18.8	36.5	360,521,068.6
	WI	2,206.0	175.1	457.5	7.8	9.2	19.7	189,123,964.3
Total		22,168.0	2,049.0	3,782.9	64.5	70.2	170.8	1,650,128,709.9
2009	IL	2,824.4	268.0	527.8	10.1	4.2	38.9	372,132,591.1
2009		-						
	IN	2,839.5	234.9	401.9	6.7	2.8	26.1	249,817,026.3
	MI	3,172.0	269.2	500.9	9.2	4.0	37.1	356,347,010.5
	MN	2,256.8	206.3	307.5	5.1	2.3	21.5	204,443,017.8
	ОН	4,619.2	423.7	693.5	11.8	4.7	39.5	387,428,127.2
	WI	1,673.4	119.4	322.1	5.7	2.3	20.6	197,729,964.9
Total		17,385.3	1,521.5	2,753.6	48.7	20.3	183.6	1,767,897,737.8
2018	IL	2,084.7	151.5	200.7	6.3	3.7	43.1	413,887,887.3
2010	IN	2,217.3	138.4	173.0	4.4	2.6	30.2	288,042,232.1
	MI	2,434.3	163.5	204.1	5.9	3.6	40.5	388,128,431.8
	MN	1,799.6	123.1	137.1	3.6	2.2	24.9	237,022,213.7
	OH	3,361.5	242.5	274.1	6.8	4.0	43.1	421,694,093.4
	WI	1,255.5	68.4	138.5	3.9	2.0	22.2	218,277,167.5
Total	**1	13,152.9	887.5	1,127.5	30.8	18.1	203.9	1,967,052,025.8

For EGUs, future year emissions were based on IPM2.1.9 modeling completed by the RPOs in July 2005 Base K and IPM3.0 completed by EPA in February 2007 for Base M. Several CAIR scenarios were assumed:

Base K

1a: IPM2.1.9, with full trading and banking

1b: IPM2.1.9, with restricted trading (compliance with state-specific emission budgets) and full trading

1d: IPM2.1.9, with restricted trading (compliance with state-specific emission budgets)

Base M

5a: EPA's IPM3.0 was assumed as the future year base for EGUs.

5b: EPA's IPM3.0, with several "will do" adjustments identified by the States. These adjustments should reflect a legally binding commitment (e.g., signed contract, consent decree, or operating permit). 5c: EPA's IPM3.0, with several "may do" adjustments identified by the States. These adjustments reflect less rigorous criteria, but should still be some type of public reality (e.g., BART determination or press announcement).

For other sectors (area, MAR, and non-EGU point sources), the future year emissions for the LADCO States were derived by applying growth and control factors to the base year inventory. These factors were developed by a contractor (E.H. Pechan, 2005 and E.H. Pechan, 2007). For the non-LADCO States, future year emission files were based on data from other RPOs.

Growth factors were based initially on EGAS (version 5.0), and were subsequently modified (for select, priority categories) by examining emissions activity data. Due to a lack of information on future year conditions, the biogenic VOC and NOx emissions, and all Canadian emissions were assumed to remain the constant between the base year and future years.

A "base" control scenario was prepared for each future year based on the following "on the books" controls:

On-Highway Mobile Sources

- Federal Motor Vehicle Emission Control Program, low-sulfur gasoline and ultra-low sulfur diesel fuel
- Inspection maintenance programs, including IL's vehicle emissions tests (NE IL), IN's vehicle emissions testing program (NW IN), OH's E-check program (NE OH), and WI's vehicle inspection program (SE WI) note: a special emissions modeling run was done for the Cincinnati/Dayton area to reflect the removal of the state's E-check program and inclusion of low RVP gasoline
- Reformulated gasoline, including in Chicago-Gary,-Lake County, IL,IN; and Milwaukee, Racine, WI

Off-Highway Mobile Sources

- Federal control programs incorporated into NONROAD model (e.g., nonroad diesel rule), plus the evaporative Large Spark Ignition and Recreational Vehicle standards
- Heavy-duty diesel (2007) engine standard/Low sulfur fuel
- Federal railroad/locomotive standards
- Federal commercial marine vessel engine standards

Area Sources (Base M only)

- Consumer solvents
- AIM coatings
- Aerosol coatings
- Portable fuel containers

Power Plants

- Title IV (Phases I and II)
- NOx SIP Call
- Clean Air Interstate Rule

Other Point Sources

- VOC 2-, 4-, 7-, and 10-year MACT standards
- Combustion turbine MACT

Other controls included in the modeling include: consent decrees (refineries, ethanol plants, and ALCOA)⁹, NOx RACT in Illinois and Ohio¹⁰, and BART for a few non-EGU sources in Indiana and Wisconsin.

For Base K, several additional control scenarios were considered:

Scenario 2 – "base" controls plus additional controls recommended in LADCO White Papers for stationary and mobile sources

Scenario 3 – Scenario 2 plus additional White Papers for stationary and mobile sources

Scenario 4 – "base" controls plus additional candidate control measures under discussion by State Commissioners

Scenario 5 – "base" controls plus additional candidate control measures identified by the LADCO Project Team

3.7 Basecase Modeling Results

The purpose of the basecase modeling is to evaluate model performance (i.e., assess the model's ability to reproduce the observed concentrations). The model performance evaluation focused on the magnitude, spatial pattern, and temporal of modeled and measured concentrations. This exercise was intended to assess whether, and to what degree, confidence in the model is warranted (and to assess whether model improvements are necessary).

Model performance was assessed by comparing modeled and monitored concentrations. Graphical (e.g., side-by-side spatial plots, time series plots, and scatter plots) and statistical analyses were conducted. No rigid acceptance/rejection criteria were used for this study. Instead, the statistical guidelines recommended by EPA and other modeling studies (e.g., modeling by the other RPOs) were used to assess the reasonableness of the results. The model performance results presented here describe how well the model replicates observed ozone and $PM_{2.5}$ concentrations after a series of iterative improvements to model inputs.

Ozone: Spatial plots are provided for high ozone periods in June 2002 and June 2005 (see Figures 49a and 49b). The plots show that the model is doing a reasonable job of reproducing the magnitude, day-to-day variation, and spatial pattern of ozone concentrations. There is a tendency, however, to underestimate the magnitude of regional ozone levels. This is more apparent with the 2002 modeling; the regional concentrations in the 2005 modeling agree better with observations due to model and inventory improvements.

⁹ E.H. Pechan's original control file included control factors for three sources in Wayne County, MI. These control factors were not applied in the regional-scale modeling to avoid double-counting with the State's local-scale analysis for PM2.5

¹⁰ NOx RACT in Wisconsin is included in the 2005 basecase (and EGU "will do" scenario). NOx RACT in Indiana was not included in the modeling inventory.

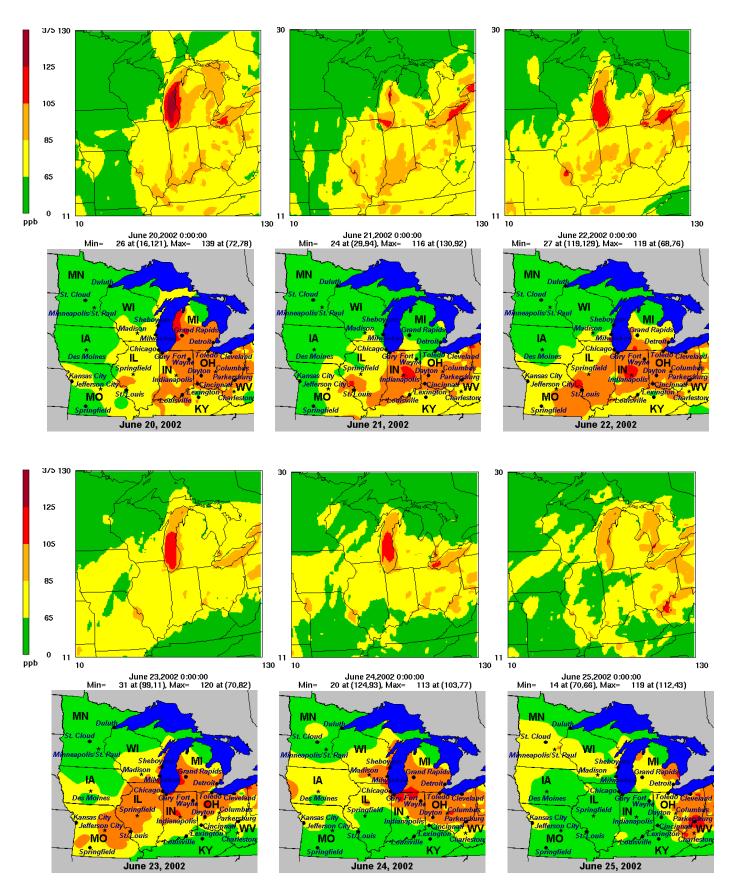


Figure 49a. Modeled (top) v. monitored (bottom) 8-hour ozone concentrations: June 20 - 25, 2002

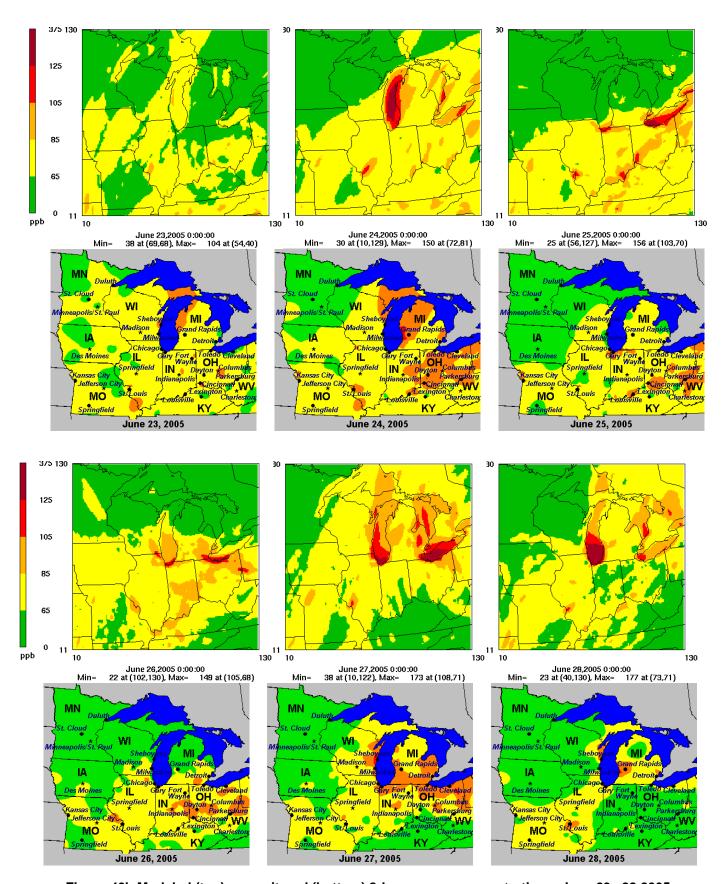


Figure 49b Modeled (top) v. monitored (bottom) 8-hour ozone concentrations: June 23-28 2005

Standard model performance statistics were generated for the entire 12 km domain, and by day and by monitoring site. The domain-wide mean normalized bias for the 2005 base year is similar to that for the 2002 base year and is generally within 30% (see Figure 50).

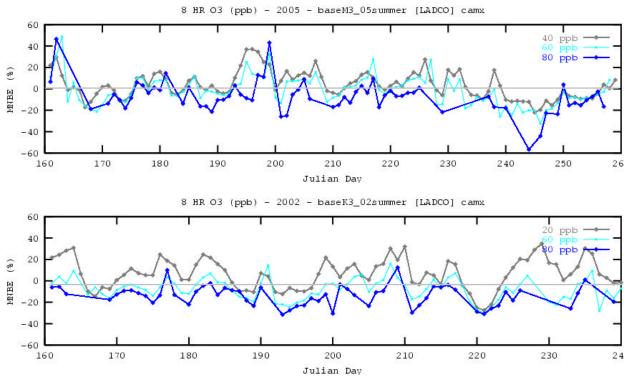


Figure 50. Mean bias for summer 2005 (Base M) and summer 2002 (Base K)

Station-average metrics (over the entire summer) are shown in Figure 51. The bias results further demonstrate the model's tendency to underestimate absolute ozone concentrations.

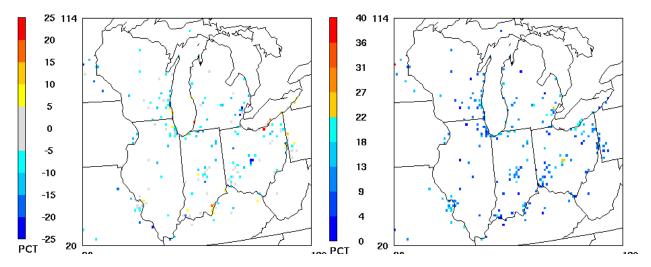


Figure 51. Mean bias (left) and gross error (right) for summer 2005

A limited 4 km ozone analysis was performed by LADCO to address the effect of grid spacing. For this modeling, 4 km grids were placed over Lake Michigan and the Detroit-Cleveland area (see Figure 52). Model inputs included 4 km emissions developed by LADCO (consistent with Base K/Round 4) and the 4 km meteorology developed by Alpine Geophysics.

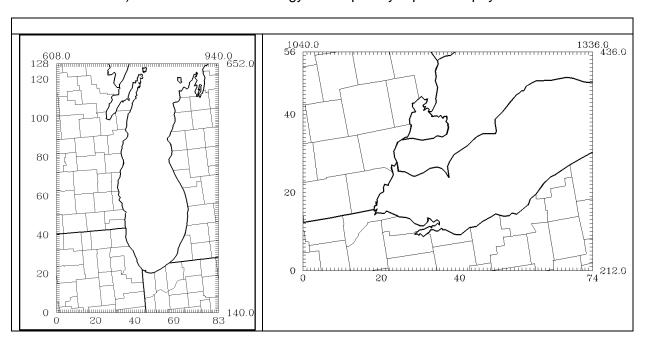


Figure 52. 4 km grids for Lake Michigan region and Detroit-Cleveland region

Hourly time series plots were prepared for several monitors (see Figure 53). The results are similar at 12 km and 4 km, with some site-by-site and day-by-day differences.

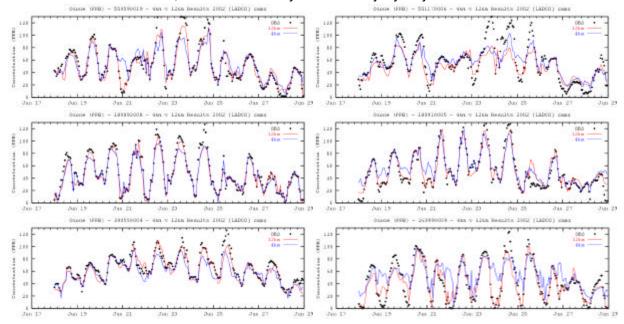


Figure 53. Ozone time series plots for 12 km and 4 km modeling (June 17-29, 2002)

An additional diagnostic analysis was performed to assess the response of the modeling system to changes in emissions (Baker and Kenski, 2007). Specifically, the 2002-to-2005 change in observed ozone concentrations was compared to the change in modeled ozone concentrations based on the 95th percentile(and above) concentration values for each monitor. This analysis was also done with the inclusion of model performance criteria which eliminated poorly performing days (i.e., error > 35%). The results show good agreement in the modeled and monitored ozone concentration changes (e.g., ozone improves by about 9-10 ppb between 2002 and 2005 according to the model and the measurements) – see Figure 54. This provides further support for using the model to develop ozone control strategies.

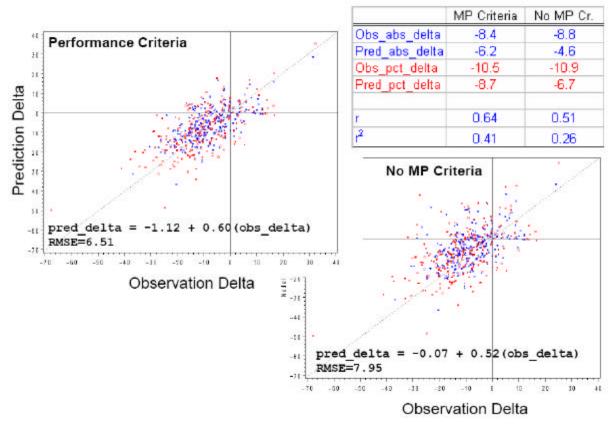


Figure 54. Comparison of change in predicted and observed ozone concentrations (2002 v. 2005)

*PM*_{2.5}: Time series plots of the monthly average mean bias and annual fractional bias for Base M and Base K are shown in Figure 55. As can be seen, Base M model performance for most species is fair (i.e., close to "no bias" throughout most of the year), with two main exceptions. First, the Base M and Base K results for organic carbon are poor, suggesting the need for more work on primary organic carbon emissions. Second, the Base M results for sulfate, while acceptable (i.e., bias values are within 35%), are not as good as the Base K results (e.g., noticeable underprediction during the summer months).

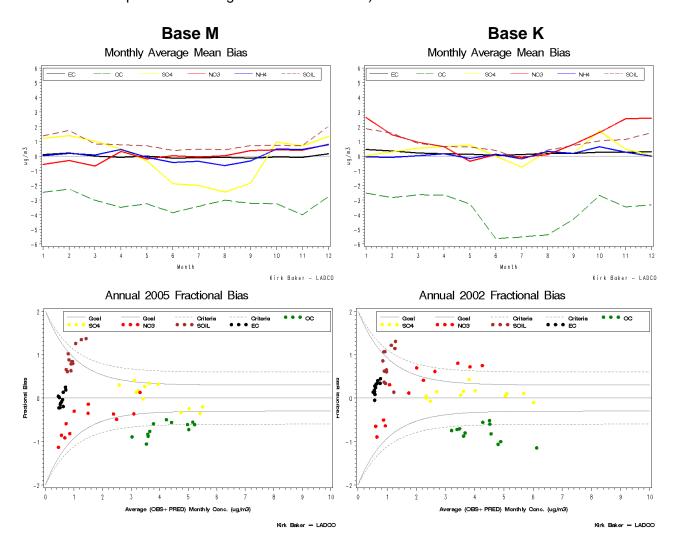


Figure 55. $PM_{2.5}$ Model performance - monthly average mean bias and annual fractional bias for Base M (left column) and Base K (right column)

Two analyses were undertaken to understand sulfate model performance for 2005:

- Assess Meteorological Influences: The MM5 model performance evaluation showed that
 rainfall is over-predicted by MM5 over most of the domain during the summer months
 (LADCO, 2007c). Because CAMx does not explicitly use the rainfall output by MM5, this
 may or may not result in over-prediction sulfate wet deposition (and under-prediction of
 sulfate concentrations). A sensitivity run was performed with no wet deposition for July,
 August, and September. The resulting model performance (see green line in Figure 56)
 showed a noticeable difference from the basecase (i.e., higher sulfate concentrations),
 and suggests that further evaluation of MM5 precipitation fields may be warranted.
- Assess Emissions Influences: The major contributor to sulfate concentrations in the region is SO2 emitted from EGUs. The basecase modeling inventory for EGUs is based on annual emissions, which were allocated to a typical weekday, Saturday, and Sunday by month using CEM-based temporal profiles. A sensitivity run was performed using day-specific emissions. The resulting model performance (see purple line in Figure 56) showed little difference from the basecase.

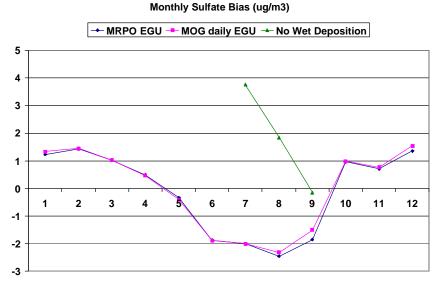


Figure 56. Monthly sulfate bias for Base M (MRPO EGU) v. two sensitivity analyses (Note: positive values indicate over-prediction, negative values indicate under-prediction)

To assess the effect of the wet deposition issue on future year modeled values, another sensitivity run was conducted with no wet deposition in Quarters 2-3 for the base year (2005) and 2018. The resulting future year values were only slightly different from the current base strategy run. In general, the future year values (without wet deposition) were a little higher (+0.15 ug/m³ or less) in the Ohio Valley and a little lower (-.10 ug/m³ of less) in the Great Lakes region. This sensitivity run provides a bound for sulfate wet deposition issue in terms of the attainment test, given that having no wet deposition is unrealistic. The results suggest that even with an improved wet deposition treatment, the Base M strategy results are not expected to change very much.

Time series plots of daily sulfate, nitrate, elemental carbon, and organic carbon concentrations for three Midwestern locations are presented in Figures 57 (2002) and 58 (2005). These results are consistent with the model performance statistics (i.e., good agreement for sulfates and nitrates and poor agreement [large underprediction] for organic carbon).

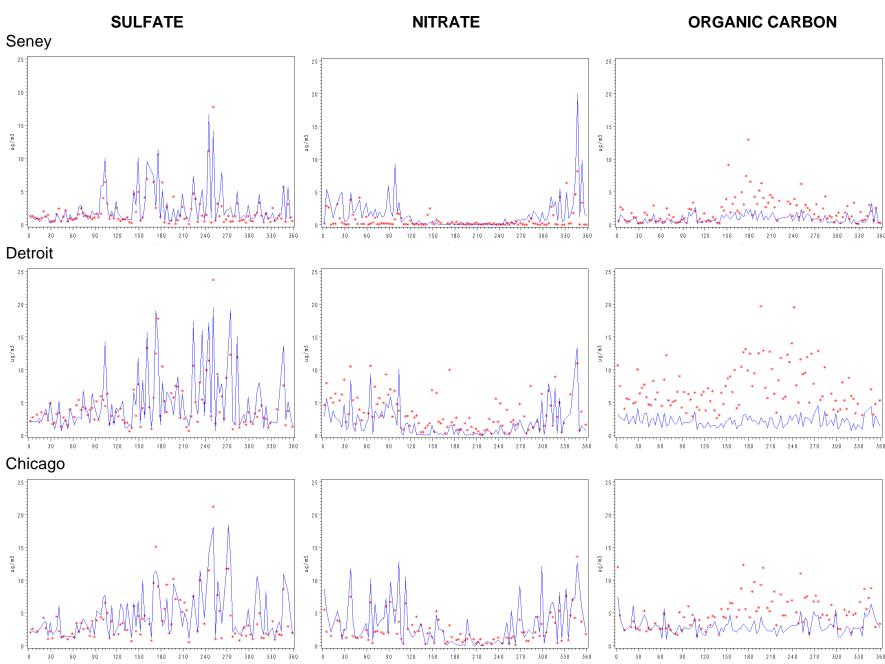


Figure 57. Time series of sulfate, nitrate, and organic carbon at three Midwest sites for 2005

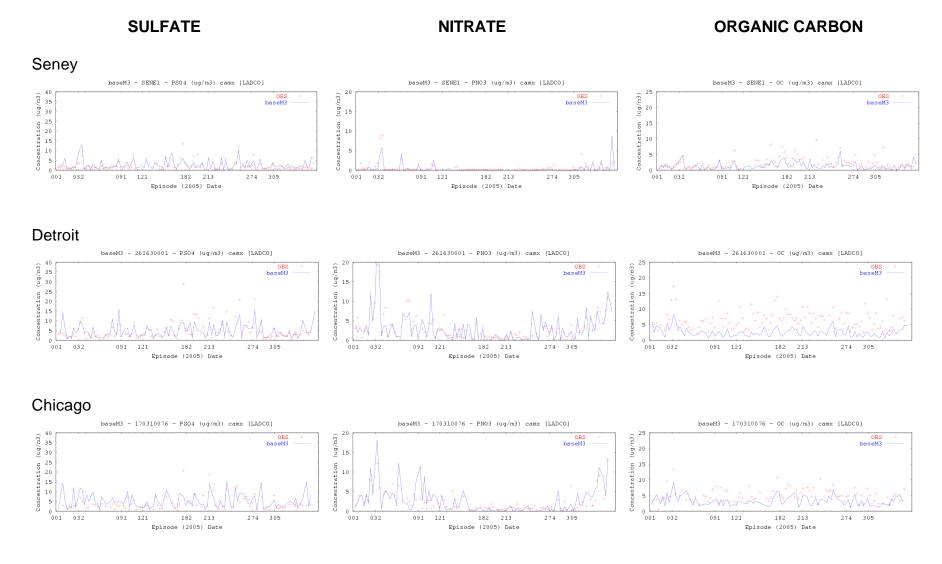


Figure 58. Time series of sulfate, nitrate, and organic carbon at three Midwest sites for 2005

In summary, model performance for ozone and PM_{2.5} is generally acceptable and can be characterized as follows:

Ozone

- Good agreement between modeled and monitored concentration for higher concentration levels (> 60 ppb) – i.e., bias within 30%
- Regional modeled concentrations appear to be underestimated in the 2002 base year, but show better agreement (with monitored data) in the 2005 base year due to model and inventory improvements.
- Day-to-day and hour-to-hour variation in and spatial patterns of modeled concentrations are consistent with monitored data
- Model accurately simulates the change in monitored ozone concentrations due to reductions in precursor emissions.

$PM_{2.5}$

- Good agreement in the magnitude of fine particle mass, but some species are overestimated and some are underestimated (during periods of the year when it is important)
 - Sulfates: good agreement in the 2002 base year, but underestimated in the summer in the 2005 base year due probably to meteorological factors
 - Nitrates: slightly overestimated in the winter in the 2002 base year, but good agreement in the 2005 base year as a result of model and inventory improvements
 - Organic Carbon: grossly underestimated in the 2002 and 2005 base years due likely to missing primary organic carbon emissions and, possibly, other factors (e.g., grid resolution and model chemistry).
- Temporal variation and spatial patterns of modeled concentrations are consistent with monitored data

Several observations should be noted on the implications of these model performance findings on the attainment modeling presented in the following section. First, it has been demonstrated that model performance overall is acceptable and, thus, the model can be used for air quality planning purposes. Second, consistent with EPA guidance, the model is used in a relative sense to project future year values. EPA suggests that this approach "should reduce some of the uncertainty attendant with using absolute model predictions alone" (EPA, 2007a). Furthermore, the attainment modeling is supplemented by additional information to provide a weight of evidence determination.

Section 4.0 Attainment Demonstration for Ozone and PM_{2/5}

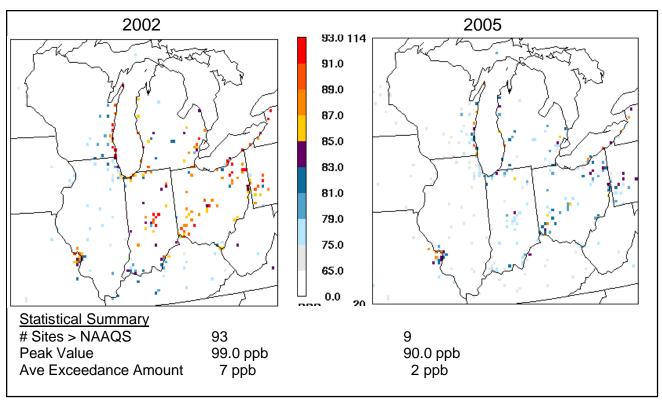
Air quality modeling and other information were used to determine whether existing ("on the books") controls would be sufficient to provide for attainment of the NAAQS for ozone and $PM_{2.5}$ and if not, then what additional emission reductions would be necessary for attainment. Traditionally, attainment demonstrations involved a "bright line" test in which a single modeled value was compared to the ambient standard. To provide a more robust assessment of expected future year air quality, EPA's modeling guidelines call for consideration of supplemental information. This section summarizes the results of the primary (guideline) modeling analysis and a weight of evidence determination based on the modeling results and other supplemental analyses.

4.1 Future Year Modeling Results

The purpose of the future year modeling is to assess the effectiveness of existing and possible additional control programs. The model was used in a relative sense to project future year values, which are then compared to the standard to determine attainment/nonattainment. Specifically, the modeling test consists of the following steps:

(1) Calculate base year design values: For ozone and PM_{2.5}, the base year design values were derived by averaging the three 3-year periods centered on the emissions base year:

2002 base year: 2000-2002, 2001-2003, and 2002-2004 2005 base year: 2003-2005, 2004-2006, and 2005-2007¹¹


- (2) Estimate the expected change in air quality: For each grid cell, a relative reduction factor (RRF) is calculated by taking the ratio of the future year and baseline modeling results.
- (3) Calculate future year values: For each grid cell (with a monitor), the RRFs are multiplied by the base year design values to project the future year values
- (4) Assess attainment: Future year values are compared to the NAAQS to assess attainment or nonattainment.

A comparison of the 2002 and 2005 base year design values for ozone and $PM_{2.5}$ is provided in Figure 59. In general, the figure shows that the 2005 base year design values are much lower than the 2002 base year design values, especially for ozone.

¹¹ A handful of source-oriented PM2.5 monitors in Illinois and Indiana were excluded from the annual attainment test, because these monitors are not to be used to judging attainment of the annual standard.

71

-

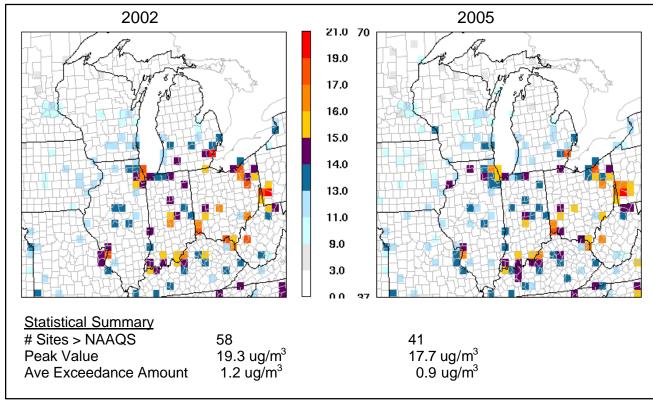


Figure 59. 2002 v. 2005 base year design values for ozone (top) and PM_{2.5} (bottom)

Ozone results are provided for those grid cells with ozone monitors. The RRF calculation considers all nearby grid cells (i.e., 3x3 for 12 km modeling) and a threshold of 85 ppb. (If there were less than 10 days above this value, then the threshold was lowered until either there were 10 days or the threshold reached 70 ppb.) PM_{2.5} results are provided for those grid cells with FRM (PM_{2.5}-mass) monitors. Spatial mapping was performed to extrapolate PM_{2.5}-speciation data from STN and IMPROVE sites to FRM sites. RRF values for PM_{2.5} were derived as a function of quarter and chemical species.

Additional, hot-spot modeling will be performed by the states for certain $PM_{2.5}$ nonattainment areas (e.g., Detroit, Cleveland, and Granite City) to address primary emissions from local point sources which may not be adequately accounted for by the regional grid modeling. This modeling will consist of Gaussian dispersion modeling (e.g., AERMOD) performed in accordance with EPA's modeling guidance (see Section 5.3 of the April 2007 guidance document). Further analyses will need to be undertaken to determine how to best combine the regional modeling and the hot-spot modeling. This could mean some adjustment to the model results presented in this document to reflect better the regional component.

The ozone and $PM_{2.5}$ modeling results are provided in Appendix I for select monitors (high concentration sites) in the 5-state region for the following future years of interest: 2008 (ozone only), 2009, 2012, and 2018. (Note, RRF values for ozone, and for $PM_{2.5}$ by season and chemical species are also included in Appendix I for key monitoring sites.) A summary of the modeling results is provided in Table 9 (ozone) and Table 10 ($PM_{2.5}$), and spatial maps of the Base M future year concentrations are provided in Figures 60-62.

		Table 9.	Summary of C	zone Modelin	g Results			
Key Sites		20	08	20	09	20	12	2018
		Round 5	Round 4	Round 5	Round 4	Round 5	Round 4	Round 5
Lake Michigan Area								
Chiwaukee	550590019	82.0	93.0	82.3	92.0	80.9	90.3	76.2
Racine	551010017	77.6	85.9	77.5	84.9	76.1	82.9	71.2
Milwaukee-Bayside	550190085	79.6	85.4	79.8	84.9	78.0	82.3	72.7
Harrington Beach	550890009	80.0	86.7	80.1	85.4	78.3	82.9	72.5
Manitowoc	550710007	81.3	80.3	80.8	78.9	78.6	76.3	72.5
Sheboygan	551170006	84.4	90.0	84.0	88.9	81.8	86.4	75.4
Kewaunee	550610002	78.9	82.5	78.1	81.0	75.9	79.1	69.9
Door County	550290004	84.8	83.6	83.9	81.8	81.5	79.3	74.7
Hammond	180892008	75.4	86.9	75.4	86.6	74.6	86.3	71.6
Whiting	180890030	77.0		77.0		76.2		73.1
Michigan City	180910005	74.2	87.4	73.9	86.5	72.5	85.4	68.1
Ogden Dunes	181270020	75.7	82.3	75.6	82.8	74.5	82.0	70.8
Holland	260050003	85.6	84.9	85.3	83.4	82.8	81.0	76.1
Jenison	261390005	77.9	78.7	77.1	77.6	74.5	75.5	68.7
Muskegon	261210039	80.8	82.7	80.5	81.5	78.0	79.4	71.9
Indianapolis Area								
Noblesville	189571001	78.0	85.2	78.1	83.7	75.6	82.0	68.7
Fortville	180590003	73.9	85.1	73.9	83.8	71.4	82.1	65.1
Fort B. Harrison	180970050	74.8	84.8	75.1	83.7	73.2	82.4	69.1
Detroit Area								
New Haven	260990009	82.7	86.3	81.4	85.3	80.2	83.5	76.1
Warren	260991003	82.5	84.3	81.3	83.3	80.7	81.9	77.6
Port Huron	261470005	79.0	80.5	77.5	79.1	75.5	77.0	70.9
Cleveland Area								
Ashtabula	390071001	84.9	84.7	83.4	82.7	81.0	80.2	75.1
Geauga	390550004	75.7	90.3	74.7	88.8	72.7	86.2	67.3
Eastlake	390850003	82.8	84.2	81.9	82.8	80.5	80.6	76.2
Akron	391530020	79.3	83.0	78.1	81.4	75.6	78.5	68.7
Cincinnati Area								
Wilmington	390271002	77.8	84.8	77.5	83.5	74.9	81.1	68.3
Sycamore	390610006	81.7	85.4	81.9	84.7	80.3	82.9	74.6
Lebanon	391650007	83.6	80.1	83.0	79.0	80.7	77.0	74.2
Columbus Area								
London	390970007	75.4	79.9	75.0	78.4	72.6	76.5	66.3
New Albany	390490029	82.4	84.1	81.8	82.6	79.6	80.2	73.0
Franklin	290490028	77.0	77.7	75.9	76.5	74.1	74.7	69.0
St. Louis Area								
W. Alton (MO)	291831002	82.4	86.1	81.0	85.2	78.6	84.0	74.9
Orchard (MO)	291831004	83.3	83.3	82.0	82.2	80.0	80.4	76.2
Sunset Hills (MO)	291890004	79.5	82.8	78.7	81.9	77.1	80.6	73.9
Arnold (MO)	290990012	78.7	78.4	77.2	77.4	75.6	75.8	72.0
Margaretta (MO)	295100086	79.8	84.0	79.3	83.4	77.9	82.5	74.4
Maryland Heights (MO)	291890014	84.5	0	83.4	30.1	81.7	02.0	78.1

	I	Table 10. Sur	nmary of PN	//2.5 Modeling	g Results		ı	
			-		-	10	-	10
Country	Cita ID	Cita		009		12 David		18
County	Site ID	Site	Round 5	Round4	Round 5	Round4	Round 5	Round4
Cook	170310022	Chicago - Washington HS	14.1	14.8	14.0	14.6	13.9	14.4
Cook	170310052	Chicago - Mayfair	14.4	15.8	14.2	15.5	13.9	15.0
Cook	170310057	Chicago - Springfield	13.9	14.5	13.8	14.3	13.7	14.1
Cook	170310076	Chicago - Lawndale	13.8	14.5	13.7	14.3	13.6	14.1
Cook	170312001	Blue Island	13.7	14.5	13.6	14.3	13.4	14.1
Cook	170313301	Summit	14.2	14.8	14.0	14.6	13.9	14.4
Cook	170316005	Cicero	14.4	15.3	14.3	15.1	14.2	14.9
Madison	171191007	Granite City	15.1	16.0	14.9	15.8	14.3	15.5
St. Clair	171630010	E. St. Louis	14.1	14.9	13.9	14.7	13.4	14.5
0		1.6	40.0			4= -		
Clark	180190005	Jeffersonville	13.8	15.5	13.7	15.0	13.4	14.4
Dubois	180372001	Jasper	12.4	13.8	12.2	13.5	11.8	13.0
Lake	180890031	Gary	13.0		12.8		12.4	
Marion	180970078	Indy-Washington Park	12.8	14.5	12.6	14.2	12.0	13.7
Marion	180970083	Indy- Michigan Street	13.4	14.8	13.1	14.9	12.6	14.0
Wayne	261630001	Allen Park	13.0	14.5	12.8	14.1	12.4	13.3
Wayne	261630015	Southwest HS	14.2	15.8	13.9	15.3	13.5	14.4
Wayne	261630016	Linwood	13.1	14.1	12.8	13.7	12.5	13.0
Wayne	261630033	Dearborn	15.8	17.7	15.5	17.1	15.1	16.1
Wayne	261630036	Wyandotte	13.1	15.1	12.8	14.7	12.5	13.9
vvayrie	201030030	wyandotte	13.1	13.1	12.0	14.7	12.5	13.9
Butler	390170003	Middleton	13.5	14.2	13.2	13.7	12.8	13.1
Butler	390170016	Fairfield	13.1	13.5	12.9	12.9	12.5	12.2
Cuyahoga	390350027	Cleveland-28th Street	13.5	14.4	13.2	13.8	12.7	12.9
Cuyahoga	390350038	Cleveland-St. Tikhon	15.2	16.1	14.8	15.4	14.3	14.4
Cuyahoga	390350045	Cleveland-Broadway	14.4	14.6	14.0	14.0	13.5	13.1
Cuyahoga	390350060	Cleveland-GT Craig	15.0	15.3	14.6	14.7	14.1	13.7
Cuyahoga	390350065	Newburg Hts - Harvard Ave	14.0	14.1	13.6	13.5	13.1	12.6
Franklin	390490024	Columbus - Fairgrounds	12.9	14.6	12.6	14.0	12.0	13.0
Franklin	390490025	Columbus - Ann Street	12.7	14.1	12.4	13.5	11.9	12.5
Franklin	390490081	Columbus - Maple Canyon	11.7	14.0	11.4	13.4	10.9	12.5
Hamilton	390610014	Cincinnati - Seymour	14.5	15.5	14.3	14.8	13.8	14.0
Hamilton	390610040	Cincinnati - Taft Ave	12.8	13.6	12.6	13.0	12.2	12.3
Hamilton	390610042	Cincinnati - 8th Ave	14.0	14.6	13.8	14.0	13.4	13.2
Hamilton	390610043	Sharonville	12.9	13.6	12.7	13.0	12.3	12.2
Hamilton	390617001	Norwood	13.4	14.2	13.2	13.6	12.8	12.8
Hamilton	390618001	St. Bernard	14.7	15.2	14.4	14.6	14.0	13.8
Jefferson	390810016	Steubenville	12.8	16.3	12.5	15.9	12.7	16.2
Jefferson	390811001	Mingo Junction	13.5	15.5	13.2	15.0	13.4	15.3
Lawrence	390870010	Ironton	12.8	14.2	12.5	13.7	12.3	13.2
Montgomery	+	Dayton	13.2	13.7	12.9	13.2	12.4	12.3
Scioto	391450013	New Boston	12.1	15.4	11.9	14.8	11.6	14.2
Stark	391510017	Canton - Dueber	14.0	15.0	13.6	14.3	13.3	13.6
Stark	391510020	Canton - Market	12.6	13.6	12.3	13.0	11.9	12.2
Summit	391530017	Akron - Brittain	13.0	14.4	12.7	13.6	12.3	12.9
Summit	391530023	Akron - W. Exchange	12.3	13.6	12.0	13.0	11.5	12.2

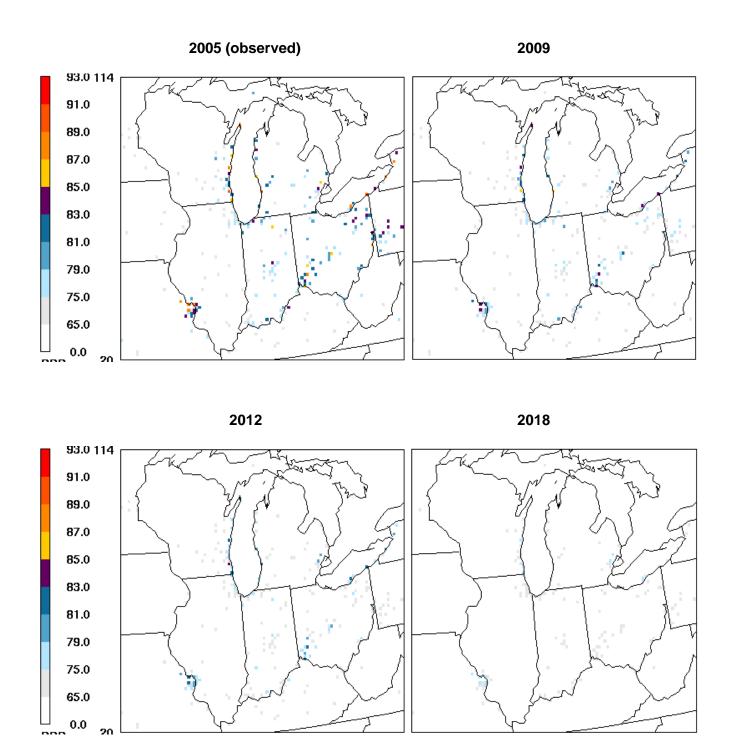


Figure 60. Observed base year and projected future year design values for ozone – Base M

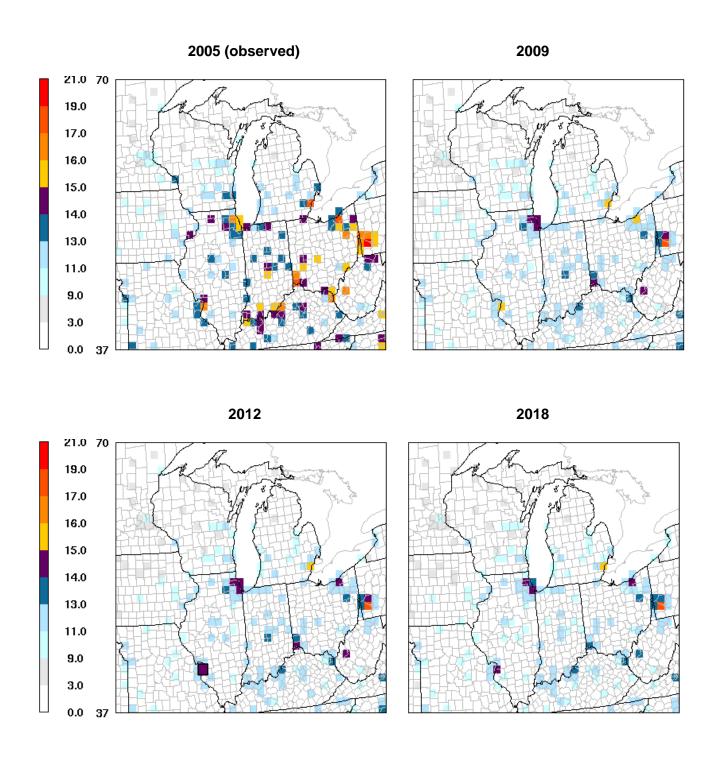


Figure 61. Observed base year and projected future year design values for PM_{2.5} (annual average)–Base M

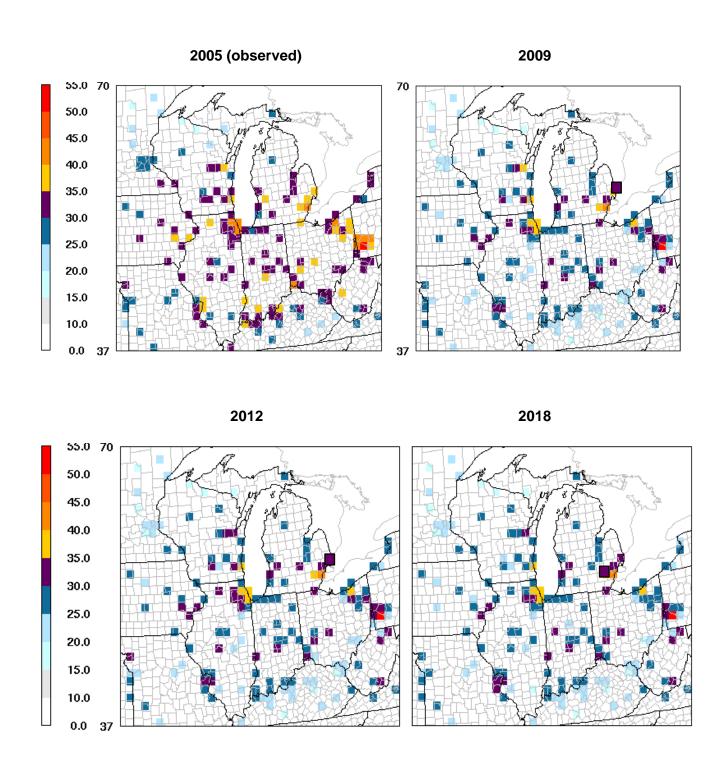


Figure 62. Observed base year and projected future year design values for PM_{2.5} (24-hr average)-Base M

The number of monitors with design values above the standard are as follows:

Table 11. Number of sites above standard

	Ozone (8 hour: 85 ppb)													
State	2002	2005		20	009		20)12		20)18			
	BaseK	Base M		BaseK	Base M		BaseK	Base M		BaseK	Base M			
IL	3	0		0	0		0	0		0	0			
IN	22	0		0	0		0	0		0	0			
MI	15	3		1	1		0	0		0	0			
ОН	40	4		1	0		1	0		0	0			
WI	13	2		4	0		3	0		1	0			
Total	93	9		6	1		4	0		1	0			
				PM2.5	(Annual:	1!	5 ug/m	3)						
State	2002	2005		2009			20)12		20)18			
	BaseK	Base M		BaseK	Base M		BaseK	Base M		BaseK	Base M			
IL	11	7		3	1		3	0		2	0			
IN	10	6		1	0		1	0		0	0			
MI	6	2		3	1		2	1		0	0			
OH	31	26		7	1		4	0		1	1			
WI	0	0		0	0		0	0		2	0			
Total	58	41		14	3		10	1		5	1			

The modeling results above reflect the "base" controls identified in Section 3.6, with EGU emissions based on IPM modeling (i.e., Round 4 – IPM2.1.9, and Round 5 – IPM3.0). In addition, two sets of alternative future year EGU emissions were examined in Round 5. First, alternative control assumptions were provided for several facilities by the states (i.e., "will do" and "may do" scenarios). In general, these scenarios produced a small change in future year ozone and PM $_{2.5}$ concentrations (i.e., about 0.1 ug/m 3 for PM $_{2.5}$ and 0.1-0.2 ppb for ozone). Second, EPA suggested adjustments to the 2010 IPM emissions to reflect 2009 conditions. The revised (2009) SO2 emissions represent a 5-6% increase in domainwide SO2 emissions. The increased SO2 emissions result in slightly greater annual average PM $_{2.5}$ concentrations (on the order of 0.1 – 0.2 ug/m 3), but do not produce any new residual nonattainment areas.

The limited 4 km ozone modeling (based on Base K) performed by LADCO included a future year analysis for 2009. The figure below shows the 2009 values with 12 km and 4 km grid spacing for the LADCO modeling and similar modeling conducted by a stakeholder group (Midwest Ozone Group).

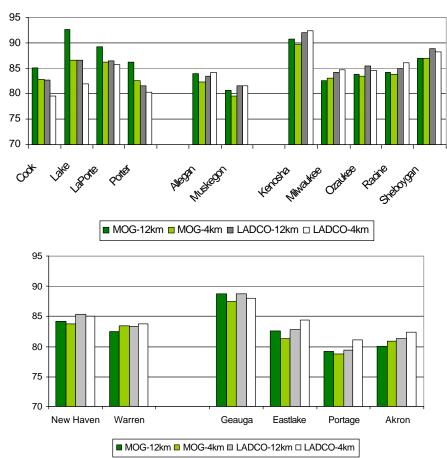


Figure 63. Future year (2009) values for Lake Michigan area (top) and Detroit-Cleveland region (bottom)

These results show that the 12 km and 4 km values are similar, with the most notable changes in northwestern Indiana and northeastern Illinois (e.g., 4 km values are as much as 4 ppb lower than 12 km values). The differences in the southern part of the Lake Michigan area are plausible, given the tight emissions gradient there (i.e., finer grid resolution appears to provide more appropriate representation).

In light of these findings, 12 km grid spacing can continue to be used for ozone modeling, but the Base K/Round 4 results for northwestern Indiana/northeastern Illinois should be viewed with caution (i.e., probably 1 – 4 ppb too high).

In summary, the ozone modeling provides the following information for the nonattainment areas in the region (see Table 12):

Table 12. Ozone Nonattainment Areas in the LADCO Region (as of December 31, 2007)

Area Name	Category	Number of Counties	Attainment Deadline
Detroit-Ann Arbor, MI	Marginal	8	2007
Chicago-Gary-Lake County, IL-IN	Moderate	10	2010
Cleveland-Akron-Lorain, OH	Moderate	8	2010
Milwaukee-Racine, WI	Moderate	6	2010
Sheboygan, WI	Moderate	1	2010
St Louis, MO-IL	Moderate	4	2010
Allegan Co, MI	Subpart 1	1	2009
Cincinnati-Hamilton, OH-KY-IN	Subpart 1	6	2009
Columbus, OH	Subpart 1	6	2009
Door Co, WI	Subpart 1	1	2009
Kewaunee Co, WI	Subpart 1	1	2009
Manitowoc Co, WI	Subpart 1	1	2009
		53	

Marginal Areas (2007 attainment date): No modeling was conducted for the 2006 SIP planning year. Rather, 2005 – 2007 air quality data are available to determine attainment.

Basic (Subpart 1) Areas (2009 attainment date): The modeling results for the 2008 SIP planning year show:

- Base K: all areas in attainment, except Cincinnati and Indianapolis
- Base M: all areas in attainment, except Holland (Allegan County)

Moderate Areas (2010 attainment date): The modeling results for the 2009 SIP planning year show:

- Base K: all areas still in nonattainment
- Base M: all areas in attainment

The PM_{2.5} modeling results show:

- Base K: all areas in attainment, except for Chicago, Cincinnati, Cleveland, Detroit, Granite City (IL), Louisville, Portsmouth (OH), and Steubenville
- Base M: all areas in attainment, except for Cleveland, Detroit, and Granite City (IL)

With respect to the new lower 8-hour ozone standard, the modeling about 30 sites in 2012 and 5 sites in 2018 with design values greater than 75 ppb. With respect to the new lower 24-hour $PM_{2.5}$ standard, the modeling shows 13 sites in 2012 and 10 in 2018 with design values greater than 35 ug/m^3 .

4.2 Supplemental Analyses

EPA's modeling guidelines recommend that attainment demonstrations consist of a primary (guideline) modeling analysis and supplemental analyses. Three basic types of supplemental analyses are recommended:

- additional modeling
- analyses of trends in ambient air quality and emissions, and
- observational models and diagnostic analyses

Furthermore, according to EPA's guidelines, if the future year modeled values are "close" to the standard (i.e., 82 - 87 ppb for ozone and 14.5 - 15.5 ug/m³ for PM_{2.5}), then the results of the primary modeling should be reviewed along with the supplemental information in a "weight of evidence" assessment of whether each area is likely to achieve timely attainment.

A WOE determination for ozone and $PM_{2.5}$ is provided in the following sections. Special attention is given to the following areas with future year modeled values that exceed or are "close" to the ambient standard (see Appendix I):

Ozone	PM2.5
Lake Michigan area	Chicago, IL
Cleveland, OH	Cleveland, OH
Cincinnati, OH	Cincinnati, OH
	Granite City, IL
	Detroit MI

4.3 Weight-of-Evidence Determination for Ozone

The WOE determination for ozone consists of the primary modeling and other supplemental analyses (some of which were discussed in Section 2). A summary of this information is provided below.

Primary (Guideline) Modeling: The guideline modeling is presented in Section 4.1. Key findings from this modeling include:

- Base M regional modeling shows attainment by 2008 and 2009 at all sites, except Holland (MI), and attainment at all sites by 2012.
- Base K modeling results reflect generally higher future year values, and show more sites in nonattainment compared to the Base M modeling. The difference in the two modeling analyses is due mostly to lower base year design values in Base M.
- Base K and Base M modeling analyses are considered "SIP quality", so the attainment demonstration for ozone should reflect a weight-of-evidence approach, with consideration of monitoring based information.
- Base M modeling also shows that the proposed lower 8-hour standard will not be met at many sites, even by 2018, with existing controls.

Additional Modeling: Four additional modeling analyses were considered: (1) re-examination of the primary modeling to estimate attainment probabilities, (2) remodeling with different assumptions, (3) an unmonitored area analysis, and (4) EPA's latest regional ozone modeling. Each of these analyses is described below.

First, the primary modeling results (which were initially processed using EPA's attainment test) were re-examined to estimate the probability of attaining the ozone standard (Lopez, 2007, and LADCO, 2008b). Seven estimates of future year ozone concentrations were calculated based on model-based RRFs and appropriate monitor-based concentrations for each year between 2001 and 2007. RRF values for 2001, 2003, 2004, 2006, and 2007 were derived based on the 2002 and 2005 modeling results. Monitor-based concentrations reflect 4th high values, design values, or average of three design values centered on the year in question. The probability of attainment was determined as the percentage of these seven estimates below the standard. The results indicate that sites in the Lake Michigan area (Chiwaukee, Sheboygan, Holland, Muskegon), Cleveland (Ashtabula), and St. Louis (W Alton) have a fairly low probability of attainment by 2009 (i.e., about 50% or less).

Second, the primary modeling analysis was redone with different types of assumptions for calculating base year design values (i.e., using the 3-year period centered on base year, and using the highest 3-year period that includes the base year), and for calculating RRFs (i.e., using all days with base year modeled value > 70 ppb, and using all days with base year modeled value > 85 ppb, with at least 10 days and "acceptable" model performance). The results for several high concentration sites are presented in Tables 13a and 13b for 2009. The different modeling assumptions produce eight estimates of future year ozone concentrations. The highest estimates are associated with base year design values representing the 3-year average for 2001-2003, and the lowest estimates are associated with base year design values representing the 3-year average 2004-2006. The different RRF approaches produce little change in future year ozone concentrations. This suggests that future year concentration estimates are most sensitive to the choice of the base year and the methodology used to derive the base year design values.

Third, EPA's modeling guidelines recommend that an "unmonitored area analysis" be included as a supplemental analysis, particularly in nonattainment areas where the monitoring network iust meets or minimally exceeds the size of the network required to report data to EPA's Air Quality System. The purpose of this analysis is to identify areas where future year values are predicted to be greater than the NAAQS.

Based on examination of the spatial plots in Figures 49a and 49b, the most notable areas of high modeled ozone concentrations are over the Great Lakes. Over-water monitoring, however, is not required by EPA¹². A cursory analysis of unmonitored areas for ozone was performed by LADCO using an earlier version of the 2002 base year modeling (i.e, Base I) (Baker, 2005). Base year and future year "observed" values were derived for unmonitored grid cells using the absolute modeled concentrations (in all grid cells) and the observed values (in monitored grid cells). A spatial map of the estimated 2009 values is provided in Figure 64. As can be seen, there are very few (over land) grid cells where additional monitors may be desirable. This indicates that the current modeling analysis, which focuses on monitored locations, is addressing areas of high ozone throughout the region.

ozone transport in the area (see, for example, Figure 5). Due to cut-backs in USEPA funding, however, these measurements were discontinued in 2003.

83

¹² Air quality measurements over Lake Michigan were collected by LADCO previously to understand

Table 13a. Primary and Additional Ozone Modeling Results – Lake Michigan and Cleveland Areas (2009)

2009 Modeling Results	liary and Addit	.5.10. 52511		ake Michigan A		Jan ana Ole		Cleveland Area				
2003 WOUGHING RESURS	Chiwaukee	Harr.Beach	Sheboygan	DoorCounty	Holland	Hammond	MichiganCity	Ashtabula	Geauga	Eastlake		
	550590019	550890009	551170006	550290004	260050003	180892008	180910005	390071001	390550004	390850003		
Attainment Test (based on EPA guidance-2002 baseyear)	330390019	330890009	331170000	330290004	200030003	100092000	180910003	390071001	390330004	390830003		
Base Year Design Value (average of three 3-year periods)	98.3	93.0	97.0	91.0	94.0	88.3	90.3	95.7	99.0	92.7		
RRF (all days > 85 ppb, or at least 10 days)	0.935	0.918	0.916	0.899	0.888	0.980	0.958	0.865	0.897	0.894		
Future Year Design Value	91.9	85.4	88.9	81.8	83.5	86.5	86.5	82.8	88.8	82.9		
Attainment Test (based on EPA guidance-2005 baseyear)												
Base Year Design Value (average of three 3-year periods)	84.7	83.3	88.0	88.7	90.0	77.7	77.0	89.0	79.3	86.3		
RRF (all days > 85 ppb, or at least 10 days)	0.972	0.961	0.955	0.946	0.948	0.971	0.960	0.937	0.942	0.949		
Future Year Design Value	82.3	80.1	84.0	83.9	85.3	75.4	73.9	83.4	74.7	81.9		
Weight of Evidence (alternative approaches-2002baseyear)												
Alt 1 - Base Year Des. Value (3-year period centered on 2002)	101.0	98.0	100.0	94.0	97.0	90.0	93.0	99.0	103.0	95.0		
Alt 2 - Base Year Des. Value (Highest 3-year period including 2002)	101.0	98.0	100.0	94.0	97.0	92.0	93.0	99.0	103	95.0		
RRF (all days > 85 ppb, or at least 10 days)	0.935	0.918	0.916	0.899	0.888	0.980	0.958	0.865	0.897	0.894		
Alt 1 - Future Year Projected Value	94.4	90.0	91.6	84.5	86.1	88.2	89.1	85.6	92.4	84.9		
Alt 2 - Future Year Projected Value	94.4	90.0	91.6	84.5	86.1	90.2	89.1	85.6	92.4	84.9		
Alt 1 - RRF (all days > 70 ppb)	0.933	0.918	0.912	0.907	0.893	0.969	0.947	0.876	0.907	0.900		
Alt 1 - Future Year Projected Value	94.2	90.0	91.2	85.3	86.6	87.2	88.1	86.7	93.4	85.5		
Alt 2 - Future Year Projected Value	94.2	90.0	91.2	85.3	86.6	89.1	88.1	86.7	93.4	85.5		
Alt 2 - RRF (all days > 85 ppb, or at least 10 days; with acceptable model performance)	0.945	0.904	0.910	0.904	0.887	0.976	0.964	0.866	0.896	0.894		
Alt 1 - Future Year Projected Value	95.4	88.6	91.0	85.0	86.0	87.8	89.7	85.7	92.3	84.9		
Alt 2 - Future Year Projected Value	95.4	88.6	91.0	85.0	86.0	89.8	89.7	85.7	92.3	84.9		
Weight of Evidence (alternative approaches-2005baseyear)												
Alt 1 - Base Year Des. Value (3-year period centered on 2005)	83.0	79.0	86.0	86.0	88.0	76.0	76.0	86.0	77.0	86.0		
Alt 2 - Base Year Des. Value (Highest 3-year period including 2005)	86.0	88.0	89.0	90.0	93.0	79.0	78.0	91.0	86.0	89.0		
Alt 1 - Future Year Projected Value	80.7	75.9	82.1	81.4	83.4	73.8	73.0	80.6	72.5	81.6		
Alt 2 - Future Year Projected Value	83.6	84.6	85.0	85.1	88.2	76.7	74.9	85.3	81.0	84.5		

Table 13b. Primary and Additional Ozone Modeling Results – Cincinnati, Columbus, St. Louis, Indianapolis, and Detroit (2009)

2009 Modeling Results		incinnati Are		Columbus	1	uis Area	Indianapo	` '	Detroit Area	
2000 Hodeling Results	Wilmington	Lebanon	Sycamore	NewAlbany	W. Alton	OrchardFarm	Noblesville	Fortville	New Haven	
	390271002	39165007	390610006	390490029	291831002	291831004	180571001	18059003	260990009	
Attainment Toot	39027 1002	39103007	390610006	390490029	291031002	291031004	16037 1001	16059005	200990009	
Attainment Test (based on EPA guidance-2002 baseyear)										
Base Year Design Value	94.3	90.7	90.7	94.0	90.0	90.0	93.7	91.3	92.3	
(average of three 3-year periods)										
RRF (all days > 85 ppb, or at least 10 days)	0.885	0.908	0.938	0.888	0.947	0.914	0.894	0.918	0.924	
Future Year Design Value	83.5	82.4	85.1	83.5	85.2	82.3	83.8	83.8	85.3	
Attainment Test (based on EPA guidance-2005 baseyear)										
Base Year Design Value (average of three 3-year periods)	82.3	87.7	84.3	86.3	86.3	87.0	83.3	78.7	86.0	
RRF (all days > 85 ppb, or at least 10 days)	0.941	0.947	0.967	0.947	0.938	0.942	0.945	0.947	0.947	
Future Year Design Value	77.4	83.1	81.5	81.7	80.9	82.0	78.7	74.5	81.4	
Weight of Evidence (alternative approaches-2002baseyear)										
Alt 1 - Base Year Des. Value (3-year period centered on 2002)	96.0	92.0	93.0	95.0	91.0	92.0	96.0	94.0	97.0	
Alt 2 - Base Year Des. Value (Highest 3-year period including 2002)	96.0	92.0	93.0	96.0	91.0	92.0	96.0	94.0	97.0	
RRF (all days > 85 ppb, or at least 10 days)	0.885	0.908	0.938	0.888	0.947	0.914	0.894	0.918	0.924	
Alt 1 - Future Year Projected Value	85.0	83.5	87.2	84.4	86.2	84.1	85.8	86.3	89.6	
Alt 2 - Future Year Projected Value	85.0	83.5	87.2	85.2	86.2	84.1	85.8	86.3	89.6	
Alt 1 - RRF (all days > 70 ppb)	0.885	0.914	0.940	0.901	0.945	0.911	0.912	0.907	0.918	
Alt 1 - Future Year Projected Value	85.0	84.1	87.4	85.6	86.0	83.8	87.6	85.3	89.0	
Alt 2 - Future Year Projected Value	85.0	84.1	87.4	86.5	86.0	83.8	87.6	85.3	89.0	
Alt 2 - RRF (all days > 85 ppb, or at least 10 days;	0.880	0.911	0.940	0.886	0.951	0.913	0.894	0.916	0.935	
with acceptable model performance) Alt 1 - Future Year Projected Value	84.5	83.8	87.4	84.2	86.5	84.0	85.8	86.1	90.7	
Alt 2 - Future Year Projected Value	84.5	83.8	87.4	85.1	86.5	84.0	85.8	86.1	90.7	
Air 2 - I didire Teal FTOJected Value	04.3	03.0	07.4	05.1	80.3	04.0	03.0	80.1	90.7	
Weight of Evidence (alternative approaches-2005baseyear)										
Alt 1 - Base Year Des. Value (3-year period centered on 2005)	80.0	86.0	81.0	84.0	85.0	86.0	80.0	76.0	82.0	
Alt 2 - Base Year Des. Value (Highest 3-year period including 2005)	85.0	89.0	86.0	88.0	89.0	89.0	87.0	81.0	90.0	
Alt 1 - Future Year Projected Value	75.3	81.4	78.3	79.5	79.7	81.0	75.6	72.0	77.7	
Alt 2 - Future Year Projected Value	80.0	84.3	83.2	83.3	83.5	83.8	82.2	76.7	85.2	

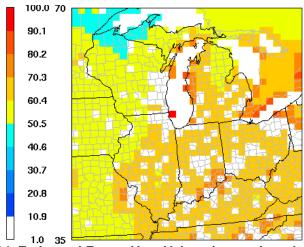


Figure 64. Estimated Future Year Values (unmonitored grid cells)

Finally, EPA's latest regional ozone modeling was considered as corroborative information. This modeling was performed as part of the June 2007 proposal to revise the ozone standard (EPA, 2007b). EPA applied the CMAQ model with 2001 meteorology to first estimate ozone levels in 2020 based on the current standard and national rules in effect or proposed (i.e., the baseline), and then to evaluate strategies for attaining a more stringent (70 ppb) primary standard. Baseline (2020) ozone levels were predicted to be below the current standard in 481 of the 491 counties with ozone monitors. Of the 10 counties predicted to be above the standard, there is one county in the LADCO region (i.e., Kenosha County, WI at 86 ppb). This result is consistent with LADCO's Base K modeling for 2018 (i.e., Kenosha County, WI at 86.7 ppb), which is not surprising given that EPA's modeling and LADCO's Base K modeling have a similar base year (2001 v. 2002).

Analysis of Trends: EPA's modeling guidelines note that while air quality models are generally the most appropriate tools for assessing the expected impacts of a change in emissions, it may also be possible to extrapolate future trends based on measured historical trends of air quality and emissions. To do so, USEPA's guidance suggests that ambient trends should first be normalized to account for year-to-year variations in meteorological conditions (EPA, 2002). Meterologically-adjusted 4th high 8-hour ozone concentrations were derived using the air quality – meteorological regression model developed by EPA (i.e., Cox method – see Section 2.1).

The historical trend in these met-adjusted ozone concentrations were extrapolated to estimate future year ozone concentrations based on historical and projected trends in precursor emissions. Both VOC and NOx emissions affect ozone concentrations. Given that observation-based methods show that urban areas in the region are generally VOC-limited and rural areas in the region are NOx-limited (see Section 2.1), urban VOC emissions and regional NOx emissions are considered important. The trends in urban VOC and regional NOx emissions were calculated to produce appropriate weighting factors.

The resulting 2009 and 2012 ozone values are provided in Figure 65, along with the primary and alternative modeling ozone values for key sites in the Lake Michigan, Cleveland, and Cincinnati areas. The results reflect a fairly wide scatter, but, on balance, the supplemental information is supportive of the primary modeling results (i.e., sites in the Lake Michigan area and Cleveland are expected to be close to the standard).

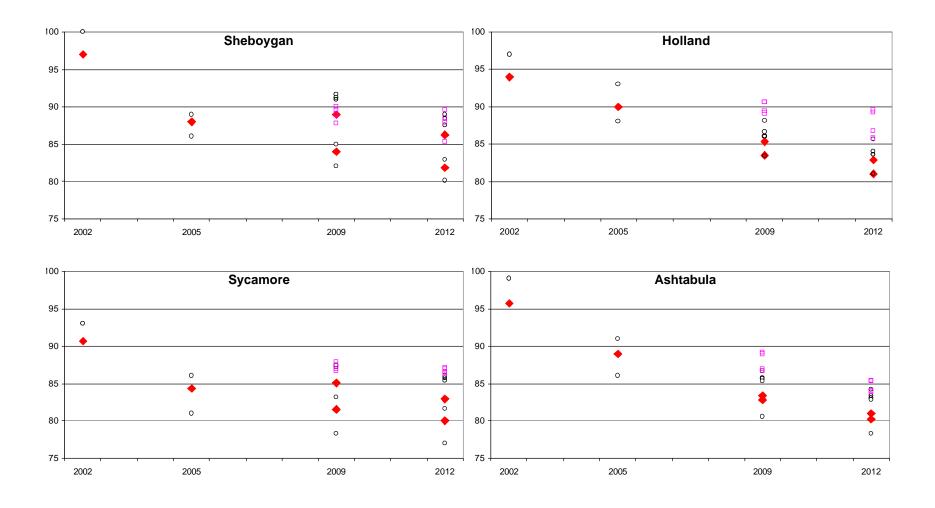


Figure 65. Estimates of Future Year Ozone Concentrations – Lake Michigan Area (Sheboygan and Holland), Cincinnati (Sycamore), and Cleveland (Ashtabula)

Note: Primary (guideline) modeling values (Base K and Base M results) are represented by large red diamonds, additional modeling values by small black circles, and trends-based values by small pink squares

Observational Models and Diagnostic Analyses: The observation-based modeling (i.e., MAPPER) is presented in Section 3. The key findings from this modeling are that most urban areas are VOC-limited and rural areas are NOx-limited.

The primary diagnostic analysis is source apportionment modeling with CAMx to provide more quantitative information on source region (and source sector) impacts (Baker, 2007a). Specifically, the model estimated the impact of 18 geographic source regions (which are identified in Figure 66) and 6 source sectors (EGU point, non-EGU point, on-road, off-road, area, and biogenic sources) at ozone monitoring sites in the region.

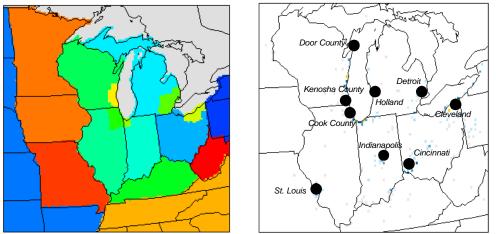


Figure 66. Source regions (left) and key monitoring sites (right) for ozone modeling analysis

Modeling results for 2009 (Base M) and 2012 (Base K) are provided in Appendix II for several key monitoring sites. For each monitoring site, there are two graphs: one showing sector-level contributions, and one showing source region and sector-level contributions in terms of percentages. (Note, in the sector-level graph, the contributions from NOx emissions are shown in blue, and from VOC emissions in green.)

The sector-level results (see, for example, Figure 67) show that on-road and nonroad NOx emissions generally have the largest contributions at the key monitor locations (> 15% each). EGU and non-EGU NOx emissions are also important contributors (> 10% each). The source group contributions vary by receptor location due to emissions inventory differences.

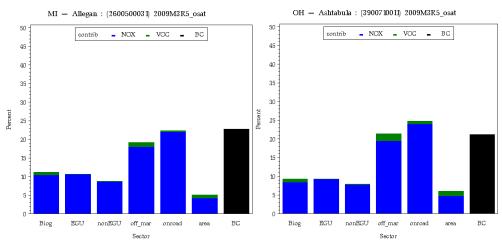


Figure 67. Source-sector results for Holland (left) and Ashtabula (right) monitors - 2009 (Base M)

The source region results (see, for example, Figure 68) show that while nearby areas generally have the highest impacts (e.g., the northeastern IL/northwestern IN/southeastern WI nonattainment area contributes 25-35% to high sites in the Lake Michigan area, and Cleveland nonattainment counties contribute 20-25% to high sites in northeastern Ohio), there is an even larger regional impact (i.e., contribution from other states).

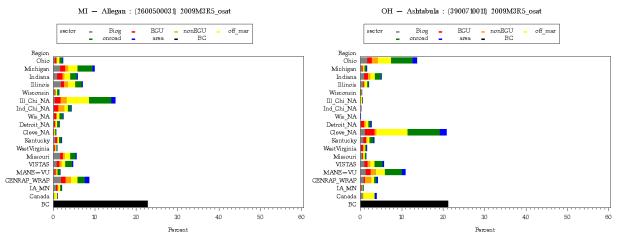


Figure 68. Source-region results for Holland (left) and Ashtabula (right) monitors - 2009 (Base M)

Summary: Air quality modeling and other supplemental analyses were performed to estimate future year ozone concentrations. Based on this information, the following general conclusions can be made:

- Existing ("on the books") controls are expected to produce significant improvement in ozone air quality.
- The choice of the base year affects the future year model projections. A key difference between the base years of 2002 and 2005 is meteorology. As noted above, 2002 was more ozone conducive than 2005. The choice of which base year to use as the basis for the SIP is a policy decision (i.e., how much safeguard to incorporate).
- Most sites are expected to meet the current 8-hour standard by the applicable attainment date, except, for sites in western Michigan and, possibly, in eastern Wisconsin and northeastern Ohio.
- Current monitoring data show significant nonattainment in these areas (e.g., peak design values on the order of 90 – 93 ppb). It is not clear whether sufficient emission reductions will occur in the next couple of years to provide for attainment.
- Attainment by the applicable attainment date is dependent on actual future year meteorology (e.g., if the weather conditions are consistent with [or less severe than] 2005, then attainment is likely) and actual future year emissions (e.g., if the emission reductions associated with the existing controls are achieved, then attainment is likely). On the other hand, if either of these conditions is not met, then attainment may be less likely.

4.3 Weight-of-Evidence Determination for PM_{2.5}

The WOE determination for PM_{2.5} consists of the primary modeling and other supplemental analyses. A summary of this information is provided below.

Primary (Guideline) Modeling: The results of the guideline modeling are presented in Section 4.1. Key findings from this modeling include:

 Base M regional modeling shows attainment by 2009 at all sites, except Detroit, Cleveland, and Granite City, and attainment at all sites by 2012, except for Detroit and Granite City.

The regional modeling for $PM_{2.5}$ does not reflect any air quality benefit expected from local controls. States are conducting local-scale analyses and will use these results, in conjunction with the regional-scale modeling, to support their attainment demonstrations for $PM_{2.5}$

- Base K modeling results reflect generally higher future year values, and show more sites in nonattainment in 2009 and 2012 compared to the Base M modeling. The difference in the two modeling analyses is due mostly to lower base year design values in Base M.
- Base K and Base M modeling analyses are considered "SIP quality", so the attainment demonstration for PM_{2.5} should reflect a weight-of-evidence approach, with consideration of monitoring based information.
- Base M modeling also shows that the new PM_{2.5} 24-hour standard will not be met at many sites, even by 2018, with existing controls.

Additional Modeling: EPA's latest regional PM_{2.5} modeling was considered as corroborative information. This modeling was performed as part of the September 2006 revision to the PM_{2.5} standard (USEPA, 2006). EPA applied the CMAQ model with 2001 meteorology to estimate PM_{2.5} levels in 2015 and 2020 first with national rules in effect or proposed, and then with additional controls to attain the current standard (15 ug/m³ annual/65 ug/m³ daily). Additional analyses were performed to evaluate strategies for attaining more stringent standards in 2020 (15/35, and 14/35). Baseline (2015) PM_{2.5} levels were predicted to be above the current standard in four counties in the LADCO region: Madison County, IL at 15.2 ug/m³, Wayne County, MI at 17.4, Cuyahoga County, OH at 15.4, and Scioto County, OH at 15.6. These results are consistent with LADCO's Base K modeling for 2012/2018, which is not surprising given that EPA's modeling and LADCO's Base K modeling have a similar base year (2001 v. 2002).

Observational Models and Diagnostic Analyses: The observation-based modeling (i.e., application of thermodynamic equilibrium models) is presented in Section 3. The key findings from this modeling are that $PM_{2.5}$ mass is sensitive to reductions in sulfate, nitric acid, and ammonia concentrations. Even though sulfate reductions cause more ammonia to be available to form ammonium nitrate (PM-nitrate increases slightly when sulfate is reduced), this increase is generally offset by the sulfate reductions, such that $PM_{2.5}$ mass decreases. Under conditions with lower sulfate levels (i.e., proxy of future year conditions), $PM_{2.5}$ is more sensitive to reductions in nitric acid compared to reductions in ammonia.

The primary diagnostic analysis is source apportionment modeling with CAMx to provide more quantitative information on source region (and source sector) impacts (Baker, 2007b). Specifically, the model estimated the impact of 18 geographic source regions (which are identified in Figure 69) and 6 source sectors (EGU point, non-EGU point, on-road, off-road, area, and biogenic sources) at PM_{2.5} monitoring sites in the region.

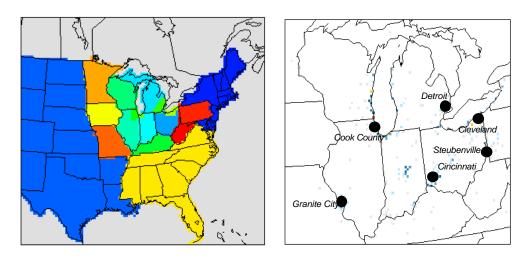


Figure 69. Source regions (left) and key monitoring sites (right) for PM_{2.5} modeling analysis

Modeling results for 2012 (Base K) and 2018 (Base M) are provided in Appendix III for several key monitoring sites. For each monitoring site, there are two graphs: one showing sector-level contributions, and one showing source region and sector-level contributions in terms of absolute modeled values.

The sector-level results (see, for example, Figure 70) show that EGU sulfate, non-EGU-sulfate, and area organic carbon emissions generally have the largest contributions at the key monitor locations (> 15% each). Ammonia emissions are also important contributors (> 10%). The source group contributions vary by receptor location due to emissions inventory differences.

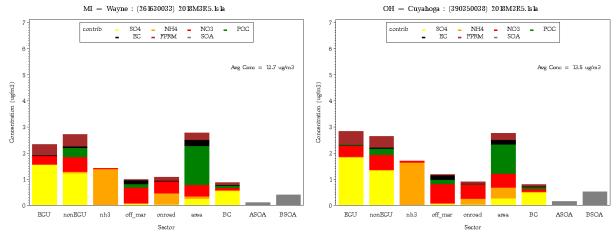


Figure 70. Source-sector results for Detroit (left) and Cleveland (right) monitors – 2018 (Base M)

The source region results (see, for example, Figure 71) show that while nearby areas generally have the highest impacts (e.g., Detroit nonattainment counties contribute 40% to high sites in southeastern Michigan, and Cleveland nonattainment counties contribute 35% to high sites in northeastern Ohio), there is an even larger regional impact (i.e., contribution from other states).



Figure 71. Source-region results for Detroit (left) and Cleveland (right) monitors - 2018 (Base M)

Summary: Air quality modeling and other supplemental analyses were performed to estimate future year PM_{2.5} concentrations. Based on this information, the following general conclusions can be made:

- Existing ("on the books") controls are expected to produce significant improvement in PM_{2.5} air quality.
- The choice of the base year affects the future year model projections. It is not clear how much of this is attributable to differences in meteorology, because, as noted in Section 3, PM_{2.5} concentrations are not as strongly influenced by meteorology as ozone.
- Most sites are expected to meet the current PM_{2.5} standard by the applicable attainment date, except for sites in Detroit, Cleveland, and Granite City.
- Current monitoring data show significant nonattainment in these areas (e.g., peak design values on the order of 16 17 ug/m³). It is not clear whether sufficient emission reductions will occur in the next couple of years to provide for attainment. States are conducting local-scale analyses for Detroit, Cleveland, and Granite City, in particular, to identify appropriate additional local controls.
- Attainment by the applicable attainment date is dependent (possibly) on actual
 future year meteorology and (more likely) on actual future year emissions (e.g., if
 the emission reductions associated with the "on the books" controls are
 achieved, then attainment is likely). On the other hand, if either of these
 conditions is not met (especially, with respect to emissions), then attainment may
 be less likely.

Section 5. Reasonable Progress Assessment for Regional Haze

Air quality modeling and other information were used to assess the improvement in visibility that would be provided by existing ("on the books") controls and possible additional control programs. In determining reasonable progress for regional haze, Section 169A of the Clean Air Act and EPA's visibility rule requires states to consider five factors:

- costs of compliance
- time necessary for compliance
- energy and non-air quality environmental impacts of compliance
- remaining useful life of any existing source subject to such requirements
- uniform rate of visibility improvement needed to attain natural visibility conditions by 2064

The uniform rate of visibility improvement requirement can be depicted graphically in the form of a "glide path" (see Figure 72).

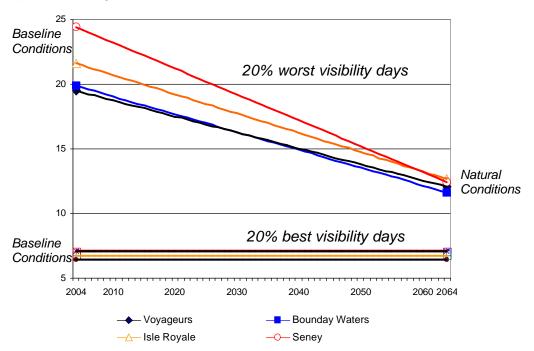


Figure 72. Visibility "glide paths" for northern Class I areas (units: deciviews)

5.1 Class I Areas Impacted

EPA's visibility rule requires a state to "address regional haze in each mandatory Class I Federal area located within the State and in each mandatory Class I Federal area located outside the State which may be affected by emissions from within the State." (40 CFR Part 51.308(d)) To meet this requirement, technical analyses conducted by the RPOs were consulted to obtain information on areas of influence and culpability for Class I areas in the eastern U.S. (MRPO, 2007). A summary of this information is provided in Table 1 (MRPO, 2007). The table shows that every LADCO State impacts multiple Class I areas in the eastern U.S.

Table 14. Draft List of Class I Areas Impacted by LADCO States

AREA NAME	IL	IN	MI	ОН	WI
81.401 Alabama.					
Sipsey Wilderness Area	(1)	(1)			
81.404 Arkansas.					
Caney Creek Wilderness Area	(2), (4)	(2), (4)		(2), (4)	
Upper Buffalo Wilderness Area	(1),(2),(4),(5)	(2), (4)		(2), (4)	(2)
81.408 Georgia.					
Cohotta Wilderness Area					
Okefenokee Wilderness Area					
Wolf Island Wilderness Area					
81.411 Kentucky.					
Mammoth Cave NP	(1), (2), (5)	(1), (2), (5)	(1), (2)	(1), (2), (5)	
81.412 Louisiana.					
Breton Wilderness Area					
81.413 Maine.					
Acadia National Park	(3)	(3)	(3)	(3)	
Moosehorn Wilderness Area.	(3)	(3)	(3)	(3)	
81.414 Michigan.					
Isle Royale NP.	(1), (2)	(1), (2)	(1), (2)		(1), (2)
Seney Wilderness Area	(1), (2)	(1), (2)	(1), (2)	(1), (2)	(1), (2)
81.415 Minnesota.					
Boundary Waters Canoe Area Wilderness	(2)	(2)	(2)		(1), (2)
Voyageurs NP	(2)	(2)			(1), (2)
81.416 Missouri.					
Hercules-Glades Wilderness Area	(2), (4), (5)	(2), (4), (5)		(2), (4)	(2)
Mingo Wilderness Area	(2), (4), (5)	(2), (4), (5)	(2)	(2), (4)	(2)
81.419 New Hampshire.					
Great Gulf Wilderness Area	(3)	(3)	(3)	(1), (3)	
Pres. Range-Dry River Wilderness Area.					
81.42 New Jersey.					
Brigantine Wilderness Area	(3)	(3)	(1), (3)	(1), (3)	

81.422 North Carolina.					
Great Smoky Mountains NP{1}	(1)	(1)		(1)	
Joyce Kilmer-Slickrock Wilderness Area{2}					
Linville Gorge Wilderness Area.					
Shining Rock Wilderness Area.					
Swanquarter Wilderness Area					
81.426 South Carolina.					
Cape Romain Wilderness					
81.428 Tennessee.					
Great Smoky Mountains NP{1}.	(1)	(1)		(1)	
Joyce Kilmer-Slickrock Wilderness{2}					
81.431 Vermont.					
Lye Brook Wilderness	(2), (3)	(2), (3)	(2), (3)	(1), (2), (3)	
81.433 Virginia.					
James River Face Wilderness.	(2)	(2)	(2)	(2), (5)	
Shenandoah NP	(2), (3)	(1), (2), (3)	(2), (3)	(1),(2),(3),(5)	
81.435 West Virginia.					
Dolly Sods/Otter Creek Wilderness.	(2), (3)	(1), (2), (3)	(1), (2), (3)	(1),(2),(3),(5)	

Key

- (1) MRPO Back Trajectory Analyses(2) MRPO PSAT Modeling(3) MANE-VU Contribution Assessment

- (4) Missouri-Arkansas Contribution Assessment(5) VISTAS Areas of Influence

5.2 Future Year Modeling Results

For regional haze, the calculation of future year conditions assumed:

- baseline concentrations based on 2000-2004 IMPROVE data, with updated (substituted) data for Mingo, Boundary Waters, Voyageurs, Isle Royale, and Seney (see Section 2.3);
- use of the new IMPROVE light extinction equation; and
- use of EPA default values for natural conditions, based on the new IMPROVE light extinction equation.

The uniform rate of visibility improvement values for the 2018 planning year were derived (for the 20% worst visibility days) based on a straight line between baseline concentration value (plotted in the year 2004 -- end year of the 5-year baseline period) and natural condition value (plotted in the year 2064 -- date for achieving natural conditions). Plots of these "glide paths" with the Base M modeling results are presented in Figure 73 for Class I areas in the eastern U.S. A tabular summary of measured baseline and modeled future year deciview values for these Class I areas are provided in Table 15 (2002 base year) and Table 16 (2005 base year)¹³.

The haze results show that several Class I areas in the eastern U.S. are expected to be greater than (less improved than) the uniform rate of visibility improvement values (in 2018), including those in northern Michigan and several in the northeastern U.S. Many other Class I areas in the eastern U.S. are expected to be less than (more improved than) the uniform rate of visibility improvement values (in 2018). As noted above, states should consider these results, along with information on the other four factors, in setting reasonable progress goals.

An assessment of the five factors was performed for LADCO and the State of Minnesota by a contractor (EC/R, 2007). Specifically, ECR examined reductions in SO2 and NOx emissions from EGUs and industrial, commercial and institutional (ICI) boilers; NOx emissions from mobile sources and reciprocating engines and turbines; and ammonia emissions from agricultural operations. The impacts of "on the books" controls were also examined to provide a frame of reference for assessing the impacts of the additional control measures.

The results of ECR's analysis of the five factors are summarized below:

Factor 1 (Cost of Compliance): The average cost effectiveness values (in terms of \$M per ton) are provided in Table 16. For comparison, cost-effectiveness estimates previously provided for "on the books" controls include:

CAIR SO2: \$700 - \$1,200, NOx: \$1,400 - \$2.600 (\$/T)

BART SO2: \$300 - \$963, NOx: \$248 - \$1,770

MACT SO2: \$1,500, NOx: \$7,600

Most of the cost-effectiveness values for the additional controls are within the range of cost-effectiveness values for "on the books" controls.

96

¹³ Model results reflect the grid cell where the IMPROVE monitor is located.

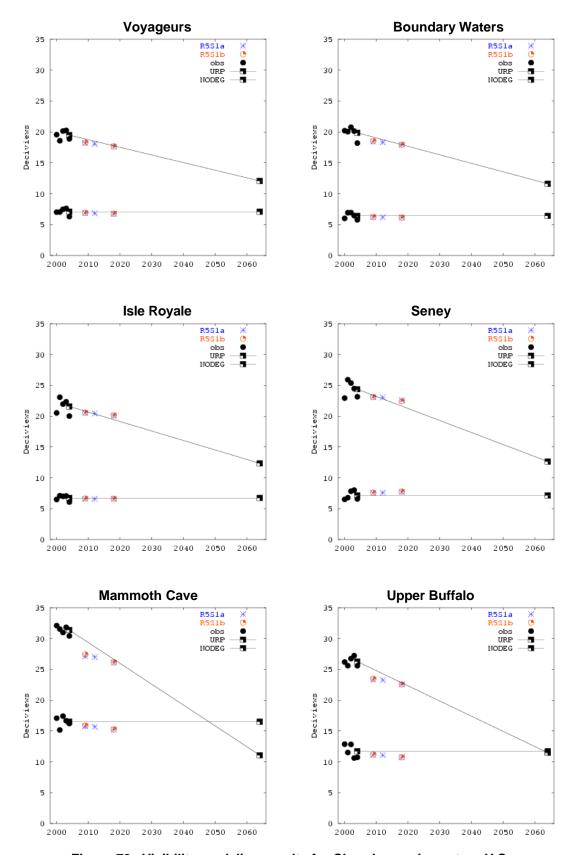


Figure 73. Visibility modeling results for Class I areas in eastern U.S.

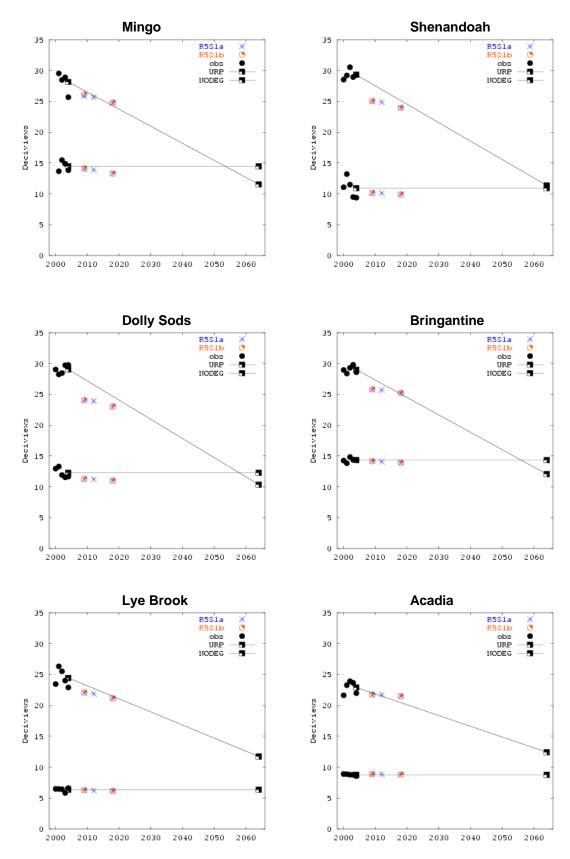
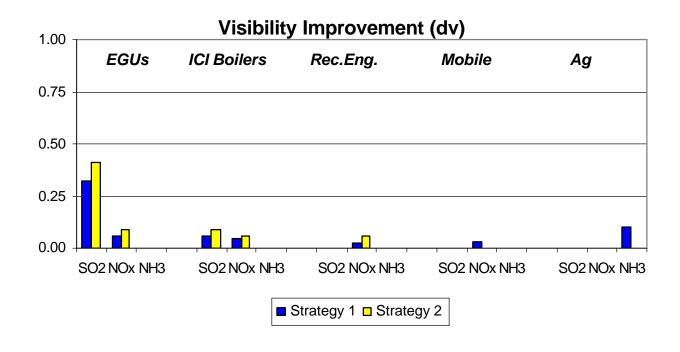


Figure 73 (cont.) Visibility modeling results for Class I areas in eastern U.S.

•	Table 15. H	aze Result	s - Round	4 (Based or	า 2000-2004)	
	2018	2009	2012	2018	2018	2018
					EGU2	EGU2
Baseline	URP	ОТВ	ОТВ	ОТВ	(5-state region)	(12-state region)
19.86	17.70	19.05	19.01	18.94	18.40	17.72
19.48	17.56	19.14	19.19	19.18	18.94	18.38
24.38	21.35	22.98	22.71	22.38	21.26	20.63
21.59	19.21	20.46	20.28	20.04	19.09	18.64
20.75	00.70	24.72	24.24	22.05	22.04	22.04
						22.04
						21.45
						21.57
_						21.38
						22.57
				22.42		20.15
29.31	24.67	24.06	22.79	21.57	20.43	19.42
29.12	24.48	24.81	23.79	22.42	21.59	20.88
29.01	24.68	25.87	25.25	24.39	23.91	23.45
24.45	21.16	21.80	21.32	20.69	20.18	19.79
	2018	2009	2012	2018	2018	2018
					EGU2	EGU2
Baseline	URP	ОТВ	ОТВ	ОТВ	(5-state region)	(12-state region)
6.42	6.42	6.71	6.73	6.87	6.83	6.81
7.09	7.09	7.21	7.25	7.34	7.31	7.26
7.14	7.14	7.19	7.19	7.23	7.06	6.91
6.75	6.75	6.57	6.51	6.47	6.20	6.06
12.84	12.84	12,61	12.62	12.61	12.43	12.02
+						13.33
						10.42
						11.01
						14.75
						10.67
						8.90
				_		12.46
						13.21
						5.82
	Baseline 19.86 19.48 24.38 21.59 26.75 28.15 26.36 26.27 31.37 29.04 29.31 29.12 29.01 24.45 Baseline 6.42 7.09 7.14	Baseline URP 19.86 17.70 19.48 17.56 24.38 21.35 21.59 19.21 26.75 22.76 28.15 24.08 26.36 22.55 26.27 22.47 31.37 26.14 29.04 24.23 29.31 24.67 29.12 24.48 29.01 24.68 24.45 21.16 Colspan="2">Col	Baseline URP OTB 19.86 17.70 19.05 19.48 17.56 19.14 24.38 21.35 22.98 21.59 19.21 20.46 26.75 22.76 24.73 28.15 24.08 25.18 26.36 22.55 24.01 26.27 22.47 24.02 31.37 26.14 28.06 29.04 24.23 24.86 29.31 24.67 24.06 29.12 24.48 24.81 29.01 24.68 25.87 24.45 21.16 21.80 DIB 6.42 6.42 6.71 7.09 7.09 7.21 7.14 7.14 7.19 6.75 6.57 12.84 12.84 12.61 14.46 14.46 13.96 11.24 11.24 10.91 11.71 11.71 11.47	Baseline URP OTB OTB 19.86 17.70 19.05 19.01 19.48 17.56 19.14 19.19 24.38 21.35 22.98 22.71 21.59 19.21 20.46 20.28 26.75 22.76 24.73 24.34 28.15 24.08 25.18 24.67 26.36 22.55 24.01 23.55 26.27 22.47 24.02 23.58 31.37 26.14 28.06 27.03 29.04 24.23 24.86 23.59 29.31 24.67 24.06 22.79 29.12 24.48 24.81 23.79 29.01 24.68 25.87 25.25 24.45 21.16 21.80 21.32 Baseline URP OTB OTB 6.42 6.71 6.73 7.09 7.21 7.25 7.14 7.14 7.14 7.19 7.	Baseline URP OTB OTB OTB 19.86 17.70 19.05 19.01 18.94 19.48 17.56 19.14 19.19 19.18 24.38 21.35 22.98 22.71 22.38 21.59 19.21 20.46 20.28 20.04 26.75 22.76 24.73 24.34 23.85 28.15 24.08 25.18 24.67 24.01 26.36 22.55 24.01 23.55 22.99 26.27 22.47 24.02 23.58 23.06 31.37 26.14 28.06 27.03 25.52 29.04 24.23 24.86 23.59 22.42 29.31 24.67 24.06 22.79 21.57 29.12 24.48 24.81 23.79 22.42 29.01 24.68 25.87 25.25 24.39 24.45 21.16 21.80 21.32 20.69 Baseline	Baseline URP OTB OTB OTB Combo Comb

	Table 16.	Haze Results	s - Round 5.1	(Based on 2	2000-2004)	
Worst 20%		2018	2009	2012	2018	2018
Site	Baseline	URP	ОТВ	ОТВ	ОТВ	OTB+Will DO
BOWA1	19.86	17.94	18.45	18.33	17.94	17.92
VOYA2	19.48	17.75	18.20	18.07	17.63	17.66
SENE1	24.38	21.64	23.10	23.04	22.59	22.42
ISLE1	21.59	19.43	20.52	20.43	20.09	20.13
ISLE9	21.59	19.43	20.33	20.22	19.84	19.82
HEGL1	26.75	23.13	24.72	24.69	24.22	24.17
MING1	28.15	24.27	25.88	25.68	24.74	24.83
CACR1	26.36	22.91	23.39	23.29	22.44	22.40
UPBU1	26.27	22.82	23.34	23.27	22.59	22.55
MACA1	31.37	26.64	27.11	27.01	26.10	26.15
DOSO1	29.05	24.69	24.00	23.90	23.00	23.04
SHEN1	29.31	25.12	24.99	24.87	23.92	23.95
JARI1	29.12	24.91	25.17	25.01	24.06	24.12
BRIG1	29.01	25.05	25.79	25.72	25.21	25.22
LYBR1	24.45	21.48	22.04	21.86	21.14	21.14
ACAD1	22.89	20.45	21.72	21.72	21.49	21.49
Best 20%		2018	2009	2012	2018	2018
Site	Baseline	Max	ОТВ	ОТВ	ОТВ	OTB+Will DO
BOWA1	6.42	6.42	6.21	6.19	6.14	6.12
VOYA2	7.09	7.09	6.86	6.83	6.75	6.76
SENE1	7.14	7.14	7.57	7.58	7.71	7.78
ISLE1	6.75	6.75	6.62	6.59	6.60	6.62
ISLE9	6.75	6.75	6.56	6.55	6.52	6.50
HEGL1	12.84	12.84	12.51	12.32	11.66	11.64
MING1	14.46	14.46	14.07	13.89	13.28	13.29
CACR1	11.24	11.24	10.88	10.85	10.52	10.52
UPBU1	11.71	11.71	11.13	11.08	10.73	10.74
MACA1	16.51	16.51	15.76	15.69	15.25	15.25
DOSO1	12.28	12.28	11.25	11.23	11.00	11.01
SHEN1	10.93	10.93	10.13	10.11	9.91	9.91
JARI1	14.21	14.21	13.38	13.38	13.14	13.14
BRIG1	14.33	14.33	14.15	14.08	13.92	13.92
LYBR1	6.37	6.37	6.25	6.23	6.14	6.15
ACAD1	8.78	8.78	8.86	8.86	8.82	8.82

Table 17. Estimated Cost Effectiveness for Potential Control Measures


10.010	Estimated Cost Effective				
				Cost effectiveness	` '
Emission category	Control strategy	Region	SO2	NOX	NH3
EGU	EGU1	3-State	1,540	2,037	
		9-State	1,743	1,782	
	EGU2	3-State	1,775	3,016	
		9-State	1,952	2,984	
ICI boilers	ICI1	3-State	2,992	2,537	
		9-State	2,275	1,899	
	ICI Workgroup	3-State	2,731	3,814	
		9-State	2,743	2,311	
Reciprocating engines and turbines	Reciprocating engines emitting 100 tons/year or	3-State		538	
	more	9-State		506	
	Turbines emitting 100	3-State		754	
	tons/year or more	9-State		754	
	Reciprocating engines	3-State		1,286	
	emitting 10 tons/year or more	9-State		1,023	
	Turbines emitting 10	3-State		800	
	tons/year or more	9-State		819	
Agricultural sources	10% reduction	3-State			31 - 2,700
		9-State			31 - 2,700
	15% reduction	3-State			31 - 2,700
		9-State			31 - 2,700
Mobile sources	Low-NOX Reflash	3-State		241	*
		9-State		241	
	MCDI	3-State		10,697	
		9-State		2,408	
	Anti-Idling	3-State		(430) - 1,700	
		9-State		(430) - 1,700	
	Cetane Additive Program	3-State		4,119	
		9-State		4,119	
Cement Plants	Process Modification	Michigan		-	
	Conversion to dry kiln	Michigan		9,848	
	LoTox™	Michigan		1,399	
Glass Manufacturing	LNB	Wisconsin		1,041	
<u> </u>	Oxy-firing	Wisconsin		2,833	
	Electric boost	Wisconsin		3,426	
	SCR	Wisconsin		1,054	
	SNCR	Wisconsin		1,094	
Lime Manufacturing	Mid-kiln firing	Wisconsin		688	
<u> </u>	LNB	Wisconsin		837	
	SNCR	Wisconsin		1,210	
	SCR	Wisconsin		5,037	
	FGD	Wisconsin		128 - 4,828	
Oil Refinery	LNB	Wisconsin		3,288	
· ,	SNCR	Wisconsin		4,260	
	SCR	Wisconsin		17,997	
	LNB+FGR	Wisconsin		4,768	
	ULNB	Wisconsin		2,242	
	FGD	Wisconsin		1,078	

Factor 2 (Time Necessary for Compliance): All of the control measures can be implemented by 2018. Thus, this factor can be easily addressed.

Factor 3 (Energy and Non-Air Quality Environmental Impacts): The energy and other environmental impacts are believed to be manageable. For example, the increased energy demand from add-on control equipment is less than 1% of the total electricity and steam production in the region, and solid waste disposal and wastewater treatment costs are less than 5% of the total operating costs of the pollution control equipment. It should also be noted that the SO2 and NOx controls would have beneficial environmental impacts (e.g., reduced acid deposition and nitrogen deposition).

Factor 4 (Remaining Useful Life): The additional control measures are intended to be market-based strategies applied over a broad geographic region. It is not expected that the control requirements will be applied to units that will be retired prior to the amortization period for the control equipment. Thus, this factor can be easily addressed.

Factor 5 (Visibility Impacts): The estimated incremental improvement in 2018 visibility levels for the additional measures is shown in Figure 74, along with the cost-effectiveness expressed in \$M per deciview improvement). These results show that although EGU and ICI boiler controls have higher cost-per-deciview values (compared to some of the other measures), their visibility impacts are larger.

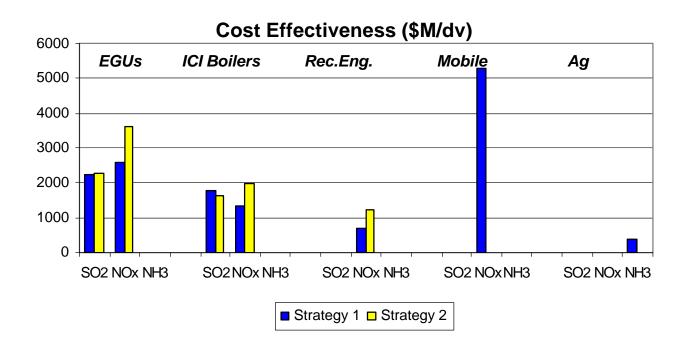


Figure 74. Results of ECR analysis of reasonable progress factors – visibility improvement (Factor 5) is on top, and cost effectiveness (Factor 1) is on bottom

5.3 Weight-of-Evidence Determination for Haze

The WOE determination for haze consists of the primary modeling and other supplemental analyses. A summary of this information is provided below.

Primary (Guideline) Modeling: The results of the guideline modeling are presented in Section 4.1. Key findings from this modeling include:

- Base M modeling results show that the northern Minnesota Class I areas are close to the glide path, whereas the northern Michigan Class I areas are above the glide path in 2018. Other sites in the eastern U.S. are close to (or below) the glide path, except for Mingo (MO), Brigantine (NJ), and Acadia (ME).
- Base K modeling results show that the northern Minnesota and northern Michigan Class I areas are above the glide path in 2018. Other sites in the eastern U.S. are close to (or below) the glide path.
- The difference in the two modeling analyses is due mostly to differences in future year emission projections, especially for EGUs (e.g., use of IPM2.1.9 v. IPM3.0).
- Base K and Base M modeling analyses are considered "SIP quality", so the attainment demonstration for haze should reflect a weight-of-evidence approach, with consideration of monitoring based information.

Additional Modeling: Two additional modeling analyses were considered: (1) the primary modeling redone with different baseline values, and (2) modeling by the State of Minnesota which looked at different receptor locations in the northern Class I areas (MPCA, 2008). Each of these analyses is described below.

First, the primary modeling analysis (Base M) was revised using an alternative baseline value. Specifically, the data for the period 2000-2005 were used to calculate the baseline, given that the Base M modeling reflects a 2005 base year. The results of this alternative analysis (see Table 18) are generally consistent with the primary modeling (see Table 16).

Second, Minnesota's modeling reflects a 2002 base year and much of the data developed by LADCO for its modeling. (Note, Minnesota conducted modeling for LADCO's domain at 36 km, and for a statewide domain at 12 km.) The purpose of the 12 km modeling was to address local scale impacts on the northern Class I areas at several locations, not just the location of the IMPROVE monitor. Results for the Boundary Waters on the 20% worst days range from 18.3 – 19.0 dv, with an average value of 18.7 dv, which is consistent with Minnesota's 36 km modeling results at the IMPROVE monitor. This variability in visibility levels should be kept in mind when reviewing the values presented in Tables 15, 16, and 18, which reflect results at the IMPROVE monitor locations.

	Table 18.	Haze Results	s - Round 5.1	(Based on 2	2000-2005)	
Worst 20%			2009	2012	2018	2018
Site	Baseline	URP	ОТВ	ОТВ	ОТВ	OTB+Will DO
BOWA1	20.10	18.12	18.63	18.51	18.12	18.09
VOYA2	19.62	17.86	18.27	18.15	17.70	17.72
SENE1	24.77	21.94	23.44	23.39	22.94	22.77
ISLE1	21.95	19.71	20.84	20.76	20.41	20.44
ISLE9	21.95	19.71	20.65	20.55	20.15	20.13
HEGL1	27.45	23.67	25.30	25.27	24.79	24.73
MING1	28.92	24.86	25.88	25.68	24.74	24.83
CACR1	27.05	23.44	23.88	23.78	22.92	22.86
UPBU1	26.97	23.36	23.92	23.85	23.14	23.09
MACA1	31.76	26.93	27.42	27.32	26.39	26.44
DOSO1	29.36	24.92	24.20	24.11	23.19	23.23
SHEN1	29.45	25.23	25.06	24.94	23.98	24.01
JARI1	29.40	25.13	25.32	25.17	24.22	24.28
BRIG1	29.12	25.14	25.84	25.77	25.26	25.26
LYBR1	24.71	21.69	22.22	22.06	21.36	21.36
ACAD1	22.91	20.47	21.72	21.72	21.49	21.49
Best 20%			2009	2012	2018	2018
Site	Baseline	URP	ОТВ	ОТВ	ОТВ	OTB+Will DO
BOWA1	6.40	6.40	6.20	6.17	6.13	6.10
VOYA2	7.05	7.05	6.82	6.78	6.71	6.71
SENE1	7.20	7.20	7.60	7.61	7.73	7.80
ISLE1	6.80	6.80	6.67	6.64	6.65	6.66
ISLE9	6.80	6.80	6.62	6.61	6.57	6.55
HEGL1	13.04	13.04	12.71	12.51	11.85	11.82
MING1	14.68	14.68	14.07	13.89	13.28	13.29
CACR1	11.62	11.62	11.24	11.20	10.86	10.86
UPBU1	11.99	11.99	11.41	11.36	11.01	11.02
MACA1	16.64	16.64	15.88	15.82	15.37	15.38
DOSO1	12.24	12.24	11.21	11.19	10.96	10.97
SHEN1	10.85	10.85	10.04	10.02	9.82	9.83
JARI1	14.35	14.35	13.51	13.51	13.27	13.27
BRIG1	14.36	14.36	14.17	14.10	13.94	13.94
LYBR1	6.21	6.21	6.11	6.09	6.01	6.01
ACAD1	8.57	8.57	8.67	8.66	8.62	8.62

Observational Models and Diagnostic Analyses: The observation-based modeling (i.e., application of thermodynamic equilibrium models) is presented in Section 3. The key findings from this modeling are that $PM_{2.5}$ mass is sensitive to reductions in sulfate, nitric acid, and ammonia concentrations. Even though sulfate reductions cause more ammonia to be available to form ammonium nitrate (PM-nitrate increases slightly when sulfate is reduced), this increase is generally offset by the sulfate reductions, such that $PM_{2.5}$ mass decreases and visibility improves. Under conditions with lower sulfate levels (i.e., proxy of future year conditions), $PM_{2.5}$ is more sensitive to reductions in nitric acid compared to reductions in ammonia.

As discussed in Section 2, thermodynamic equilibrium modeling based on data collected at Seney indicates that PM_{2.5} there is most sensitive to reductions in sulfate, but also responsive to reductions in nitric acid (Blanchard, 2004). An analysis using data from the Midwest ammonia monitoring network for a site in Minnesota (i.e., Great River Bluffs, which is the closest ammonia monitoring site to the northern Class I areas) suggested that reductions in sulfate, nitric acid, and ammonia concentrations will lower PM_{2.5} concentrations and improve visibility levels in the northern Class I areas.

Trajectory analyses for the 20% worst visibility days for the four northern Class I areas are provided in Figure 75. (Note, this figure is similar to Figure 34, but the trajectory results for each Class I area are displayed separately here.) The orange areas are where the air is most likely to come from, and the green areas are where the air is least likely to come from. Darker shading represents higher frequency. As can be seen, bad air days are generally associated with transport from regions located to the south, and good air days with transport from Canada.

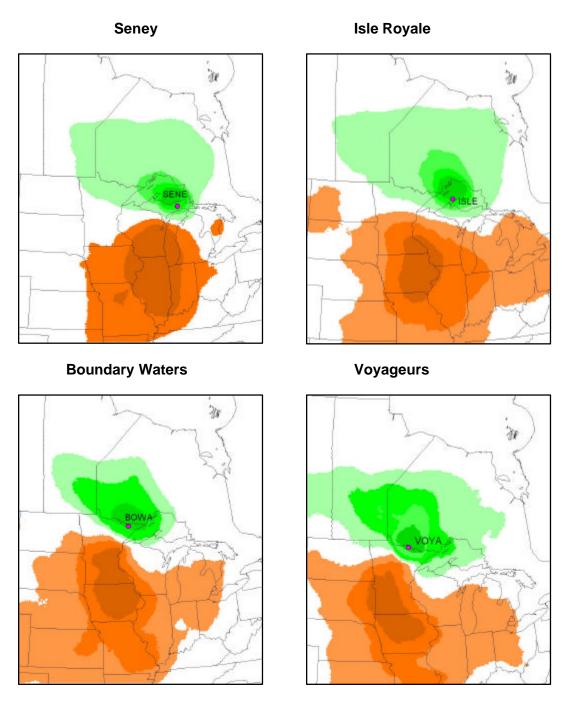


Figure 75. Trajectory analysis results for northern Class I areas on 20% worst visibility days

The primary diagnostic analysis is source apportionment modeling with CAMx to provide more quantitative information on source region (and source sector) impacts (Baker, 2007b). Specifically, the CAMx model was applied to provide source contribution information. Specifically, the model estimated the impact of 18 geographic source regions (which are identified in Figure 76) and 6 source se ctors (EGU point, non-EGU point, on-road, off-road, area, and ammonia sources) at visibility/haze monitoring sites in the eastern U.S.

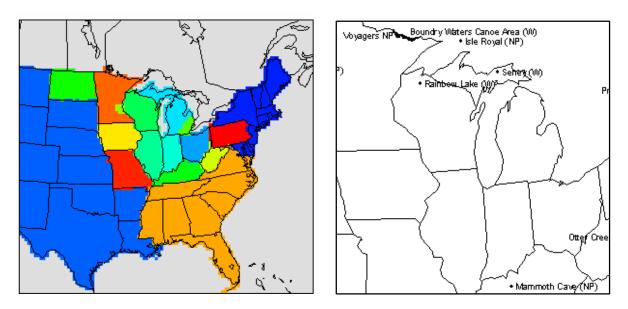


Figure 76. Source regions (left) and key monitoring sites (right) for haze modeling analysis

Modeling results for 2018 (Base K and Base M) are provided in Appendix IV for several key monitoring sites (Class I areas). For each monitoring site, there are two graphs: one showing sector-level contributions, and one showing source region and sector-level contributions in terms of absolute modeled values.

The sector-level results (see, for example, Figure 77) show that EGU sulfate, non-EGU-sulfate, and ammonia emissions generally have the largest contributions at the key monitor locations. The source group contributions vary by receptor location due to emissions inventory differences.

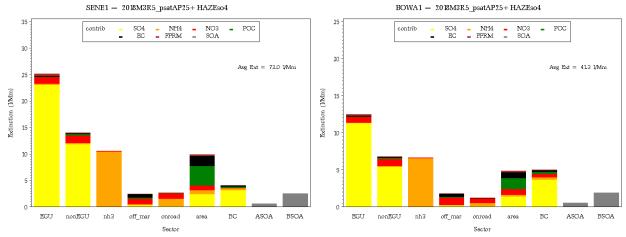


Figure 77. Source-sector results for Seney (left) and Boundary Waters (right) - 2018 (Base M)

The source region results (see, for example, Figure 78) show that emissions from a number of nearby states contribute to regional haze levels.

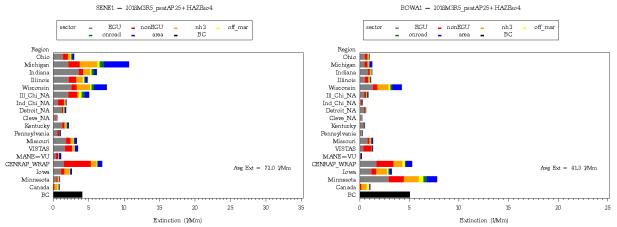


Figure 78. Source-region results for Seney (left) and Boundary Waters (right) - 2018 (Base M)

Table 19 provides a summary of the estimated state-level culpabilities based on the LADCO back trajectory analyses and the PSAT analyses for 2018.

Summary: Air quality modeling and other supplemental analyses were performed to estimate future year visibility levels. Based on this information, the following general conclusions can be made:

- Existing ("on the books") controls are expected to improve visibility levels in the northern Class I areas.
- Visibility levels in a few Class I areas in the eastern U.S. are expected to be greater than (less improved than) the uniform rate of visibility improvement values in 2018, including those in northern Michigan and some in the northeastern U.S.
- Visibility levels in many other Class I areas in the eastern U.S. are expected to be less than (more improved than) the uniform rate of visibility improvement values in 2018.

Table 19. State Culpabilities Based on PSAT Modeling and Trajectory Analyses

		В	oundary Wate	ers			Seney						
	LADCO - Round 4 PSAT	LADCO - Round 5 PSAT	MPCA- PSAT	CENRAP - PSAT	LADCO - Traj. Analysis	LADCO - Round 4 PSAT	LADCO - Round 5 PSAT	CENRAP - PSAT	LADCO - Traj. Analysis				
Michigan	3.4%	4.8%	3.0%	1.9%	0.7%	13.8%	18.1%		14.7%				
Minnesota	30.5%	23.5%	28.0%	30.6%	37.6%	4.8%	1.6%		3.8%				
Wisconsin	10.4%	10.9%	10.0%	6.4%	10.6%	12.6%	10.9%		8.4%				
Illinois	5.2%	5.1%	6.0%	3.5%	2.7%	13.0%	14.3%		7.4%				
Indiana	2.9%	3.9%	3.0%	1.8%	1.2%	9.6%	11.6%		2.2%				
lowa	7.6%	8.3%	8.0%	2.5%	7.4%	6.2%	3.8%		5.7%				
Missouri	5.2%	3.4%	6.0%	2.1%	3.3%	6.5%	4.8%		3.2%				
N. Dakota	5.7%	1.1%	6.0%	4.6%	5.9%	1.5%	0.1%		0.6%				
Canada	1.9%	2.7%	3.0%	12.5%	15.1%	2.1%	1.2%		11.1%				
CENRAP- WRAP	10.9%	13.5%		4.2%	10.1%	13.1%	10.0%		7.0%				
	83.6%	77.2%	73.0%	70.2%	94.6%	83.3%	76.4%		64.1%				
			Voyageurs			Isle Royale							
	LADCO - Round 4 PSAT	LADCO - Round 5 PSAT	MPCA- PSAT	CENRAP - PSAT	LADCO - Traj. Analysis	LADCO - Round 4 PSAT	LADCO - Round 5 PSAT	CENRAP - PSAT	LADCO - Traj. Analysis				
Michigan	2.0%	4.9%	2.0%	1.0%	1.6%	12.7%	13.4%						
Minnesota	35.0%	20.2%	31.0%	31.5%	36.9%	14.1%	9.5%						
Wisconsin	6.3%	7.9%	6.0%	3.7%	9.7%	16.3%	14.7%						
Illinois	3.0%	7.1%	3.0%	1.8%	1.2%	7.0%	8.7%						
Indiana	1.6%	4.6%	2.0%	0.8%		5.6%	5.2%						
lowa	7.4%	7.1%	7.0%	2.4%	10.2%	6.9%	8.3%						
Missouri	4.3%	4.0%	4.0%	1.6%	0.3%	3.9%	4.6%						
N. Dakota	10.3%	1.7%	13.0%	6.1%	7.1%	3.6%	0.3%						
Canada	2.7%	3.3%	5.0%	17.2%	13.3%	2.2%	1.7%						
CENRAP- WRAP	10.2%	13.7%		6.1%	16.5%	12.5%	12.6%						
	82.7%	74.5%	73.0%	72.2%	96.8%	84.9%	79.0%						

Section 6. Summary

To support the development of SIPs for ozone, PM_{2.5}, and regional haze in the States of Illinois, Indiana, Michigan, Ohio, and Wisconsin, technical analyses were conducted by LADCO, its member states, and various contractors. The analyses include preparation of regional emissions inventories and meteorological modeling data for two base years, evaluation and application of regional chemical transport models, and review of ambient monitoring data.

Analyses of monitoring data were conducted to produce a conceptual model, which is a qualitative summary of the physical, chemical, and meteorological processes that control the formation and distribution of pollutants in a given region. Key findings of the analyses include:

Ozone

- Current monitoring data show about 20 sites in violation of the 8-hour ozone standard of 85 ppb. Historical ozone data show a steady downward trend over the past 15 years, especially since 2001-2003, due likely to federal and state emission control programs.
- Ozone concentrations are strongly influenced by meteorological conditions, with more high ozone days and higher ozone levels during summers with above normal temperatures.
- Inter- and intra-regional transport of ozone and ozone precursors affects many portions of the five states, and is the principal cause of nonattainment in some areas far from population or industrial centers

$PM_{2.5}$

- Current monitoring data show 30 sites in violation of the annual PM_{2.5} standard of 15 ug/m³. Nonattainment sites are characterized by an elevated regional background (about 12 14 ug/m³) and a significant local (urban) increment (about 2 3 ug/m³). Historical PM_{2.5} data show a slight downward trend since deployment of the PM_{2.5} monitoring network in 1999.
- PM_{2.5} concentrations are also influenced by meteorology, but the relationship is more complex and less well understood compared to ozone.
- On an annual average basis, PM_{2.5} chemical composition consists of mostly sulfate, nitrate, and organic carbon in similar proportions.

Haze

- Current monitoring data show visibility levels in the Class I areas in northern
 Michigan are on the order of 22 24 deciviews. The goal of EPA's visibility program
 is to achieve natural conditions, which is on the order of 12 deciviews for these
 Class I areas, by the year 2064.
- Visibility impairment is dominated by sulfate and nitrate.

Air quality models were applied to support the regional planning efforts. Two base years were used in the modeling analyses: 2002 and 2005. EPA's modeling guidance recommends using

2002 as the baseline inventory year, but also allows for use of an alternative baseline inventory year, especially a more recent year. Initially, LADCO conducted modeling with a 2002 base year (i.e., Base K modeling, which was completed in 2006). A decision was subsequently made to conduct modeling with a 2005 base year (i.e., Base M, which was completed in 2007). Statistical analyses showed that 2002 and 2005 both had above normal ozone-conducive conditions, although 2002 was more severe compared to 2005. Examination of multiple base years provides for a more complete technical assessment. Both sets of model runs are discussed in this document.

Basecase modeling was conducted to evaluate model performance (i.e., assess the model's ability to reproduce the observed concentrations). This exercise was intended to assess whether, and to degree, confidence in the model is warranted (and to assess whether model improvements are necessary). Model performance for ozone and $PM_{2.5}$ was generally acceptable and can be characterized as follows:

Ozone

- Good agreement between modeled and monitored concentration for higher concentration levels (> 60 ppb) i.e., bias within 30%
- Regional modeled concentrations appear to be underestimated in the 2002 base year, but show better agreement (with monitored data) in the 2005 base year due to model and inventory improvements.
- Day-to-day and hour-to-hour variation in and spatial patterns of modeled concentrations are consistent with monitored data
- Model accurately simulates the change in monitored ozone concentrations due to reductions in precursor emissions.

$PM_{2.5}$

- Good agreement in the magnitude of fine particle mass, but some species are overestimated and some are underestimated
 - Sulfates: good agreement in the 2002 base year, but underestimated in the summer in the 2005 base year due probably to meteorological factors
 - Nitrates: slightly overestimated in the winter in the 2002 base year, but good agreement in the 2005 base year as a result of model and inventory improvements
 - Organic Carbon: grossly underestimated in the 2002 and 2005 base years due likely to missing primary organic carbon emissions
- Temporal variation and spatial patterns of modeled concentrations are consistent with monitored data

Future year strategy modeling was conducted to determine whether existing ("on the books") controls would be sufficient to provide for attainment of the standards for ozone and $PM_{2.5}$ and if not, then what additional emission reductions would be necessary for attainment. Traditionally, attainment demonstrations involved a "bright line" test in which a single modeled value (based on EPA guidance) was compared to the ambient standard. To provide a more robust assessment of expected future year air quality, other information was considered. Furthermore, according to EPA's modeling guidance, if the future year modeled values are "close" to the

standard (i.e., 82-87 ppb for ozone and 14.5-15.5 ug/m³ for PM_{2.5}), then the results of the primary modeling should be reviewed along with the supplemental information in a "weight of evidence" (WOE) assessment of whether each area is likely to achieve timely attainment. Key findings of the WOE determination include:

- Existing controls are expected to produce significant improvement in ozone and PM_{2.5} concentrations and visibility levels.
- The choice of the base year affects the future year model projections. A key difference between the base years of 2002 and 2005 is meteorology. 2002 was more ozone conducive than 2005. The choice of which base year to use as the basis for the SIP is a policy decision (i.e., how much safeguard to incorporate).
- Most sites are expected to meet the current 8-hour standard by the applicable attainment date, except for sites in western Michigan and, possibly, in eastern Wisconsin and northeastern Ohio.
- Most sites are expected to meet the current PM_{2.5} standard by the applicable attainment date, except for sites in Detroit, Cleveland, and Granite City.

The regional modeling for $PM_{2.5}$ does not reflect air quality benefits expected from local controls. States are conducting local-scale analyses and will use these results, in conjunction with the regional-scale modeling, to support their attainment demonstrations for $PM_{2.5}$.

- These findings of residual nonattainment for ozone and PM_{2.5} are supported by current (2005 2007) monitoring data which show significant nonattainment in the region (e.g., peak ozone design values on the order of 90 93 ppb, and peak PM_{2.5} design values on the order of 16 17 ug/m³). It is unlikely that sufficient emission reductions will occur in the next few of years to provide for attainment at all sites.
- Attainment at most sites by the applicable attainment date is dependent on actual
 future year meteorology (e.g., if the weather conditions are consistent with [or
 less severe than] 2005, then attainment is likely) and actual future year
 emissions (e.g., if the emission reductions associated with the existing controls
 are achieved, then attainment is likely). If either of these conditions is not met,
 then attainment may be less likely.
- The new PM_{2.5} 24-hour standard and the new lower ozone standard will not be met at several sites, even by 2018, with existing controls.
- Visibility levels in a few Class I areas in the eastern U.S. are expected to be greater than (less improved than) the uniform rate of visibility improvement values in 2018 based on existing controls, including those in northern Michigan and some in the northeastern U.S. Visibility levels in many other Class I areas in the eastern U.S. are expected to be less than (more improved than) the uniform rate of visibility improvement values in 2018.

Section 7. References

Alpine Geophysics, 2007, "Emissions Inventory Assistance: 2005 Base Year Biogenic and Other (non-LADCO) State Emissions, Preparation and Delivery of Non-MRPO Emission Files

March 12, 2007.

AER, 2004, "Analysis of Recent Regional Haze Data", Atmospheric and Environmental Research, Inc., August 2004.

Baker, K., "Hot Spot Test (Draft), Lake Michigan Air Directors Consortium, March 23, 2005

Baker, K. 2007a, "Ozone Source Apportionment Results for Receptors in Non-Attainment Counties in the Great Lakes Region", Lake Michigan Air Directors Consortium, October 2007.

Baker, K., 2007b, "Source Apportionment Results for PM_{2.5} and Regional Haze at Receptors in the Great Lakes Region", Lake Michigan Air Directors Consortium, November 2007.

Baker, K. and D. Kenski, 2007, "Diagnostic and Operational Evaluation of 2002 and 2005 8-Hour Ozone to Support Model Attainment Demonstrations", Lake Michigan Air Directors Consortium, October 2007.

Blanchard, C.L., and S. Tanenbaum, 2003, "VOC and NO_x Limitation of Ozone Formation at Monitoring Sites in Illinois, Indiana, Michigan, Missouri, Ohio, and Wisconsin, 1998-2002", Report to LADCO, February 2003..

Blanchard, C.L., and S. Tanenbaum, 2004, "The Effects of Changes in Sulfate, Ammonia, and Nitric Acid on Fine PM Composition at Monitoring Sites in Illinois, Indiana, Michigan, Missouri, Ohio, and Wisconsin, 2000-2002", Report to LADCO, February 2004.

Blanchard, C.L., and S. Tanenbaum, 2005a, "Weekday/Weekend Differences in Ambient Concentrations of Primary and Secondary Air Pollutants in Atlanta, Baltimore, Chicago, Dallas-Fort Worth, Denver, Houston, New York, Phoenix, Washington, and Surrounding Areas", Prepared for National Renewable Energy Laboratory, NREL Project ES04-1, July 30, 2005.

Blanchard, C.L., and S. Tanenbaum, 2005b, "Analysis of Data from the Midwest Ammonia Monitoring Project", Draft Final Technical Memorandum, March 31, 2005.

Breiman, L., J. Friedman, R. Olshen, and C. Stone, 1984, "Classification and Regression Trees", Chapman & Hall (1984).

Camalier, L., Cox, W., Dolwick, P., 2007. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmospheric Environment 41, 7127-7137

Cox, W.M, and S.-H. Chu, 1993, Meteorologically Adjusted Ozone Trends in Urban Areas: A Probabililistic Approach, Atmospheric Environment 27B(4):425-434 (1993).

DeBell, L.J., K. Gebhart, J. Hand, W. Malm, M. Pitchford, B. Schichtel, and W. White, 2006, "Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States, Report IV", Cooperative Institute for Research in the Atmosphere, November 2006

DRI, 2005, "Source Apportionment Analysis of Air Quality Monitoring Data: Phase II", Desert Research Institute. March 2005

EC/R, Incorporated, 2004, "Fire Emissions Inventory Development for the Midwest Regional Planning Organization", Final Report, September 30, 2004.

EC/R, Incorporated, 2007, "Reasonable Progress for Class I Areas in the Northern Midwest – Factor Analysis", Draft Final Technical Memorandum, July 18, 2007.

E.H. Pechan, 2004, "LADCO Nonroad Emissions Inventory Project – Development of Local Data for Construction and Agricultural Equipment", Final Report, September 10, 2004

E.H. Pechan, 2005, "Development of Updated Growth and Control Factors for Lake Michigan Air Directors Consortium (LADCO)", Draft Report, December 29, 2005.

E. H. Pechan, 2007, "Development of 2005 Base Year Growth and Control Factors for Lake Michigan Air Directors Consortium (LADCO)", Final Report, September 2007.

Environ, 2004, "LADCO Nonroad Emissions Inventory Project for Locomotive, Commercial Marine, and Recreational Marine Emission Sources, Final Report, December 2004.

Environ, 2007a, "Modeling Weekend and Weekday Ozone in Southeast Michigan", Draft Final Report, Prepared for National Renewable Energy Laboratory, July 30, 2007.

Environ, 2007b, "LADCO 2005 Locomotive Emissions", Draft, February 2007.

Environ, 2007c, "LADCO 2005 Commercial Marine Emissions", Draft, March 2, 2007.

Environ, 2008, "LADCO On-Road Emission Inventory Development Using CONCEPT MV", January 2008..

Hollander, M. and D. Wolfe, 1973, "Nonparametric Statistical Methods", John Wiley & Sons, New York (1973).

Hopke, P. K., 2005, Analyses of Midwest PM-Related Measurements, Report to LADCO, March 2005.

Kenski, D.M., 2004, Quantifying Transboundary Transport of PM_{2.5}: A GIS Analysis, Proc. AWMA 97th Annual Conf., Indianapolis, June 2004.

Kenski, D.M., 2007a, "CART Analysis for Ozone Trends and Meteorological Similarity", May 10, 2007.

Kenski, D.M., 2007b, "Impact of Missing Data on Worst Days at Midwest Northern Class 1 Areas", Donna Kenski, Midwest RPO, March 12, 2007 (revised 6/19/07).

Kenski, D.M., 2008a, "Updated Cox Trends Analysis", February 2008.

Kenski, D.M. 2008b, "Updated CART Analysis for Ozone through 2007", January 30, 2008.

LADCO, 2005, "Meteorological Modeling Performance Summary for Applications to PM_{2.5}/Haze/Ozone Modeling Projects", February 18, 2005.

LADCO, 2006a, "Base K/Round 4 Strategy Modeling" Emissions", May 16, 2006.

LADCO, 2006b, "Base K/Round 4 Modeling: Summary", August 31, 2006.

LADCO, 2007a, "Modeling Protocol: 2002 Basecase Technical Details", October 17, 2007

LADCO, 2007b, "Modeling Protocol: 2005 Basecase Technical Details", October 19, 2007

LADCO, 2007c, "An Evaluation of an Annual 2005 MM5 Simulation to Support Photochemical and Emissions Modeling Applications", January 10, 2007.

LADCO, 2007d, "Base M/Round 5 Modeling: Summary (DRAFT), October 10, 2007

LADCO, 2008a, "Base M Strategy Modeling: Emissions (Revised)", February 27, 2008

LADCO, 2008b, "Critique: Modeled Attainment Probability (i.e., Bob Lopez' analysis)", January 10, 2008

Lopez, 2007, "Assessing the Site-Specific and Region-wide Probability of Attainment Level Ozone Air Quality under varying seasonal conditions using the results of 2002 (Round 4) and 2005 (Round 5) Regional Modeling", Draft 2, Bob Lopez, WDNR, December 12, 2007

Mansell, G, Z. Wang, R. Zhang, J. Fadel, T. Ramsey, H. Xin, Y. Liang, and J. Arogo, 2005, "An Improved Process-Based Ammonia Emissions Model for Agricultural Sources – Emission Estimates"

MPCA, 2008, "Technical Support Document for the Minnesota State Implementation Plan for Regional Haze", Draft, March 4, 2008.

MRPO, 2001, "Principles for Regional Planning", March 9, 2001.

MRPO, 2007, "Draft List of Class I Areas Located Within (or Impacted by) Midwest RPO States", June 26, 2007.

MRPO, 2008, "Regional Haze in the Upper Midwest: Summary of Technical Information", Version 2.2, February 22, 2008.

Millstein, D.E., R.A. Harley, and S.V. Hering, 2007, "Weekly cycles in fine particulate matter", Atmospheric Environment (2007), doi:10.1016/j.atmosenv.2007.10.010.

Poirot, R. L.; Wishinski, P. R.; Hopke, P. K.; Polissar, A. V.; Comparative Application of Multiple Receptor Methods To Identify Aerosol Sources in Northern Vermont, Environ. Sci. Technol., 36(4); 820-820 (2002).

Sheesley, R.J., J.J. Schauer, E. Bean, and D. Kenski, Trends in Secondary Organic Aerosol at a Remote Site in Michigan's Upper Peninsula, Env. Sci. and Tech. 38(24); 6491-6500 (Oct 2004).

STI, 2004, "Data Processing and Analysis of Aloft Air Quality Data Collected in the Upper Midwest", Executive Summary, STI-903470-2568-ES3, Sonoma Technology, Inc, August 5, 2004.

STI, 2006a, "Integration of Results for the Upper Midwest Urban Organics Study", Final Report, STI-903520-2942-FR, Sonoma Technology, Inc. March 31, 2006.

STI, 2008, "Data Analysis and Source Apportionment of PM_{2.5} in Selected Midwestern Cities", Final Report, STI-907018.03-3264-DRF, Sonoma Technology, Inc., February 2008.

EPA, 1999, Regional Haze Regulations, 64 FR 35714, July 1, 1999.

EPA, 2003, "Guidance for Estimating Natural Visibility Conditions Under the Regional Haze Rule", EPA-454/B-03-005, September 2003.

EPA, 2002, "Recommended Approach for Performing Mid-Course Review of SIPs to Meet the 1-Hour NAAQS for Ozone", January 2002.

EPA, 2005, Final Rule to Implement the 8-Hour Ozone National Ambient Air Quality Standard, 70 FR 71612, November 29, 2005

EPA, 2006, "Regulatory Impact Analysis of the Revisions to the National Ambient Air Quality Standards", September 2006 (http://www.epa.gov/ttn/ecas/ria.html#ria2007)

EPA, 2007a, "Guidance for on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM_{2.5}, and Regional Haze", EPA-454/B07-002, April 2007.

EPA, 2007b, "Regulatory Impact Analysis of the Proposed Revisions to the National Ambient Air Quality Standards", EPA-452/R-07-008, July 2007 (http://www.epa.gov/ttn/ecas/ria.html#ria2007)

EPA, 2007c, Clean Air Fine Particle Implementation Rule, 72 FR 20586, April 25, 2007

Zhang, R, T. Ramsey, J. Fadel, J. Arogo, Z. Wang, G. Mansell, and H. Xin, 2005, "An Improved Process-Based Ammonia Emissions Model for Agricultural Sources – Model Development"

Web Sites:

http://www.ladco.org/tech/emis/basem/canada/index.htm

http://www.ladco.org/tech/emis/basek/BaseK Reports.htm

http://www.ladco.org/tech/emis/r5/round5 reports.htm

http://vista.cira.colostate.edu/views/

APPENDIX I

Ozone and $PM_{2.5}\,$ Modeling Results

Key Sites		4th High 8-hour Value				Des. Values (truncated)			2005 BY	2002 BY	200	8 - OTB		
noy onco		'03	'04	'05	'06	'07	'03-'05	'04-'06	'05-'07	Average	Average		Round 5	
Lake Michigan Area			•		•			0.00						Lake Michigan Area
Chiwaukee	550590019	88	78	93	79	85	86	83	85	84.7	98.3	0.968	82.0	Chiwaukee
Racine	551010017	82	69	95	71	77	82		81	80.3	91.7	0.966	77.6	Racine
Milwaukee-Bayside	550190085	92	73	93	73	83	86	79	83	82.7	91.0	0.963	79.6	Milwaukee-Bayside
Harrington Beach	550890009	99	72	94	72	84	88	79	83	83.3	93.0	0.960	80.0	Harrington Beach
Manitowoc	550710007	92	74	95	78	85	87	82	86	85.0	87.0	0.957	81.3	Manitowoc
Sheboygan	551170006	93	78	97	83	88	89	86	89	88.0	97.0	0.959	84.4	Sheboygan
Kewaunee	550610002	97	73	88	76	85	86		83	82.7	89.3	0.954	78.9	Kewaunee
Door County	550290004	93	78	101	79	92	90		90	88.7	91.0	0.956	84.8	Door County
Hammond	180892008	81	67	87	75	77	78		79	77.7	88.3	0.971	75.4	Hammond
Whiting	180890030		64	88	81	88	76		85	79.3		0.971	77.0	Whiting
Michigan City	180910005	82	70	84	75	73	78		77	77.0	90.3	0.964	74.2	Michigan City
Ogden Dunes	181270020	77	69	90	70	84	78		81	78.3	86.3	0.967	75.7	Ogden Dunes
Holland	260050003	96	79	94	91	94	89		93	90.0	94.0	0.951	85.6	Holland
Jenison	261390005	91	69	86	83	88	82		85	82.0	86.0	0.950	77.9	Jenison
Muskegon	261210039	94	70	90	90	86	84	83	88	85.0	90.0	0.951	80.8	Muskegon
Indianapolis Area														Indianapolis Area
Noblesville	189571001	101	75	87	77	84	87	79	82	82.7	93.7	0.944	78.0	Noblesville
Fortville	180590003	92	72	80	75	81	81	75	78	78.0	91.3	0.948	73.9	Fortville
Fort B. Harrison	180970050	91	73	80	76	83	81	76	79	78.7	90.0	0.951	74.8	Fort B. Harrison
Detroit Area														Detroit Area
New Haven	260990009	102	81	88	78	93	90	82	86	86.0	92.3	0.962	82.7	New Haven
Warren	260991003	101	71	89	78	91	87	79	86	84.0	90.0	0.982	82.5	Warren
Port Huron	261470005	87	74	88	78	89	83	80	85	82.7	88.0	0.956	79.0	Port Huron
Cleveland Area														Cleveland Area
Ashtabula	390071001	99	81	93	86	92	91	86	90	89.0	95.7	0.954	84.9	Ashtabula
Geauga	390550004	97	75	88	70	68	86	77	75	79.3	99.0	0.954	75.7	Geauga
Eastlake	390850003	92	79	97	83	74	89	86	84	86.3	92.7	0.959	82.8	Eastlake
Akron	391530020	89	77	89	77	91	85	81	85	83.7	93.3	0.948	79.3	
Cincinnati Area														Cincinnati Area
Wilmington	390271002	96	78	83	81	82	85	80	82	82.3	94.3	0.945	77.8	Wilmington
Sycamore	390610006	93	76	89	81	90	86	82	86	84.7	90.3	0.965	81.7	Sycamore
Lebanon	391650007	95	81	92	86	88	89	86	88	87.7	87.0	0.954	83.6	Lebanon
Columbus Area														Columbus Area
London	390970007	90	75	81	76	83	82		80	79.7	88.7	0.946	75.4	London
New Albany	390490029	94	78	92	82	87	88	84	87	86.3	93.0	0.954		New Albany
Franklin	290490028	84	73	86	79	79	81	79	81	80.3	86.0	0.958	77.0	Franklin
St. Louis Area														St. Louis Area
W. Alton (MO)	291831002	91	77	89	91	89	85		89	86.3	90.0	0.954	82.4	W. Alton (MO)
Orchard (MO)	291831004	90	76	92	92	83	86	86	89	87.0	90.0	0.958	83.3	Orchard (MO)
Sunset Hills (MO)	291890004	88	70		80	89	82	79	86	82.3	88.3	0.966	79.5	Sunset Hills (MO)
Arnold (MO)	290990012	82	70	92	79	87	81	80	86	82.3	84.7	0.956	78.7	Arnold (MO)
Margaretta (MO)	295100086	90	72	91	76	91	84		86	83.0	87.7	0.962		Margaretta (MO)
Maryland Heights (MO)	291890014			88	84	94	88	86	88	87.3		0.967	84.5	Maryland Heights (MO)

Key Sites		41	h High	8-hou	r Value		Des. Va	lues (tru	ncated)	2005 BY	2002 BY		2009 - OTB		2009 -	Will Do	
.,		'03	'04	'05	'06	'07	'03-'05	'04-'06	'05-'07	Average	Average	RRF	Round 5 R	ound 4	RRF	Round 5	
Lake Michigan Area																	Lake Michigan Area
Chiwaukee	550590019	88	78	93	79	85	86	83	85	84.7	98.3	0.972	82.3	92.0	0.971	82.2	Chiwaukee
Racine	551010017	82	69	95	71	77	82	78	81	80.3	91.7	0.965	77.5	84.9	0.964	77.4	Racine
Milwaukee-Bayside	550190085	92	73	93	73	83	86	79	83	82.7	91.0	0.965	79.8	84.9	0.964	79.7	Milwaukee-Bayside
Harrington Beach	550890009	99	72	94	72	84	88	79	83	83.3	93.0	0.961	80.1	85.4	0.960	80.0	Harrington Beach
Manitowoc	550710007	92	74	95	78	85	87	82	86	85.0	87.0	0.951	80.8	78.9	0.949		Manitowoc
Sheboygan	551170006	93	78	97	83	88	89	86	89	88.0	97.0	0.955	84.0	88.9	0.953	83.9	Sheboygan
Kewaunee	550610002	97	73	88	76	85	86	79	83	82.7	89.3	0.945	78.1	81.0	0.943	78.0	Kewaunee
Door County	550290004	93	78	101	79	92	90	86	90	88.7	91.0	0.946	83.9	81.8	0.945	83.8	Door County
Hammond	180892008	81	67	87	75	77	78	76	79	77.7	88.3	0.971	75.4	86.6	0.970	75.3	Hammond
Whiting	180890030		64	88	81	88	76	77	85	79.3		0.971	77.0		0.970	77.0	Whiting
Michigan City	180910005	82	70	84	75	73	78	76	77	77.0	90.3	0.960	73.9	86.5	0.959	73.8	Michigan City
Ogden Dunes	181270020	77	69	90	70	84	78	76	81	78.3	86.3	0.965	75.6	82.8	0.964		Ogden Dunes
Holland	260050003	96	79	94	91	94	89	88	93	90.0	94.0	0.948	85.3	83.4	0.947	85.2	Holland
Jenison	261390005	91	69	86	83	88	82	79	85	82.0	86.0	0.940	77.1	77.6	0.939		Jenison
Muskegon	261210039	94	70	90	90	86	84	83	88	85.0	90.0	0.947	80.5	81.5	0.945	80.3	Muskegon
Indianapolis Area																	Indianapolis Area
Noblesville	189571001	101	75	87	77	84	87	79	82	82.7	93.7	0.945	78.1	83.7	0.946	78.2	Noblesville
Fortville	180590003	92	72	80	75	81	81	75	78	78.0	91.3	0.947	73.9	83.8	0.948	73.9	Fortville
Fort B. Harrison	180970050	91	73	80	76	83	81	76	79	78.7	90.0	0.955	75.1	83.7	0.956	75.2	Fort B. Harrison
Detroit Area																	Detroit Area
New Haven	260990009	102	81	88	78	93	90	82	86	86.0	92.3	0.947	81.4	85.3	0.947	81.4	New Haven
Warren	260991003	101	71	89	78	91	87	79	86	84.0	90.0	0.968	81.3	83.3	0.969	81.4	Warren
Port Huron	261470005	87	74	88	78	89	83	80	85	82.7	88.0	0.937	77.5	79.1	0.938	77.5	Port Huron
Cleveland Area																	Cleveland Area
Ashtabula	390071001	99	81	93	86	92	91	86	90	89.0	95.7	0.937	83.4	82.7	0.941	83.7	Ashtabula
Geauga	390550004	97	75	88	70	68	86	77	75	79.3	99.0	0.942	74.7	88.8	0.945	75.0	Geauga
Eastlake	390850003	92	79	97	83	74	89	86	84	86.3	92.7	0.949	81.9	82.8	0.954	82.4	Eastlake
Akron	391530020	89	77	89	77	91	85	81	85	83.7	93.3	0.934	78.1	81.4	0.935	78.2	
Cincinnati Area																	Cincinnati Area
Wilmington	390271002	96	78	83	81	82	85	80	82	82.3	94.3	0.941	77.5	83.5	0.942	77.6	Wilmington
Sycamore	390610006	93	76	89	81	90	86	82	86	84.7	90.3	0.967	81.9	84.7	0.968	82.0	Sycamore
Lebanon	391650007	95	81	92	86	88	89	86	88	87.7	87.0	0.947	83.0	79.0	0.948	83.1	Lebanon
Columbus Area																	Columbus Area
London	390970007	90	75	81	76	83	82	77	80	79.7	88.7	0.941	75.0	78.4	0.942	75.0	London
New Albany	390490029	94	78	92	82	87	88	84	87	86.3	93.0	0.947	81.8	82.6	0.948		New Albany
Franklin	290490028	84	73	86	79	79	81	79	81	80.3	86.0	0.945	75.9	76.5	0.948	76.2	Franklin
St. Louis Area																	St. Louis Area
W. Alton (MO)	291831002	91	77	89	91	89	85	85	89	86.3	90.0	0.938	81.0	85.2	0.932		W. Alton (MO)
Orchard (MO)	291831004	90	76	92	92	83	86	86	89	87.0	90.0	0.942	82.0	82.2	0.939		Orchard (MO)
Sunset Hills (MO)	291890004	88	70	89	80	89	82	79	86	82.3	88.3	0.956	78.7	81.9	0.954		Sunset Hills (MO)
Arnold (MO)	290990012	82	70	92	79	87	81	80	86	82.3	84.7	0.938	77.2	77.4	0.937		Arnold (MO)
Margaretta (MO)	295100086	90	72	91	76	91	84	79	86	83.0	87.7	0.955	79.3	83.4	0.955		Margaretta (MO)
Maryland Heights (MO)	291890014	T	T	88	84	94	88	86	88	87.3		0.955	83.4		0.954	83.3	Maryland Heights (MO)

Key Sites		4	th High	8-hou	ır Value		Des. Va	alues (tru	ncated)	2005 BY	2002 BY		2012 - OTB		2018	- ОТВ	
		'03	'04	'05	'06	'07	'03-'05	'04-'06	'05-'07	Average	Average	RRF	Round 5 Re	ound 4	RRF	Round 5	
Lake Michigan Area																	Lake Michigan Area
Chiwaukee	550590019	88	78	93	79	85	86	83	85	84.7	98.3	0.956	80.9	90.3	0.900	76.2	Chiwaukee
Racine	551010017	82	69	95	71	77	82	78		80.3	91.7	0.947	76.1	82.9	0.886	71.2	Racine
Milwaukee-Bayside	550190085	92	73	93	73	83	86	79	83	82.7	91.0	0.944	78.0	82.3	0.880	72.7	Milwaukee-Bayside
Harrington Beach	550890009	99	72	94	72	84	88	79		83.3	93.0	0.939	78.3	82.9	0.870		Harrington Beach
Manitowoc	550710007	92	74	95	78	85	87	82		85.0	87.0	0.925	78.6	76.3	0.853		Manitowoc
Sheboygan	551170006	93	78	97	83	88	89	86	89	88.0	97.0	0.930	81.8	86.4	0.857		Sheboygan
Kewaunee	550610002	97	73	88	76	85	86	79	83	82.7	89.3	0.918	75.9	79.1	0.845		Kewaunee
Door County	550290004	93	78	101	79	92	90	86	90	88.7	91.0	0.919	81.5	79.3	0.843	74.7	Door County
Hammond	180892008	81	67	87	75	77	78	76		77.7	88.3	0.960	74.6	86.3	0.922		Hammond
Whiting	180890030		64	88	81	88	76	77	85	79.3		0.960	76.2		0.922		Whiting
Michigan City	180910005	82	70	84	75	73	78			77.0	90.3	0.942	72.5	85.4	0.884		Michigan City
Ogden Dunes	181270020	77	69	90	70	84	78	76		78.3	86.3	0.951	74.5	82.0	0.904		Ogden Dunes
Holland	260050003	96	79	94	91	94	89	88	93	90.0	94.0	0.920	82.8	81.0	0.846		Holland
Jenison	261390005	91	69	86	83	88	82	79		82.0	86.0	0.909	74.5	75.5	0.838		Jenison
Muskegon	261210039	94	70	90	90	86	84	83		85.0	90.0	0.918	78.0	79.4	0.846		Muskegon
Musicegon	201210003	34	,,,	30	30	- 00	04	00	00	00.0	30.0	0.010	70.0	75.4	0.040	71.5	Maskegon
Indianapolis Area																	Indianapolis Area
Noblesville	189571001	101	75	87	77	84	87	79	82	82.7	93.7	0.914	75.6	82.0	0.831	68.7	Noblesville
Fortville	180590003	92	72	80	75	81	81	75		78.0	91.3	0.914	71.4	82.1	0.835		Fortville
Fort B. Harrison	180970050	91	73	80	76	83	81	76		78.7	90.0	0.910	73.2	82.4	0.879		Fort B. Harrison
TOILD. Harrison	100970030	31	73	00	70	03	01	70	15	70.7	30.0	0.931	13.2	02.4	0.079	09.1	TOIL D. Hairison
Detroit Area																	Detroit Area
New Haven	260990009	102	81	88	78	93	90	82		86.0	92.3	0.932	80.2	83.5	0.885	76.1	New Haven
Warren	260991003	101	71	89	78	91	87	79	86	84.0	90.0	0.961	80.7	81.9	0.924	77.6	Warren
Port Huron	261470005	87	74	88	78	89	83	80	85	82.7	88.0	0.913	75.5	77.0	0.858	70.9	Port Huron
Cleveland Area																	Cleveland Area
Ashtabula	390071001	99	81	93	86	92	91	86	90	89.0	95.7	0.910	81.0	80.2	0.844	75.1	Ashtabula
Geauga	390550004	97	75	88	70	68	86	77		79.3	99.0	0.916	72.7	86.2	0.848	67.3	Geauga
Eastlake	390850003	92	79	97	83	74	89	86	84	86.3	92.7	0.932	80.5	80.6	0.883		Eastlake
Akron	391530020	89	77	89	77	91	85	81	85	83.7	93.3	0.903	75.6	78.5	0.821		Akron
Cincinnati Ausa																	Cincinnati Area
Cincinnati Area Wilmington	390271002	96	78	83	81	82	85	80	82	82.3	94.3	0.910	74.9	81.1	0.830	60.2	Wilmington
		93	76	89	81	90	86	82		84.7	90.3		80.3	82.9	0.881		•
Sycamore	390610006	95		92		88	89	82 86	88			0.948					Sycamore
Lebanon	391650007	95	81	92	86	88	89	86	88	87.7	87.0	0.921	80.7	77.0	0.846	74.2	Lebanon
Columbus Area																	Columbus Area
London	390970007	90	75	81	76	83	82	77	80	79.7	88.7	0.911	72.6	76.5	0.832	66.3	London
New Albany	390490029	94	78	92	82	87	88	84	87	86.3	93.0	0.922	79.6	80.2	0.845	73.0	New Albany
Franklin	290490028	84	73	86	79	79	81	79	81	80.3	86.0	0.923	74.1	74.7	0.859	69.0	Franklin
St Louis Area																	St Louis Area
St. Louis Area	004004000	04	77	00	04	00	0.5		00	00.0	00.0	0.044	70.0	04.0	0.000	74.0	St. Louis Area
W. Alton (MO)	291831002	91	77	89	91	89	85	85	89	86.3	90.0	0.911	78.6	84.0	0.868		W. Alton (MO)
Orchard (MO)	291831004	90	76	92	92	83	86	86	89	87.0	90.0	0.919	80.0	80.4	0.876		Orchard (MO)
Sunset Hills (MO)	291890004	88	70	89	80	89	82	79		82.3	88.3	0.937	77.1	80.6	0.897		Sunset Hills (MO)
Arnold (MO)	290990012	82	70	92	79	87	81	80		82.3	84.7	0.918	75.6	75.8	0.874		Arnold (MO)
Margaretta (MO)	295100086	90	72	91	76	91	84	79		83.0	87.7	0.939	77.9	82.5	0.896		Margaretta (MO)
Maryland Heights (MO)	291890014			88	84	94	88	86	88	87.3		0.936	81.7		0.894	78.1	Maryland Heights (MO)

			Aı	nnual	Averaç	je Cor	ıc.	De	sign Valu	ies	2005 BY	2002 BY	2009 Model	ing Results	
Key Site	County	Site ID	'03	'04	'05	'06	'07	'03 - '05	'04 - '06	'05 - '07	Average w/ 2007	Average	Round 5	Round4	Key Site
Chicago - Washington HS	Cook	170310022	15.6	14.2	16.9	13.2	15.7	15.6	14.8	15.3	15.2	15.9	14.1	14.8	Chicago - Washington HS
Chicago - Mayfair	Cook	170310052	15.9	15.3	17.0	14.5	15.5	16.1	15.6	15.7	15.8	17.1	14.4	15.8	Chicago - Mayfair
Chicago - Springfield	Cook	170310057	15.6	13.8	16.7	13.5	15.1	15.4	14.7	15.1	15.0	15.6	13.9	14.5	Chicago - Springfield
Chicago - Lawndale	Cook	170310076	14.8	14.2	16.6	13.5	14.3	15.2	14.8	14.8	14.9	15.6	13.8	14.5	Chicago - Lawndale
Blue Island	Cook	170312001	14.9	14.1	16.4	13.2	14.3	15.1	14.6	14.6	14.8	15.6	13.7	14.5	Blue Island
Summit	Cook	170313301	15.6	14.2	16.9	13.8	14.8	15.6	15.0	15.2	15.2	16.0	14.2	14.8	Summit
Cicero	Cook	170316005	16.8	15.2	16.3	14.3	14.8	16.1	15.3	15.1	15.5	16.4	14.4	15.3	Cicero
Granite City	Madison	171191007	17.5	15.4	18.2	16.3	15.1	17.0	16.6	16.5	16.7	17.3	15.1	16.0	Granite City
E. St. Louis	St. Clair	171630010	14.9		17.1	14.5		15.6	15.4	15.7	15.6	16.2	14.1	14.9	E. St. Louis
1-#:11-	Olado	100100005	45.0	45.4	40.5	45.0	40.5	40.5	40.0	40.7	46.4	47.0	40.0	45.5	leffere en dille
Jeffersonville	Clark	180190005	15.8		18.5	15.0	16.5	16.5	16.2	16.7	16.4	17.2	13.8	15.5	Jeffersonville
Jasper	Dubois	180372001	15.7	14.4	16.9	13.5		15.7	14.9		15.2	15.5	12.4	13.8	Jasper
Gary	Lake	180890031			16.8	13.3	14.5	16.8	15.1	14.9	15.6		13.0		Gary
Indy-Washington Park	Marion	180970078	15.5		16.4	14.1	15.8	15.4	14.9		15.3	16.2	12.8	14.5	Indy-Washington Park
Indy-W 18th Street	Marion	180970081	16.2	15.0	17.9	14.2	16.1	16.4	15.7	16.1	16.0		13.4		Indy-W 18th Street
Indy- Michigan Street	Marion	180970083	16.3	15.0	17.5	14.1	15.9	16.3	15.5	15.8	15.9	16.6	13.4	14.8	Indy- Michigan Street
Allen Park	Wayne	261630001	15.2	14.2	15.9	13.2	12.8	15.1	14.4	14.0	14.5	15.8	13.0	14.5	Allen Park
Southwest HS	Wayne	261630015	16.6	15.4	17.2	14.7	14.5	16.4	15.8	15.5	15.9	17.3	14.2	15.8	Southwest HS
Linwood	Wayne	261630016	15.8	13.7	16.0	13.0	13.9	15.2	14.2	14.3	14.6	15.5	13.1	14.1	Linwood
Dearborn	Wayne	261630033	19.2	16.8	18.6	16.1	16.9	18.2	17.2		17.5	19.3	15.8	17.7	Dearborn
Wyandotte	Wayne	261630036	16.3	13.7	16.4	12.9	13.4	15.5	14.3	14.2	14.7	16.6	13.1	15.1	Wyandotte
Middleton	Butler	390170003	17.2	14.1	19.0	14.1	15.4	16.8	15.7	16.2	16.2	16.5	13.5	14.2	Middleton
Fairfield	Butler	390170003	15.8		17.9	14.0		16.1	15.7		15.8	15.9	13.1	13.5	Fairfield
		390350027	15.4	15.6		13.0	14.5	16.1	15.3		15.4	16.5	13.1	14.4	Cleveland-28th Street
Cleveland-28th Street	Cuyahoga	390350027	17.6		19.2	14.9	16.2	18.1	17.2		17.4	-	15.3	16.1	Cleveland-St. Tikhon
Cleveland-St. Tikhon	Cuyahoga		16.4		19.2	14.9	15.3	17.0	16.2		16.5	18.4 16.7	14.4	14.6	
Cleveland-Broadway	Cuyahoga	390350045		15.3					16.2						Cleveland-Broadway
Cleveland-E14 & Orange	Cuyahoga	390350060	17.2	16.4	19.4	15.0	15.9	17.7			17.1	17.6	15.0	15.3	Cleveland-E14 & Orange
Newburg Hts - Harvard Ave Columbus - Fairgrounds	Cuyahoga Franklin	390350065 390490024	15.6 16.4	15.2 15.0	18.6 16.4	13.1 13.6	15.8 14.6	16.5 15.9	15.6 15.0		16.0 15.3	16.2 16.5	14.0 12.9	14.1 14.6	Newburg Hts - Harvard Ave Columbus - Fairgrounds
Columbus - Ann Street	Franklin	390490025	15.3	14.6	16.5	13.8	14.7	15.5	15.0		15.1	16.0	12.7	14.1	Columbus - Ann Street
Columbus - Maple Canyon	Franklin	390490023	14.9	13.6	14.6	12.9	13.1	14.4	13.7	13.5	13.9	16.0	11.7	14.0	Columbus - Maple Canyon
Cincinnati - Seymour	Hamilton	390610014	17.0	15.9	19.8	15.5		17.6	17.1	17.3	17.3	17.7	14.5	15.5	Cincinnati - Seymour
Cincinnati - Taft Ave	Hamilton	390610014	15.5		17.5	13.6	15.1	15.9	15.2		15.5	15.7	12.8	13.6	Cincinnati - Seymour
Cincinnati - 8th Ave	Hamilton	390610040	16.7	16.0	19.1	14.9	15.1	17.3	16.7	16.6	16.9	17.3	14.0	14.6	Cincinnati - 8th Ave
Sharonville	Hamilton	390610042	15.7	14.9	16.9	14.5		17.3	15.4	15.4	15.6	16.0	12.9	13.6	Sharonville
	Hamilton	3906170043	16.0		18.4	14.3	15.1	16.6	16.0		16.2	16.3	13.4	14.2	Norwood
Norwood St Bornard												+			
St. Bernard Steubenville	Hamilton Jefferson	390618001 390810016	17.3 17.7	16.4 15.9	20.0 16.4	15.9 13.8	16.1 16.2	17.9 16.7	17.4 15.4	17.3 15.5	17.6 15.8	17.3 17.7	14.7 12.8	15.2 16.3	St. Bernard Steubenville
Mingo Junction	Jefferson	390811001	17.3		18.1			17.2	16.3		16.5	17.5	13.5	15.5	Mingo Junction
Ironton	Lawrence	390870010	14.3		17.0			15.0	15.0		15.2	15.7	12.8	14.2	Ironton
	Montgomery	391130032	15.9				15.6	15.0	15.0		15.5	15.7	13.2	13.7	
Dayton New Boston	Scioto	391450013	14.7				14.0	14.6	14.5		14.7	17.1	12.1	15.7 15.4	Dayton New Boston
								_				-			
Canton - Dueber	Stark	391510017	16.8					16.7	16.0		16.3	17.3	14.0	15.0	Canton - Dueber
Canton - Market	Stark	391510020	15.0					15.2	14.2		14.6	15.7	12.6	13.6	Canton - Market
Akron - Brittain	Summit	391530017	15.4			13.5		15.6	15.0		15.1	16.4	13.0	14.4	Akron - Brittain
Akron - W. Exchange	Summit	391530023	14.2	13.9	15.7	12.8	13.7	14.6	14.1	14.1	14.3	15.6	12.3	13.6	Akron - W. Exchange

			An	nual /	Averag	e Con).	De	sign Valu	es	2005 BY	2002 BY	2012 Model	ing Results	
Key Site	County	Site ID	'03	'04	'05	'06	'07	'03 - '05	'04 - '06	'05 - '07	Average w/ 2007	Average	Round 5	Round4	Key Site
Chicago - Washington HS	Cook	170310022	15.6	14.2	16.9	13.2	15.7	15.6	14.8	15.3	15.2	15.9	14.0	14.6	Chicago - Washington HS
Chicago - Mayfair	Cook	170310052	15.9	15.3	17.0	14.5	15.5	16.1	15.6	15.7	15.8	17.1	14.2	15.5	Chicago - Mayfair
Chicago - Springfield	Cook	170310057	15.6	13.8	16.7	13.5	15.1	15.4	14.7	15.1	15.0	15.6	13.8	14.3	Chicago - Springfield
Chicago - Lawndale	Cook	170310076	14.8	14.2	16.6	13.5	14.3	15.2	14.8	14.8	14.9	15.6	13.7	14.3	Chicago - Lawndale
Blue Island	Cook	170312001	14.9	14.1	16.4	13.2	14.3	15.1	14.6	14.6	14.8	15.6	13.6	14.3	Blue Island
Summit	Cook	170313301	15.6	14.2	16.9	13.8	14.8	15.6	15.0	15.2	15.2	16.0	14.0	14.6	Summit
Cicero	Cook	170316005	16.8	15.2	16.3	14.3	14.8	16.1	15.3	15.1	15.5	16.4	14.3	15.1	Cicero
Granite City	Madison	171191007	17.5	15.4	18.2	16.3	15.1	17.0	16.6	16.5	16.7	17.3	14.9	15.8	Granite City
E. St. Louis	St. Clair	171630010	14.9	14.7	17.1	14.5	15.6	15.6	15.4	15.7	15.6	16.2	13.9	14.7	E. St. Louis
Jeffersonville	Clark	180190005	15.8	15.1	10 E	15.0	16.5	16.5	16.2	16.7	16.4	17.2	13.7	15.0	Jeffersonville
	Dubois	180372001		14.4	16.9	13.5	14.4	15.7	14.9	14.9	15.2	15.5	12.2	13.5	
Jasper		180890031	15.7	14.4	16.8		14.4	16.8	15.1	14.9	15.2	15.5	12.2	13.5	Jasper
Gary	Lake		45.5	440								40.0		44.0	Gary
Indy-Washington Park	Marion	180970078		14.3	16.4	14.1	15.8	15.4	14.9	15.4	15.3	16.2	12.6	14.2	Indy-Washington Park
Indy-W 18th Street	Marion	180970081	_	15.0	17.9		16.1	16.4	15.7	16.1	16.0	46.6	13.2	44.0	Indy-W 18th Street
Indy- Michigan Street	Marion	180970083	16.3	15.0	17.5	14.1	15.9	16.3	15.5	15.8	15.9	16.6	13.1	14.9	Indy- Michigan Street
Allen Park	Wayne	261630001	15.2	14.2	15.9	13.2	12.8	15.1	14.4	14.0	14.5	15.8	12.8	14.1	Allen Park
Southwest HS	Wayne	261630015	16.6	15.4	17.2	14.7	14.5	16.4	15.8	15.5	15.9	17.3	13.9	15.3	Southwest HS
Linwood	Wayne	261630016	15.8	13.7	16.0	13.0	13.9	15.2	14.2	14.3	14.6	15.5	12.8	13.7	Linwood
Dearborn	Wayne	261630033	19.2	16.8	18.6	16.1	16.9	18.2	17.2	17.2	17.5	19.3	15.5	17.1	Dearborn
Wyandotte	Wayne	261630036	16.3	13.7	16.4	12.9	13.4	15.5	14.3	14.2	14.7	16.6	12.8	14.7	Wyandotte
Middleton	Butler	390170003	17.2	14.1	19.0	14.1	15.4	16.8	15.7	16.2	16.2	16.5	13.2	13.7	Middleton
Fairfield	Butler	390170003		14.7	17.9		14.9	16.1	15.7	15.6	15.8	15.9	12.9	12.9	Fairfield
Cleveland-28th Street	Cuyahoga	390350027		15.6	17.3		14.5	16.1	15.3	14.9	15.4	16.5	13.2	13.8	Cleveland-28th Street
Cleveland-St. Tikhon	Cuyahoga	390350027		17.5	19.2		16.2	18.1	17.2	16.8	17.4	18.4	14.8	15.4	Cleveland-St. Tikhon
Cleveland-Broadway	Cuyahoga	390350045		15.3	19.3		15.3	17.0	16.2	16.2	16.5	16.7	14.0	14.0	Cleveland-Broadway
	Cuyahoga	390350043		16.4	19.4		15.9	17.7	16.9	16.8	17.1	17.6	14.6	14.7	Cleveland-E14 & Orange
	Cuyahoga	390350065	_	15.2	18.6		15.8	16.5	15.6	15.8	16.0	16.2	13.6	13.5	Newburg Hts - Harvard Ave
Columbus - Fairgrounds	Franklin	390490024		15.0	16.4	13.6	14.6	15.9	15.0	14.9	15.3	16.5	12.6	14.0	Columbus - Fairgrounds
Columbus - Ann Street	Franklin	390490025		14.6	16.5	13.8	14.7	15.5	15.0	15.0	15.1	16.0	12.4	13.5	Columbus - Ann Street
Columbus - Maple Canyon	Franklin	390490081		13.6	14.6		13.1	14.4	13.7	13.5	13.9	16.0	11.4	13.4	Columbus - Maple Canyon
Cincinnati - Seymour	Hamilton	390610014	_	15.9	19.8		16.5	17.6	17.1	17.3	17.3	17.7	14.3	14.8	Cincinnati - Seymour
Cincinnati - Taft Ave	Hamilton	390610040		14.6	17.5	13.6	15.1	15.9	15.2	15.4	15.5	15.7	12.6	13.0	Cincinnati - Taft Ave
Cincinnati - 8th Ave	Hamilton	390610040		16.0	19.1		15.9	17.3	16.7	16.6	16.9	17.3	13.8	14.0	Cincinnati - 8th Ave
Sharonville	Hamilton	390610042		14.9	16.9		14.8	15.8	15.4	15.4	15.6	16.0	12.7	13.0	Sharonville
Norwood	Hamilton	390617001		15.3	18.4	14.4	15.1	16.6	16.0	16.0	16.2	16.3	13.2	13.6	Norwood
St. Bernard	Hamilton	390618001	_	16.4	20.0		16.1	17.9	17.4	17.3	17.6	17.3	14.4	14.6	St. Bernard
Steubenville	Jefferson	390810016		15.9	16.4		16.2	16.7	15.4	15.5	15.8	17.7	12.5	15.9	Steubenville
Mingo Junction	Jefferson	390811001			18.1			17.2	16.3	16.1	16.5	17.5	13.2	15.0	Mingo Junction
Ironton	Lawrence	390870010			17.0			15.0	15.0	15.5	15.2	15.7	12.5	13.7	Ironton
Dayton	Montgomery	391130032			17.4	_		15.9	15.2	15.5	15.5	15.9	12.9	13.2	Dayton
New Boston	Scioto	391450013			16.2			14.6	14.5	14.8	14.7	17.1	11.9	14.8	New Boston
Canton - Dueber	Stark	391510017	16.8			14.6		16.7	16.0	16.1	16.3	17.3	13.6	14.3	Canton - Dueber
Canton - Market	Stark	391510020				11.9		15.2	14.2	14.3	14.6	15.7	12.3	13.0	Canton - Market
Akron - Brittain	Summit	391530017	15.4			13.5		15.6	15.0	14.8	15.1	16.4	12.7	13.6	Akron - Brittain
	Summit	391530023			15.7			14.6	14.1	14.1	14.3	15.6	12.0	13.0	Akron - W. Exchange

											0005 DV					
			A	nnual	Averag	je Con	C.	De	esign Value	S	 2005 BY	2002 BY		Modeling Re	sults	
V 0#-	0	Cita ID	100	10.4	105	100	107	100 105	104 100	105 107	Average	Average	Round 5	Round 5	D	Vay Sita
Key Site	County	Site ID	'03	'04	'05	'06	'07	'03 - '05		'05 - '07	w/ 2007	45.0	OTB	Will Do	Round4	Key Site
Chicago - Washington HS	Cook	170310022	15.6	14.2		13.2	15.7	15.6	14.8	15.3	15.2	15.9	13.9	13.8	14.4	Chicago - Washington HS
Chicago - Mayfair	Cook	170310052	15.9	15.3		14.5	15.5	16.1	15.6	15.7	15.8	17.1	13.9	13.8	15.0	Chicago - Mayfair
Chicago - Springfield	Cook	170310057	15.6	13.8		13.5		15.4		15.1	15.0	15.6	13.7	13.5	14.1	Chicago - Springfield
Chicago - Lawndale	Cook	170310076	14.8	14.2		13.5	14.3	15.2		14.8	14.9	15.6	13.6	13.4	14.1	Chicago - Lawndale
Blue Island	Cook	170312001	14.9	14.1	16.4	13.2	14.3	15.1	14.6	14.6	14.8	15.6	13.4	13.3	14.1	Blue Island
Summit	Cook	170313301	15.6	14.2	16.9	13.8	14.8	15.6		15.2	15.2	16.0	13.9	13.8	14.4	Summit
Cicero	Cook	170316005	16.8	15.2		14.3	14.8	16.1	15.3	15.1	15.5	16.4	14.2	14.0	14.9	Cicero
Granite City	Madison	171191007	17.5	15.4	18.2	16.3	15.1	17.0	16.6	16.5	16.7	17.3	14.3	14.2	15.5	Granite City
E. St. Louis	St. Clair	171630010	14.9	14.7	17.1	14.5	15.6	15.6	15.4	15.7	15.6	16.2	13.4	13.3	14.5	E. St. Louis
Jeffersonville	Clark	180190005	15.8	15.1		15.0		16.5	16.2	16.7	16.4	17.2	13.4	13.4	14.4	Jeffersonville
Jasper	Dubois	180372001	15.7	14.4	16.9	13.5	14.4	15.7	14.9	14.9	15.2	15.5	11.8	11.9	13.0	Jasper
Gary	Lake	180890031			16.8	13.3	14.5	16.8	15.1	14.9	15.6		12.4	12.4		Gary
Indy-Washington Park	Marion	180970078	15.5	14.3	16.4	14.1	15.8	15.4	14.9	15.4	15.3	16.2	12.0	12.1	13.7	Indy-Washington Park
Indy-W 18th Street	Marion	180970081	16.2	15.0	17.9	14.2	16.1	16.4	15.7	16.1	16.0		12.6	12.7		Indy-W 18th Street
Indy- Michigan Street	Marion	180970083	16.3	15.0	17.5	14.1	15.9	16.3	15.5	15.8	15.9	16.6	12.6	12.6	14.0	Indy- Michigan Street
																, ,
Allen Park	Wayne	261630001	15.2	14.2	15.9	13.2	12.8	15.1	14.4	14.0	14.5	15.8	12.4	12.4	13.3	Allen Park
Southwest HS	Wayne	261630015	16.6	15.4		14.7	14.5	16.4	15.8	15.5	15.9	17.3	13.5	13.5	14.4	Southwest HS
Linwood	Wayne	261630016	15.8	13.7		13.0	13.9	15.2		14.3	14.6	15.5	12.5	12.5	13.0	Linwood
Dearborn	Wayne	261630033	19.2	16.8		16.1	16.9	18.2		17.2	17.5	19.3	15.1	15.1	16.1	Dearborn
Wyandotte	Wayne	261630036	16.3	13.7	16.4	12.9	13.4	15.5		14.2	14.7	16.6	12.5	12.5	13.9	Wyandotte
vvjandotto	Wayno	20100000	10.0	10.7	10.1	12.0	10.1	10.0	11.0	11.2		10.0	12.0	12.0	10.0	Vyanaotto
Middleton	Butler	390170003	17.2	14.1	19.0	14.1	15.4	16.8	15.7	16.2	16.2	16.5	12.8	12.8	13.1	Middleton
Fairfield	Butler	390170016	15.8	14.7	17.9	14.0	14.9	16.1	15.5	15.6	15.8	15.9	12.5	12.6	12.2	Fairfield
Cleveland-28th Street	Cuyahoga	390350027	15.4	15.6		13.0	14.5	16.1	15.3	14.9	15.4	16.5	12.7	12.9	12.9	Cleveland-28th Street
Cleveland-St. Tikhon	Cuyahoga	390350038	17.6	17.5		14.9	16.2	18.1	17.2	16.8	17.4	18.4	14.3	14.5	14.4	Cleveland-St. Tikhon
Cleveland-Broadway	Cuyahoga	390350045	16.4	15.3		14.1	15.3	17.0	16.2	16.2	16.5	16.7	13.5	13.7	13.1	Cleveland-Broadway
Cleveland-E14 & Orange	Cuyahoga	390350060	17.2	16.4		15.0	15.9	17.7	16.9	16.8	17.1	17.6	14.1	14.2	13.7	Cleveland-E14 & Orange
Newburg Hts - Harvard Ave	, ,	390350065	15.6	15.2		13.1	15.8	16.5		15.8	16.0	16.2	13.1	13.3	12.6	Newburg Hts - Harvard Ave
Columbus - Fairgrounds	Franklin	390490024	16.4	15.0		13.6	14.6	15.9		14.9	15.3	16.5	12.0	12.1	13.0	Columbus - Fairgrounds
Columbus - Ann Street	Franklin	390490025	15.3	14.6		13.8	14.7	15.5		15.0	15.1	16.0	11.9	11.9	12.5	Columbus - Ann Street
Columbus - Maple Canyon	Franklin	390490081	14.9	13.6		12.9	13.1	14.4		13.5	13.9	16.0	10.9	11.0	12.5	Columbus - Maple Canyon
Cincinnati - Seymour	Hamilton	390610014	17.0	15.9		15.5	16.5	17.6		17.3	17.3	17.7	13.8	13.9	14.0	Cincinnati - Seymour
Cincinnati - Taft Ave	Hamilton	390610040	15.5	14.6		13.6	15.1	15.9		15.4	15.5	15.7	12.2	12.3	12.3	Cincinnati - Taft Ave
Cincinnati - 8th Ave	Hamilton	390610040	16.7	16.0		14.9	15.1	17.3		16.6	16.9	17.3	13.4	13.4	13.2	Cincinnati - 8th Ave
Sharonville	Hamilton	390610042	15.7	14.9		14.5	14.8	15.8		15.4	15.6	16.0	12.3	12.4	12.2	Sharonville
							15.1							12.4	12.8	
Norwood	Hamilton	390617001	16.0	15.3		14.4		16.6		16.0	16.2	16.3	12.8			Norwood
St. Bernard	Hamilton	390618001	17.3	16.4	20.0	15.9	16.1	17.9		17.3	17.6	17.3	14.0	14.1	13.8	St. Bernard
Steubenville	Jefferson	390810016	17.7	15.9		13.8	16.2	16.7	15.4	15.5	15.8	17.7	12.7	12.7	16.2	Steubenville
Mingo Junction	Jefferson	390811001	17.3	16.2		14.6	15.6	17.2		16.1	16.5	17.5	13.4	13.4	15.3	Mingo Junction
Ironton	Lawrence	390870010	14.3	13.7		14.4	15.0	15.0	15.0	15.5	15.2	15.7	12.3	12.3	13.2	Ironton
Dayton	Montgomery	391130032	15.9	14.5		13.6	15.6	15.9		15.5	15.5	15.9	12.4	12.5	12.3	Dayton
New Boston	Scioto	391450013	14.7	13.0		14.3	14.0	14.6		14.8	14.7	17.1	11.6	11.6	14.2	New Boston
Canton - Dueber	Stark	391510017	16.8	15.6		14.6	15.9	16.7	16.0	16.1	16.3	17.3	13.3	13.3	13.6	Canton - Dueber
Canton - Market	Stark	391510020	15.0	14.1	16.6	11.9	14.4	15.2		14.3	14.6	15.7	11.9	12.0	12.2	Canton - Market
Akron - Brittain	Summit	391530017	15.4	15.0	16.4	13.5	14.4	15.6		14.8	15.1	16.4	12.3	12.3	12.9	Akron - Brittain
Akron - W. Exchange	Summit	391530023	14.2	13.9	15.7	12.8	13.7	14.6	14.1	14.1	14.3	15.6	11.5	11.6	12.2	Akron - W. Exchange

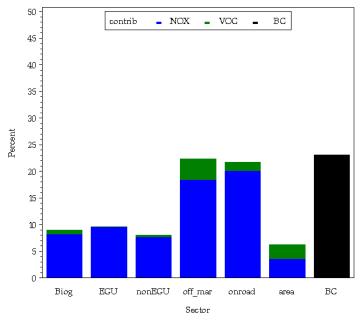
24-Hour PM _{2.5}			98t	h Perc	entile	(24-h	our)	De	esign Val	ues	Base Year	Round	5 Modeling	Results	
Key Site	County	Site ID	'03	'04	'05	'06	'07	'03-'05	'04-'06	'05-'07	Average w/ 2007	2009	2012	2018	Key Site
Chicago - Washington HS	Cook	170310022	37.7	32.5	45.7	27.0		38.6	35.1	36.1	36.6	36	36	35	Chicago - Washington HS
Chicago - Mayfair	Cook	170310052	37.3	38.8	48.3	31.6		41.5	39.6	39.8	40.3	36	36	36	Chicago - Mayfair
Chicago - Springfield	Cook	170310057	36.4	33.1	46.5	27.7		38.7	35.8	37.7	37.4	32	32	31	Chicago - Springfield
Chicago - Lawndale	Cook	170310076	32.6	39.7	45.1	29.0	37.2	39.1	37.9	37.1	38.1	35	35	34	Chicago - Lawndale
McCook	Cook	170311016									43.0	39	39	38	McCook
Blue Island	Cook	170312001	39.6	38.5	43.8	28.1	35.1	40.6	36.8	35.7	37.7	34	34	33	Blue Island
Schiller Park	Cook	170313103		40.7	50.3	30.0		45.5	40.3	39.0	41.6	39	39	39	Schiller Park
Summit	Cook	170313301	38.4	42.4	49.1	27.4		43.3	39.6	37.7	40.2	38	38	37	Summit
Maywood	Cook	170316005	38.5	42.5	44.6	29.2		41.9	38.8	36.9	39.2	38	38	37	Maywood
Granite City	Madison	171191007	40.8	35.4	44.1	36.3		40.1	38.6	38.8	39.2	33	33	32	Granite City
E. St. Louis	St. Clair	171630010	32.6	30.2	39.6	29.2	33.1	34.1	33.0	34.0	33.7	28	28	28	E. St. Louis
Jeffersonville	Clark	180190005		28.4	45.5	35.9		37.0	36.6	41.6	38.4	29	31	31	Jeffersonville
Jasper	Dubois	180372001	39.5	30.0	41.2	31.6	39.5	36.9	34.3	37.4	36.2	28	29	28	Jasper
Gary - IITRI	Lake	180890022									39.0	34	34	35	Gary - IITRI
Gary - Burr School	Lake	180890026									39.0	33	34	32	Gary - Burr School
Gary	Lake	180890031			38.7	27.1	36.2	38.7	32.9	34.0	35.2	24	24	27	Gary
Indy-West Street	Marion	180970043									38.0	33	33	33	Indy-West Street
Indy-English Avenue	Marion	180970066									38.0	32	32	32	Indy-English Avenue
Indy-Washington Park	Marion	180970078	39.3	31.0	42.5	31.7	37.6	37.6	35.1	37.3	36.6	31	31	32	Indy-Washington Park
Indy-W 18th Street	Marion	180970081	36.2	31.9	45.7	34.8		37.9	37.5	39.6	38.3	31	31	31	Indy-W 18th Street
Indy- Michigan Street	Marion	180970083	36.7	31.3	40.3	33.5	37.2	36.1	35.0	37.0	36.0	28	28	29	Indy- Michigan Street
Luna Pier	Monroe	261150005	34.7	35.0	49.3	32.6	32.2	39.7	39.0	38.0	38.9	32	32	31	Luna Pier
Oak Park	Oakland	261250001	36.6	32.5	52.2	33.0	35.3	40.4	39.2	40.2	39.9	36	36	35	Oak Park
Port Huron	St. Clair	261470005	37.2	32.2	47.6	37.9	36.3	39.0	39.2	40.6	39.6	34	34	33	Port Huron
Ypsilanti	Washtenaw	261610008	38.8	31.5	52.1	31.3	34.5	40.8	38.3	39.3	39.5	35	35	34	Ypsilanti
Allen Park	Wayne	261630001	40.5	36.9	43.0	34.1	35.9	40.1	38.0	37.7	38.6	35	34	33	Allen Park
Southwest HS	Wayne	261630015	33.6	36.0	49.7	36.2	34.0	39.8	40.6	40.0	40.1	35	35	33	Southwest HS
Linwood	Wayne	261630016	46.2	38.3	51.8	36.9	34.8	45.4	42.3	41.2	43.0	39	39	38	Linwood
E 7 Mile	Wayne	261630019	37.1	35.0	52.3	36.2	33.0	41.5	41.2	40.5	41.0	38	38	37	E 7 Mile
Dearborn	Wayne	261630033	42.8	39.4	50.2	43.1	36.6	44.1	44.2	43.3	43.9	40	40	39	Dearborn
Wyandotte	Wayne	261630036	34.8	32.3	46.7	33.2	28.6	37.9	37.4	36.2	37.2	35	35	34	Wyandotte
Newberry	Wayne	261630038		36.8	57.5	28.6	33.4		39.1	39.8	42.7	38	37	36	Newberry
FIA	Wayne	261630039			43.9	32.4	34.8			37.0	39.7	33	33	31	FIA
Middleton	Butler	390170003	38.6	37.2	47.6	30.2		41.1	38.3	38.3	39.3	28	28	27	Middleton
Fairfield	Butler	390170016	34.8	32.2	43.4	35.2	34.5	36.8	36.9	37.7	37.1	27	28	27	Fairfield
	Butler	390170017	34.6	34.3	44.9			37.9	39.6		40.8	29	29	28	
Cleveland-28th Street	Cuyahoga	390350027	41.3	40.9	35.7	31.5		39.3	36.0	35.4	36.9	32	32	31	Cleveland-28th Street
Cleveland-St. Tikhon	Cuyahoga	390350038	47.3	42.5	51.2	36.1	39.7	44.9	47.0	42.3	44.2	36	35	34	Cleveland-St. Tikhon
Cleveland-Broadway	Cuyahoga	390350045	42.2	36.1	46.2	29.5		41.5	37.3	37.6	38.8	31	30	29	Cleveland-Broadway
Cleveland-GT Craig	Cuyahoga	390350060	45.5	42.2	49.5	31.0		45.7	40.9	39.7	42.1	37	37	35	Cleveland-GT Craig
Newburg Hts - Harvard Ave	Cuyahoga	390350065	39.1	36.1	47.9	27.8		41.0	37.3	38.3	38.9	31	30	30	Newburg Hts - Harvard Ave
Columbus - Fairgrounds	Franklin	390490024	39.2	35.1	45.0	34.0		39.8	38.0	37.7	38.5	33	32	31	Columbus - Fairgrounds
Columbus - Ann Street	Franklin	390490025	37.0	35.5	44.9	34.0		39.1	38.1	38.1	38.5	31	31	30	Columbus - Ann Street
Cincinnait	Hamilton	390610006			45.0					37.7	40.6	27	28	27	Cincinnait
Cincinnati - Seymour	Hamilton	390610014	37.8	42.0				39.4	38.6	37.3	38.4	26	25	24	Cincinnati - Seymour
Cincinnati - Taft Ave	Hamilton	390610040	31.9	30.5				36.1	36.4	37.8	36.7	24	24	23	Cincinnati - Taft Ave
Cincinnati - 8th Ave	Hamilton	390610042	33.8	31.9				36.7	36.9	38.3	37.3	28	28	27	Cincinnati - 8th Ave
Sharonville	Hamilton	390610043	37.3	31.4				36.2	35.4	36.3	36.0	28	28	27	Sharonville
Norwood	Hamilton	390617001	37.1	34.6		34.0		39.6	38.6	38.3	38.8	30	30	29	Norwood
St. Bernard	Hamilton	390618001	35.8	33.9				40.4	40.5	41.0	40.6	30	30	29	St. Bernard
Steubenville	Jefferson	390810016	39.6	43.8		32.1		42.4	39.9	39.8	40.7	29	28	28	Steubenville
Mingo Junction	Jefferson	390811001	40.9	51.5		32.9		45.5	42.9	37.5	42.0	30	30	30	Mingo Junction
Dayton	Montgomery	391130032	42.7	32.5				40.1	35.9	37.4	37.8	30	30	30	Dayton
Canton - Dueber	Stark	391510017	34.2	36.3				39.4	38.7	37.7	38.6	28	28	27	Canton - Dueber
Akron - Brittain	Summit	391530017	36.9	36.9	45.2	31.5	33.3	39.7	37.9	36.7	38.1	30	30	29	Akron - Brittain
Green Bay - Est High	Brown	550090005	33.5	32.3				35.8	36.9	38.5	37.1	35	34	32	Green Bay - Est High
Madison	Dane	550250047	32.0	31.9		33.4		34.7	35.1	39.3	36.4	32	31	29	Madison
Milwaukee-Health Center	Milwaukee	550790010	33.2	38.4		40.7		36.8	39.3	40.0	38.7	35	34	33	Milwaukee-Health Center
Milwaukee-SER Hdqs	Milwaukee	550790026	29.6	28.7				33.3	37.6	41.3	37.4	34	34	33	Milwaukee-SER Hdqs
Milwaukee-Virginia FS	Milwaukee	550790043	39.2	41.4		44.0		39.2	40.8	39.7	39.9	36	36	36	Milwaukee-Virginia FS
Milwaukee- Fire Dept Hdqs	Milwaukee	550790099	33.7	38.9		38.3		36.6	38.1	38.7	37.8	33	32	32	Milwaukee- Fire Dept Hdqs
Waukesha	Waukesha	551330027	29.1	38.4	41.1	28.2	33.8	36.2	35.9	34.4	35.5	31	31	29	Waukesha

		PM2.5 RR	rs by Spec	cies and S	eason (2009)	
Site ID	State	County	Season	Species	Species Comp. of Ave FRM (fraction)	Species RRF
1703100521		Cook	winter	so4	0.1772	0.9342
1703100521	IL	Cook	winter	no3	0.3099	1.0128
1703100521		Cook	winter	ocm	0.2147	0.9942
1703100521		Cook	winter	ec	0.0372	0.888
1703100521		Cook	winter	soil	0.0242	1.1674
1703100521		Cook	winter	nh4	0.1421	0.97
1703100521		Cook	winter	pbw	0.0947	0.9678
1703100521		Cook	spring	so4	0.32	0.8018
1703100521		Cook	spring	no3	0.0609	0.9385
1703100521		Cook	spring	ocm	0.2742	1.0629
1703100521		Cook	spring	ec	0.0501	0.8712
1703100521		Cook	spring	soil	0.0505	1.1796
1703100521		Cook	spring	nh4	0.1203	0.8619
1703100521		Cook	spring	wdq	0.0984	0.8492
1703100521		Cook	summer	so4	0.3089	0.725
1703100521		Cook	summer	no3	0	1.0124
1703100521		Cook	summer	ocm	0.1599	1.069
1703100521		Cook	summer	ec	0.0351	0.8683
1703100521		Cook	summer	soil	0.0318	1.204
1703100521		Cook	summer	nh4	0.0932	0.7354
1703100521		Cook	summer	pbw	0.094	0.7217
1703100521		Cook	fall	so4	0.1872	0.9151
1703100521		Cook	fall	no3	0.1628	0.9408
1703100521		Cook	fall	ocm	0.2389	1.0091
1703100521		Cook	fall	ec	0.0403	0.8623
1703100521		Cook	fall	soil	0.0284	1.1443
1703100521		Cook	fall	nh4	0.1062	0.9247
1703100521		Cook	fall	pbw	0.0614	0.9233
1700100021	-	OOOK	IGII	pow	0.0014	0.3200
1711910071	II	Madison	winter	so4	0.213	0.9195
1711910071		Madison	winter	no3	0.2705	1.0306
1711910071		Madison	winter	ocm	0.2093	0.9289
1711910071		Madison	winter	ec	0.0434	0.9083
1711910071		Madison	winter	soil	0.0306	1.1782
1711910071		Madison	winter	nh4	0.1528	0.9513
1711910071		Madison	winter	pbw	0.0804	0.9243
1711910071		Madison	spring	so4	0.3194	0.7717
1711910071		Madison	spring	no3	0.0189	0.8611
1711910071		Madison	spring	ocm	0.2455	1.1103
1711910071		Madison	spring	ec	0.0564	1.0046
1711910071		Madison	spring	soil	0.0459	1.2252
1711910071		Madison	spring	nh4	0.1121	0.7894
1711910071		Madison	spring	pbw	0.1085	0.7783
1711910071		Madison	summer	so4	0.313	0.705
1711910071		Madison	summer	no3	0.313	0.705
1711910071		Madison	summer	ocm	0.153	1.1546
1711910071		Madison	summer	ec	0.0345	1.0513
1711910071		Madison		soil	0.0345	1.2532
1711910071		Madison	summer	nh4	0.0302	0.7409
1711910071		Madison		pbw	0.102	0.7409
1711910071		Madison	summer fall	so4	0.1096	0.7133
		Madison	fall	no3		
1711910071					0.1308	0.9426
1711910071		Madison	fall	ocm	0.259	1.0233
1711910071		Madison	fall	ec	0.0563	0.9248
1711910071		Madison	fall	soil	0.0549	1.1412
1711910071		Madison	fall	nh4	0.1073	0.9185
1711910071	IL	Madison	fall	pbw	0.0655	0.918

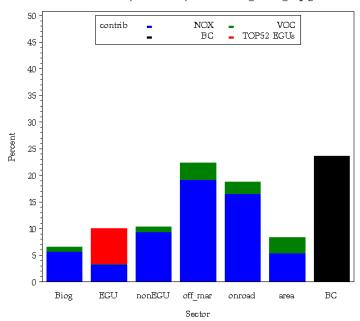
	_	_	_		Species Comp. of Ave.	
Site ID	State	County	Season	Species	FRM (fraction)	Species RRF
1803720011	INI	Dubois	winter	so4	0.2669	0.8833
1803720011		Dubois	winter	no3	0.2548	0.0033
1803720011		Dubois	winter	ocm	0.1747	0.9374
1803720011		Dubois	winter	ec	0.0313	0.9374
1803720011		Dubois	winter	soil	0.0192	1.1349
1803720011			winter			0.9069
		Dubois Dubois		nh4	0.1646	
1803720011		Dubois	winter	pbw	0.0885 0.4141	0.9006
1803720011			spring	so4		
1803720011 1803720011	IN	Dubois Dubois	spring	no3	0.0022 0.178	0.8106 0.9997
1803720011		Dubois	spring	ocm	0.178	0.9997
			spring	ec		1.1284
1803720011		Dubois	spring	soil	0.0218	
1803720011		Dubois	spring	nh4	0.1432	0.7075
1803720011		Dubois	spring	pbw	0.1556	0.6916
1803720011		Dubois	summer	so4	0.3687	0.644
1803720011		Dubois	summer	no3	0	0.8029
1803720011		Dubois	summer	ocm	0.1174	1.0136
1803720011		Dubois	summer	ec	0.0207	0.913
1803720011		Dubois	summer	soil	0.0213	1.1988
1803720011		Dubois	summer	nh4	0.1168	0.6789
1803720011		Dubois	summer	pbw	0.1246	0.6613
1803720011		Dubois	fall	so4	0.2964	0.8232
1803720011		Dubois	fall	no3	0.138	0.8797
1803720011		Dubois	fall	ocm	0.2116	0.9861
1803720011	IN	Dubois	fall	ec	0.0437	0.9019
1803720011	IN	Dubois	fall	soil	0.03	1.1387
1803720011	IN	Dubois	fall	nh4	0.1449	0.8444
1803720011	IN	Dubois	fall	pbw	0.0941	0.8558
1809700811	IN	Marion	winter	so4	0.2358	0.9192
1809700811		Marion	winter	no3	0.2729	0.9769
1809700811	IN	Marion	winter	ocm	0.1851	0.9546
1809700811	IN	Marion	winter	ec	0.0385	0.8647
1809700811		Marion	winter	soil	0.0239	1.0835
1809700811	IN	Marion	winter	nh4	0.1561	0.9446
1809700811	IN	Marion	winter	pbw	0.0877	0.944
1809700811	IN	Marion	spring	so4	0.3745	0.6868
1809700811	IN	Marion	spring	no3	0.0167	0.8082
1809700811	IN	Marion	spring	ocm	0.2034	0.9881
1809700811	IN	Marion	spring	ec	0.0447	0.8547
1809700811	IN	Marion	spring	soil	0.0376	1.0625
1809700811	IN	Marion	spring	nh4	0.1313	0.7182
1809700811	IN	Marion	spring	pbw	0.1309	0.7056
1809700811	IN	Marion	summer	so4	0.3582	0.6529
1809700811	IN	Marion	summer	no3	0	0.8099
1809700811	IN	Marion	summer	ocm	0.1231	1.0043
1809700811	IN	Marion	summer	ec	0.03	0.8444
1809700811	IN	Marion	summer	soil	0.0253	1.0918
1809700811	IN	Marion	summer	nh4	0.1114	0.6854
1809700811	IN	Marion	summer	pbw	0.1163	0.6674
1809700811	IN	Marion	fall	so4	0.2751	0.8538
1809700811	IN	Marion	fall	no3	0.149	0.9452
1809700811	IN	Marion	fall	ocm	0.223	0.9648
1809700811	IN	Marion	fall	ec	0.0525	0.8412
1809700811	IN	Marion	fall	soil	0.0358	1.089
1809700811		Marion	fall	nh4	0.1378	0.8905
1809700811		Marion	fall	pbw	0.0865	0.8888
				<u>'</u>		

2616300331			Season	Species	FRM (fraction)	Species RRI
2010300331	MI	Wayne	winter	so4	0.1587	0.9206
2616300331	MI	Wayne	winter	no3	0.2394	0.9813
2616300331	MI	Wayne	winter	ocm	0.3193	1.0781
2616300331	MI	Wayne	winter	ес	0.0383	0.9279
2616300331	MI	Wayne	winter	soil	0.0541	1.0206
2616300331	MI	Wayne	winter	nh4	0.1188	0.9518
2616300331	MI	Wayne	winter	pbw	0.0714	0.9566
2616300331	MI	Wayne	spring	so4	0.3383	0.7398
2616300331	MI	Wayne	spring	no3	0.0259	0.8787
2616300331	MI	Wayne	spring	ocm	0.3543	1.0234
	MI	Wayne	spring	ec	0.0504	0.8671
2616300331	MI	Wayne	spring	soil	0.0915	1.0153
2616300331	MI	Wayne	spring	nh4	0.1191	0.7818
2616300331		Wayne	spring	pbw	0.1126	0.7619
2616300331		Wayne	summer	so4	0.3311	0.6681
2616300331		Wayne	summer	no3	0	0.8431
2616300331		Wayne	summer	ocm	0.2297	1.0029
2616300331		Wayne	summer	ec	0.0362	0.8332
2616300331		Wayne	summer	soil	0.0362	1.0177
2616300331		Wayne	summer	nh4	0.1027	0.6974
	MI	Wayne		pbw	0.1027	0.6754
		-	summer			
2616300331		Wayne	fall	so4	0.1898	0.854
2616300331		Wayne	fall	no3	0.1075	0.9367
2616300331		Wayne	fall	ocm	0.3689	1.0607
2616300331		Wayne	fall	ec	0.0546	0.8862
2616300331		Wayne	fall	soil	0.1676	1.0317
2616300331		Wayne	fall	nh4	0.0866	0.8919
2616300331	MI	Wayne	fall	pbw	0.0553	0.8821
3903500381	ОН	Cuyahoga	winter	so4	0.2117	0.8993
3903500381	ОН	Cuyahoga	winter	no3	0.2665	0.9856
3903500381	ОН	Cuyahoga	winter	ocm	0.2048	0.9716
3903500381	ОН	Cuyahoga	winter	ec	0.0413	0.8903
	ОН	Cuyahoga	winter	soil	0.0465	1.0959
3903500381		Cuyahoga	winter	nh4	0.1459	0.9416
3903500381		Cuyahoga	winter	pbw	0.0832	0.9541
3903500381		Cuyahoga	spring	so4	0.3334	0.7145
3903500381		Cuyahoga	spring	no3	0.0374	0.8393
3903500381		Cuyahoga	spring	ocm	0.2068	1.0899
3903500381		Cuyahoga	spring	ec	0.052	0.9362
3903500381		Cuyahoga		soil	0.0697	1.0601
3903500381		Cuyanoga	spring	nh4	0.1256	0.7666
3903500381			spring		0.1256	0.7661
		Cuyahoga	spring	pbw so4		
3903500381		Cuyahoga	summer	so4	0.3241	0.6303
3903500381		Cuyahoga	summer	no3	0 1206	0.89
3903500381		Cuyahoga	summer	ocm	0.1306	1.0998
3903500381		Cuyahoga	summer	ec	0.0419	0.9354
3903500381		Cuyahoga	summer	soil	0.0583	1.0906
3903500381		Cuyahoga	summer	nh4	0.1074	0.7038
3903500381		Cuyahoga	summer	pbw	0.1183	0.6674
3903500381		Cuyahoga	fall	so4	0.2055	0.8193
3903500381		Cuyahoga	fall	no3	0.1275	0.9189
3903500381	ОН	Cuyahoga	fall	ocm	0.2234	1.0245
3903500381	ОН	Cuyahoga	fall	ec	0.0499	0.8913
3903500381	ОН	Cuyahoga	fall	soil	0.0675	1.0927
3903500381	ОН	Cuyahoga	fall	nh4	0.1034	0.8615
3903500381	ОН	Cuyahoga	fall	pbw	0.0637	0.8564

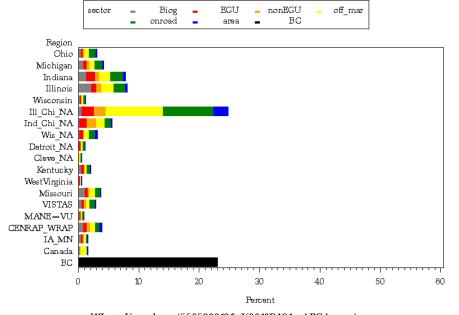
Site ID	State	County	Season	Species	Species Comp. of Ave. FRM (fraction)	Species RRI
3904900241	ОН	Franklin	winter	so4	0.2555	0.8622
3904900241	ОН	Franklin	winter	no3	0.2373	1.0002
3904900241	ОН	Franklin	winter	ocm	0.2082	0.974
3904900241	ОН	Franklin	winter	ec	0.0375	0.8537
3904900241	ОН	Franklin	winter	soil	0.0259	1.0844
3904900241	ОН	Franklin	winter	nh4	0.1495	0.9261
3904900241	ОН	Franklin	winter	pbw	0.0861	0.9274
3904900241	ОН	Franklin	spring	so4	0.3754	0.6615
3904900241	ОН	Franklin	spring	no3	0.0176	0.8436
3904900241	ОН	Franklin	spring	ocm	0.2069	1.062
3904900241	ОН	Franklin	spring	ec	0.0405	0.8678
3904900241	ОН	Franklin	spring	soil	0.0371	1.0551
3904900241	ОН	Franklin	spring	nh4	0.1296	0.7212
3904900241	ОН	Franklin	spring	pbw	0.128	0.6992
3904900241	ОН	Franklin	summer	so4	0.3703	0.622
3904900241	ОН	Franklin	summer	no3	0	0.9056
3904900241	ОН	Franklin	summer	ocm	0.1343	1.0654
3904900241	ОН	Franklin	summer	ec	0.0311	0.8565
3904900241	ОН	Franklin	summer	soil	0.0267	1.0667
3904900241	ОН	Franklin	summer	nh4	0.1142	0.7021
3904900241	ОН	Franklin	summer	pbw	0.1186	0.6614
3904900241		Franklin	fall	so4	0.2692	0.8119
3904900241	ОН	Franklin	fall	no3	0.1186	0.9099
3904900241	ОН	Franklin	fall	ocm	0.2489	1.019
3904900241	ОН	Franklin	fall	ec	0.0533	0.8371
3904900241	ОН	Franklin	fall	soil	0.0423	1.0924
3904900241	ОН	Franklin	fall	nh4	0.1217	0.8539
3904900241	ОН	Franklin	fall	pbw	0.0821	0.8519
3906100141	ОН	Hamilton	winter	so4	0.2685	0.8104
3906100141	ОН	Hamilton	winter	no3	0.2378	1.0886
3906100141	ОН	Hamilton	winter	ocm	0.19	0.961
3906100141	ОН	Hamilton	winter	ec	0.035	0.8969
3906100141	ОН	Hamilton	winter	soil	0.0229	1.4146
3906100141	ОН	Hamilton	winter	nh4	0.1583	0.9077
3906100141	ОН	Hamilton	winter	pbw	0.0874	0.8687
3906100141		Hamilton	spring	so4	0.3583	0.6331
3906100141		Hamilton	spring	no3	0.0025	1.0155
3906100141		Hamilton	spring	ocm	0.1986	1.0798
3906100141		Hamilton	spring	ec	0.0466	0.9228
3906100141		Hamilton	spring	soil	0.0289	1.3785
3906100141		Hamilton	spring	nh4	0.1215	0.6968
3906100141		Hamilton	spring	pbw	0.128	0.6307
3906100141		Hamilton	summer	so4	0.3722	0.577
3906100141	-	Hamilton	summer	no3	0.0722	1.0923
3906100141		Hamilton	summer	ocm	0.121	1.082
3906100141		Hamilton	summer	ec	0.0309	0.9099
3906100141		Hamilton	summer	soil	0.0199	1.537
3906100141		Hamilton	summer	nh4	0.1178	0.6441
3906100141		Hamilton	summer	pbw	0.1261	0.5734
3906100141		Hamilton	fall	so4	0.2608	0.7754
3906100141		Hamilton	fall	no3	0.1184	0.9857
3906100141		Hamilton	fall	ocm	0.213	1.0235
3906100141		Hamilton	fall	ec	0.0512	0.8876
3906100141		Hamilton	fall	soil	0.0312	1.4007
3906100141		Hamilton	fall	nh4	0.0328	0.846
	ОН	Hamilton	fall	pbw	0.1254	0.846

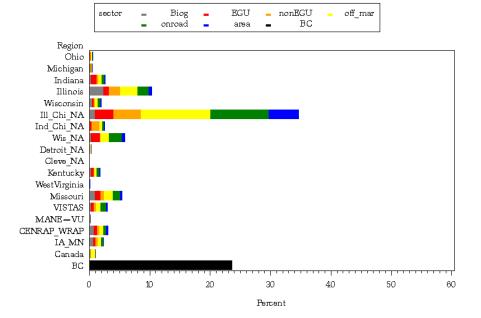

Site ID	State	County	Season	Species	Species Comp. of Ave. FRM (fraction)	Species RRF
3908110011		Jefferson	winter	so4	0.2367	0.8217
3908110011		Jefferson	winter	no3	0.1709	1.0522
3908110011		Jefferson	winter	ocm	0.3288	0.8819
3908110011		Jefferson	winter	ec	0.0435	0.9091
3908110011		Jefferson	winter	soil	0.0433	0.4368
3908110011		Jefferson	winter	nh4	0.0272	0.4308
3908110011		Jefferson	winter	pbw	0.073	0.8583
3908110011		Jefferson		so4	0.3508	0.6666
	ОН	Jefferson	spring			
3908110011			spring	no3	0.0154	0.9156
3908110011	OH	Jefferson	spring	ocm	0.3078	0.9995
3908110011	OH	Jefferson	spring	ec	0.0395	0.9853
3908110011	OH	Jefferson	spring	soil	0.0407	0.4844
3908110011	OH	Jefferson	spring	nh4	0.114	0.7054
3908110011		Jefferson	spring	pbw	0.1095	0.6713
3908110011		Jefferson	summer	so4	0.3779	0.6156
3908110011	ОН	Jefferson	summer	no3	0	1.0837
3908110011		Jefferson	summer	ocm	0.2098	1.0145
3908110011		Jefferson	summer	ec	0.0308	0.9689
3908110011		Jefferson	summer	soil	0.0323	0.3632
3908110011	ОН	Jefferson	summer	nh4	0.1065	0.6428
3908110011	ОН	Jefferson	summer	pbw	0.1007	0.625
3908110011	ОН	Jefferson	fall	so4	0.2315	0.7694
3908110011	ОН	Jefferson	fall	no3	0.0702	1.0302
3908110011	ОН	Jefferson	fall	ocm	0.372	0.9312
3908110011	ОН	Jefferson	fall	ec	0.051	0.9086
3908110011	ОН	Jefferson	fall	soil	0.0344	0.4555
3908110011	ОН	Jefferson	fall	nh4	0.0859	0.8284
3908110011	ОН	Jefferson	fall	pbw	0.0629	0.7951
3911300321	ОН	Montgomer	winter	so4	0.2613	0.8598
3911300321	ОН	Montgomer	winter	no3	0.2407	1.029
3911300321	ОН	Montgomer	winter	ocm	0.1954	0.9442
3911300321	ОН	Montgomer	winter	ec	0.036	0.8746
3911300321	ОН	Montgomer	winter	soil	0.0259	1.1295
3911300321	ОН	Montgomer	winter	nh4	0.1531	0.9304
3911300321	ОН	Montgomer	winter	pbw	0.0876	0.9205
3911300321	ОН	Montgomer	spring	so4	0.3659	0.6606
3911300321	ОН	Montgomer	spring	no3	0.0163	0.8639
3911300321	ОН	Montgomer	spring	ocm	0.1895	1.0976
3911300321		Montgomer	spring	ec	0.0442	0.9417
3911300321		Montgomer	spring	soil	0.0253	1.0873
3911300321		Montgomer	spring	nh4	0.1313	0.7149
3911300321		Montgomer	spring	pbw	0.1326	0.6839
3911300321		Montgomer	summer	so4	0.375	0.6234
3911300321		Montgomer	summer	no3	0	0.0234
3911300321		Montgomer	summer	ocm	0.128	1.1047
3911300321		Montgomer	summer	ec	0.029	0.9496
3911300321		Montgomer	summer	soil	0.029	1.1299
3911300321		-		nh4	0.0205	0.6931
		Montgomer	summer			
3911300321		Montgomer	summer	pbw	0.1114	0.6482
3911300321		Montgomer	fall	so4	0.3062	0.8033
3911300321		Montgomer	fall	no3	0.1012	0.9634
3911300321		Montgomer	fall	ocm	0.2221	1.0158
3911300321		Montgomer	fall	ec	0.0514	0.877
3911300321		Montgomer	fall	soil	0.028	1.1391
3911300321		Montgomer	fall	nh4	0.1352	0.8625
3911300321	ОН	Montgomer	fall	pbw	0.0982	0.8475
			1		î .	

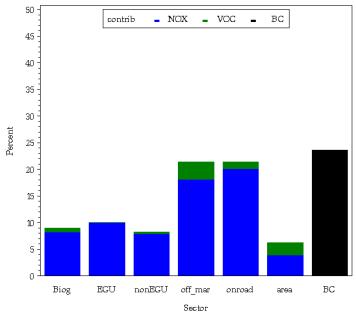
Site ID	State	County	Sacan	Species	Species Comp. of Ave.	Species BBE
Site ID	State	County	Season	Species	FRM (fraction)	Species RRF
3915100171	OH	Stark	winter	so4	0.2362	0.8558
3915100171		Stark	winter	no3	0.2234	1.0222
3915100171		Stark	winter	ocm	0.2478	0.9255
3915100171		Stark	winter	ec	0.0414	0.8866
3915100171	ОН	Stark	winter	soil	0.0334	1.099
3915100171	ОН	Stark	winter	nh4	0.1376	0.925
3915100171	ОН	Stark	winter	pbw	0.0802	0.9155
3915100171	ОН	Stark	spring	so4	0.3581	0.6834
3915100171	ОН	Stark	spring	no3	0.0236	0.855
3915100171	ОН	Stark	spring	ocm	0.221	1.0892
3915100171	ОН	Stark	spring	ec	0.0501	1.0017
3915100171	OH	Stark	spring	soil	0.058	1.0528
3915100171	OH	Stark	spring	nh4	0.1288	0.7264
3915100171	OH	Stark	spring	pbw	0.1256	0.7009
3915100171	ОН	Stark	summer	so4	0.3621	0.6277
3915100171	ОН	Stark	summer	no3	0	0.8203
3915100171	ОН	Stark	summer	ocm	0.1483	1.0984
3915100171	ОН	Stark	summer	ес	0.0403	1.016
3915100171	ОН	Stark	summer	soil	0.037	1.0781
3915100171	ОН	Stark	summer	nh4	0.1157	0.6739
3915100171	ОН	Stark	summer	pbw	0.124	0.651
3915100171	ОН	Stark	fall	so4	0.2293	0.8041
3915100171		Stark	fall	no3	0.1262	0.9363
3915100171		Stark	fall	ocm	0.2722	1.0226
3915100171		Stark	fall	ec	0.0545	0.9202
3915100171		Stark	fall	soil	0.0461	1.0959
3915100171		Stark	fall	nh4	0.1105	0.8549
3915100171		Stark	fall	pbw	0.0706	0.8428
3915300171	ОН	Summit	winter	so4	0.2511	0.8771
3915300171	ОН	Summit	winter	no3	0.2376	1.0052
3915300171	ОН	Summit	winter	ocm	0.2185	0.9429
3915300171	ОН	Summit	winter	ec	0.0334	0.8677
3915300171	ОН	Summit	winter	soil	0.0255	1.0835
3915300171	ОН	Summit	winter	nh4	0.1489	0.9374
3915300171	ОН	Summit	winter	pbw	0.0851	0.945
3915300171	ОН	Summit	spring	so4	0.387	0.7046
3915300171	ОН	Summit	spring	no3	0.0072	0.8466
3915300171		Summit	spring	ocm	0.1901	1.0967
3915300171		Summit	spring	ec	0.035	0.9482
3915300171		Summit	spring	soil	0.0304	1.0524
3915300171		Summit	spring	nh4	0.1294	0.7521
3915300171		Summit	spring	pbw	0.1342	0.7321
3915300171		Summit	summer	so4	0.3694	0.7364
3915300171		Summit	summer	no3	0.3094	0.8587
3915300171		Summit			0.1417	1.1077
3915300171			summer	ocm	0.0332	0.9506
		Summit	summer	ec		
3915300171		Summit	summer	soil	0.0198	1.0744
3915300171		Summit	summer	nh4	0.1121	0.6961
3915300171		Summit	summer	pbw	0.1146	0.6691
3915300171		Summit	fall	so4	0.2443	0.8074
3915300171		Summit	fall	no3	0.1175	0.9392
3915300171		Summit	fall	ocm	0.2636	1.0252
3915300171		Summit	fall	ес	0.0623	0.8883
3915300171		Summit	fall	soil	0.0494	1.086
3915300171	ОН	Summit	fall	nh4	0.109	0.8622
3915300171	ОН	Summit	fall	pbw	0.0723	0.8506

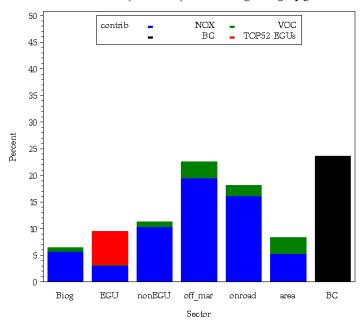

APPENDIX II

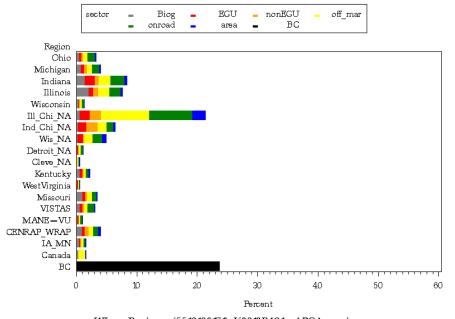
Ozone Source Apportionment Modeling Results

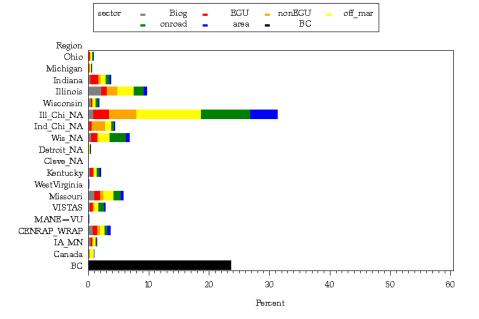

WI - Kenosha: (5505900191) 2009M3R5_osat

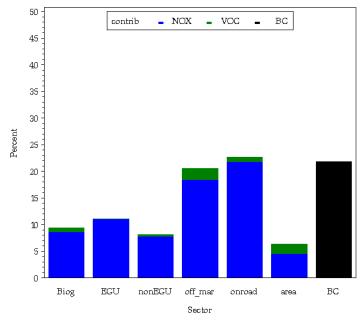

WI - Kenosha: (5505900191) K2012R4S1a_APCA_nopig

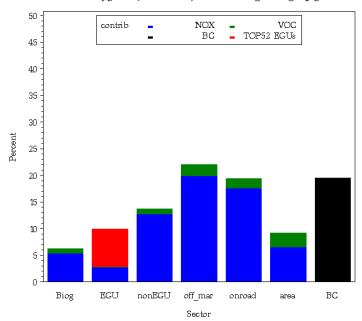

WI - Kenosha: (5505900191) 2009M3R5_osat

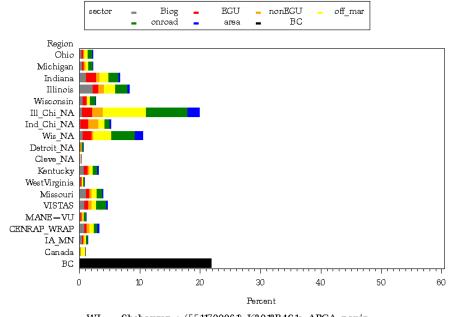

WI — Kenosha : (5505900191) K2012R4S1a_APCA_nopig

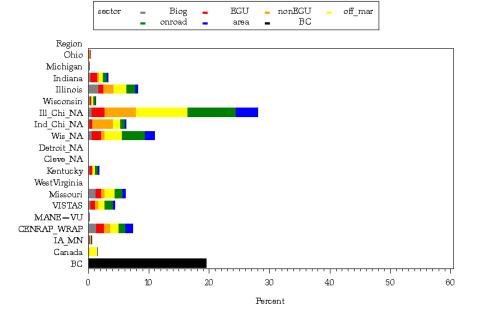

WI — Racine : (5510100171) 2009M3R5_osat

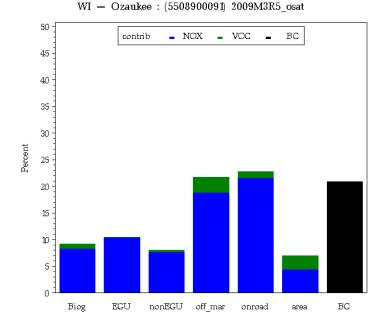

WI - Racine: (5510100171) K2012R4S1a_APCA_nopig


WI - Racine: (5510100171) 2009M3R5_osat

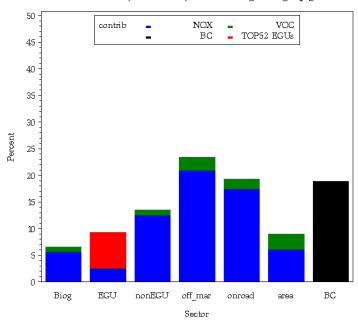

WI — Racine : (5510100171) K2012R4S1a_APCA_nopig

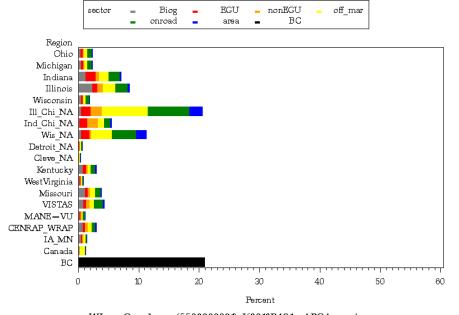

WI - Sheboygan : (5511700061) 2009M3R5_osat


WI - Sheboygan : (5511700061) K2012R4S1a_APCA_nopig

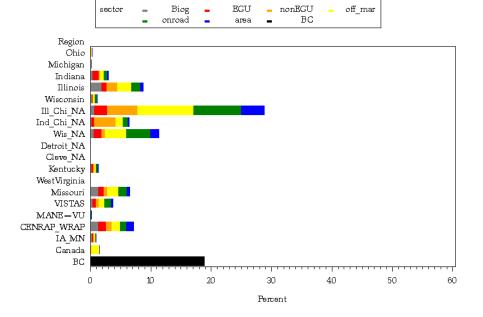


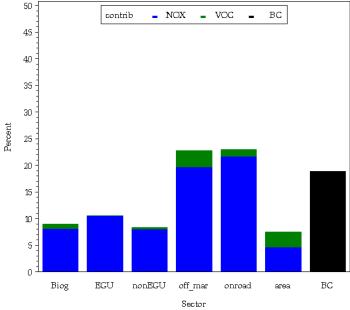
WI - Sheboygan : (5511700061) 2009M3R5_osat

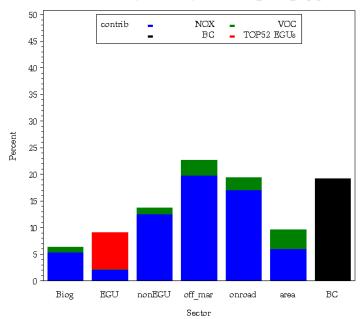

WI — Sheboygan : (5511700061) K2012R4S1a_APCA_nopig

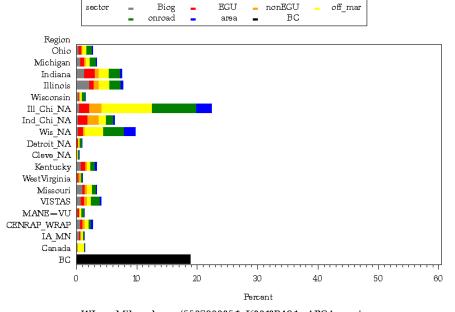


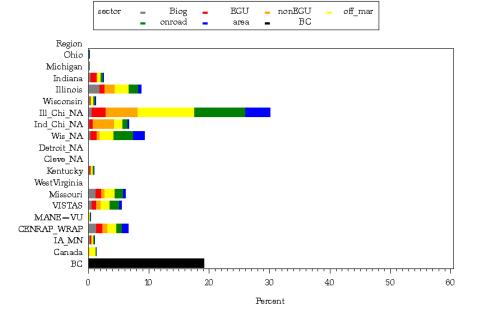
WI - Ozaukee : (5508900091) K2012R4S1a_APCA_nopig


Sector


WI - Ozaukee : (5508900091) 2009M3R5_osat


WI — Ozaukee : (5508900091) K2012R4S1a_APCA_nopig


WI — Milwaukee : (5507900851) 2009M3R5_osat


WI - Milwaukee : (5507900851) K2012R4S1a_APCA_nopig

WI - Milwaukee : (5507900851) 2009M3R5_osat

WI — Milwaukee : (5507900851) K2012R4S1a_APCA_nopig

WI - Manitowoc : (5507100071) 2009M3R5_osat

WI - Manitowoc : (5507100071) K2012R4S1a_APCA_nopig

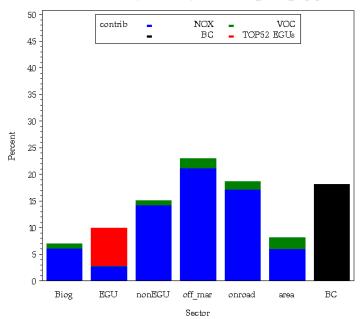
off_mar

Sector

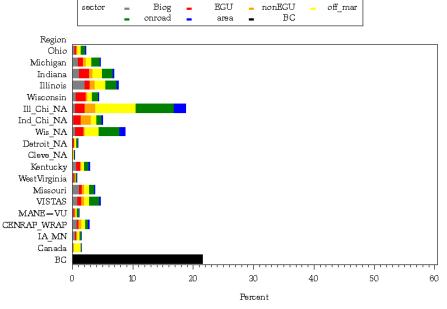
onroad

BC

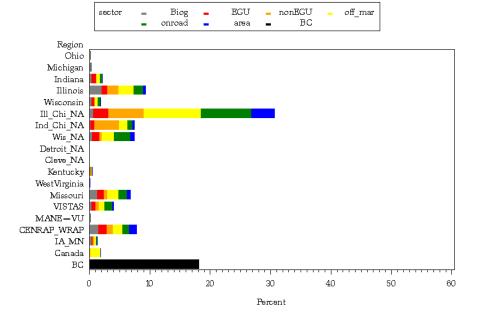
area

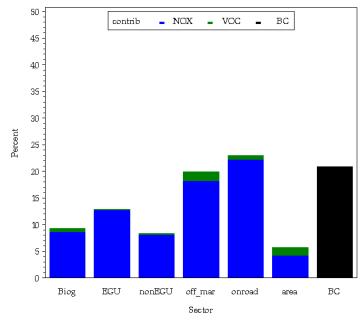

nonEGU

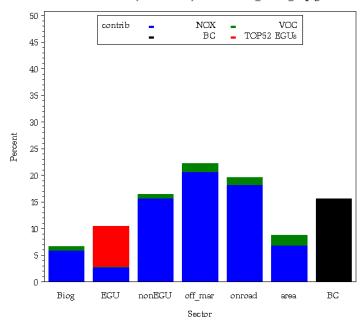
10 -

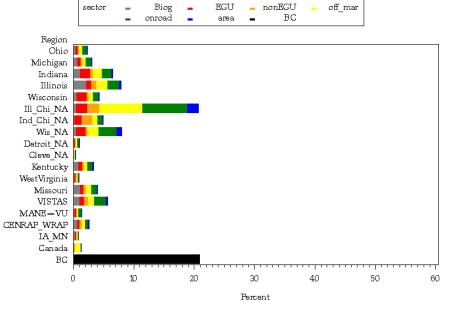

5 -

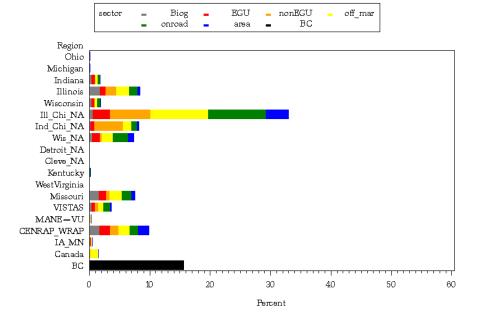
Biog


EGU

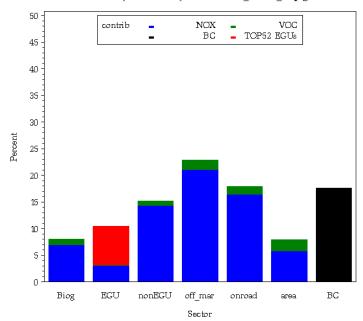

WI - Manitowoc : (5507100071) 2009M3R5_osat

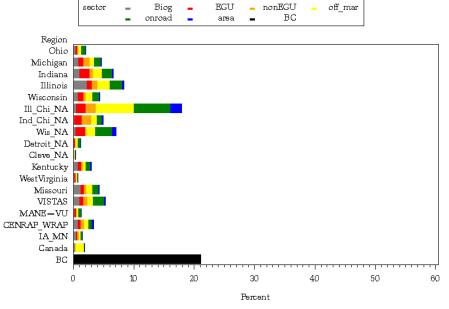

WI - Manitowoc : (5507100071) K2012R4S la_APCA_nopig


 $WI - Kewaunee : (5506100021) 2009M3R5_osat$

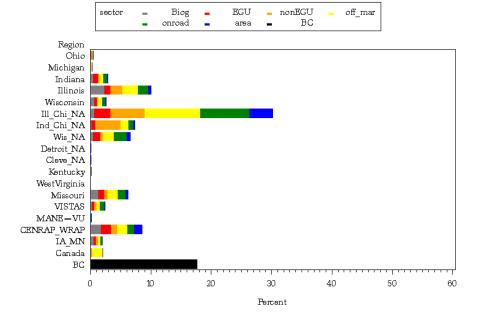

WI - Kewaunee : (5506100021) K2012R4S1a_APCA_nopig

WI - Kewaunee : (5506100021) 2009M3R5_osat


WI - Kewaunee : (5506100021) K2012R4S1a_APCA_nopig


WI - Door: (5502900041) 2009M3R5_osat 50 contrib NOX VOC ВC 45 -40 -35 -30 -Percent 25 -20 -15 -10 -5 -Biog EGU nonEGU off_mar BC onroad area

WI — Door : (5502900041) K2012R4S $1a_A$ PCA_nopig


Sector

WI - Door: (5502900041) 2009M3R5_osat

WI — Door : (5502900041) K2012R4S1a_APCA_nopig

OH — Lake : (3908500031) 2009M3R5_osat

50

45 -

40 -

35 -

30 -

25 -

20 -

15 -

10 .

5 -

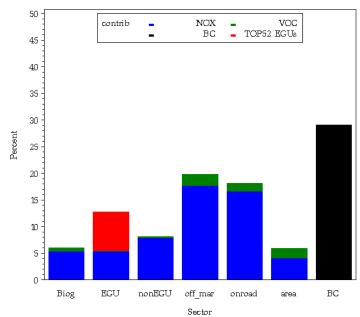
Biog

EGU

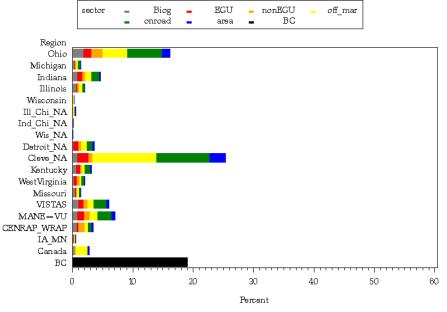
Percent

OH — Lake : (3908500031) K2012R4S1a_APCA_nopig

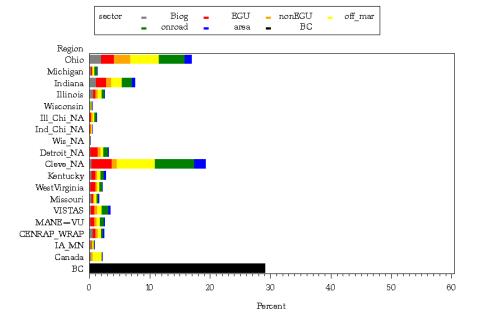
off_mar

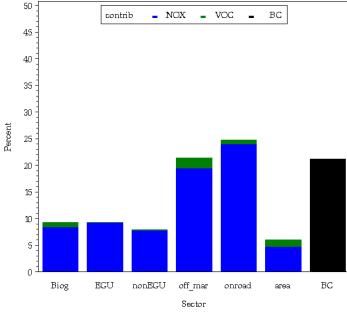

Sector

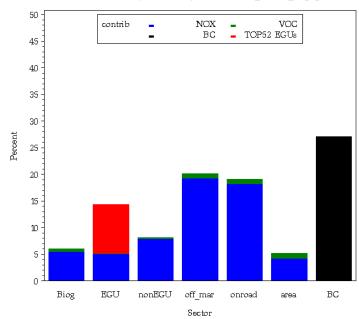
onroad

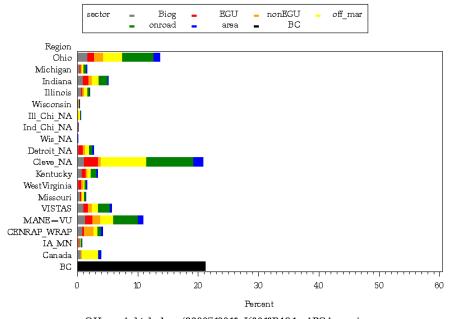

BC

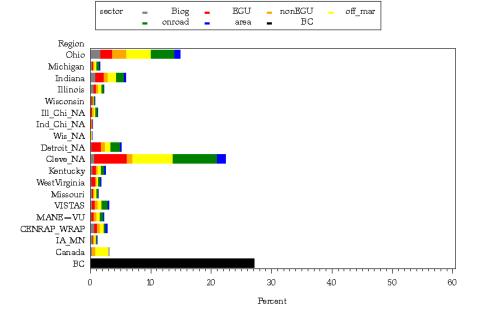
area

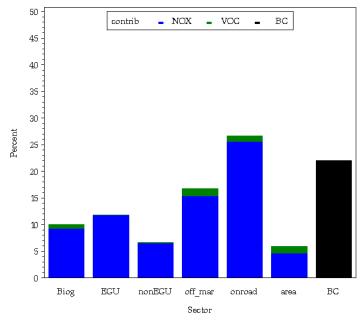

nonEGU

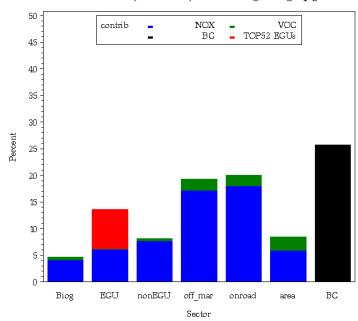

OH - Lake: (3908500031) 2009M3R5_osat

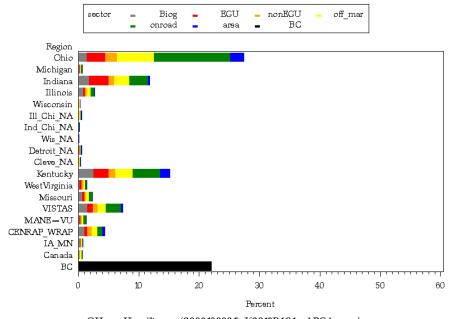

OH - Lake : (3908500031) K2012R4S1a_APCA_nopig

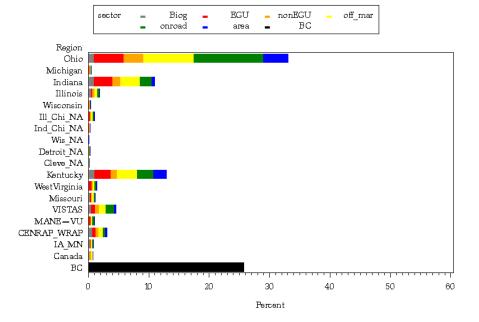

OH — Ashtabula : (3900710011) 2009M3R5_osat


OH - Ashtabula : (3900710011) K2012R4S la_APCA_nopig


OH - Ashtabula : (3900710011) 2009M3R5_osat


OH — Ashtabula : (3900710011) K2012R4S la_APCA_nopig


OH — Hamilton : (3906100061) 2009M3R5_osat


OH — Hamilton : (3906100061) K2012R4S1a_APCA_nopig

OH - Hamilton: (3906100061) 2009M3R5_osat

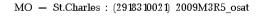
OH — Hamilton : (3906100061) K2012R4S1a_APCA_nopig

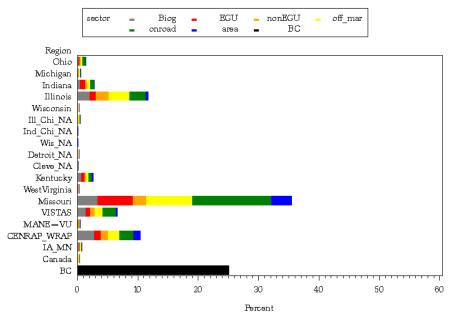
MO - St.Charles : (2918310021) 2009M3R5_osat

off_mar

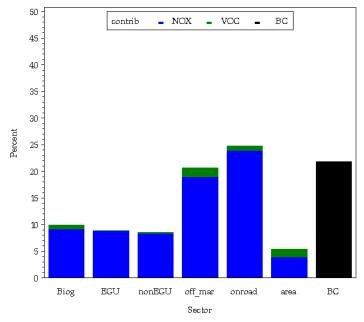
Sector

onroad

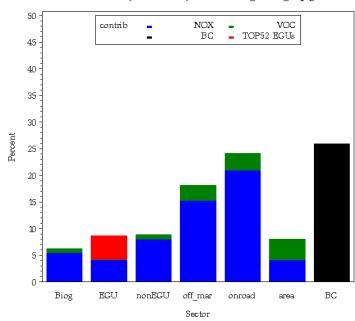

nonEGU

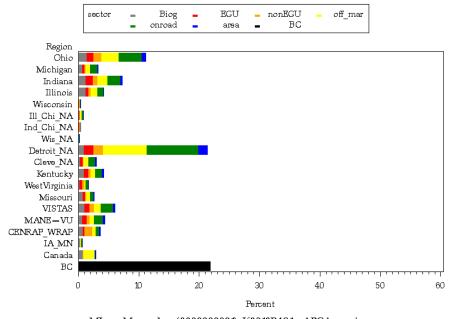

Biog

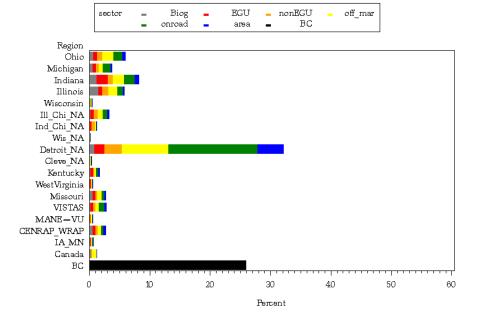
EGU

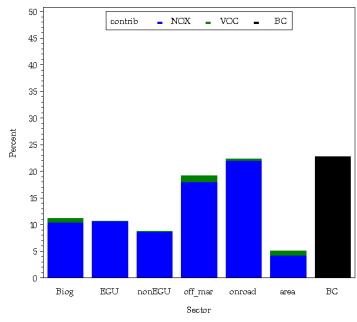

ВС

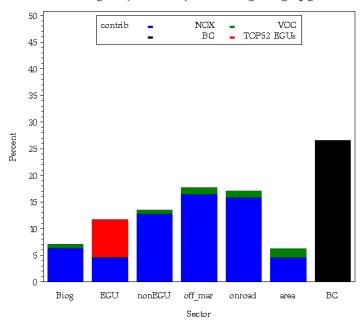
area

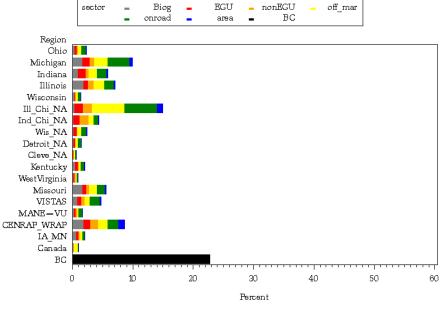


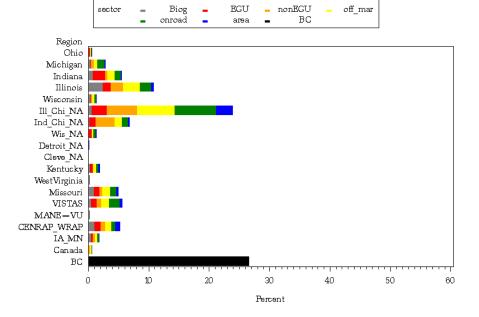

 $MI - Macomb : (2609900091) 2009M3R5_osat$


MI - Macomb: (2609900091) K2012R4S1a_APCA_nopig


MI - Macomb: (2609900091) 2009M3R5_osat


MI — Macomb : (2609900091) K2012R4S1a_APCA_nopig


MI - Allegan : (2600500031) 2009M3R5_osat


MI - Allegan : (2600500031) K2012R4S1a_APCA_nopig

MI - Allegan : (2600500031) 2009M3R5_osat

MI - Allegan : (2600500031) K2012R4S1a_APCA_nopig

IN - LaPorte: (1809100051) 2009M3R5_osat

 $IN - LaPorte : (1809100051) K2012R4S1a_APCA_nopig$

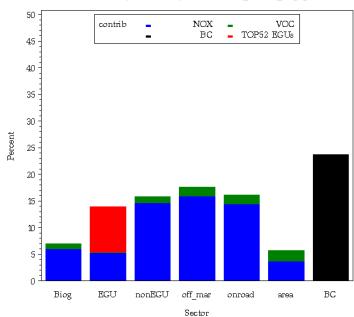
off_mar

Sector

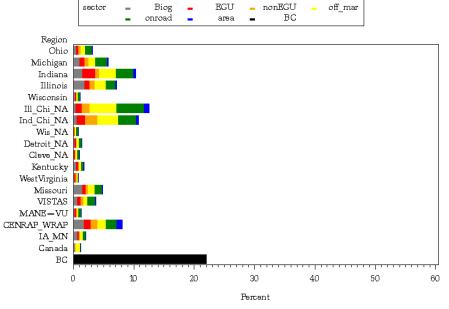
onroad

BC

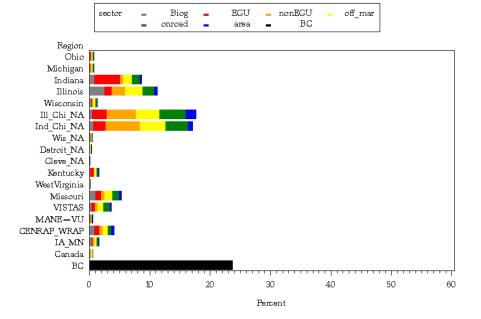
area


nonEGU

10 -


5 -

Biog


EGU

IN - LaPorte: (1809100051) 2009M3R5_osat

IN - LaPorte : (1809100051) K2012R4S1a_APCA_nopig

IN — Lake : (1808920081) 2009M3R5_osat

50

contrib = NOX = VOC = BC

45

40

35

30

15

10

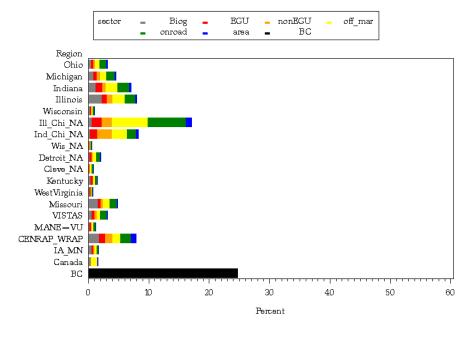
5

off_mar

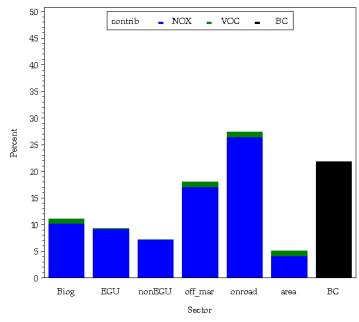
Sector

onroad

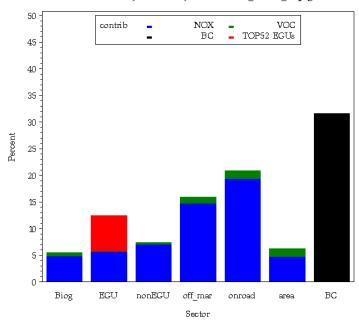
nonEGU

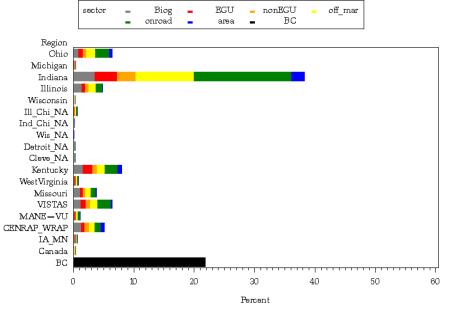

Biog

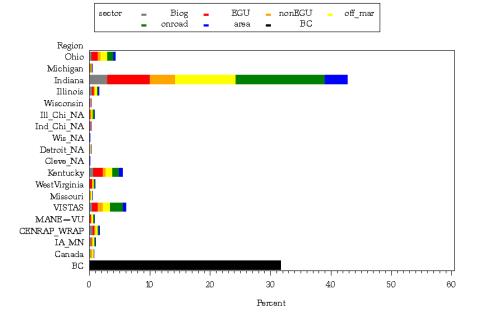
EGU


ВС

area

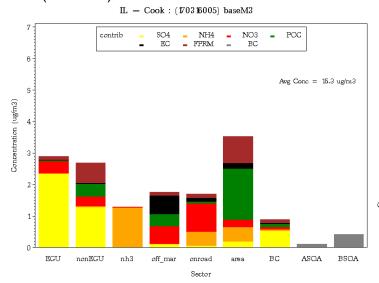

IN - Lake : (1808920081) 2009M3R5_osat

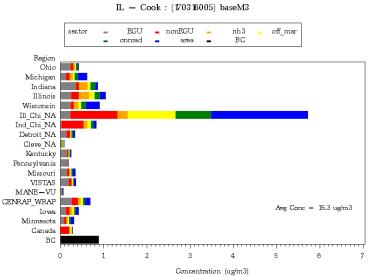

IN - Hamilton: (1805710011) 2009M3R5_osat


IN - Hamilton : (1805710011) K2012R4S1a_APCA_nopig

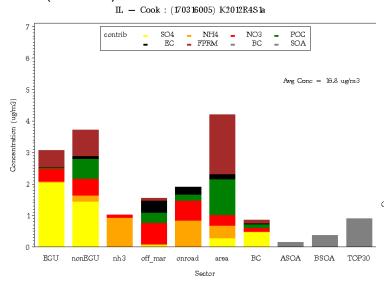
IN - Hamilton: (1805710011) 2009M3R5_osat

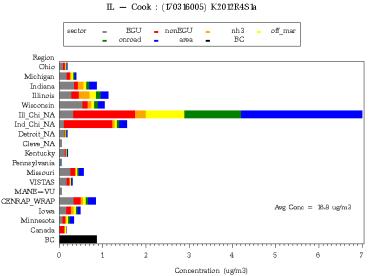
IN - Hamilton: (1805710011) K2012R4S1a_APCA_nopig

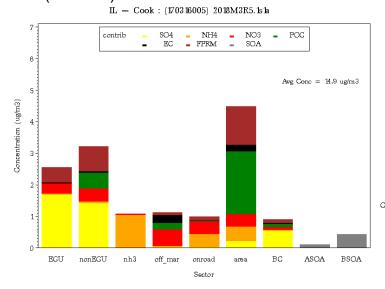


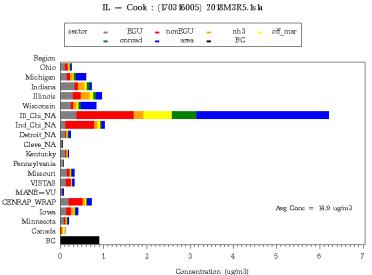

APPENDIX III

PM_{2.5} Source Apportionment Modeling Results

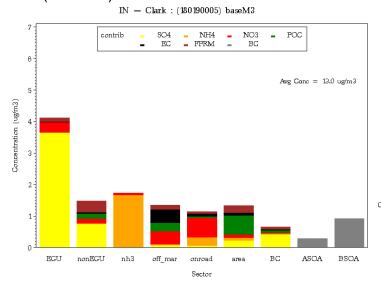

Chicago (Cicero), Illinois

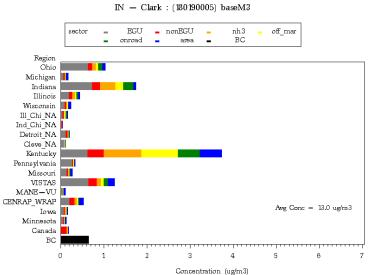

2005 (Round 5)

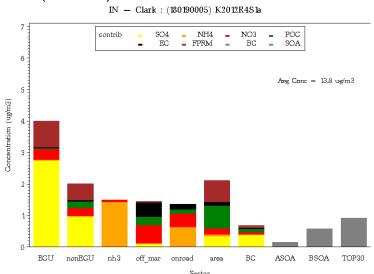


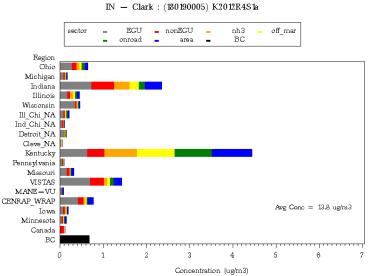


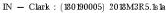
2012 (Round 4)

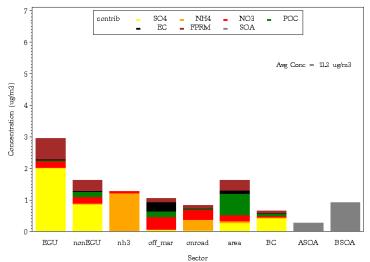


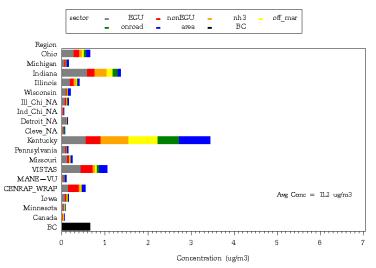



Clark County, Indiana

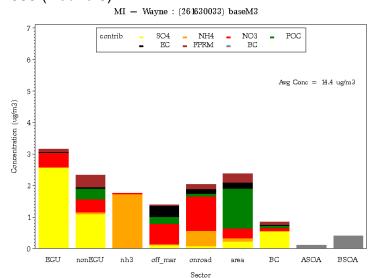

2005 (Round 5)

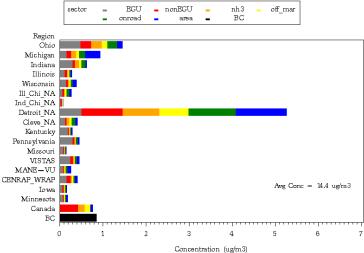



2012 (Round 4)

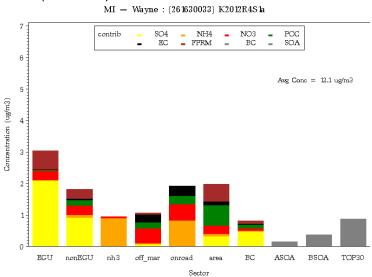


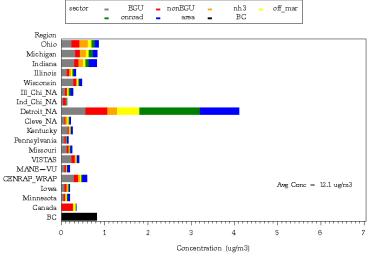
2018 (Round 5)

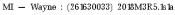


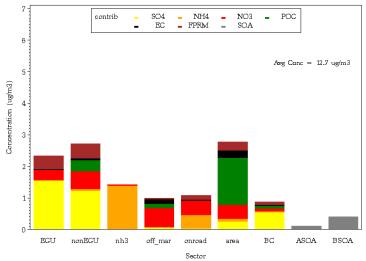

IN - Clark: (180190005) 2018M3R5.1s1a

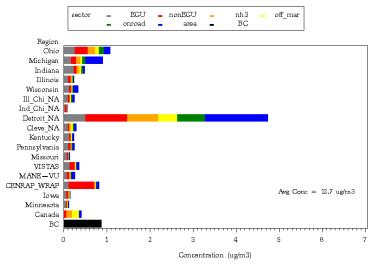
Dearborn, Michigan

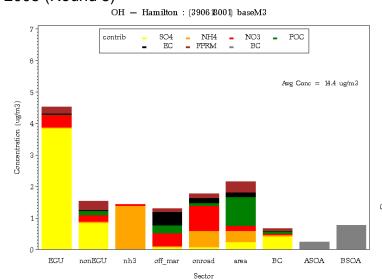

2005 (Round 5)

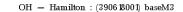

MI - Wayne : (261630033) baseM3

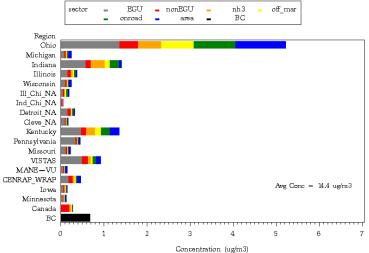



2012 (Round 4)

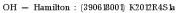

MI - Wayne: (261630033) K2012R4S1a

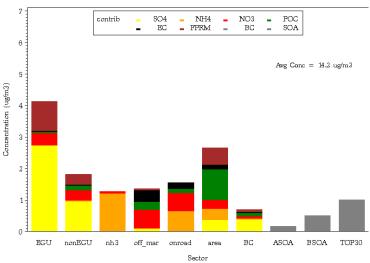


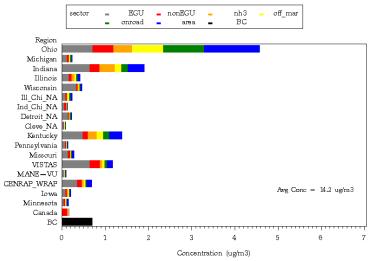

MI — Wayne : (261630033) 2018M3R5.1s1a



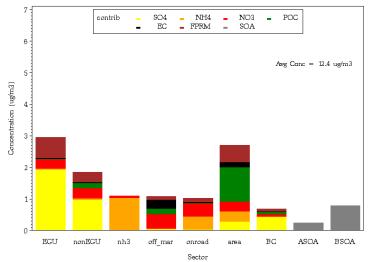
Cincinnati, Ohio

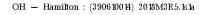

2005 (Round 5)

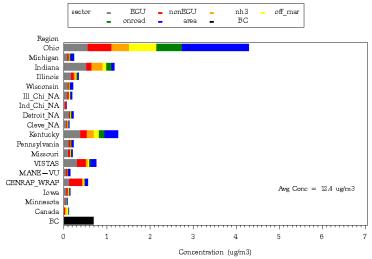




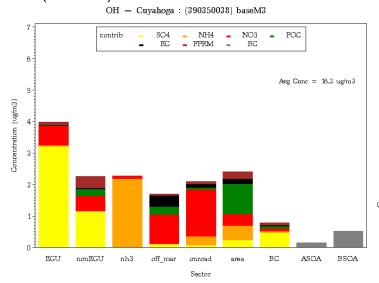
2012 (Round 4)

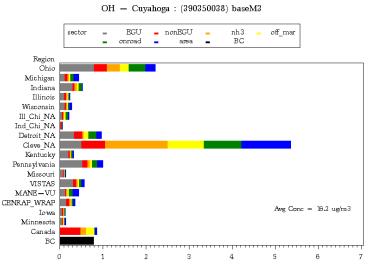




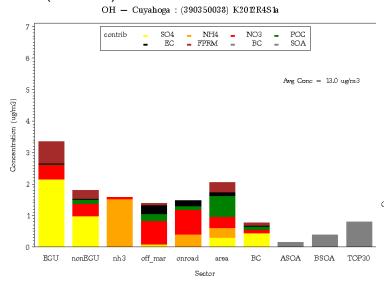

OH - Hamilton: (390618001) K2012R4S1a

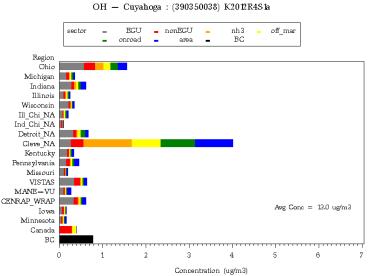
OH — Hamilton : (390610014) 2018M3R5.1s1a

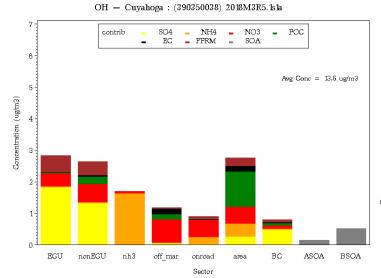


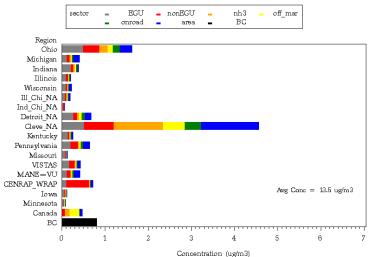


Cleveland, Ohio

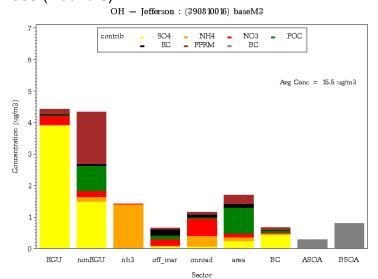

2005 (Round 5)

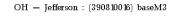


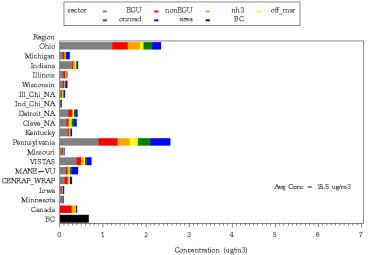

Concentration (ug/m3)


2012 (Round 4)

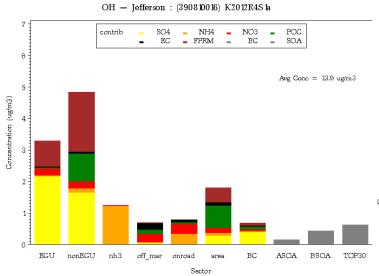
2018 (Round 5)

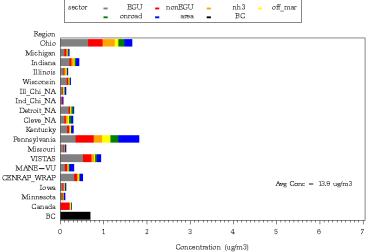


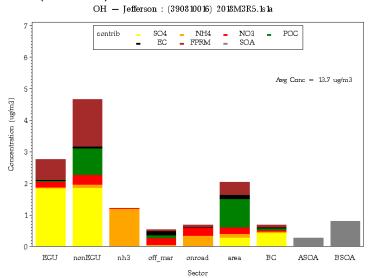



OH - Cuyahoga: (390350038) 2018M3R5.1s1a

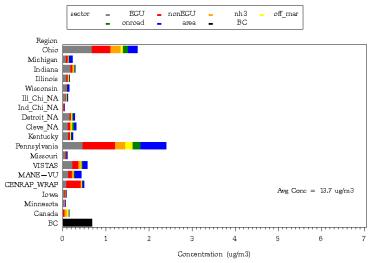
Steubenville, Ohio


2005 (Round 5)



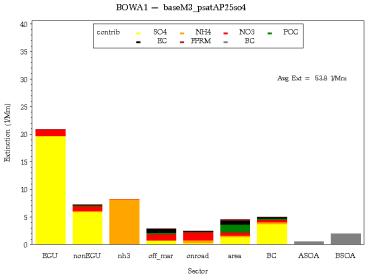


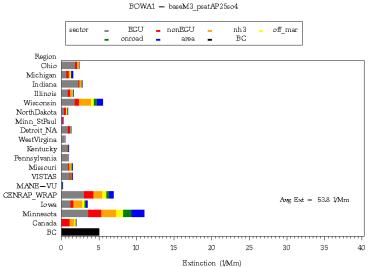
2012 (Round 4)



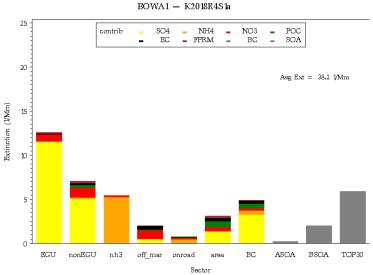
OH - Jefferson : (390810016) K2012R4S1a

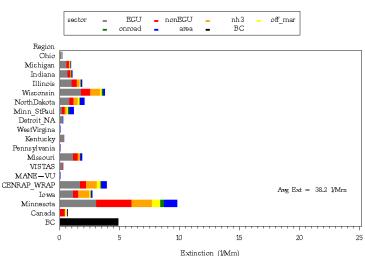
OH — Jefferson : (390810016) 2018M3R5.1s1a

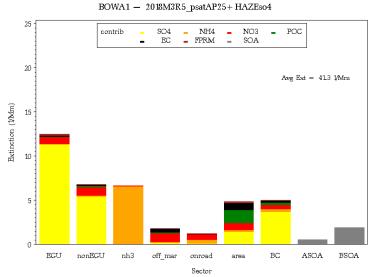


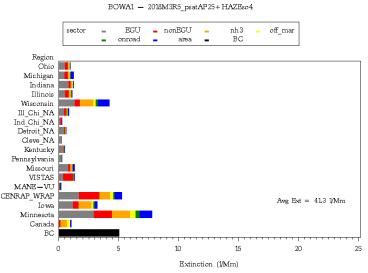

APPENDIX IV

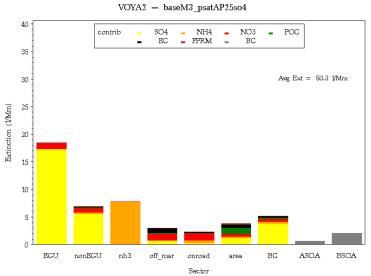
Haze Source Apportionment Modeling Results

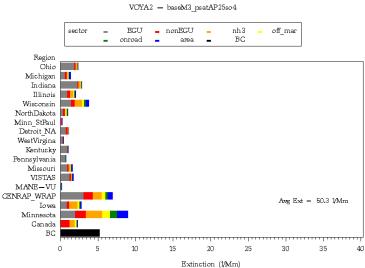

Boundary Waters, Minnesota

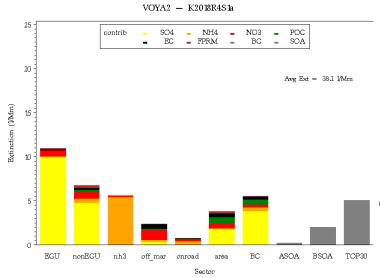

2005 (Round 5)

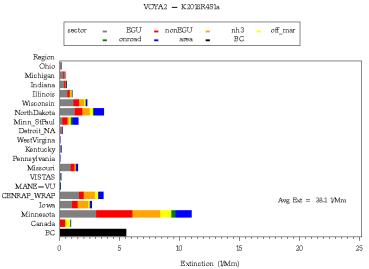


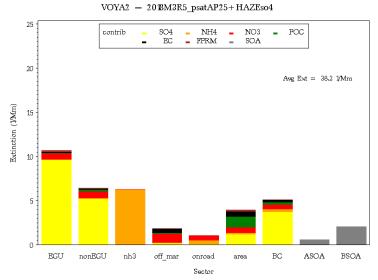

2018 (Round 4)

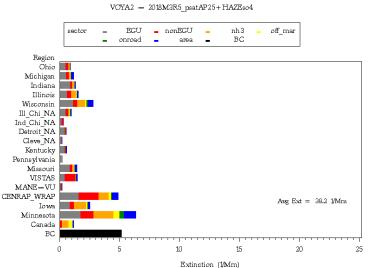

BOWA1 - K2018R4S1a



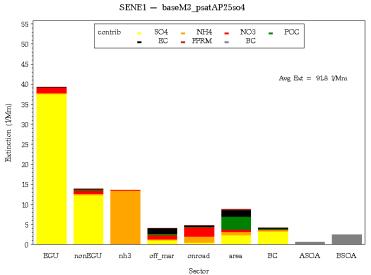

Voyageurs, Minnesota

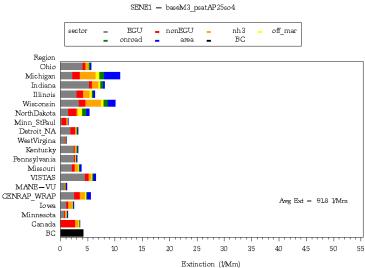

2005 (Round 5)

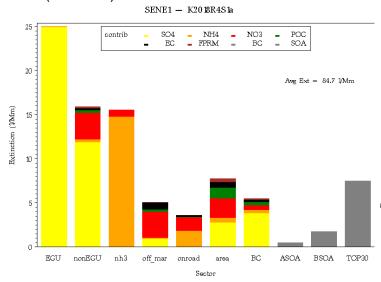


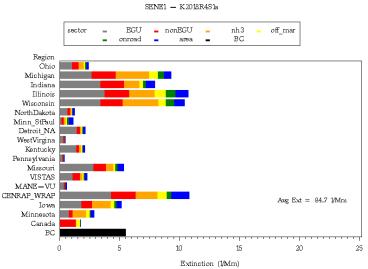


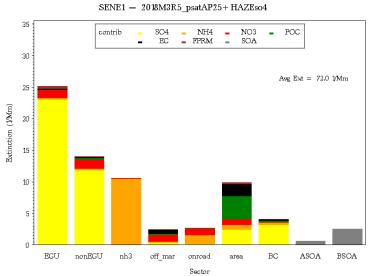
2018 (Round 4)

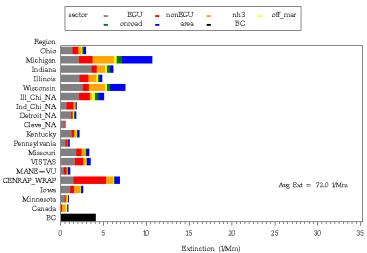




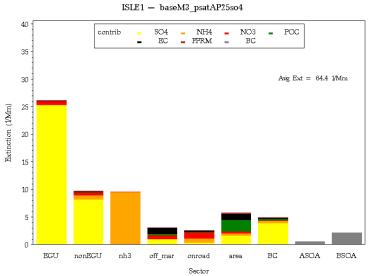

Seney, Michigan


2005 (Round 5)

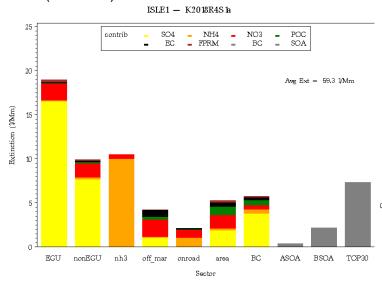


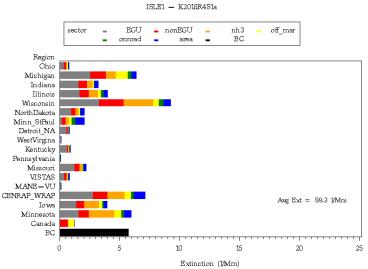

2018 (Round 4)

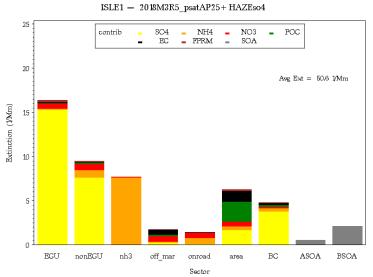
2018 (Round 5)

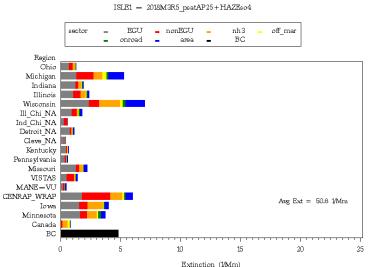


SENE1 - 2018M3R5_psatAP25+HAZEso4

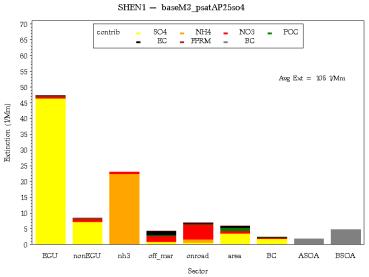

Isle Royale, Michigan

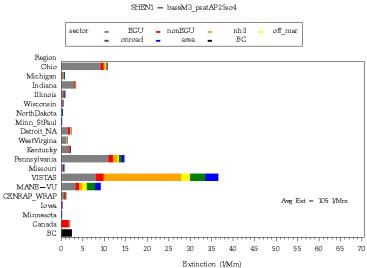

2005 (Round 5)

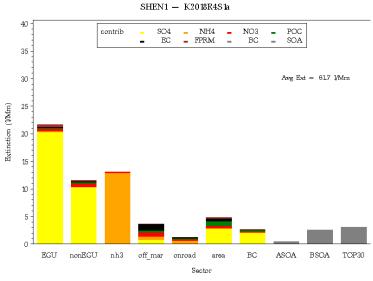


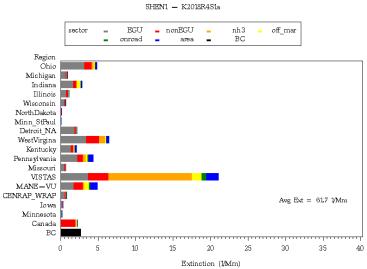


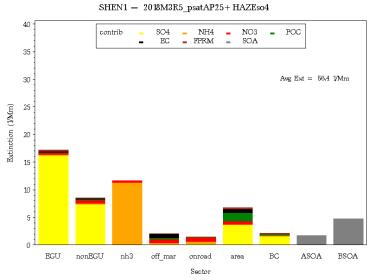
2018 (Round 4)

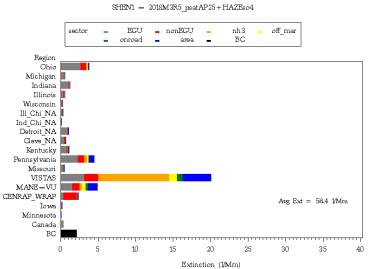




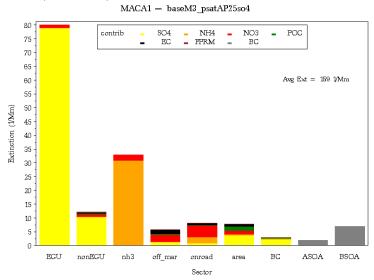

Shenandoah, Virginia

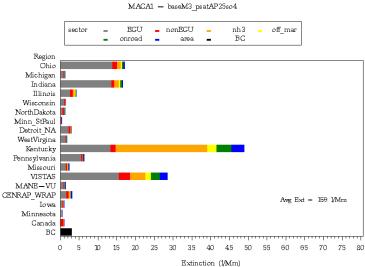

2005 (Round 5)

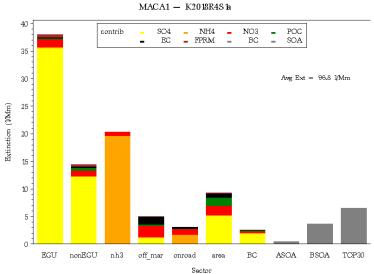


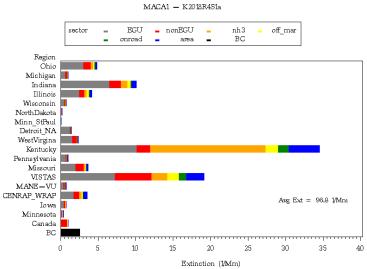


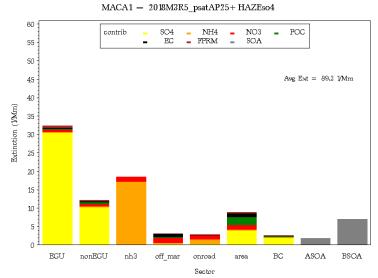
2018 (Round 4)

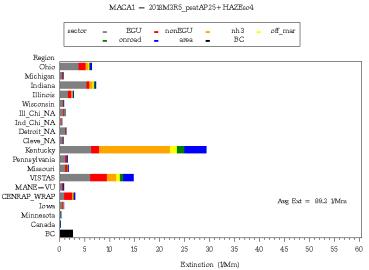




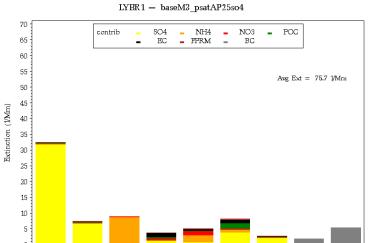

Mammoth Cave, Kentucky

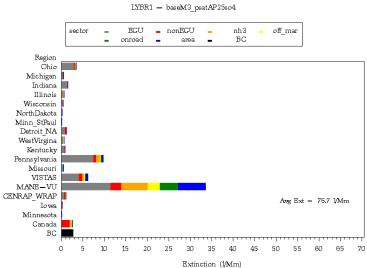

2005 (Round 5)





2018 (Round 4)





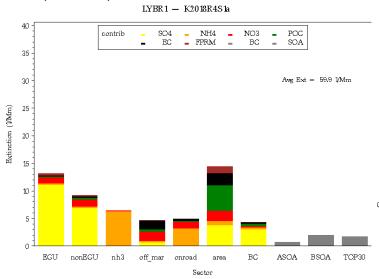
Lye Brook, Vermont

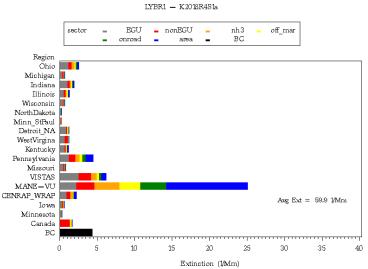
2005 (Round 5)

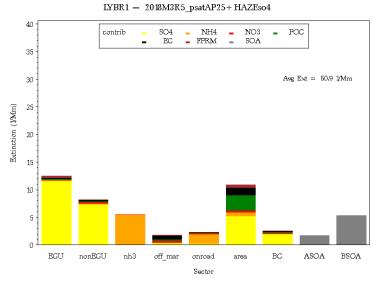
2018 (Round 4)

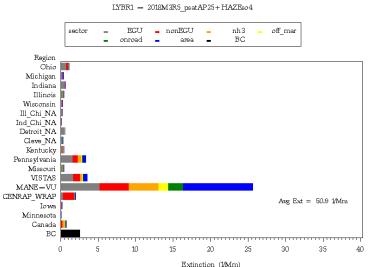
nonEGU

nh3


off_mar


Sector


ВС


ASOA

BSOA

Regional Air Quality Analyses for Ozone, PM2.5, and Regional Haze: Final Technical Support Document (Supplement), September 12, 2008

The purpose of this paper is to summarize a new modeling analysis performed by the Lake Michigan Air Directors Consortium (LADCO) to address the effect of the recent court decision vacating EPA's Clean Air Interstate Rule (CAIR). This new modeling is intended to supplement the LADCO Technical Support Document ("Regional Air Quality Analyses for Ozone, PM2.5, and Regional Haze: Final Technical Support Document", April 25, 2008), which summarizes the air quality analyses conducted by LADCO and its contractors to support the development of State Implementation Plans for ozone, PM2.5, and regional haze in the States of Illinois, Indiana, Michigan, Ohio, and Wisconsin.

Compared to the previous LADCO modeling (Round 5.1), the new modeling shows similar results for ozone, but much more nonattainment for PM2.5 and higher visibility levels for regional haze. Specifically, the new modeling shows:

Ozone: Attainment of the 0.08 ppm standard by 2009 everywhere in the region, except Holland, MI, and nonattainment of the 0.075 ppm standard through at least 2018.

PM2.5: Widespread nonattainment of annual (15 ug/m³) and daily (35 ug/m³) standards.

Haze: Higher visibility levels on the 20% worst visibility days in 2018 in Class I areas in the eastern U.S., resulting in most areas being above the glide path.

Background: On July 11, 2008, the U.S. Court of Appeals for D.C. Circuit vacated EPA's CAIR rule (cite). The reductions in NOx and SO2 emissions associated with this rule were a key part of the LADCO States' attainment demonstrations for ozone and PM2.5 and the reasonable progress determinations for regional haze. LADCO's previous modeling (Round 5.1) relied on EGU emission projections from EPA's IPM3.0 analysis, which assumed implementation of Phases I and II of CAIR. For this new modeling, alternative EGU emission projections were developed, which did not rely on CAIR (or IPM).

Model Set-Up: The new modeling was performed consistent with LADCO's previous modeling (Round 5.1):

Model Version: CAMx v4.50beta_deposition

Future Years: 2009, 2012, 2018

Runs: (a) Ozone: Summer 2005 meteorology with 12 km grids

(b) PM2.5 and haze: Full year 2005 meteorology with 36 km grids

Emission Scenarios: The new modeling assumed the same set of "on the books" controls as in LADCO's previous modeling (Round 5.1) for all sectors, except EGUs. In light of the CAIR decision, three new EGU scenarios were prepared:

Scenario A: 2007 CEM-based emissions were projected for all states in the modeling domain based on EIA growth rates by state (NERC region) and fuel type. The assumed growth rates for the Midwest States were: MAIN (IL, IA, MO, WI): 8.8% (2007-2018); ECAR (IN, KY, MI, OH): 13.5% (2007-2018); and MAPP (MN): 15.1% (2007-2018). No control was applied. The annual emissions were temporalized based on profiles derived from 2004-2006 CEM data. (Note, these are the same temporal profiles used in Round 5.1.)

Scenario B. Scenario A emissions for the LADCO States and select neighboring states (e.g., MN, IA, MO, KY, TN, and WV) were adjusted by applying legally enforceable controls (i.e., emission reductions required by a Consent Decree, state rule, or permit). Only those legally enforceable controls identified (and justified) by the States were applied. The States also supplied the appropriate control factors. A table summarizing the Scenario B controls is provided in Appendix I.

Scenario C. For the years 2009 and 2012, Scenario A emissions for all states were adjusted by applying all planned SO2 and NOx controls based on the July 10 CAMD list (i.e., 90% reduction for scrubbers, 95% reduction for SCRs). Because the July 10 CAMD list only includes controls generally out to 2011, additional SO2 and NOx controls for the year 2018 were assumed for all BART-eligible EGUs in the five LADCO State plus MN, IA, MO, KY, TN, and MO list (i.e., 90% reduction for scrubbers, 95% reduction for SCRs). All Scenario B controls were included in Scenario C. A table summarizing the Scenario C controls is provided in Appendix II.

Table 1 and Figure 1 provide a summary of the 5-state regional NOx and SO2 emissions for each scenario and future year. (Note, the CAIR emissions included here are based on EPA's IPM3.0 modeling.) Several comments on the emissions should be noted:

Summer NOx

There is llittle difference between the three alternative scenarios and CAIR. This suggests that summer ozone concentrations for the alternative scenarios are likely to be similar to those predicted with CAIR (i.e., Round 5.1).

Annual NOx:

- There is a significant change in emissions between scenarios, mostly during the non-summer months.
- Scenario B reflects application of NOx controls in several states (e.g., IL,OH,WI).
- Because there are relatively few SCRs (in the LADCO States) on the CAMD list. Scenario C results in only a small emissions decrease compared to Scenario B.
- Assumed BART controls result in a significant emissions decrease.

Annual SO2

- There is a significant change in emissions between scenarios.
- Scenario B reflects application of SO2 controls in several states (e.g., IL,OH,WI).
- Because there are several FGDs (in the LADCO States) on the CAMD list. Scenario C results in a large emissions decrease compared to Scenario B.
- Assumed BART controls result in a significant emissions decrease (i.e., even lower emissions than the IPM-estimated CAIR emissions).

¹ A subsequent analysis was conducted with the following inventory changes: (a) 95% reduction for scrubbers, 90% redcuction for SCRs (consistent with EPA's default assumptions for IPM), and (b) revisions provided for a few plants in Indiana and Minnesota. The changes resulted in a relatively small difference in the regionnal NOx and SO2 emissions (e.g., about a 2% NOx increase and about a 1-2% decrease in SO2). To assess the impact of the changes, PM2.5 modleing was conducted with the new Scenario B and Scenario C emissions for 2012. The modeling showed little change in the predicted PM2.5 concentrations.

Figure 1. Regional NOx and SO2 Emissions

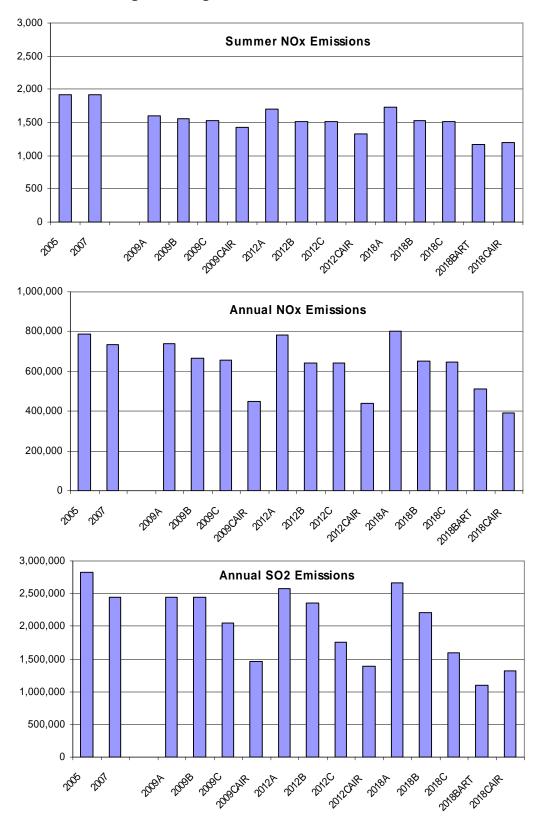


Table 1. Regional NOx and SO2 Emissions

Su	mmer N	Ox Emis	sic	ons (TP	D)											
	2005	2007		2009 A	2009 B	2009 C	2010 CAIR	2012 A	2012 B	2012 C	2012 CAIR	2018 A	2018 B	2018 C	2018 C- BART	2018 CAIR
IL	305	305		311	311	311	275	340	236	236	266	333	227	227	219	224
IN	393	393		376	376	374	384	393	393	390	368	410	386	383	292	264
МІ	393	393		350	350	350	242	366	366	366	229	377	377	377	260	243
ОН	408	408		395	355	335	285	423	351	351	290	431	366	366	230	290
WI	413	413		167	160	160	238	184	170	170	177	183	168	168	168	177
	1,912	1,912		1,599	1,552	1,530	1,424	1,706	1,516	1,513	1,330	1,734	1,524	1,521	1,169	1,198
An	nual NO	x Emissi	or	ns (TPY	')											
	2005	2007		2009 A	2009 B	2009 C	2010 CAIR	2012 A	2012 B	2012 C	2012 CAIR	2018 A	2018 B	2018 C	2018 C- BART	2018 CAIR
IL	126,786	121,006		124,917	124,917	124,917	83,224	137,438	81,989	81,989	82,248	135,983	79,771	79,771	63,590	69,958
IN	214,727	203,493		203,776	203,776	201,947	133,188	212,790	212,790	210,877	125,541	221,950	212,805	210,810	177,027	90,415
МІ	120,332	112,484		112,478	112,478	112,478	83,117	117,621	117,621	117,621	77,897	122,447	122,447	122,447	89,444	79,543
ОН	255,554	240,351		240,016	173,071	164,911	94,346	251,065	172,514	172,514	97,679	261,644	179,737	179,737	125,762	95,678
WI	71,414	54,582		56,540	54,065	54,065	53,032	62,266	57,759	57,759	56,480	61,812	56,952	56,952	56,952	56,158
	788,812	731,917		737,727	668,307	658,317	446,908	781,179	642,673	640,760	439,845	803,837	651,712	649,717	512,774	391,752
An	nual SO	2 Emissi	or	ns (TPY	<u>')</u>											
	2005	2007		2009 A	2009 B	2009 C	2010 CAIR	2012 A	2012 B	2012 C	2012 CAIR	2018 A	2018 B	2018 C	2018 C- BART	2018 CAIR
IL	326,598	273,467		281,028	281,028	281,028	295,516	309,209	196,238	194,746	267,110	305,364	106,638	105,152	82,351	275,716
IN	866,964	722,301		721,252	721,252	619,486	374,335	754,323	754,323	558,567	379,144	786,551	764,065	559,945	426,695	359,915
МІ	350,694	343,487		343,140	343,140	315,326	227,296	358,879	358,879	301,062	233,204	373,964	373,964	313,677	178,680	242,853
ОН	1,100,510	960,820		959,466	959,466	693,438	427,145	1,003,633	897,099	572,807	370,532	1,045,945	819,770	481,623	333,740	315,560
WI	181,426	137,562		142,007	142,007	133,738	139,181	156,659	144,818	133,592	139,203	155,818	144,027	132,849	77,214	127,073
	2,826,192	2,437,638		2,446,892	2,446,892	2,043,017	1,463,473	2,582,703	2,351,356	1,760,775	1,389,192	2,667,641	2,208,463	1,593,245	1,098,679	1,321,116

Modeling Results: Several tables summarizing the modeling results are provided:

- Table 2 future year ozone and PM2.5 concentrations for key monitors in the LADCO region
- Table 3 number of monitoring sites greater than the National Ambient Air Quality Standards (NNAQS)
- Table 4 visibility levels for Class I areas in the eastern U.S.

Note, given that Scenario B and BART controls were only applied in an 11-state Midwest region, the validity of the results for other Class I areas in the eastern U.S. may be questionable. The Scenario C controls, on the other hand, cover all states and are, thus, likely valid in other Class I areas.

Spatial plots of the future year ozone and PM2.5 concentrations are provided in Figures 2 – 4.

Based on these results, the following key findings should be noted:

Ozone

- There is little change from the previous LADCO modeling (Round 5.1 with CAIR)
- The modeling shows attainment of the 0.08 ppm (85 ppb) standard by 2009, except Holland. (Note, Holland does meet this standard by 2012.)
- The modeling shows nonattainment of the 0.075 ppm (75 ppb) standard through 2018.

PM2.5 - Annual

- There is a significant change from the previous LADCO modeling (Round 5.1 with CAIR)
- The modeling shows extensive nonattainment of the annual standard.

PM2.5 - Daily

- There is a significant change from the previous LADCO modeling (Round 5.1 with CAIR)
- The modeling shows extensive nonattainment of the daily standard.

Haze

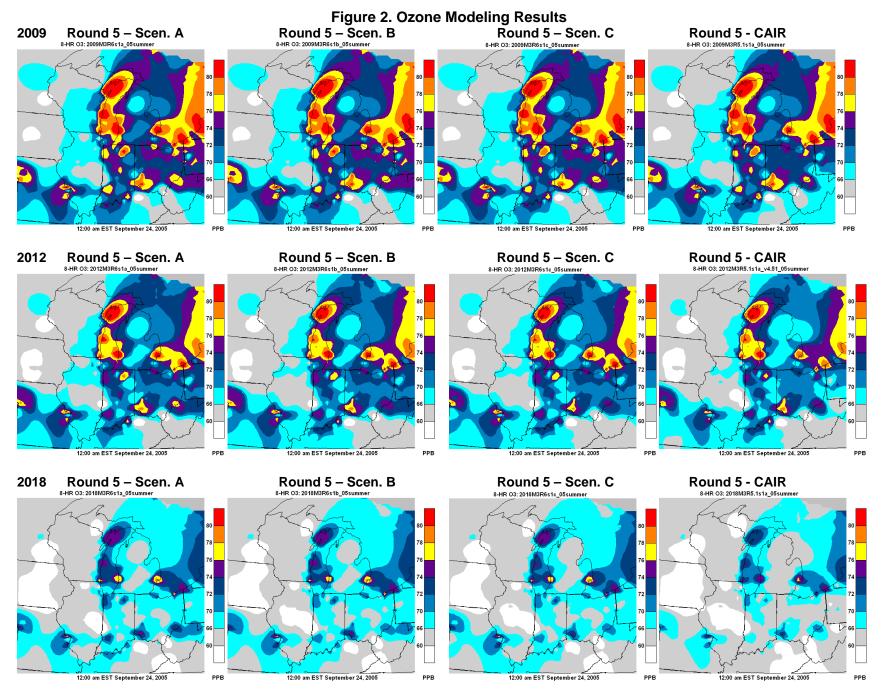
- There is a significant change from the previous LADCO modeling (Round 5.1 with CAIR)
- The modeling shows higher visibility levels in 2018 for the 20% worst visibility days (average about 0.5 deciviews for the northern Class I areas). The resulting visibility levels in the northern Class I areas (except Voyageurs) are above the glide path.

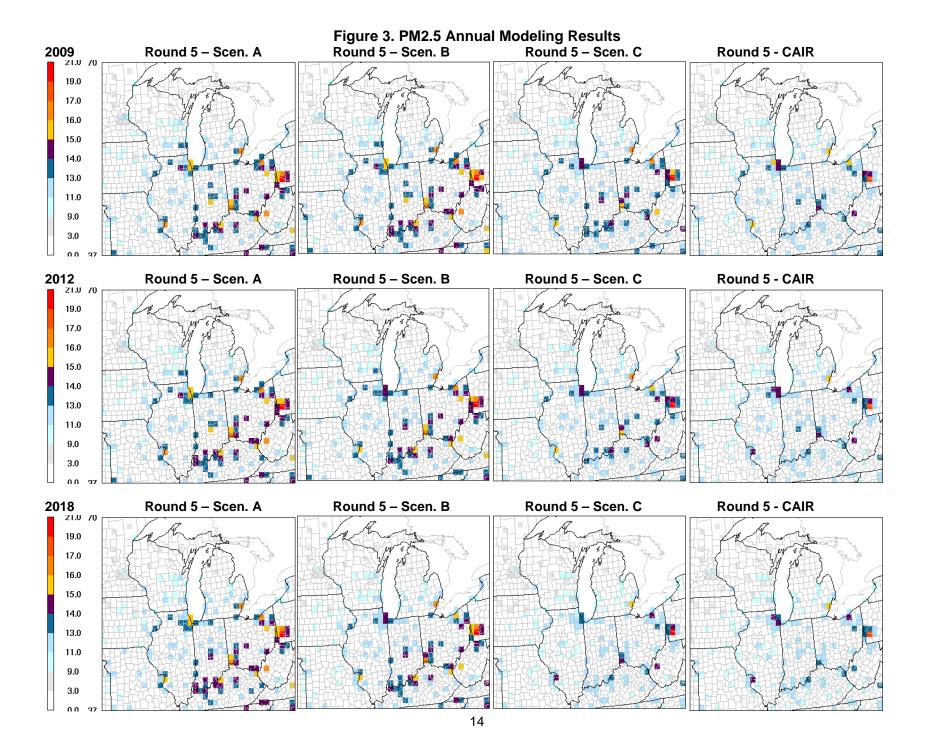
				Table	e 2a.	Ozone	Mod	leling	Res	ults					
		2005			009				012				201	18	
			Poun	d 5 withou	+ CAIR	Round 5 with CAIR	Round	d 5 withou	t CAIR	Round 5 with CAIR		Pound	5 without	CAIR	Round 5 with CAIR
Site	Site ID	Base Year	Scen. A	Scen. B	Scen.C	With OAIR	Scen. A	Scen. B	Scen.C	With OAIR	Scen. A	Scen. B	Scen.C	Scen.C-BART	With OAII
Lake Michigan Area	One is	Buod Tour	00011171	CCCIII D	0001110		00011171	CCCIII E	0001110		Coomin	Occini B	Coome	CCCIIIC DAIRT	
Chiwaukee	550590019	84.7	82.2	82.2	82.0	82.3	81.1	80.8	80.6	80.9	77.2	77.2	77.0	76.0	76.2
Racine	551010017	80.3	77.8	77.8	77.5	77.5	76.6	76.2	76.1	76.1	72.9	72.3	72.1	71.1	71.2
Milwaukee-Bayside	550890085	82.7	79.9	79.9	79.7	79.8	78.5	78.0	78.0	78.0	74.3	73.6	73.4	72.4	72.7
Harrington Beach	550890009		80.1	80.1	79.9	80.1	78.6	78.1	78.0	78.3	73.9	73.2	73.1	72.2	72.5
Manitowoc	550710007	85.0	80.8	80.8	80.7	80.8	79.0	78.5	78.4	78.6	73.9	73.2	73.1	72.0	72.5
Sheboygan	551170006	88.0	84.1	84.0	83.9	84.0	82.2	81.7	81.5	81.8	76.9	76.0	75.9	74.8	75.4
Kewaunee	550610002	82.7	78.2	78.2	78.0	78.1	76.4	75.9	75.7	75.9	71.3	70.7	70.5	69.4	69.9
Door County	550290004	88.7	84.1	84.1	83.9	83.9	82.0	81.4	81.3	81.5	76.5	75.6	75.5	74.2	74.7
Hammond	180892008	77.7	76.2	76.2	76.0	75.4	75.6	75.3	75.2	74.6	73.2	72.7	72.6	71.7	71.6
Whiting	180890030	79.3	77.8	77.8	77.7	77.0	77.2	76.9	76.8	76.2	74.8	74.3	74.2	73.2	73.1
Michigan City	180910005	77.0	74.5	74.5	74.3	73.9	73.3	72.9	72.8	72.5	69.7	69.2	69.1	68.1	68.1
Ogden Dunes	181270020	78.3	76.3	76.3	76.2	75.6	75.5	75.1	75.0	74.5	72.9	72.3	72.1	71.2	70.8
Holland	260050003	90.0	85.7	85.7	85.5	85.3	83.5	83.1	82.9	82.8	78.2	77.5	77.3	76.0	76.1
Jenison	261390005	82.0	76.8	76.8	76.7	76.0	75.1	74.6	74.5	74.5	70.2	69.6	69.5	67.9	68.7
Muskegon	261210039	85.0	80.6	80.6	80.5	80.5	78.6	78.2	78.1	78.0	73.5	72.8	72.8	71.5	71.9
														-	
Indianapolis Area															
Noblesville	189571001	82.7	78.3	78.3	78.1	78.1	76.1	75.9	75.7	75.6	70.2	69.9	69.8	68.9	68.7
Fortville	180590003	78.0	74.1	74.1	73.9	73.9	71.9	71.8	71.7	71.4	66.7	66.5	66.3	65.4	65.1
Fort B. Harrison	180970050	78.7	75.4	75.3	75.2	75.1	73.8	73.6	73.6	73.2	70.6	70.3	70.2	69.3	69.1
Detroit Area															
New Haven	260990009	86.0	82.4	82.3	82.1	81.4	81.4	81.2	81.1	80.2	78.1	77.8	77.7	76.5	76.1
Warren	260991003	84.0	82.4	82.3	82.2	81.3	82.1	81.8	81.7	80.7	79.7	79.4	79.3	78.0	77.6
Port Huron	261470005	82.7	78.2	78.2	78.1	77.5	76.5	76.3	76.2	75.5	72.6	72.5	72.3	70.9	70.9
Cleveland Area															
Ashtabula	390071001	89.0	84.2	84.1	83.9	83.4	82.0	81.8	81.6	81.0	76.8	76.5	76.4	74.8	75.1
Geauga	390550004	79.3	75.8	75.8	75.6	74.7	74.0	73.8	73.7	72.7	69.5	69.2	69.1	67.6	67.3
Eastlake	390850003	86.3	83.1	83.1	82.9	81.9	81.8	81.6	81.5	80.5	78.2	78.0	77.8	76.5	76.2
Akron	391530020	83.7	79.1	79.1	79.0	78.1	76.9	76.7	76.6	75.6	70.9	70.6	70.4	68.7	68.7
Cincinnati Area															
Wilmington	390271002	82.3	77.3	77.4	77.1	77.5	75.3	75.2	74.8	74.9	70.1	69.9	69.5	67.1	68.3
Sycamore	390610006	84.7	81.5	81.4	81.1	81.9	80.4	80.2	79.8	80.3	76.4	76.0	75.7	73.5	74.6
Lebanon	391650007	87.7	82.8	82.8	82.4	83.0	80.8	80.7	80.3	80.7	75.4	75.1	74.8	72.6	74.2
Columbus Area															
London	390970007	79.7	75.0	75.0	74.8	75.0	73.0	72.8	72.7	72.6	68.1	67.8	67.6	65.9	66.3
New Albany	390490029	86.3	82.1	82.1	81.9	81.8	80.2	80.0	79.9	79.6	74.7	74.3	74.2	73.3	73.0
Franklin	290490028	80.3	76.7	76.6	76.5	75.9	75.1	74.9	74.8	74.1	70.5	70.2	70.1	70.2	69.0
St. Louis Area															
W. Alton (MO)	291831002	86.3	81.1	81.2	81.1	81.0	80.0	79.9	79.9	78.6	76.9	76.8	76.7	74.2	74.9
Orchard (MO)	291831004	87.0	82.1	82.1	82.0	82.0	80.9	80.8	80.7	80.0	77.7	77.6	77.4	75.2	76.2
Sunset Hills (MO)	291890004	82.3	79.2	79.2	79.1	78.7	78.3	78.1	78.1	77.1	75.3	75.2	75.1	73.0	73.9
Arnold (MO)	290990012	82.3	77.8	77.8	77.7	77.2	76.7	76.6	76.5	75.6	73.6	73.4	73.4	71.3	72.0
Margaretta (MO)	295100086		79.8	79.8	79.7	79.3	78.8	78.7	78.6	77.9	75.7	75.6	75.5	73.7	74.4
Maryland Heights (MO)	291890014	87.3	85.4	85.4	85.3	84.0	84.3	84.1	84.0	81.7	81.1	80.9	80.8	78.4	78.1

Table 2b. PM_{2.5} Modeling Results (Annual) 2005 2018 Round 5 Round 5 Round 5 **Round 5 without CAIR** with CAIR Round 5 without CAIR with CAIR Round 5 without CAIR with CAIR Scen.C-BART Site ID Scen. B Scen.C Scen. B Scen. B Scen.C Site **Base Year** Scen. A Scen. A Scen. A Illinois Chicago - Washington HS 170310022 15.2 14.9 14.8 14.5 14.1 14.8 14.7 14.2 14.0 15.0 14.6 14.2 13.7 13.9 Chicago - Mayfair 170310052 15.8 15.1 15.1 14.8 14.4 15.1 14.9 14.5 14.2 15.1 14.7 14.3 13.7 13.9 Chicago - Springfield 170310057 15.0 14.6 14.6 13.9 14.6 14.4 14.0 13.8 14.8 14.4 14.0 13.4 13.7 14.3 Chicago - Lawndale 170310076 14.9 14.5 14.2 13.8 14.5 14.3 13.7 14.7 14.3 13.3 13.6 14.5 13.9 13.9 Blue Island 170312001 14.8 14.4 14.4 14.0 13.7 14.4 14.2 13.8 13.6 14.5 14.1 13.7 13.2 13.4 170313301 15.2 14.9 14.9 14.6 14.2 14.9 14.7 14.3 14.0 15.0 14.6 14.3 13.7 13.9 Summit 170316005 15.5 15.1 14.4 15.1 14.3 14.9 14.4 13.9 14.2 Cicero 15.1 14.8 14.9 14.5 15.2 Granite City 171191007 16.7 16.3 16.2 15.9 15.1 16.1 16.0 15.3 14.9 15.9 15.6 14.9 14.2 14.3 E. St. Louis 171630010 15.6 15.2 15.2 14.8 14.1 15.0 14.9 14.3 13.9 14.9 14.6 14.0 13.3 13.4 Indiana Jeffersonville 180190005 16.4 15.8 15.7 14.8 13.8 15.8 15.6 14.5 13.7 16.0 15.5 14.3 13.7 13.4 Jasper 180372001 15.2 14.3 14.2 13.4 12.4 14.2 14.0 13.0 12.2 14.3 13.9 12.8 12.1 11.8 Gary 180890031 15.6 13.9 13.9 13.5 13.0 13.8 13.6 13.1 12.8 13.7 13.4 12.9 12.3 12.4 ndy-Washington Park 180970078 15.3 14.4 14.4 13.6 12.8 14.3 14.2 13.2 12.6 14.3 13.9 12.9 12.2 12.0 ndy-W 18th Street 180970081 16.0 15.1 14.3 15.0 14.9 13.9 15.0 14.6 13.5 12.8 15.1 ndy- Michigan Street 180970083 15.9 15.0 15.0 14.2 13.4 14.9 14.8 13.8 13.1 14.9 14.5 13.5 12.8 12.6 Michigan 261630001 14.5 11.0 13.5 13.0 14.0 13.8 13.2 12.8 13.9 13.6 13.0 12.4 12.4 Allen Park 14.0 Southwest HS 261630015 15.9 15.3 15.3 14.8 14.2 15.2 15.0 14.4 13.9 15.1 14.8 14.1 13.5 13.5 Linwood 261630016 14.6 14.1 13.6 13.1 14.0 13.9 13.3 12.8 13.9 13.6 13.0 12.5 12.5 14.1 15.5 Dearborn 261630033 17.5 17.0 17.0 16.4 15.8 16.9 16.7 16.0 16.8 16.4 15.7 15.1 15.1 Wyandotte 261630036 14.7 14.2 14.1 13.6 13.1 14.1 13.9 13.3 12.8 14.0 13.7 13.0 12.4 12.5 Ohio 15.3 13.2 15.2 13.0 12.8 Middletown - Bonita 390170003 16.2 15.2 14.3 13.5 15.2 15.0 13.9 14.8 13.7 13.1 15.1 15.2 14.7 12.8 12.5 Fairfield 390170016 15.8 15.1 15.0 14.1 14.9 13.7 12.9 13.5 390350027 15.4 14.3 14.7 14.6 14.2 12.8 12.7 Cleveland-28th Street 14.9 14.9 13.5 14.5 13.9 13.2 13.5 390350038 17.4 16.7 16.7 16.0 15.2 16.5 15.6 14.8 16.3 16.0 14.4 14.3 Cleveland-St. Tikhon 16.3 15.2 Cleveland-Broadway 390350045 16.5 15.9 15.8 15.2 14.4 15.6 15.5 14.8 14.0 15.5 15.1 14.4 13.6 13.5 16.5 16.4 15.4 15.7 Cleveland-GT Craig 390350060 17.1 15.8 15.0 16.3 16.1 14.6 16.1 15.0 14.2 14.1 Newburg Hts - Harvard Ave 390350065 16.0 15.4 15.3 14.7 14.0 15.2 15.0 14.3 13.6 15.1 14.7 14.0 13.2 13.1 Columbus - Fairgrounds 390490024 15.3 14.6 14.5 13.7 12.9 14.4 14.1 13.2 12.6 14.2 13.8 12.8 12.2 12.0 14.4 13.5 12.7 14.2 13.1 12.4 14.1 13.6 12.0 Columbus - Ann Street 390490025 15.1 14.3 13.9 12.6 11.9 16.6 16.5 15.5 14.5 16.5 16.3 15.1 14.3 16.6 16.2 14.9 14.2 13.8 Cincinnati - Seymour 390610014 17.3 Cincinnati - Taft Ave 390610040 15.5 14.8 14.7 13.8 12.8 14.8 14.6 13.4 12.6 14.9 14.5 13.2 12.5 12.2 Cincinnati - 8th Ave 390610042 16.9 12.0 16.1 15.0 14.0 16.1 15.9 14.7 13.8 16.2 15.7 14.4 13.7 13.4 390610043 15.6 14.9 14.8 13.9 12.9 14.9 14.7 13.5 12.7 14.9 14.5 12.6 12.3 Sharonville 13.3 Norwood 390617001 16.2 15.5 15.4 14.4 13.4 15.4 15.2 14.0 13.2 15.5 15.1 13.8 13.1 12.8 St. Bernard 390618001 17.6 16.8 16.7 15.7 14.7 16.7 16.5 15.3 14.4 16.8 16.4 15.1 14.3 14.0 Steubenville 390810016 15.8 14.5 14.4 13.5 12.8 14.3 14.2 13.1 12.5 14.8 14.5 13.3 12.9 12.7 15.2 15.2 Mingo Junction 390811001 16.5 15.2 14.3 13.5 15.0 14.9 13.8 13.2 15.6 14.0 13.6 13.4 ronton 390870010 15.2 14.8 14.6 13.6 12.8 14.6 14.4 13.2 12.5 14.8 14.1 12.8 12.4 12.3 Dayton 391130032 15.5 14.9 14.8 14.0 13.2 14.8 14.6 13.6 12.9 14.8 14.3 13.3 12.6 12.4 391450013 12.0 14.0 13.0 12.1 14.1 12.5 11.9 14.2 13.6 12.2 11.7 11.6 New Boston 14.7 13.8 Canton - Dueber 391510017 16.3 15.7 15.6 14.8 14.0 15.5 15.3 14.4 13.6 15.4 14.9 14.0 13.3 13.3 Canton - Market 391510020 14.6 11.0 14.1 13.3 12.6 13.9 13.7 12.9 12.3 13.9 13.5 12.6 12.0 11.9 Akron - Brittain 391530017 15.1 14.6 14.5 13.8 13.0 14.4 14.2 13.4 12.7 14.3 13.8 13.0 12.3 12.3 Akron - W. Exchange 391530023 14.3 13.7 13.7 13.0 12.3 13.6 13.3 12.6 12.0 13.4 13.0 12.2 11.6 11.5

Table 2c. PM_{2.5} Modeling Results (Daily) Round 5 Round 5 Round 5 **Round 5 without CAIR Round 5 without CAIR Round 5 without CAIR** with CAIR with CAIR with CAIR **Key Site** Site ID **Base Year** Scen. B Scen.C Scen. A Scen. B Scen.C Scen. B Scen. C - BART County Scen. A Scen. A Illinois Chicago - Washington HS Cook 36.6 Chicago - Mayfair Cook 40.3 Chicago - Springfield 37.4 Cook Chicago - Lawndale Cook 38.1 McCook Cook 43.0 Blue Island Cook 37.7 Schiller Park 41.6 Cook Summit Cook 40.2 Maywood Cook 39.2 39.2 Granite City Madison St. Clair 33.7 E. St. Louis Indiana Jeffersonville Clark 38.4 **Dubois** 36.2 Jasper Gary - IITRI 39.0 Lake Gary - Burr School Lake 39.0 Gary Lake 35.2 38.0 ndy-West Street Marion 38.0 ndy-English Avenue Marion ndy-Washington Park Marion 36.6 38.3 ndy-W 18th Street Marion ndy- Michigan Street Marion 36.0 Michigan una Pier Monroe 38.9 Oak Park Oakland 39.9 39.6 Port Huron St. Clair Washtenaw 261610008 Ypsilanti 39.5 Allen Park 38.6 Wayne Wayne 40.1 Southwest HS 43.0 .inwood Wayne E 7 Mile Wayne 41.0 Wavne 43.9 Dearborn 37.2 Wyandotte Wayne Wayne Newberry 42.7 FIA Wayne 39.7 Ohio Middleton Butler 39.3 Fairfield Butler 37.1 Butler 40.8 Cleveland-28th Street Cuyahoga 36.9 Cleveland-St. Tikhon Cuyahoga 44.2 Cleveland-Broadway Cuyahoga 38.8 Cleveland-GT Craig Cuyahoga 42.1 Newburg Hts - Harvard Ave Cuyahoga 38.9 Franklin Columbus - Fairgrounds 38.5 Columbus - Ann Street Franklin 38.5 Cincinnait Hamilton 40.6

			7	Table .	2c. P	M _{2.5}	Modeli	ng R	esult	s (Da	ily)					
			2005		2	009			20	012				201	18	
				Round	Round 5 without CAIR with CAI			Round 5 without CAIR			Round 5 with CAIR	Round 5 without CAIR				Round 5 with CAIR
Key Site	County	Site ID	Base Year	Scen. A	Scen. B	Scen.C		Scen. A	Scen. B	Scen.C		Scen. A	Scen. B	Scen.C	Scen. C - BART	
Cincinnati - Seymour	Hamilton	390610014	38.4	33	33	28	26	33	32	27	25	33	31	29	25	24
Cincinnati - Taft Ave	Hamilton	390610040	36.7	31	30	26	24	31	30	26	24	32	29	26	24	23
Cincinnati - 8th Ave	Hamilton	390610042	37.3	32	32	30	28	32	31	29	28	33	31	29	28	27
Sharonville	Hamilton	390610043	36.0	32	31	30	28	32	31	29	28	32	31	29	28	27
Norwood	Hamilton	390617001	38.8	34	33	32	30	33	33	31	30	34	33	31	30	29
St. Bernard	Hamilton	390618001	40.6	35	35	32	30	35	34	31	30	35	33	32	31	29
Steubenville	Jefferson	390810016	40.7	36	35	32	29	35	34	30	28	37	35	31	29	28
Mingo Junction	Jefferson	390811001	42.0	37	37	33	30	37	36	32	30	38	36	32	30	30
Dayton	Montgomer	y391130032	37.8	34	33	31	30	33	33	31	30	34	33	31	31	30
Canton - Dueber	Stark	391510017	38.6	33	32	30	28	33	31	30	28	33	30	29	28	27
Akron - Brittain	Summit	391530017	38.1	33	33	31	30	33	32	31	30	33	32	30	29	29
Wisconsin																
Green Bay - Est High	Brown	550090005	37.1	35	34	35	35	34	35	35	34	33	33	33	32	32
Madison	Dane	550250047	36.4	33	33	32	32	33	32	32	31	32	31	30	29	29
Milwaukee-Health Center	Milwaukee	550790010	38.7	35	35	35	35	35	35	35	34	35	34	34	34	33
Milwaukee-SER Hdqs	Milwaukee	550790026	37.4	34	34	34	34	34	34	34	34	34	34	34	34	33
Milwaukee-Virginia FS	Milwaukee	550790043	39.9	37	37	37	36	37	36	37	36	36	36	37	36	36
Milwaukee- Fire Dept Hdqs	Milwaukee	550790099	37.8	34	34	33	33	34	33	33	32	34	33	33	33	32
Waukesha	Waukesha	551330027	35.5	32	32	32	31	32	32	32	31	32	31	31	30	29


Table 3. Modeling Results: Number of Sites > NAAQS


Ozone (85 ppb)			Round 5	without CAIR		Round 5 w/ CAIR
2009	Baseyear	Scen. A	Scen. B	Scen. C	Scen. C-BART	
IL	0	0	0	0		0
IN	0	0	0	0		0
MI	3	1	1	1		1
ОН	4	0	0	0		0
WI	2	0	0	0		0
Total	9	1	1	1		1
2012						
IL	0	0	0	0		0
IN	0	0	0	0		0
MI	3	0	0	0		0
ОН	4	0	0	0		0
WI	2	0	0	0		0
Total	9	0	0	0		0
2018						
IL	0	0	0	0	0	0
IN	0	0	0	0	0	0
MI	3	0	0	0	0	0
OH	4	0	0	0	0	0
WI	2	0	0	0	0	0
Total	9	0	0	0	0	0
Ozone (75 ppb)				without CAIR	Г	Round5 w/ CAIR
2009	Baseyear	Scen. A	Scen. B	Scen. C	Scen. C-BART	
IL	12	6	6	6		4
IN						
	26	10	9	8		5
MI	21	12	12	12		12
MI OH	21 45	12 27	12 25	12 24		12 21
MI OH WI	21 45 12	12 27 10	12 25 10	12 24 10		12 21 10
MI OH	21 45	12 27	12 25	12 24		12 21
MI OH WI Total	21 45 12	12 27 10	12 25 10	12 24 10		12 21 10
MI OH WI Total	21 45 12 116	12 27 10 65	12 25 10 62	12 24 10 60		12 21 10 52
MI OH WI Total 2012	21 45 12 116	12 27 10 65	12 25 10 62	12 24 10 60		12 21 10 52
MI OH WI Total 2012 IL IN	21 45 12 116	12 27 10 65 3 5	12 25 10 62 3 4	12 24 10 60		12 21 10 52 1 3
MI OH WI Total 2012 IL IN MI	21 45 12 116 12 26 21	12 27 10 65 3 5	12 25 10 62 3 4 8	12 24 10 60 3 4 8		12 21 10 52 1 3 6
MI OH WI Total 2012 IL IN MI OH	21 45 12 116 12 26 21 45	12 27 10 65 3 5 9	12 25 10 62 3 4 8 14	12 24 10 60 3 4 8 12		12 21 10 52 1 3 6 11
MI OH WI Total 2012 IL IN MI OH WI	21 45 12 116 12 26 21 45	12 27 10 65 3 5 9 18 10	12 25 10 62 3 4 8 14 9	12 24 10 60 3 4 8 12 9		12 21 10 52 1 3 6 11 9
MI OH WI Total 2012 IL IN MI OH	21 45 12 116 12 26 21 45	12 27 10 65 3 5 9	12 25 10 62 3 4 8 14	12 24 10 60 3 4 8 12		12 21 10 52 1 3 6 11
MI OH WI Total 2012 IL IN MI OH WI Total	21 45 12 116 12 26 21 45	12 27 10 65 3 5 9 18 10	12 25 10 62 3 4 8 14 9	12 24 10 60 3 4 8 12 9		12 21 10 52 1 3 6 11 9
MI OH WI Total 2012 IL IN MI OH WI Total	21 45 12 116 12 26 21 45 12 116	12 27 10 65 3 5 9 18 10 45	12 25 10 62 3 4 8 14 9	12 24 10 60 3 4 8 12 9		12 21 10 52 1 3 6 11 9
MI OH WI Total 2012 IL IN MI OH WI Total 2018	21 45 12 116 12 26 21 45 12 116	12 27 10 65 3 5 9 18 10 45	12 25 10 62 3 4 8 14 9 38	12 24 10 60 3 4 8 12 9 36	 0	12 21 10 52 1 3 6 11 9 30
MI OH WI Total 2012 IL IN MI OH WI Total 2018 IL	21 45 12 116 12 26 21 45 12 116	12 27 10 65 3 5 9 18 10 45	12 25 10 62 3 4 8 14 9 38	12 24 10 60 3 4 8 12 9 36	 0 0	12 21 10 52 1 3 6 11 9 30
MI OH WI Total 2012 IL IN MI OH WI Total IN IN IN IT IN IN IN IT IN	21 45 12 116 12 26 21 45 12 116 12 26 21	12 27 10 65 3 5 9 18 10 45	12 25 10 62 3 4 8 14 9 38	12 24 10 60 3 4 8 12 9 36	 0 0 0 3	12 21 10 52 1 3 6 11 9 30
MI OH WI Total 2012 IL IN MI OH WI Total 2018 IL	21 45 12 116 12 26 21 45 12 116	12 27 10 65 3 5 9 18 10 45	12 25 10 62 3 4 8 14 9 38	12 24 10 60 3 4 8 12 9 36	 0 0	12 21 10 52 1 3 6 11 9 30

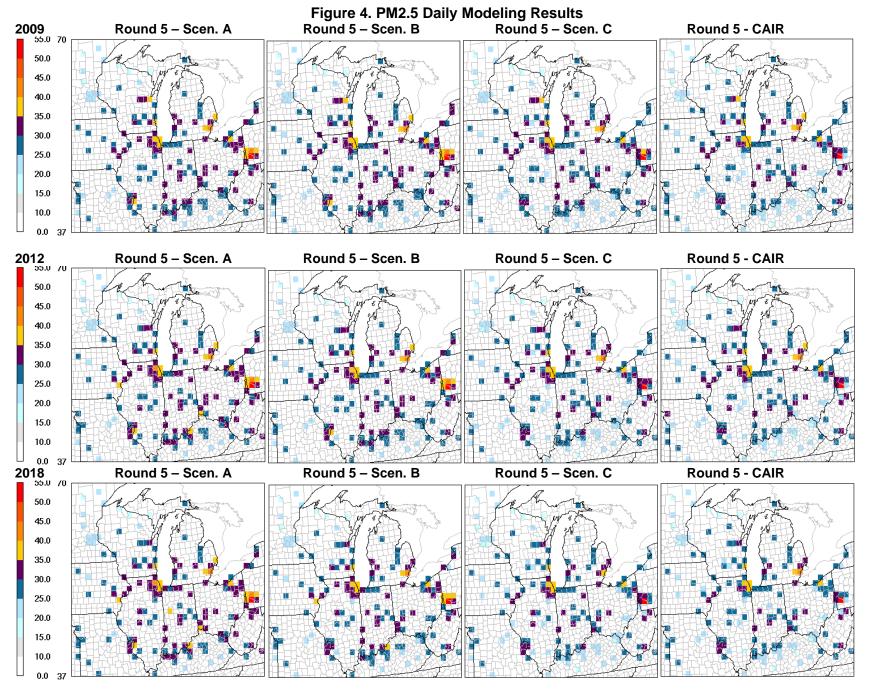

PM2.5 - Annual			Round 5	without CAIR		Round 5 w/ CAIR
2009	Baseyear	Scen. A	Scen. B	Scen. C	Scen. C-BART	
IL	7	4	4	1		1
IN	6	2	2	0		0
MI	2	2	2	1		1
ОН	26	13	12	5		1
WI	0	0	0	0		0
Total	41	21	20	7		3
2012						
IL	7	3	1	1		0
IN	6	1	1	0		0
MI	2	2	1	1		1
OH	26	12	9	4		0
WI	0	0	0	0		0
Total	41	18	12	6		1
2018						
	7	2	1	0	0	0
IL IN	6	3 1	1	0	0	0
MI	2	2		1		1
			1		1	
OH	26	13	8	2	0	0
WI	0	0	0	0	0	0
Total	41	19	11	3	1	1
PM2.5 - Daily						
1 MZ.0 Daily			Round 5	without CAIR		Round 5 w/ CAIR
2009	Baseyear	Scen. A	Scen. B	Scen. C	Scen. C-BART	rtouria o mi oran
IL	16	7	7	6		6
IN	13	0	0	0		0
MI	14	10	9	9		5
OH	31	4	3	2		2
WI	8	1	1	1		1
Total	82	22	20	18		14
1014.						
2012						
IL	16	9	6	8		6
		_ -				
2018						
	16	10	6	8	8	5
IN	13	4	1	1	0	0
MI	14	8	6	6	5	4
OH	31	5	3	2	1	0
	- •	•		_	·	
WI	8	1	1	1	1	1
IN MI OH WI Total	13 14 31 8 82	0 8 3 1 21	0 6 3 1 16	0 6 2 1 17		0 5 1 1 13

Table 4. Modeling Results: Future Year Visibility Levels

Worst 20%					201	8	
				Round 5	without CAIR		Round 5 w/ CAIR
Site	Baseline (2000-2004)	2018 URP	Scen. A	Scen. B	Scen. C	Scen. C- BART	
BOWA1	19.86	17.94	19.09	18.87	18.54	18.02	17.94
VOYA2	19.48	17.75	18.60	18.44	18.17	17.77	17.63
SENE1	24.38	21.64	24.02	23.58	23.03	22.38	22.59
ISLE1	21.59	19.43	21.05	20.86	20.62	20.22	20.09
ISLE9	21.59	19.43	20.83	20.58	20.38	19.84	19.84
HEGL1	26.75	23.13	26.24	25.83	24.87	24.23	24.22
MING1	28.15	24.27	27.51 25.32	26.98	25.81	24.93	24.74
CACR1	26.36	22.91		24.80	23.57	22.97	
UPBU1	26.27		25.31	24.79	23.50		22.59
MACA1	31.37	26.64	30.11	29.08	27.06	26.24	26.10
DOSO1	29.05	24.69	27.88	26.96	24.36	23.74	23.00
SHEN1	29.31	25.12	28.38	27.65	25.24	24.69	23.92
JARI1	29.12	24.91	28.06	27.21	25.00	24.48	24.06
BRIG1	29.01	25.05	28.10	28.07	26.57	26.25	25.21
LYBR1	24.45	21.48	24.06	23.86	22.58	22.30	21.14
ACAD1	22.89	20.45	22.88	22.76	22.31	22.16	21.49
Best 20%					201	8	
2001 20 /0				Round 5	without CAIR		Round 5 w/ CAIR
Site	Baseline (2000-2004)	2018 Max	Scen. A	Scen. B	Scen. C	Scen. C- BART	
BOWA1	6.42	6.42	6.20	6.17	6.16	6.12	6.14
VOYA2	7.09	7.09	6.87	6.83	6.81	6.78	6.75
SENE1	7.14	7.14	7.80	7.78	7.81	7.77	7.71
ISLE1	6.75	6.75	6.77	6.76	6.72	6.67	6.60
ISLE9	6.75	6.75	6.63	6.61	6.58	6.53	6.52
UECI 1	12.94	12.94	10.47	12.20	12.07	11.62	11.66
HEGL1	12.84	12.84	12.17	12.20	12.07	11.63	11.66
MING1	14.46	14.46	13.78	13.77	13.70	13.37	13.28
CACR1	11.24	11.24	10.94	10.99	10.97	10.78	10.52
UPBU1	11.71	11.71	11.18	11.23	11.18	10.96	10.73
MACA1	16.51	16.51	16.32	16.21	15.76	15.34	15.25
DOSO1	12.28	12.28	12.02	11.84	11.27	11.03	11.00
SHEN1	10.93	10.93	10.98	10.91	10.25	10.16	9.91
JARI1	14.21	14.21	14.19	13.98	13.42	13.21	13.14
BRIG1	14.33	14.33	14.32	14.46	14.22	14.17	13.92
LYBR1	6.37	6.37	6.39	6.38	6.31	6.28	6.14
ACAD1	8.78	8.78	8.97	8.96	8.90	8.89	8.82

Appendix I Scenario B (Legally Enforceable) Controls

NOx - 2009
Point Source Grown and Controlled Emissions by facility for NOX r6s1b_2009
Future Year = 2009

STID=17 CYID=57 fcid=057801AAA name=AES DUCK CREEK Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 17 57 057801AAA 0001 0001 01 10100202 NOX 0.00 SCR added by LADCO 0.8147 0.8416 0.8416 0.00 SCR STID=17 CYID=143 fcid=143805AAG name=AES ED EDWARDS STATION Base Yr Grown Controlled Base Year Future Year scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype fcid stkid dvid prid ctrldes 17 143 143805AAG 0001 0001 01 10100202 NOX 3.0515 3.1522 3.1522 0.00 0.00 lnb LNB added by LADCO 17 143 143805AAG 0001 0003 01 10100202 NOX 6.9419 7.1708 7.1708 0.00 0.00 LNB added by LADCO lnb 10100202 NOX 143 143805AAG 0002 0004 01 2.1310 2.2013 2.2013 0.00 0.00 LNB added by LADCO 17 lnb fcid 12.1244 12.5243 12.5243 12.5243 12.5243 cyid 12.1244 stid 12.9392 13.3659 13.3659 STID=39 CYID=1 fcid=0701000007 name="DP&L. J.M. STUART GENERATING STATION" Base Yr Grown Controlled Base Year Future Year polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype STID CYID fcid stkid dvid prid SCC ctrldes B001 B001P1 10100202 NOX 6.9756 2.3252 0.85 0.95 SCR SCR added by LADCO 1 0701000007 R1 6.9860 SCR added by LADCO 1 0701000007 R2 B002 B002P1 10100202 NOX 3.6327 3.6273 1.2091 0.85 0.95 SCR SCR added by LADCO 1 0701000007 R3 B003 B003P1 10100202 NOX 5.0133 5.0058 1.6686 0.85 0.95SCR B004 10100202 NOX 7.8376 0.85 0.95 SCR SCR added by LADCO 0701000007 R4 B004P1 7.8493 2.6125 fcid 23.4814 23.4464 7.8155 23.4814 23.4464 cyid 7.8155 STID=39 CYID=167 fcid=0684000000 name=MUSKINGUM RIVER POWER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 0.00 0.95SCR added by LADCO 39 167 0684000000 R1 B001 B001P1 10200501 NOX 0.0017 0.0017 0.0001 SCR SCR added by LADCO 0684000000 B002 B002P1 10100201 0.2904 0.00 0.95SCR 167 NOX 5.8167 5.8080 0684000000 R2 B002 B002P2 10100501 NOX 0.00000.00 0.95 **SCR** SCR added by LADCO 167 0.00000.0000SCR added by LADCO 167 0684000000 R3 B003 B003P1 10100201 NOX 7.9017 7.8899 0.3945 0.00 0.95SCR SCR added by LADCO 0.0000 SCR 167 0684000000 R3 B003 B003P2 10100501 NOX 0.00000.00000.000.95SCR SCR added by LADCO 167 0684000000 R4 B004 B004P1 10100203 NOX 7.8775 7.8657 0.3933 0.00 0.95 B004P2 SCR added by LADCO 167 0684000000 R4 B004 10100501 NOX 0.00000.00000.0000 0.00 0.95 SCR 39 167 0684000000 R6 B006 B006P1 10100202 NOX 3.8586 3.8528 0.19260.00 0.95 SCR SCR added by LADCO 0684000000 R6 SCR SCR added by LADCO 39 167 B006 B006P2 10100501 NOX 0.0000 0.00000.00000.00 0.95 fcid 25.4561 25.4182 1.2709 cyid 25.4561 25.4182 1.2709

STID=55 CYID=79 fcid=241007800 name=WIS ELECTRIC POWER VALLEY STATION

48.9375

stid

Base Yr Grown Controlled Base Year Future Year

9.0864

48.8646

STID	CY	YID fc	d stkid	dvid	prid	scc	polid 7	Tons/Day	Tons/Day	Tons/Day	Contro	l EF	Control EF	ctrltype	ctrldes
55	79	2410078	00 S11	B21	01	10100202			2.8895	1.6470	0.00	0.43		SCR added by	
55	79	2410078	00 S11	B22	01	10100202	NOX	2.9073	3.0032	1.7118	0.00	0.43	SCR	SCR added by	/ LADCO
55	79	2410078	00 S12	B23	01	10100202	NOX	2.3270	2.4038	1.2740	0.00	0.47	SCR	SCR added by	LADCO
55	79	2410078	00 S12	B24	01	10100202	NOX	2.3427	2.4199	1.2826	0.00	0.47	SCR	Scrubber adde	ed by LADCO
fcid						10.3742	10.71	 34 5.915	. .						
cyid						10.3742	10.71	64 5.91	34						
STID	=55	CYID=11	7 fcid=460	033090	name=	WP & L A	lliant E	nergy - Edg	ewater Gen	Station					
						Base Yr	Growi	i Control	led Base	Year Futu	re Year				
STID	CY	YID fc	d stkid	dvid	prid					Year Futu Tons/Day		l EF	Control EF	ctrltype	ctrldes
					•	scc	polid	Γons/Day	Tons/Day	Tons/Day	Contro			<i>3</i> 1	
55	117	4600330	90 S11	B23	01	scc 10100203	polid 7 8 NOX	Γons/Day	Tons/Day 1.6731			l EF 0.40	SCR	ctrltype SCR added by	
55			90 S11		•	scc	polid 7 8 NOX	Γons/Day	Tons/Day 1.6731	Tons/Day	Contro) SCR	<i>3</i> 1	y LADCO
55 55	117	4600330	90 S11 90 S11	B23	01	scc 10100203	polid 7 3 NOX 3 NOX	Tons/Day 1.6197 4.1072	Tons/Day 1.6731 4.2426	Tons/Day 1.0038	Contro	0.40	SCR SCR	SCR added by	y LADCO y LADCO
55 55 55	117 117	4600330 4600330	90 S11 90 S11	B23 B24	01 01	scc 10100203 10100203 10100221	polid 7 3 NOX 3 NOX 1 NOX	Tons/Day 1.6197 4.1072 5.6804	Tons/Day 1.6731 4.2426 5.8677	Tons/Day 1.0038 3.4789	0.00 0.00	0.40 0.18	SCR SCR	SCR added by	y LADCO y LADCO
55 55 55	117 117	4600330 4600330	90 S11 90 S11	B23 B24	01 01	scc 10100203 10100203	polid 7 3 NOX 3 NOX	Tons/Day 1.6197 4.1072 5.6804	Tons/Day 1.6731 4.2426 5.8677	Tons/Day 1.0038 3.4789	0.00 0.00	0.40 0.18	SCR SCR	SCR added by	y LADCO y LADCO
55 55 55	117 117	4600330 4600330	90 S11 90 S11	B23 B24	01 01	scc 10100203 10100203 10100221	polid 7 NOX NOX NOX 11.78	Tons/Day 2 1.6197 3 4.1072 4 5.6804 3 9.470	Tons/Day 1.6731 4.2426 5.8677	Tons/Day 1.0038 3.4789	0.00 0.00	0.40 0.18	SCR SCR	SCR added by	y LADCO y LADCO
55 55 55 fcid	117 117	4600330 4600330	90 S11 90 S11	B23 B24	01 01	scc 10100203 10100203 10100221 	polid 7 NOX NOX NOX 11.78	Cons/Day 2 1.6197 3 4.1072 5.6804 34 9.470 34 9.470	Tons/Day 1.6731 4.2426 5.8677	Tons/Day 1.0038 3.4789	0.00 0.00	0.40 0.18	SCR SCR	SCR added by	y LADCO y LADCO

83.6581 84.7302 37.8380

NOx - 2012

Point Source Grown and Controlled Emissions by facility for NOX r6s1b_2012

Future Year = 2012

STID=17 CYID=33 fcid=033801AAA name=AMEREN ENERGY GENERATING CO

Base Yr Grown Controlled Base Year Future Year

STID CYID stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

033801AAA 0005 0005 10100202 NOX 0.00 SCR SCR added by LADCO 17 33 01 1.642 1.871 0.9357 0.500

17 33 033801AAA 0006 0006 01 10100202 NOX 2.116 2.413 1.2063 0.00 0.500SCR SCR added by LADCO

fcid 3.758 4.284 2.1420

3.758 4.284 2.1420 cyid

STID=17 CYID=57 fcid=057801AAA name=AES DUCK CREEK

Base Yr Grown Controlled Base Year Future Year

scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes STID CYID fcid stkid dvid prid

17 57 057801AAA 0001 0001 01 10100202 NOX 0.815 0.9290.92880.00 0.000SCR SCR added by LADCO

STID=17 CYID=79 fcid=079808AAA name=AMEREN ENERGY GENERATING CO

Base Yr Grown Controlled Base Year Future Year

scc polid Tons/Day Tons/Day Control EF Control EF STID CYID fcid stkid dvid prid ctrldes

0003 01 7.6780 0.000.000SCR SCR added by LADCO 079808AAA 0003 10100202 NOX 6.7357.678

79 079808AAA 0012 0013 10100501 NOX 0.00 SCR SCR added by LADCO 17 01 5.936 5.378 5.3781 0.000

fcid 12.671 13.056 13.0561

12.671 13.056 13.0561 cyid

STID=17 CYID=97 fcid=097190AAC name=MIDWEST GENERATION LLC

Base Yr Grown Controlled Base Year Future Year

scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes stkid dvid prid

17 97 097190AAC 0016 0031 02 10100401 NOX 0.0000.0000.00000.00 0.999SHUTDOWN SCR added by LADCO

STID=17 CYID=137 fcid=137805AAA name=AMEREN ENERGY GENERATING CO

Base Yr Grown Controlled Base Year Future Year

scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes STID CYID fcid stkid dvid prid

17 137 137805AAA 0003 0003 01 10100202 NOX 5.356 6.106 6.1058 0.00 0.000LNB added by LADCO LNB

STID=17 CYID=143 fcid=143805AAG name=AES ED EDWARDS STATION

Base Yr Grown Controlled Base Year Future Year

STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes

0.00 0.000 LNB added by LADCO 17 143 143805AAG 0001 0001 01 10100202 NOX 3.052 3.479 3.4789 lnb

LNB added by LADCO 143 143805AAG 0001 0003 01 10100202 NOX 6.942 7.914 7.9141 0.00 0.000lnb

LNB added by LADCO 17 143 143805AAG 0002 0004 01 10100202 NOX 2.131 2.429 2.4294 0.00 0.000lnb

13.822 13.8224 fcid 12.124

cyid 12.124 13.822 13.8224

STID=17 CYID=167 fcid=167120AAO name=CITY WATER LIGHT & POWER Base Yr Grown Controlled Base Year Future Year stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 17 167 167120AAO 0010 0012 01 10100203 NOX 6.5277.441 0.0074 0.00 0.999SHUTDOWN SHUTDOWN added by LADCO 167 167120AAO 0010 0013 01 10100203 NOX 2.646 3.017 0.0030 0.00 0.999SHUTDOWN SHUTDOWN added by LADCO fcid 9.17310.458 0.0105 cyid 9.173 10.458 0.0105 STID=17 CYID=179 fcid=179801AAA name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype fcid stkid dvid prid 17 179 179801AAA 0018 0029 01 10100203 NOX 22.429 1.2785 0.000.950SCR SCR added by LADCO 25.570 17 179 179801AAA 0018 0031 01 10100203 NOX 38.993 44.454 2.2227 0.950 SCR SCR added by LADCO 0.00 61.422 70.024 fcid 3.5012 cyid 61.422 70.024 STID=17 CYID=197 fcid=197809AAO name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year scc polid Tons/Day Tons/Day Control EF Control EF ctrltype STID CYID fcid stkid dvid prid ctrldes 17 197 197809AAO 0032 0033 02 10100604 NOX 0.0000.0000.00000.00 SCR SCR added by LADCO 0.800STID=17 CYID=197 fcid=197810AAK name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes STID CYID fcid stkid dvid prid 197810AAK 0011 10100222 0.00 SCR SCR added by LADCO 17 197 0016 02 NOX 5.731 6.534 3.9203 0.40017 197 197810AAK 0011 0016 10100501 0.000 0.000 0.0000 0.00 0.400 SCR SCR added by LADCO 03 NOX SHUTDOWN SCR added by LADCO 197810AAK 0010 0.0098 0.00 0.9990013 02 10100223 NOX 8.598 9.802 197810AAK SHUTDOWN SCR added by LADCO 0010 NOX 0.0000.00000.000.9990013 03 10100501 0.000197810AAK SHUTDOWN SCR added by LADCO 197 0007 0012 02 10100223 NOX 10.974 12.511 0.0125 0.000.999197810AAK 0007 0012 10100501 NOX 0.000 0.000 0.00000.00 0.999SHUTDOWN SCR added by LADCO fcid 25.303 28.847 3.9426 cyid 25.303 28.847 3.9426 130.622 147.527 stid 43.5096 STID=27 CYID=61 fcid=2706100004 name=Minnesota Power Inc - Boswell Energy Ctr Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 2706100004 SV003 EU003 001 10100226 NOX 13.661 14.142 2.8284 0.00 0.800 SCR SCR added by LADCO 61 2706100004 SV003 EU003 002 SCR 10100501 NOX 0.0000.0000.00000.00 0.800 SCR added by LADCO fcid 13.661 14.142 2.8284 cyid 13.661 14.142 STID=27 CYID=109 fcid=2710900011 name=Rochester Public Utilities - Silver Lake Base Yr Grown Controlled Base Year Future Year

ctrldes

STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype

27 109 2710900011 SV003 EU004 001 10100202 NOX 2.079 2.152 1.2911 0.00 0.400 SNCR SCR added by LAD	СО
stid 15.739 16.294 4.1195	
STID=39 CYID=1 fcid=0701000007 name="DP&L, J.M. STUART GENERATING STATION"	
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes	
39 1 0701000007 R1 B001 B001P1 10100202 NOX 6.986 7.296 2.4319 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R2 B002 B002P1 10100202 NOX 3.633 3.794 1.2646 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R3 B003 B003P1 10100202 NOX 5.013 5.235 1.7452 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 30 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 30 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 30 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 30 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 30 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 30 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.197 2.7324 0.85 0.950 SCR SCR added by LADCO 30 1 0701000007 R4 B004 B004 B004 B004 B004 B004 B004 B))
fcid 23.481 24.522 8.1740 cyid 23.481 24.522 8.1740	
STID=39 CYID=31 fcid=0616000000 name=CONESVILLE POWER PLANT	
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes	
39 31 0616000000 R4 B004 B004P1 10100212 NOX 20.852 21.776 1.0888 0.00 0.950 SCR SCR added by LAD	СО
STID=39 CYID=167 fcid=0684000000 name=MUSKINGUM RIVER POWER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes	
39 167 0684000000 R1 B001 B001P1 10200501 NOX 0.002 0.002 0.0001 0.00 0.950 SCR SCR added by LADO 1910 10200000 R2 B002 B002P1 10100201 NOX 0.000 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADO 1910 10200000 R2 B002 B002P2 10100501 NOX 0.000 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADO 1910 10200000 R3 B003 B003P1 10100201 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADO 1910 1020000 R3 B003 B003P2 10100501 NOX 0.000 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADO 1910 102000 R3 B003 B003P2 10100501 NOX 0.000 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADO 1910 1910 1910 1910 1910 1910 1910 191	00 00 00 00 00 00 00
fcid 25.456 26.584 1.3292 cyid 25.456 26.584 1.3292 stid 69.789 72.882 10.5920	
STID=55 CYID=79 fcid=241007690 name=WIS ELECTRIC POWER OAK CREEK STATION Base Yr Grown Controlled Base Year Future Year	
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes	
55 79 241007690 S13 B25 01 10100202 NOX 4.755 5.421 3.0898 0.00 0.430 SCR SCR added by LADCO 55 79 241007690 S13 B26 01 10100202 NOX 3.277 3.736 2.2045 0.00 0.410 SCR SCR added by LADCO 55 79 241007690 S14 B27 01 10100212 NOX 3.333 3.800 2.8499 0.00 0.250 SCR SCR added by LADCO 55 79 241007690 S14 B28 01 10100212 NOX 3.384 3.857 2.9316 0.00 0.240 SCR SCR added by LADCO	
fcid 14.749 16.814 11.0757	

STID CYID fcid	stkid dvid prid	Base Yr Grown scc polid To	Controlled Base ons/Day Tons/Day	Year Future Year Tons/Day Contr	ol EF Control EF	ctrltype ctrldes
55 79 241007800 55 79 241007800 55 79 241007800 55 79 241007800	S11 B21 01 S11 B22 01 S12 B23 01 S12 B24 01	10100202 NOX 10100202 NOX 10100202 NOX 10100202 NOX	2.797 3.189 2.907 3.314 2.327 2.653 2.343 2.671	1.8177 0.00 1.8893 0.00 1.4061 0.00 1.4155 0.00	0.430 SCR 0.430 SCR 0.470 SCR 0.470 SCR	SCR added by LADCO SCR added by LADCO SCR added by LADCO Scrubber added by LADCO
fcid cyid		10.374 11.827 25.123 28.641	6.5285 17.6042			
STID=55 CYID=117 fc	id=460033090 name=		rgy - Edgewater Gen Controlled Base			
STID CYID fcid	stkid dvid prid		ons/Day Tons/Day		ol EF Control EF	ctrltype ctrldes
55 117 460033090 55 117 460033090 55 117 460033090	S11 B23 01 S11 B24 01 S12 B25 01	10100203 NOX 10100203 NOX 10100221 NOX	1.620 1.846 4.107 4.682 5.680 6.476	1.1079 0.00 3.8395 0.00 5.5045 0.00	0.400 SCR 0.180 SCR 0.150 SCR	SCR added by LADCO SCR added by LADCO SCR added by LADCO
fcid cyid stid		11.407 13.005 11.407 13.005 36.530 41.646	10.4519 10.4519 28.0562			

252.681 278.349 86.2773

17 137 137805AAA 0003 0003 01

Point Source Grown and Controlled Emissions by facility for NOX r6s1b_2018 Future Year = 2018
STID=17 CYID=31 fcid=031600AIN name=MIDWEST GENERATION LLC
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 31 031600AIN 0010 0013 01 10100226 NOX 2.283 2.592 1.5550 0.00 0.400 SCR SCR added by LADCO 17 31 031600AIN 0010 0013 02 10100601 NOX 0.000 0.000 0.000 0.400 SCR SCR added by LADCO 17 31 031600AIN 0012 0016 01 10100226 NOX 3.991 4.531 2.7184 0.00 0.400 SCR SCR added by LADCO 17 31 031600AIN 0012 0016 02 10100601 NOX 0.000 0.000 0.000 0.400 SCR SCR added by LADCO
fcid 6.274 7.122 4.2734 cyid 6.274 7.122 4.2734
STID=17 CYID=33 fcid=033801AAA name=AMEREN ENERGY GENERATING CO
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 33 033801AAA 0005 0005 01 10100202 NOX 1.642 1.863 0.9317 0.00 0.500 SCR SCR added by LADCO 17 33 033801AAA 0006 0006 01 10100202 NOX 2.116 2.402 1.2012 0.00 0.500 SCR SCR added by LADCO
feid 3.758 4.266 2.1329 cyid 3.758 4.266 2.1329
STID=17 CYID=57 fcid=057801AAA name=AES DUCK CREEK
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 57 057801AAA 0001 0001 01 10100202 NOX 0.815 0.925 0.9249 0.00 0.000 SCR SCR added by LADCO
STID=17 CYID=79 fcid=079808AAA name=AMEREN ENERGY GENERATING CO
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 79 079808AAA 0003 0003 01 10100202 NOX 6.735 7.645 7.6453 0.00 0.000 SCR SCR added by LADCO 17 79 079808AAA 0012 0013 01 10100501 NOX 5.936 3.984 3.9838 0.00 0.000 SCR SCR added by LADCO
feid 12.671 11.629 11.6291 cyid 12.671 11.629 11.6291
STID=17 CYID=97 fcid=097190AAC name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 97 097190AAC 0016 0031 02 10100401 NOX 0.000 0.000 0.000 0.00 0.999 SHUTDOWN SCR added by LADCO
STID=17 CYID=137 fcid=137805AAA name=AMEREN ENERGY GENERATING CO
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes

10100202 NOX 5.356

6.080 6.0798

0.00

0.000 LNB

LNB added by LADCO

STID=17 CYID=143 fcid=143805AAG name=AES ED EDWARDS STATION
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 143 143805AAG 0001 0001 01 10100202 NOX 3.052 3.464 3.4641 0.00 0.000 lnb LNB added by LADCO 17 143 143805AAG 0001 0003 01 10100202 NOX 6.942 7.880 7.8804 0.00 0.000 lnb LNB added by LADCO 17 143 143805AAG 0002 0004 01 10100202 NOX 2.131 2.419 2.4191 0.00 0.000 lnb LNB added by LADCO
feid 12.124 13.764 13.7636 cyid 12.124 13.764 13.7636
STID=17 CYID=167 fcid=167120AAO name=CITY WATER LIGHT & POWER Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes
17 167 167120AAO 0010 0012 01 10100203 NOX 6.527 7.410 0.0074 0.00 0.999 SHUTDOWN SHUTDOWN added by LADCO 17 167 167120AAO 0010 0013 01 10100203 NOX 2.646 3.004 0.0030 0.00 0.999 SHUTDOWN SHUTDOWN added by LADCO
fcid 9.173 10.414 0.0104 cyid 9.173 10.414 0.0104
STID=17 CYID=179 fcid=179801AAA name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 179 179801AAA 0018 0029 01 10100203 NOX 22.429 25.462 1.2731 0.00 0.950 SCR SCR added by LADCO 17 179 179801AAA 0018 0031 01 10100203 NOX 38.993 44.265 2.2132 0.00 0.950 SCR SCR added by LADCO
fcid 61.422 69.726 3.4863 cyid 61.422 69.726 3.4863
STID=17 CYID=197 fcid=197809AAO name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 197 197809AAO 0032 0033 02 10100604 NOX 0.000 0.000 0.000 0.000 SCR SCR added by LADCO
STID=17 CYID=197 fcid=197810AAK name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 197 197810AAK 0011 0016 02 10100222 NOX 5.731 6.506 3.9036 0.00 0.400 SCR SCR added by LADCO
17 197 197810AAK 0011 0016 03 10100501 NOX 0.000 0.000 0.000 0.000 0.400 SCR SCR added by LADCO 17 197 197810AAK 0013 0010 02 10100223 NOX 8.598 9.760 0.0098 0.00 0.999 SHUTDOWN SCR added by LADCO
17 197 197810AAK 0013 0010 03 10100501 NOX 0.000 0.000 0.000 0.000 0.999 SHUTDOWN SCR added by LADCO
17 197 197810AAK 0007 0012 02 10100223 NOX 10.974 12.458 0.0125 0.00 0.999 SHUTDOWN SCR added by LADCO 17 197 197810AAK 0007 0012 03 10100501 NOX 0.000 0.000 0.000 0.000 0.999 SHUTDOWN SCR added by LADCO
fcid 25.303 28.724 3.9258
cyid 25.303 28.724 3.9258 stid 136.896 152.649 46.2263

STID=18 CYID=147 fcid=00020 name=INDIANA MICHIGAN POWER-ROCKPORT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
18 147 00020 1 001 01 10100222 NOX 23.226 25.291 1.2646 0.00 0.950 SCR SCR added by LADCO 18 147 00020 1 001 02 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO
fcid 23.226 25.291 1.2646 cyid 23.226 25.291 1.2646 stid 23.226 25.291 1.2646
STID=27 CYID=61 fcid=2706100004 name=Minnesota Power Inc - Boswell Energy Ctr Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 61 2706100004 SV003 EU003 001 10100226 NOX 13.661 15.733 3.1466 0.00 0.800 SCR SCR added by LADCO 27 61 2706100004 SV003 EU003 002 10100501 NOX 0.000 0.000 0.000 0.000 0.800 SCR SCR added by LADCO
fcid 13.661 15.733 3.1466 cyid 13.661 15.733 3.1466
STID=27 CYID=109 fcid=2710900011 name=Rochester Public Utilities - Silver Lake
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 109 2710900011 SV003 EU004 001 10100202 NOX 2.079 2.394 1.4363 0.00 0.400 SNCR SCR added by LADCO
stid 15.739 18.127 4.5830
STID=39 CYID=1 fcid=0701000007 name="DP&L, J.M. STUART GENERATING STATION" Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
39 1 0701000007 R1 B001 B001P1 10100202 NOX 6.986 7.607 2.5358 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R2 B002 B002P1 10100202 NOX 3.633 3.956 1.3186 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R3 B003 B003P1 10100202 NOX 5.013 5.459 1.8197 0.85 0.950 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 8.547 2.8491 0.85 0.950 SCR SCR added by LADCO
fcid 23.481 25.570 8.5232 cyid 23.481 25.570 8.5232
STID=39 CYID=31 fcid=0616000000 name=CONESVILLE POWER PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
39 31 0616000000 R4 B004 B004P1 10100212 NOX 20.852 22.706 1.1353 0.00 0.950 SCR SCR added by LADCO
STID=39 CYID=167 fcid=0684000000 name=MUSKINGUM RIVER POWER PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
39 167 0684000000 R1 B001 B001P1 10200501 NOX 0.002 0.002 0.0001 0.00 0.950 SCR SCR added by LADCO

39 167 0684000000 R2 B002 B002P1 10100201 NOX 5.817 6.334 0.3167 0.00 0.950 SCR SCR added by LADCO 39 167 0684000000 R2 B002 B002P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R3 B003 B003P1 10100201 NOX 7.902 8.604 0.4302 0.00 0.950 SCR SCR added by LADCO 39 167 0684000000 R3 B003 B003P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R4 B004 B004P1 10100203 NOX 7.877 8.578 0.4289 0.00 0.950 SCR SCR added by LADCO 39 167 0684000000 R4 B004 B004P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P1 10100202 NOX 3.859 4.202 0.2101 0.00 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.000 0.000 0.000 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.												
STID=54 CYID=39 fcid=0006 name=APPALACHIAN POWER - KANAWHA RIVER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes												
54 39 0006 012 001 99 10100202 NOX 4.829 5.258 2.6291 0.00 0.500 SCR Scrubber added by LADCO 54 39 0006 012 002 99 10100202 NOX 4.921 5.359 2.6794 0.00 0.500 SCR Scrubber added by LADCO												
feid 9.750 10.617 5.3085 cyid 9.750 10.617 5.3085 stid 9.750 10.617 5.3085												
STID=55 CYID=79 fcid=241007690 name=WIS ELECTRIC POWER OAK CREEK STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes												
55 79 241007690 S13 B25 01 10100202 NOX 4.755 5.398 3.0766 0.00 0.430 SCR SCR added by LADCO 55 79 241007690 S13 B26 01 10100202 NOX 3.277 3.720 2.1951 0.00 0.410 SCR SCR added by LADCO 55 79 241007690 S14 B27 01 10100212 NOX 3.333 3.784 2.8378 0.00 0.250 SCR SCR added by LADCO 55 79 241007690 S14 B28 01 10100212 NOX 3.384 3.841 2.9191 0.00 0.240 SCR SCR added by LADCO												
fcid 14.749 16.743 11.0285												
STID=55 CYID=79 fcid=241007800 name=WIS ELECTRIC POWER VALLEY STATION Base Yr Grown Controlled Base Year Future Year												
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes												
55 79 241007800 S11 B21 01 10100202 NOX 2.797 3.175 1.4289 0.00 0.550 SCR SCR added by LADCO 55 79 241007800 S11 B22 01 10100202 NOX 2.907 3.300 1.4852 0.00 0.550 SCR SCR added by LADCO 55 79 241007800 S12 B23 01 10100202 NOX 2.327 2.642 1.1887 0.00 0.550 SCR SCR added by LADCO 55 79 241007800 S12 B24 01 10100202 NOX 2.343 2.659 1.1967 0.00 0.550 SCR SCR added by LADCO												
fcid 10.374 11.777 5.2995 cyid 25.123 28.519 16.3281												
STID=55 CYID=117 fcid=460033090 name=WP & L Alliant Energy - Edgewater Gen Station												
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes												
55 117 460033090 S11 B23 01 10100203 NOX 1.620 1.839 1.1032 0.00 0.400 SCR SCR added by LADCO												

	117 117	460033090 460033090	S11 S12	B24 B25	01 01	10100203 10100221	NOX NOX	4.107 5.680	4.662 6.448	3.8232 5.4811	0.00 0.00	0.180 0.150	SCR SCR	SCR added by LADCO SCR added by LADCO
fcid						11.407	12.949	10.4074						
cyid						11.407	12.949	10.4074						
stid						36.530	41.469	26.7355						
	======= ===============================													
						291.931	324.149	95.1624						

1

ctrldes

ctrldes

SCRUBBER Scrubber added by LADCO

Point Source Grown and Controlled Emissions by facility for SO2 r6s1b_2009 Base Year = 2002Future Year = 2009STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO. - LOUISA STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype 19 115 58-07-001 117487 147281 99 10100222 SO2 33.664 34.774 STID=21 CYID=161 fcid=2116100009 name=EAST KY POWER COOP Base Yr Grown Controlled Base Year Future Year STID CYID fcid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype stkid dvid 161 2116100009 1 10100202 SO2 001 42.166 161 2116100009 2 002 99 10100212 SO2 55.385 fcid 97.551 97.406 9.7406 97.551 97.406 9.7406 cyid stid 97.551 97.406 9.7406 STID=27 CYID=141 fcid=2714100004 name=NSP - Sherburne Generating Plant STID CYID fcid

Base Yr Grown Controlled Base Year Future Year

42.103

55.303

3.4774

4.2103

5.5303

16.987

0.0

0.0

0.0

3.6401

0.3

0.3

0.85

0.85

0.90

0.90

stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 16.765

141 2714100004 SV001 EU002 001 10100222 SO2 22.549 22.848 4.8959 fcid

39.314 39.834 8.5360 39.834 8.5360 39.314 cyid 39.834 stid 39.314 8.5360

27 141 2714100004 SV001 EU001 001 10100222 SO2

STID=54 CYID=51 fcid=0005 name=OHIO POWER - MITCHELL PLANT

Base Yr Grown Controlled Base Year Future Year

polid Tons/Day Tons/Day Control EF Control EF ctrltype STID CYID fcid prid scc ctrldes stkid dvid

012 99 0.0 0.90SCRUBBER Scrubber added by LADCO 54 51 0005 001 10100202 SO₂ 17.775 17.748 1.7748 51 0005 012 002 99 10100202 SO₂ 5.6895.6800.56800.0 0.90SCRUBBER Scrubber added by LADCO 54

23.428 fcid 23.463 2.3428 23.428 2.3428 cyid 23.463

STID=54 CYID=53 fcid=0009 name=APPALACHIAN POWER - MOUNTAINEER PLANT

Base Yr Grown Controlled Base Year Future Year

STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

53 0009 001 001 99 10100202 SO2 11.196 11.179 1.1179 0.0 0.90SCRUBBER Scrubber added by LADCO

STID=54 CYID=79 fcid=0006 name=APPALACHIAN POWER - JOHN E AMOS PLANT

Base Yr Grown Controlled Base Year Future Year

STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

54	79	0006	012	001	99	10100202	SO2	79.635	79.516	7.9516	0.0	0.90	SCRUBBER Scrubber added by LADCO
54	79	0006	003	003	99	10100202	SO2	139.377	139.169	13.9169	0.0	0.90	SCRUBBER Scrubber added by LADCO
									-				
fcid						219.01	12 21	8.685 2	1.8685				
cyid						219.0	12 21	8.685	21.8685				
stid						253.67	71 25	3.293 2	25.3293				
							===						
						424.200	425.	307 47	.0832				

Point Source Grown and Controlled Emissions by facility for SO2 r6s1b $_$ 2012 Base Year = 2002

Future Year = 2012

STID=17 CYID=31 fcid=031600AMI name=MIDWEST GENERATION LLC

Base Yr Grown Controlled Base Year Future Year

STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

17 31 031600AMI 0007 0010 01 10100226 SO2 16.13 18.39 1.839 0.0 0.900 SCRUBBER Scrubber added by LADCO

STID=17 CYID=97 fcid=097190AAC name=MIDWEST GENERATION LLC

Base Yr Grown Controlled Base Year Future Year dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Cont

STID CYID fcid stkid dvid polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes prid 097190AAC 0018 0033 01 10100226 SO2 2.752 0.900 SCRUBBER Scrubber added by LADCO 24.14 27.52 97 097190AAC 0021 0036 01 10100226 SO2 19.23 21.92 2.192 0.0 0.900SCRUBBER Scrubber added by LADCO 17

17 97 097190AAC 0016 0031 01 10100203 SO2 4.59 5.24 0.005 0.0 0.999 SHUTDOWN Scrubber added by LADCO

fcid 47.96 54.68 4.950 cyid 47.96 54.68 4.950

STID=17 CYID=125 fcid=125804AAB name=DYNEGY MIDWEST GENERATION INC

Base Yr Grown Controlled Base Year Future Year

STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO

STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC

Base Yr Grown Controlled Base Year Future Year

STID CYID fcid prid polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype stkid dvid SCC ctrldes 10100222 SO2 LNB LNB added by LADCO 127855AAC 0001 0001 01 11.83 13.48 13.482 0.00.00010100222 LNB LNB added by LADCO 17 127 127855AAC 0001 0002 01 SO₂ 11.48 13.09 13.085 0.0 0.000LNB added by LADCO 17 127 127855AAC 0002 0003 01 10100222 SO₂ 10.25 11.68 11.680 0.0 0.000LNB

17 127 127855AAC 0002 0004 01 10100222 SO2 12.04 13.73 13.731 0.0 0.000 LNB LNB added by LADCO

17 127 127855AAC 0003 0006 01 10100222 SO2 12.68 14.46 14.456 0.0 0.000 LNB LNB added by LADCO

fcid 58.27 66.43 66.435 cyid 58.27 66.43 66.435

STID=17 CYID=135 fcid=135803AAA name=AMEREN ENERGY GENERATING CO

Base Yr Grown Controlled Base Year Future Year

STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

17 135 135803AAA 0001 0001 01 10100203 SO2 32.99 37.61 3.761 0.0 0.900 SCRUBBER Scrubber added by LADCO 0003 01 10100203 SO2 SCRUBBER Scrubber added by LADCO 17 135 135803AAA 0001 72.9283.13 8.313 0.0 0.900

fcid 105.91 120.74 12.074 cyid 105.91 120.74 12.074

STID=17 CYID=157 fcid=157851AAA name	DYNEGY MIDWEST GENERATIC Base Yr Grown Controlled Ba		
STID CYID fcid stkid dvid prid		y Tons/Day Control EF	Control EF ctrltype ctrldes
17 157 157851AAA 0001 0001 01 17 157 157851AAA 0002 0002 01 17 157 157851AAA 0013 0013 01	10100203 SO2 25.79 29. 10100202 SO2 27.79 31.	1 4.411 0.0 0.850	SCRUBBER Scrubber added by LADCO
feid cyid	78.72 89.75 13.462 78.72 89.75 13.462		
STID=17 CYID=167 fcid=167120AAO name			
STID CYID fcid stkid dvid prid	Base Yr Grown Controlled Base Scc polid Tons/Day Tons/D		Control EF ctrltype ctrldes
17 167 167120AAO 0010 0012 01 17 167 167120AAO 0010 0013 01			<i>y</i>
fcid cyid	60.61 69.10 0.069 60.61 69.10 0.069		
STID=17 CYID=179 fcid=179801AAA name		V F V	
STID CYID fcid stkid dvid prid	Base Yr Grown Controlled Base Composited Tons/Day Tons/D	se Year Future Year ny Tons/Day Control EF	Control EF ctrltype ctrldes
17 179 179801AAA 0018 0029 01 17 179 179801AAA 0018 0031 01			9
fcid cyid	66.91 76.29 7.629 66.91 76.29 7.629		
STID=17 CYID=197 fcid=197810AAK name		V F V	
STID CYID fcid stkid dvid prid	Base Yr Grown Controlled Base Scc polid Tons/Day Tons/D	se Year Future Year ny Tons/Day Control EF	Control EF ctrltype ctrldes
17 197 197810AAK 0013 0010 03 17 197 197810AAK 0007 0012 03 17 197 197810AAK 0007 0012 03	2 10100223 SO2 15.33 17.	8 0.017 0.0 0.999	SHUTDOWN Scrubber added by LADCO SHUTDOWN Scrubber added by LADCO SHUTDOWN Scrubber added by LADCO
fcid cyid stid	15.33 17.48 0.017 15.33 17.48 0.017 472.19 538.32 110.295		
CTID 10 (N/ID 115 (1) 50 07 001	MIDAMEDICAN ENERGY CO. LOU	ICA CTATION	
STID=19 CYID=115 fcid=58-07-001 name=N	Base Yr Grown Controlled Ba	se Year Future Year	0 + 155 + 1
STID CYID fcid stkid dvid prid		ny Tons/Day Control EF	•
19 115 58-07-001 117487 147281 99	10100222 SO2 33.66 38.3	8 3.838 0.0 0.900	SCRUBBER Scrubber added by LADCO
STID=21 CYID=161 fcid=2116100009 name=			
STID CYID fcid stkid dvid prid	Base Yr Grown Controlled Base Controlled Base Controlled Base Scc polid Tons/Day Tons/D	se Year Future Year ny Tons/Day Control EF	Control EF ctrltype ctrldes

21 161 2116100009 1 001 99 10100202 SO2 42.17 44.03 4.403 0.0 0.900 SCRUBBER Scrubber added by LADCO 21 161 2116100009 2 002 99 10100212 SO2 55.39 57.84 5.784 0.0 0.900 SCRUBBER Scrubber added by LADCO 5.784 5.784 0.0 0.900 SCRUBBER Scrubber added by LADCO 5.784 5.784 0.0 0.900 SCRUBBER Scrubber added by LADCO 5.785 101.87 10.187
STID=27 CYID=61 fcid=2706100004 name=Minnesota Power Inc - Boswell Energy Ctr Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 61 2706100004 SV003 EU003 001 10100226 SO2 33.99 35.19 15.081 0.3 0.700 SCRUBBER Scrubber added by LADCO 27 61 2706100004 SV003 EU003 002 10100501 SO2 0.00 0.00 0.00 0.00 0.3 0.700 SCRUBBER Scrubber added by LADCO
fcid 33.99 35.19 15.081 cyid 33.99 35.19 15.081
STID=27 CYID=109 fcid=2710900011 name=Rochester Public Utilities - Silver Lake
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 109 2710900011 SV003 EU004 001 10100202 SO2 7.86 8.13 1.220 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=27 CYID=141 fcid=2714100004 name=NSP - Sherburne Generating Plant Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 141 2714100004 SV001 EU001 001 10100222 SO2 16.76 17.36 3.719 0.3 0.850 SCRUBBER Scrubber added by LADCO 27 141 2714100004 SV001 EU002 001 10100222 SO2 22.55 23.34 5.002 0.3 0.850 SCRUBBER Scrubber added by LADCO
feid 39.31 40.70 8.721 cyid 39.31 40.70 8.721 stid 81.16 84.02 25.023
STID=39 CYID=13 fcid=0607130015 name=R. E. BURGER PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes
39 13 0607130015 R6 B011 B011P1 10100202 SO2 29.83 31.15 3.115 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 13 0607130015 R7 B012 B012P1 10100202 SO2 34.77 36.31 3.631 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 64.60 67.46 6.746 cyid 64.60 67.46 6.746
STID=39 CYID=31 fcid=0616000000 name=CONESVILLE POWER PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
39 31 0616000000 R4 B004 B004P1 10100212 SO2 316.00 330.00 33.000 0.0 0.900 SCRUBBER Scrubber added by LADCO
stid 380.60 397.46 39.746

STID=47 CYID=1 fcid=0009 name=TVA BULL RUN FOSSIL PLANT

Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 47 1 0009 S-1 001 99 10100212 SO2 130.81 133.01 13.301 0.0 0.900SCRUBBER Scrubber added by LADCO STID=47 CYID=73 fcid=0007 name=TVA JOHN SEVIER FOSSIL PLANT Grown Controlled Base Year Future Year Base Yr STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 73 0007 S-1A 001 99 10100212 SO2 20.15 20.49 2.049 0.0 0.900SCRUBBER Scrubber added by LADCO 73 99 SO₂ SCRUBBER Scrubber added by LADCO 47 0007 S-1B 002 10100212 20.25 20.59 2.059 0.0 0.900 47 73 0007 S-2A 003 99 10100212 SO2 19.62 19.95 1.995 0.0 0.900 SCRUBBER Scrubber added by LADCO 73 0007 S-2B 004 99 SO₂ 18.93 19.25 1.925 0.0 0.900 SCRUBBER Scrubber added by LADCO 10100212 fcid 78.9580.28 8.028 cyid 78.95 80.28 8.028 STID=47 CYID=85 fcid=0011 name=TVA JOHNSONVILLE FOSSIL PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid SCC polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes stkid dvid prid 85 0011 S1-01 001 10100212 SO2 17.06 17.35 1.735 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 85 0011 S1-04 004 99 10100212 SO₂ 19.85 20.18 2.018 0.0 0.900SCRUBBER Scrubber added by LADCO 47 85 S1-05 005 99 SCRUBBER Scrubber added by LADCO 47 0011 10100212 SO2 24.11 24.52 2.452 0.0 0.90062.04 6.204 fcid 61.02 61.02 62.04 6.204 cyid STID=47 CYID=145 fcid=0013 name=TVA KINGSTON FOSSIL PLANT Grown Controlled Base Year Future Year Base Yr STID CYID fcid prid polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype stkid dvid SCC ctrldes 10100202 SO2 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 001 12.68 12.89 1.289 0.00.900SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO₂ 14.00 14.24 1.424 0.0 0.900SCRUBBER Scrubber added by LADCO 145 0013 S-1 003 99 10100202 SO₂ 13.80 14.04 1.404 0.0 0.900SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO₂ 12.24 12.44 1.244 0.0 0.900 145 0013 S-1 005 99 10100202 SO₂ 19.57 19.90 1.990 0.0 0.900 SCRUBBER Scrubber added by LADCO SCRUBBER Scrubber added by LADCO 0013 S-2 006 99 10100202 SO2 18.92 19.24 1.924 0.00.90047 145 0013 S-2 007 99 10100202 SO₂ 21.30 21.66 2.166 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-2 800 10100202 SO₂ SCRUBBER Scrubber added by LADCO 47 145 99 18.54 18.85 1.885 0.00.900145 0013 S-2 009 99 10100202 SO2 20.72 21.07 2.107 0.0 SCRUBBER Scrubber added by LADCO 47 0.900fcid 151.77 154.33 15.433 cyid 151.77 154.33 15.433 STID=47 CYID=165 fcid=0025 name=TVA GALLATIN FOSSIL PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid polid Tons/Day Tons/Day Control EF Control EF ctrltype SCC ctrldes 47 165 0025 S-01 001 99 10100212 SO2 13.91 14.14 1.414 0.0 0.900SCRUBBER Scrubber added by LADCO 165 0025 S-01 002 99 10100212 SO₂ 15.12 1.512 0.0 0.900 SCRUBBER Scrubber added by LADCO 14.87 0025 003 99 SO2 0.0 SCRUBBER Scrubber added by LADCO 47 165 S-02 10100212 16.33 16.60 1.660 0.900SCRUBBER Scrubber added by LADCO 47 165 0025 S-02 004 99 10100212 SO2 20.39 20.73 2.073 0.0 0.900

cyid 65.49 66.59 6.659 stid 488.04 496.25 49.625	
STID=54 CYID=51 fcid=0005 name=OHIO POWER - MITCHELL PLANT	
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes	
54 51 0005 012 001 99 10100202 SO2 17.77 18.56 1.856 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 51 0005 012 002 99 10100202 SO2 5.69 5.94 0.594 0.0 0.900 SCRUBBER Scrubber added by LADCO 5.500 5.94 0.594 0.594 0.0 0.900 SCRUBBER Scrubber added by LADCO 5.500 5.94 0.5	
fcid 23.46 24.50 2.450 cyid 23.46 24.50 2.450	
STID=54 CYID=53 fcid=0009 name=APPALACHIAN POWER - MOUNTAINEER PLANT Base Yr Grown Controlled Base Year Future Year	
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes	
54 53 0009 001 001 99 10100202 SO2 11.20 11.69 1.169 0.0 0.900 SCRUBBER Scrubber added by LADCO	O
STID=54 CYID=79 fcid=0006 name=APPALACHIAN POWER - JOHN E AMOS PLANT Base Yr Grown Controlled Base Year Future Year	
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes	
54 79 0006 012 001 99 10100202 SO2 79.63 83.16 8.316 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 79 0006 012 002 99 10100202 SO2 100.33 104.78 10.478 0.0 0.900 SCRUBBER Scrubber added by LAD 54 79 0006 003 003 99 10100202 SO2 139.38 145.55 14.555 0.0 0.900 SCRUBBER Scrubber added by LAD	CO
fcid 319.35 333.50 33.350 cyid 319.35 333.50 33.350 stid 354.00 369.69 36.969	
STID=55 CYID=79 fcid=241007690 name=WIS ELECTRIC POWER OAK CREEK STATION	
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes	
55 79 241007690 S13 B25 01 10100202 SO2 12.75 14.54 3.490 0.0 0.760 SCRUBBER Scrubber added by LA 55 79 241007690 S13 B26 01 10100202 SO2 8.68 9.89 2.473 0.0 0.750 SCRUBBER Scrubber added by LAC	
55 79 241007690 S14 B27 01 10100212 SO2 10.97 12.51 2.876 0.0 0.770 SCRUBBER Scrubber added by LA	DCO
	טטע
fcid 43.68 49.80 11.797 cyid 43.68 49.80 11.797 stid 43.68 49.80 11.797	
1950.90 2075.80 287.480	

ctrldes

Base Year = 2002Future Year = 2018STID=17 CYID=31 fcid=031600AIN name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype stkid dvid prid ctrldes 031600AIN 0010 0013 01 10100226 SO2 10.92 12.39 1.239 0.0 0.900 SCRUBBER Scrubber added by LADCO 0.90031 031600AIN 0012 0016 01 10100226 SO2 17.69 20.08 2.008 0.0 SCRUBBER Scrubber added by LADCO 28.61 32.48 3.248 fcid STID=17 CYID=31 fcid=031600AMI name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype stkid dvid prid ctrldes 31 031600AMI 0007 0010 01 10100226 SO2 16.13 18.31 1.831 0.900SCRUBBER Scrubber added by LADCO 44.74 50.79 5.079 cyid STID=17 CYID=79 fcid=079808AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes stkid dvid prid 079808AAA 0003 10100202 SO2 41.27 4.127 0.900SCRUBBER Scrubber added by LADCO 79 0003 01 36.35 0.0 17 79 079808AAA 0012 0013 01 10100501 SO2 28.99 19.46 1.946 0.0 0.900SCRUBBER Scrubber added by LADCO fcid 65.34 60.72 6.072 60.72 6.072 65.34cyid STID=17 CYID=97 fcid=097190AAC name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 17 97 097190AAC 0018 0033 01 10100226 SO2 24.14 27.40 2.740 0.0 0.900SCRUBBER Scrubber added by LADCO 97 097190AAC 0021 0036 01 10100226 SO₂ 19.23 21.83 2.183 0.0 0.900SCRUBBER Scrubber added by LADCO 17 97 097190AAC 0016 0031 10100203 SO2 4.59 5.22 0.005 0.0 0.999SHUTDOWN Scrubber added by LADCO 17 01 47.96 fcid 54.454.928 cyid 47.96 54.454.928 STID=17 CYID=125 fcid=125804AAB name=DYNEGY MIDWEST GENERATION INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.36 3.805 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year Future Year

stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype

SO2 - 2018

STID CYID fcid

Point Source Grown and Controlled Emissions by facility for SO2 r6s1b_2018

17 127 127855AAC 0002 0003 01 10100222 SO2 10.25 11.63 11.630 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0004 01 10100222 SO2 12.04 13.67 13.673 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0001 0001 01 10100222 SO2 11.83 13.42 1.342 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 127 127855AAC 0001 0002 01 10100222 SO2 11.48 13.03 1.303 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 127 127855AAC 0003 0005 01 10100222 SO2 11.72 13.31 1.331 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 127 127855AAC 0003 0005 01 10100222 SO2 11.72 13.31 1.331 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 127 127855AAC 0003 0006 01 10100222 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER Scrubber added by LADCO 18 127 127855AAC 0003 0006 01 10100222 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER Scrubber added by LADCO 19 1010022 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER Scrubber added by LADCO 19 1010022 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER Scrubber added by LADCO 19 1010022 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER Scrubber added by LADCO 19 1010022 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER Scrubber added by LADCO 19 1010022 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER Scrubber added by LADCO 19 1010022 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER Scrubber added by LADCO 19 1010022 SO2 12.68 14.39 1.439 0.0 0.900 SCRUBBER SCRU
STID=17 CYID=135 fcid=135803AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 135 135803AAA 0001 0001 01 10100203 SO2 32.99 37.45 3.745 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 135 135803AAA 0001 0003 01 10100203 SO2 72.92 82.77 8.277 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 105.91 120.22 12.022 cyid 105.91 120.22 12.022
STID=17 CYID=143 fcid=143805AAG name=AES ED EDWARDS STATION
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 143 143805AAG 0002 0004 01 10100202 SO2 15.28 17.34 1.734 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=17 CYID=157 fcid=157851AAA name=DYNEGY MIDWEST GENERATION INC Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 157 157851AAA 0001 001 01 10100203 SO2 25.14 28.54 4.281 0.0 0.850 SCRUBBER Scrubber added by LADCO 17 157 157851AAA 0002 0002 01 10100203 SO2 25.79 29.28 4.392 0.0 0.850 SCRUBBER Scrubber added by LADCO 17 157 157851AAA 0013 0013 01 10100202 SO2 27.79 31.54 4.732 0.0 0.850 SCRUBBER Scrubber added by LADCO
fcid 78.72 89.36 13.404 cyid 78.72 89.36 13.404
STID=17 CYID=167 fcid=167120AAO name=CITY WATER LIGHT & POWER Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 167 167120AAO 0010 0012 01 10100203 SO2 44.20 50.18 0.050 0.0 0.999 SHUTDOWN Scrubber added by LADCO 17 167 167120AAO 0010 0013 01 10100203 SO2 16.40 18.62 0.019 0.0 0.999 SHUTDOWN Scrubber added by LADCO
STID=17 CYID=179 fcid=179801AAA name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 179 179801AAA 0018 0029 01 10100203 SO2 25.35 28.77 2.877 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 179 179801AAA 0018 0031 01 10100203 SO2 41.57 47.19 4.719 0.0 0.900 SCRUBBER Scrubber added by LADCO

```
fcid
                                        66.91
                                               75.96
                                                       7.596
cyid
                                        66.91
                                               75.96
                                                       7.596
STID=17 CYID=197 fcid=197809AAO name=MIDWEST GENERATION LLC
                                     Base Yr Grown Controlled Base Year Future Year
STID CYID fcid
                    stkid dvid prid
                                       scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype
        197809AAO 0006
                           0009
                                  01
                                        10100203 SO2
                                                        15.89
                                                                18.04
                                                                       1.804
                                                                                0.0
                                                                                       0.900
                                                                                              SCRUBBER Scrubber added by LADCO
17 197
17 197
         197809AAO
                    0016
                           0031
                                 01
                                        10100202 SO2
                                                        27.43
                                                                31.13
                                                                        3.113
                                                                                0.0
                                                                                       0.900
                                                                                              SCRUBBER Scrubber added by LADCO
17 197
         197809AAO
                    0017
                           0033
                                 01
                                        10100202 SO2
                                                        23.13
                                                                26.26
                                                                        2.626
                                                                                0.0
                                                                                       0.900
                                                                                              SCRUBBER Scrubber added by LADCO
fcid
                                        66.45
                                              75.44
                                                      7.544
STID=17 CYID=197 fcid=197810AAK name=MIDWEST GENERATION LLC
                                     Base Yr
                                             Grown Controlled Base Year Future Year
STID CYID fcid
                                            polid Tons/Day Tons/Day Control EF Control EF ctrltype
                    stkid
                         dvid prid
                                       SCC
                                                                                                                   ctrldes
17 197 197810AAK 0009
                           0014 02
                                        10100222
                                                 SO<sub>2</sub>
                                                         11.64
                                                                                0.0
                                                                                       0.900
                                                                                              SCRUBBER Scrubber added by LADCO
                                                                13.21
                                                                        1.321
17 197
         197810AAK
                     0011
                            0016
                                 02
                                        10100222
                                                 SO<sub>2</sub>
                                                         25.67
                                                                29.14
                                                                        2.914
                                                                                0.0
                                                                                       0.900
                                                                                              SCRUBBER Scrubber added by LADCO
                                                 SO2
                                                                                              SHUTDOWN Scrubber added by LADCO
    197
         197810AAK
                     0013
                            0010
                                  03
                                        10100501
                                                         0.00
                                                                0.00
                                                                       0.000
                                                                               0.0
                                                                                      0.999
17
17 197
         197810AAK 0007
                            0012
                                 02
                                        10100223
                                                 SO2
                                                         15.33
                                                                17.40
                                                                       0.017
                                                                                0.0
                                                                                       0.999
                                                                                              SHUTDOWN Scrubber added by LADCO
17 197
         197810AAK 0007
                            0012
                                  03
                                        10100501 SO2
                                                         0.00
                                                                0.00
                                                                       0.000
                                                                               0.0
                                                                                      0.999
                                                                                              SHUTDOWN Scrubber added by LADCO
                                               59.75
                                        52.64
                                                       4.252
fcid
                                       119.09
                                               135.19
                                                       11.796
cyid
stid
                                       696.90
                                               777.66
                                                       97.225
STID=18 CYID=147 fcid=00020 name=INDIANA MICHIGAN POWER-ROCKPORT
                                     Base Yr Grown Controlled Base Year Future Year
STID CYID fcid
                                             polid Tons/Day Tons/Day Tons/Day
                                                                                Control EF Control EF ctrltype
                    stkid
                          dvid prid
                                       SCC
                                   10100222 SO2
                                                           72.32
                                                                  7.232
                                                                           0.0
                                                                                  0.900
                                                                                         SCRUBBER Scrubber added by LADCO
18 147
         00020
                       001
                            01
                                                   66.42
                  1
                       001
                                                                                        SCRUBBER Scrubber added by LADCO
    147
         00020
                  1
                             02
                                   10100501
                                            SO<sub>2</sub>
                                                    0.00
                                                          0.00
                                                                  0.000
                                                                          0.0
                                                                                 0.900
fcid
                                        66.42
                                               72.32
                                                       7.232
                                        66.42
                                               72.32
                                                       7.232
cyid
stid
                                        66.42
                                               72.32
                                                       7.232
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO. - LOUISA STATION
                                     Base Yr Grown Controlled Base Year Future Year
STID CYID fcid
                    stkid dvid prid
                                       SCC
                                            polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype
                                                                                                                   ctrldes
19 115 58-07-001 117487 147281 99
                                                                                              SCRUBBER Scrubber added by LADCO
                                        10100222 SO2
                                                        33.66
                                                                38.22
                                                                        3.822
                                                                                       0.900
STID=21 CYID=127 fcid=2112700003 name=KENTUCKY POWER CO
                                     Base Yr Grown Controlled Base Year Future Year
                                       scc polid Tons/Day Tons/Day Control EF Control EF ctrltype
STID CYID fcid
                    stkid dvid prid
                                                                                                                   ctrldes
21 127 2112700003 2
                          002
                               99
                                     10100202 SO2
                                                    104.52 113.82
                                                                   11.382
                                                                               0.0
                                                                                      0.900
                                                                                             SCRUBBER Scrubber added by LADCO
STID=21 CYID=161 fcid=2116100009 name=EAST KY POWER COOP
                                     Base Yr Grown Controlled Base Year Future Year
STID CYID fcid
                    stkid dvid prid
                                      scc polid Tons/Day Tons/Day Control EF Control EF ctrltype
                                                                                                                   ctrldes
```

21 161 2116100009 1 001 99 10100202 SO2 42.17 45.92 4.592 0.0 0.900 SCRUBBER Scrubber added by LADCO 21 161 2116100009 2 002 99 10100212 SO2 55.39 60.31 6.031 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 97.55 106.23 10.623 cyid 97.55 106.23 10.623 stid 202.07 220.04 22.004
STID=27 CYID=61 fcid=2706100004 name=Minnesota Power Inc - Boswell Energy Ctr Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 61 2706100004 SV003 EU003 001 10100226 SO2 33.99 39.15 16.778 0.3 0.700 SCRUBBER Scrubber added by LADCO 27 61 2706100004 SV003 EU003 002 10100501 SO2 0.00 0.00 0.00 0.00 0.3 0.700 SCRUBBER Scrubber added by LADCO
fcid 33.99 39.15 16.778 cyid 33.99 39.15 16.778
STID=27 CYID=109 fcid=2710900011 name=Rochester Public Utilities - Silver Lake
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes
27 109 2710900011 SV003 EU004 001 10100202 SO2 7.86 9.05 1.357 0.0 0.850 SCRUBBER Scrubber added by LADCO
STID=27 CYID=141 fcid=2714100004 name=NSP - Sherburne Generating Plant Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 141 2714100004 SV001 EU001 001 10100222 SO2 16.76 19.31 4.138 0.3 0.850 SCRUBBER Scrubber added by LADCO 27 141 2714100004 SV001 EU002 001 10100222 SO2 22.55 25.97 5.565 0.3 0.850 SCRUBBER Scrubber added by LADCO
fcid 39.31 45.28 9.703 cyid 39.31 45.28 9.703
stid 81.16 93.48 27.838
STID=39 CYID=13 fcid=0607130015 name=R. E. BURGER PLANT Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
39 13 0607130015 R6 B011 B011P1 10100202 SO2 29.83 32.48 3.248 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 13 0607130015 R7 B012 B012P1 10100202 SO2 34.77 37.86 3.786 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 64.60 70.34 7.034 cyid 64.60 70.34 7.034
STID=39 CYID=31 fcid=0616000000 name=CONESVILLE POWER PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
39 31 0616000000 R4 B004 B004P1 10100212 SO2 316.00 344.11 34.411 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=39 CYID=167 fcid=0684000000 name=MUSKINGUM RIVER POWER PLANT
Base Yr Grown Controlled Base Year Future Year

39 167 0684000000 R2 B002 B002P1 10100201 SO2 65.07 70.85 7.085 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R3 B003 B003P1 10100201 SO2 94.58 103.00 10.300 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R3 B003 B003P2 10100501 SO2 0.00 0.00 0.000 0.00 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R4 B004 B004P1 10100203 SO2 81.64 88.90 8.890 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R4 B004 B004P2 10100501 SO2 0.00 0.00 0.000 0.00 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R5 B005 B005P1 10100203 SO2 97.22 105.87 10.587 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R5 B005 B005P2 10100501 SO2 0.00 0.00 0.000 0.00 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R5 B005 B005P2 10100501 SO2 0.00 0.00 0.00 0.000 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R5 B005 B005P2 10100501 SO2 0.00 0.00 0.00 0.00 0.00 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R6 B006 B006P1 10100202 SO2 113.96 124.10 12.410 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 SO2 0.00 0.00 0.00 0.00 0.00 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 SO2 0.00 0.00 0.00 0.00 0.00 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 SO2 0.00 0.00 0.00 0.00 0.00 0.00 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 SO2 0.00 0.00 0.00 0.00 0.00 0.00 0.900 SCRUBBER Scrubber added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 SO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
STID=47 CYID=1 fcid=0009 name=TVA BULL RUN FOSSIL PLANT Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
47 1 0009 S-1 001 99 10100212 SO2 130.81 136.82 13.682 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=47 CYID=73 fcid=0007 name=TVA JOHN SEVIER FOSSIL PLANT Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
47 73 0007 S-1A 001 99 10100212 SO2 20.15 21.07 2.107 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 73 0007 S-1B 002 99 10100212 SO2 20.25 21.18 2.118 0.0 0.900 SCRUBBER Scrubber added by LADCO
47 73 0007 S-2A 003 99 10100212 SO2 19.62 20.52 2.052 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 73 0007 S-2B 004 99 10100212 SO2 18.93 19.80 1.980 0.0 0.900 SCRUBBER Scrubber added by LADCO
feid 78.95 82.57 8.257 cyid 78.95 82.57 8.257
STID=47 CYID=85 fcid=0011 name=TVA JOHNSONVILLE FOSSIL PLANT Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes
47 85 0011 S1-01 001 99 10100212 SO2 17.06 17.84 1.784 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 85 0011 S1-04 004 99 10100212 SO2 19.85 20.76 2.076 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 85 0011 S1-05 005 99 10100212 SO2 24.11 25.22 2.522 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 61.02 63.82 6.382 cyid 61.02 63.82 6.382
STID=47 CYID=145 fcid=0013 name=TVA KINGSTON FOSSIL PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF ctrltype ctrldes
47 145 0013 S-1 001 99 10100202 SO2 12.68 13.26 1.326 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.65 1.465 0.0 0.900 SCRUBBER Scrubber added by LADCO

47 145 0013 47 145 0013 	S-1 003 99 S-1 004 99 S-1 005 99 S-2 006 99 S-2 007 99 S-2 008 99 S-2 009 99	10100202 SO2 10100202 SO2 10100202 SO2 10100202 SO2 10100202 SO2		1.444 0.0 1.280 0.0 2.047 0.0 1.979 0.0 2.228 0.0 1.939 0.0 2.168 0.0	0.900 SCRUBBER	Scrubber added by LADCO Scrubber added by LADCO
STID=47 CYID=10 STID CYID fcio				Base Year Future Day Tons/Day	e Year Control EF Control EF	ctrltype ctrldes
47 165 0025 47 165 0025 47 165 0025 47 165 0025 	S-01 001 99 S-01 002 99 S-02 003 99 S-02 004 99	9 10100212 SO2 9 10100212 SO2 9 10100212 SO2 	50 6.850	1.454 0.0 1.556 0.0 1.708 0.0 2.132 0.0	0.900 SCRUBBER 0.900 SCRUBBER	Scrubber added by LADCO Scrubber added by LADCO Scrubber added by LADCO Scrubber added by LADCO
STID=54 CYID=3 STID CYID fcie		PPALACHIAN POWE Base Yr Grov		Base Year Future	e Year Control EF Control EF	C ctrltype ctrldes
54 39 0006 54 39 0006 fcid cyid	012 001 99 012 002 99			10.591 0.0 11.399 0.0	0.500 SCRUBBER 0.500 SCRUBBER	Scrubber added by LADCO Scrubber added by LADCO
			wn Controlled		e Year Control EF Control EF	7 ctrltype ctrldes
54 51 0005 54 51 0005	012 001 99 012 002 99	10100202 SO2	17.77 19.36 5.69 6.19	1.936 0.0 0.619 0.0		Scrubber added by LADCO Scrubber added by LADCO
fcid		23.46 25.5				
STID=54 CYID=5 STID CYID fcio				Base Year Future Day Tons/Day	e Year Control EF Control EF	ctrltype ctrldes
54 51 0006 54 51 0006 54 51 0006	013 001 99 013 002 99 013 003 99	10100203 SO2 10100203 SO2	47.06 51.25 47.66 51.90 41.94 45.67	5.125 0.0 5.190 0.0 4.567 0.0	0.900 SCRUBBER	Scrubber added by LADCO Scrubber added by LADCO Scrubber added by LADCO

fcid 136.67 148.82 14.882 cyid 160.13 174.37 17.437
STID=54 CYID=53 fcid=0001 name=APPALACHIAN POWER COPHILIP SPORN PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
54 53 0001 014 001 99 10100202 SO2 18.65 20.31 2.031 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 014 002 99 10100202 SO2 15.87 17.28 1.728 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 014 003 99 10100202 SO2 21.46 23.36 2.336 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 014 004 99 10100202 SO2 20.53 22.36 2.236 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 014 004 99 10100202 SO2 20.53 22.36 2.236 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 005 005 99 10100202 SO2 46.82 50.98 5.098 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 123.33 134.30 13.430
STID=54 CYID=53 fcid=0009 name=APPALACHIAN POWER - MOUNTAINEER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
54 53 0009 001 001 99 10100202 SO2 11.20 12.19 1.219 0.0 0.900 SCRUBBER Scrubber added by LADCO
cyid 134.53 146.49 14.649
STID=54 CYID=79 fcid=0006 name=APPALACHIAN POWER - JOHN E AMOS PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
54 79 0006 012 001 99 10100202 SO2 79.63 86.72 8.672 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 79 0006 012 002 99 10100202 SO2 100.33 109.26 10.926 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 79 0006 003 003 99 10100202 SO2 139.38 151.77 15.177 0.0 0.900 SCRUBBER Scrubber added by LADCO
feid 319.35 347.75 34.775 cyid 319.35 347.75 34.775 stid 654.39 712.59 88.851
STID=55 CYID=79 fcid=241007690 name=WIS ELECTRIC POWER OAK CREEK STATION Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
55 79 241007690 S13 B25 01 10100202 SO2 12.75 14.48 3.475 0.0 0.760 SCRUBBER Scrubber added by LADCO 55 79 241007690 S13 B26 01 10100202 SO2 8.68 9.85 2.462 0.0 0.750 SCRUBBER Scrubber added by LADCO 55 79 241007690 S14 B27 01 10100212 SO2 10.97 12.45 2.864 0.0 0.770 SCRUBBER Scrubber added by LADCO 55 79 241007690 S14 B28 01 10100212 SO2 11.28 12.81 2.945 0.0 0.770 SCRUBBER Scrubber added by LADCO
fcid 43.68 49.59 11.746 cyid 43.68 49.59 11.746 stid 43.68 49.59 11.746
3099.41 3381.52 400.481

Appendix II Scenario C Controls (CAMD List)

NOx Controls (SCRs, 2007 – 2013))

NOx Controls (SCRs, 2007 – 2013)) SCR									
Plant Name	UniqueID_Final	State Name	County	Capacity MW	On Line Year	Online Year			
Chesterfield	3797_B_4	Virginia	Chesterfield	166	1960	2013			
Chesterfield	3797_B_5	Virginia	Chesterfield	310	1964	2012			
Scherer	6257_B_3	Georgia	Monroe	875	1987	2012			
Chesterfield	3797_B_6	Virginia	Chesterfield	658	1969	2011			
		Texas	Milam	545					
Sandow No 4	6648_B_4		-		1981	2011			
Beech Hollow Power Project	82704_B_1	Pennsylvania	Washington	272	2011	2011			
Longview Power	82702_B_1	West Virginia	Monongalia	695	2011	2011			
Cliffside	2721_B_6	North Carolina	Cleveland	800	2011	2011			
AES Westover	2526_B_11	New York	Broome	22	1943	2010			
AES Westover	2526_B_12	New York	Broome	22	1943	2010			
AES Westover	2526_B_13	New York	Broome	84	1951	2010			
latan 2	6065_B_2	Missouri	Platte	850	2010	2010			
Southwest	6195_B_2	Missouri	Greene	300	2010	2010			
Trimble Station (LGE)	6071_B_2	Kentucky	Trimble	732	2010	2010			
Elm Road Generating Station	56068_B_2	Wisconsin	Milwaukee	615	2010	2010			
Clay Boswell	1893_B_3	Minnesota	Itasca	350	1973	2009			
Asheville	2706_B_2	North Carolina	Buncombe	184	1971	2009			
Conesville	2840_B_4	Ohio	Coshocton	780	1973	2009			
Marshall	2727_B_3	North Carolina	Catawba	657	1969	2009			
St Johns River Power Park	207_B_1	Florida	Duval	626	1987	2009			
Ghent	1356_B_2	Kentucky	Carroll	469	1977	2009			
Chalk Point LLC	1571_B_1	Maryland	Prince George's	341	1964	2009			
Chalk Point LLC	1571_B_2	Maryland	Prince George's	342	1965	2009			
San Juan	2451_B_2	New Mexico	San Juan	320	1973	2009			
Big Bend	645_B_BB01	Florida	Hillsborough	411	1970	2009			
Big Bend	645_B_BB02	Florida	Hillsborough	391	1973	2009			
Big Bend	645_B_BB03	Florida	Hillsborough	414	1976	2009			
Nebraska City Unit 2	6096_B_2	Nebraska	Otoe	663	2009	2009			
Cross	130_B_4	South Carolina	Berkeley	652	2009	2009			
Springerville	8223_B_4	Arizona	Apache	400	2009	2009			
Sandow 5	82010 B 5	Texas	Milam	600	2009	2009			
Oak Grove	82011_B_1	Texas	Robertson	800	2009	2009			
Oak Grove	82011_B_2	Texas	Robertson	800	2009	2009			
TS Power Plant	82013_B_1	Nevada	Eureka	200	2009	2009			
Plum Point Energy	82014_B_1	Arkansas	Mississippi	665	2009	2009			
Comanche	470_B_3	Colorado	Pueblo	750	2009	2009			
Elm Road Generating Station	56068_B_1	Wisconsin	Milwaukee	615	2009	2009			
Two Elk Generating Station	55360_B_1			300	2009	2009			
•	<u> </u>	Wyoming	Campbell						
J K Spruce	7097_B_BLR2	Texas	Bexar	750	2009	2009			
Dallman A.C. Croonidge I.I.C.	963_B_34	Illinois	Sangamon	200	2009	2009			
AES Greenidge LLC	2527_B_4	New York	Yates	27	1950	2008			
AES Greenidge LLC	2527_B_5	New York	Yates	27	1950	2008			
AES Greenidge LLC	2527_B_6	New York	Yates	106	1953	2008			
Charles R Lowman	56_B_2	Alabama	Washington	238	1979	2008			
Charles R Lowman	56_B_3	Alabama	Washington	238	1980	2008			
Barry	3_B_5	Alabama	Mobile	750	1971	2008			
St Johns River Power Park	207_B_2	Florida	Duval	626	1988	2008			
Morgantown Generating Plant	1573_B_2	Maryland	Charles	620	1971	2008			

Bailly	995_B_7	Indiana	Porter	160	1962	2008
San Juan	2451_B_1	New Mexico	San Juan	322	1976	2008
San Juan	2451_B_3	New Mexico	San Juan	495	1979	2008
Weston	4078_B_4	Wisconsin	Marathon	519	2008	2008
AES Deepwater	10670_B_AAB001	Texas	Harris	140	1986	2007
La Cygne	1241_B_1	Kansas	Linn	724	1973	2007
Morgantown Generating Plant	1573_B_1	Maryland	Charles	624	1970	2007
PSEG Hudson Generating Station	2403_B_2	New Jersey	Hudson	583	1967	2007
San Juan	2451_B_4	New Mexico	San Juan	506	1982	2007
Big Bend	645_B_BB04	Florida	Hillsborough	457	1985	2007
Cross	130_B_3	South Carolina	Berkeley	620	2007	2007
Wygen II	55479_B_4	Wyoming	Campbell	90	2007	2007
Council Bluffs	1082_B_4	Iowa	Pottawattamie	790	2007	2007

SO2 Controls (FGDs, 2007 – 2012)

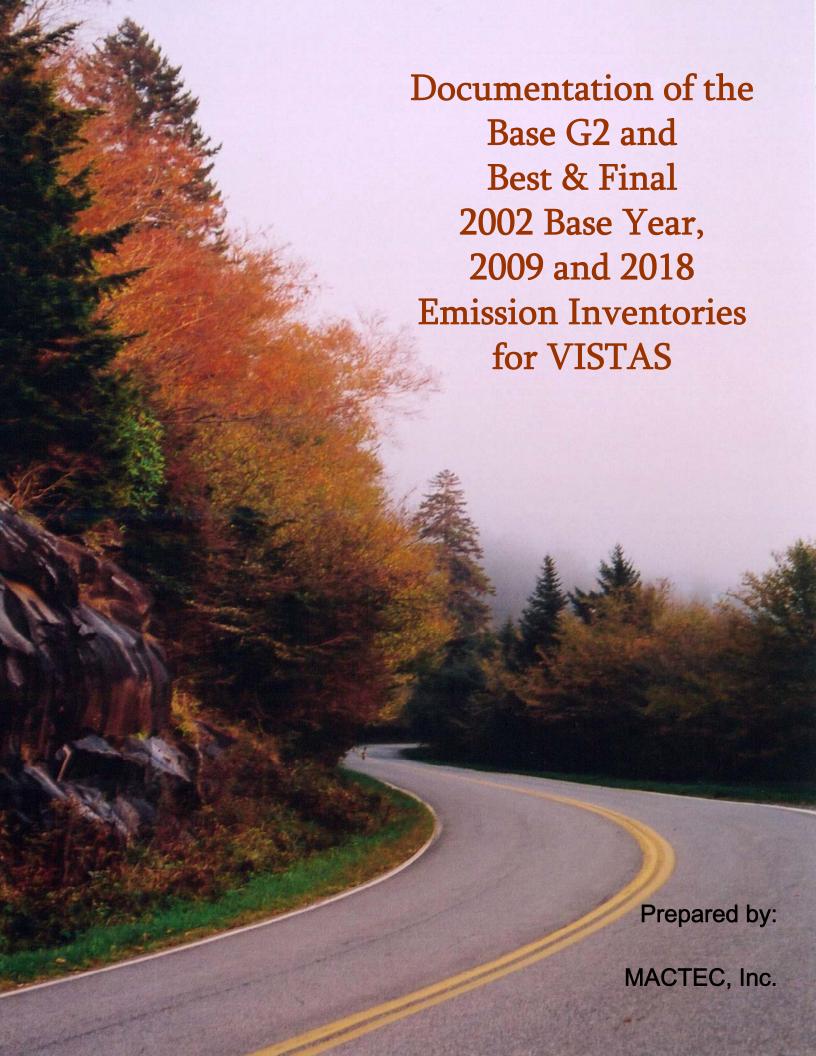
Plant Name	UniqueID_Final	State Name	County	Capacity MW	On Line Year	Scrubber Online Year
James H Miller Jr	6002 B 1	Alabama	County Jefferson	684	1978	2011
James H Miller Jr	6002_B_1	Alabama	Jefferson	687	1985	2011
James H Miller Jr	6002_B_2	Alabama	Jefferson	687	1989	2011
James H Miller Jr	6002_B_3	Alabama	Jefferson	688	1991	2011
Cape Fear	2708 B 5	North Carolina	Chatham	143	1956	2011
Baldwin Energy Complex	889_B_1	Illinois	Randolph	624	1970	2011
Baldwin Energy Complex	889_B_2	Illinois	Randolph	629	1973	2011
Baldwin Energy Complex	889_B_3	Illinois	Randolph	629	1975	2011
Scherer Scherer	6257_B_3	Georgia	Monroe	875	1987	2011
Milton R Young	2823 B B1	North Dakota	Oliver	250	1970	2011
W H Sammis	2866_B_6	Ohio	Jefferson	630	1969	2011
W H Sammis	2866_B_7	Ohio	Jefferson	630	1971	2011
PSEG Hudson Generating Station	2403_B_2	New Jersey	Hudson	583	1967	2011
John Sevier	3405_B_1	Tennessee	Hawkins	176	1955	2011
John Sevier	3405_B_1			176	1955	2011
John Sevier	3405_B_3	Tennessee	Hawkins Hawkins	176	1955	2011
John Sevier	3405_B_3	Tennessee Tennessee	Hawkins	176	1956	2011
Beech Hollow Power Project	82704_B_1	Pennsylvania	Washington	272	2011	2011
Longview Power	82704_B_1	West Virginia	Monongalia	695	2011	2011
Cliffside	2721_B_6	North Carolina	Cleveland	800	2011	2011
AES Greenidge LLC	2527_B_4	New York	Yates	27	1950	2010
AES Greenidge LLC	2527_B_4 2527_B_5	New York	Yates	27	1950	2010
Barry	3_B_5	Alabama	Mobile	750	1971	2010
E C Gaston	26_B_5	Alabama	Shelby	861	1974	2010
Warrick	6705_B_4	Indiana	Warrick	300	1974	2010
Coffeen	861_B_01	Illinois	Montgomery	340	1965	2010
Coffeen	861_B_02	Illinois	Montgomery	560	1972	2010
Cardinal	2828_B_3	Ohio	Jefferson	630	1977	2010
Brandon Shores	602_B_1	Maryland	Anne Arundel	643	1984	2010
Brandon Shores	602_B_1	Maryland	Anne Arundel	643	1991	2010
Monroe	1733_B_4	Michigan	Monroe	775	1974	2010
Cliffside	2721_B_5	North Carolina	Cleveland	550	1974	2010
Crystal River	628_B_4	Florida	Citrus	720	1972	2010
Bowen	703_B_1BLR	Georgia	Bartow	720	1962	2010
DOMEIL	100_D_IDLK	georgia	Dariow	/13	1971	2010

	1		1			
Crist	641_B_6	Florida	Escambia	302	1970	2010
Crist	641_B_7	Florida	Escambia	477	1973	2010
Clifty Creek	983_B_1	Indiana	Jefferson	217	1955	2010
Clifty Creek	983_B_2	Indiana	Jefferson	217	1955	2010
Clifty Creek	983_B_3	Indiana	Jefferson	217	1955	2010
Clifty Creek	983_B_4	Indiana	Jefferson	217	1955	2010
Clifty Creek	983_B_5	Indiana	Jefferson	217	1955	2010
Clifty Creek	983_B_6	Indiana	Jefferson	217	1956	2010
Chalk Point LLC	1571_B_1	Maryland	Prince George's	341	1964	2010
Chalk Point LLC	1571_B_2	Maryland	Prince George's	342	1965	2010
Dickerson	1572_B_1	Maryland	Montgomery	182	1959	2010
Dickerson	1572_B_2	Maryland	Montgomery	182	1960	2010
Dickerson	1572_B_3	Maryland	Montgomery	182	1962	2010
R E Burger	2864_B_7	Ohio	Belmont	156	1955	2010
R E Burger	2864_B_8	Ohio	Belmont	156	1955	2010
Kyger Creek	2876_B_1	Ohio	Gallia	217	1955	2010
Kyger Creek	2876_B_2	Ohio	Gallia	217	1955	2010
Kyger Creek	2876_B_3	Ohio	Gallia	217	1955	2010
Kyger Creek	2876_B_4	Ohio	Gallia	217	1955	2010
Kyger Creek	2876_B_5	Ohio	Gallia	217	1955	2010
Cheswick	8226_B_1	Pennsylvania	Allegheny	580	1970	2010
PSEG Mercer Generating Station	2408_B_1	New Jersey	Mercer	315	1960	2010
PSEG Mercer Generating Station	2408_B_2	New Jersey	Mercer	310	1961	2010
Silver Lake	2008_B_4	Minnesota	Olmsted	61	1969	2010
Kingston	3407_B_1	Tennessee	Roane	135	1954	2010
Kingston	3407_B_2	Tennessee	Roane	135	1954	2010
Kingston	3407_B_3	Tennessee	Roane	135	1954	2010
Kingston	3407_B_4	Tennessee	Roane	135	1954	2010
Kingston	3407_B_5	Tennessee	Roane	177	1955	2010
Kingston	3407_B_6	Tennessee	Roane	177	1955	2010
Kingston	3407 B 7	Tennessee	Roane	177	1955	2010
Kingston	3407_B_8	Tennessee	Roane	177	1955	2010
Kingston	3407_B_9	Tennessee	Roane	178	1955	2010
Sioux	2107_B_1	Missouri	St. Charles	497	1967	2010
Sioux	2107_B_2	Missouri	St. Charles	497	1968	2010
Chesterfield	3797_B_5	Virginia	Chesterfield	310	1964	2010
Yorktown	3809_B_1	Virginia	York	159	1957	2010
AES Westover	2526_B_11	New York	Broome	22	1943	2010
AES Westover	2526_B_12	New York	Broome	22	1943	2010
AES Westover	2526_B_13	New York	Broome	84	1951	2010
latan 2	6065_B_2	Missouri	Platte	850	2010	2010
Southwest	6195_B_2	Missouri	Greene	300	2010	2010
Trimble Station (LGE)	6071_B_2	Kentucky	Trimble	732	2010	2010
Elm Road Generating Station	56068_B_2	Wisconsin	Milwaukee	615	2010	2010
Cholla	113_B_3	Arizona	Navajo	271	1980	2010
Mayo	6250 B 1A	North Carolina	Person	362	1983	2009
Mayo	6250_B_1A	North Carolina	Person	362	1983	2009
	i	Ohio		780		2009
Conesville G.G. Allon	2840_B_4		Coshocton		1973	
G G Allen	2718_B_1	North Carolina	Gaston	162	1957	2009
G G Allen	2718_B_2	North Carolina	Gaston	162	1957	2009
G G Allen	2718_B_3	North Carolina	Gaston	260	1959	2009

G G Allen	2718_B_4	North Carolina	Gaston	275	1960	2009
G G Allen	2718_B_5	North Carolina	Gaston	265	1961	2009
H L Spurlock	6041_B_1	Kentucky	Mason	315	1977	2009
Crystal River	628_B_5	Florida	Citrus	717	1984	2009
Deerhaven Generating Station	663_B_B2	Florida	Alachua	228	1981	2009
Bowen	703_B_2BLR	Georgia	Bartow	718	1972	2009
Wansley	6052_B_2	Georgia	Heard	892	1978	2009
E W Brown	1355_B_1	Kentucky	Mercer	94	1957	2009
E W Brown	1355_B_2	Kentucky	Mercer	160	1963	2009
E W Brown	1355_B_3	Kentucky	Mercer	422	1971	2009
Ghent	1356_B_2	Kentucky	Carroll	469	1977	2009
Fayette Power Project	6179_B_1	Texas	Fayette	598	1977	2009
Fayette Power Project	6179_B_1	Texas	Fayette	598	1980	2009
-	1573_B_1		Charles	624	1970	2009
Morgantown Generating Plant	1573_B_1	Maryland	Charles	620	1970	2009
Morgantown Generating Plant PPL Brunner Island		Maryland				
	3140_B_1 3140_B_2	Pennsylvania	York	321	1961 1965	2009
PPL Brunner Island		Pennsylvania	York	378		2009
Keystone	3136_B_1	Pennsylvania	Armstrong	850	1967	2009
Keystone	3136_B_2	Pennsylvania	Armstrong	850	1968	2009
Bull Run	3396_B_1	Tennessee	Anderson	881	1967	2009
Bay Shore	2878_B_4	Ohio	Lucas	215	1968	2009
Hatfields Ferry Power Station	3179_B_1	Pennsylvania	Greene	530	1969	2009
Hatfields Ferry Power Station	3179_B_2	Pennsylvania	Greene	530	1970	2009
Hatfields Ferry Power Station	3179_B_3	Pennsylvania	Greene	530	1971	2009
Nebraska City Unit 2	6096_B_2	Nebraska	Otoe	663	2009	2009
Cross	130_B_4	South Carolina	Berkeley	652	2009	2009
Springerville	8223_B_4	Arizona	Apache	400	2009	2009
Sandow 5	82010_B_5	Texas	Milam	600	2009	2009
Oak Grove	82011_B_1	Texas	Robertson	800	2009	2009
Oak Grove	82011_B_2	Texas	Robertson	800	2009	2009
TS Power Plant	82013_B_1	Nevada	Eureka	200	2009	2009
Plum Point Energy	82014_B_1	Arkansas	Mississippi	665	2009	2009
Comanche	470_B_3	Colorado	Pueblo	750	2009	2009
Elm Road Generating Station	56068_B_1	Wisconsin	Milwaukee	615	2009	2009
Two Elk Generating Station	55360_B_1	Wyoming	Campbell	300	2009	2009
J K Spruce	7097_B_BLR2	Texas	Bexar	750	2009	2009
Dallman	963_B_34	Illinois	Sangamon	200	2009	2009
Charles R Lowman	56_B_1	Alabama	Washington	86	1969	2008
John E Amos	3935_B_1	West Virginia	Putnam	800	1971	2008
John E Amos	3935_B_2	West Virginia	Putnam	800	1972	2008
Cholla	113_B_4	Arizona	Navajo	380	1981	2008
Roxboro	2712_B_1	North Carolina	Person	369	1966	2008
Roxboro	2712_B_3A	North Carolina	Person	341	1973	2008
Roxboro	2712_B_3B	North Carolina	Person	341	1973	2008
Miami Fort	2832_B_7	Ohio	Hamilton	500	1975	2008
Miami Fort	2832_B_8	Ohio	Hamilton	500	1978	2008
Cogentrix Virginia Leasing Corp	10071_B_2A	Virginia	Portsmouth	19	1988	2008
Cogentrix Virginia Leasing Corp	10071_B_2B	Virginia	Portsmouth	19	1988	2008
Cogentrix Virginia Leasing Corp	10071_B_2C	Virginia	Portsmouth	19	1988	2008
J M Stuart	2850_B_1	Ohio	Adams	585	1971	2008
J M Stuart	2850_B_2	Ohio	Adams	597	1970	2008

J M Stuart	2050 P 2	Ohio	Adama	507	1072	2009
J M Stuart	2850_B_3	Ohio	Adams	597	1972	2008
	2850_B_4		Adams	597 705	1974	2008
Monroe	1733_B_3	Michigan	Monroe	795	1973	2008
Belews Creek	8042_B_1	North Carolina	Stokes	1,115	1974	2008
Belews Creek	8042_B_2	North Carolina	Stokes	1,115	1975	2008
Bowen	703_B_3BLR	Georgia	Bartow	902	1974	2008
Bowen	703_B_4BLR	Georgia	Bartow	929	1975	2008
Hammond	708_B_1	Georgia	Floyd	112	1954	2008
Hammond	708_B_2	Georgia	Floyd	112	1954	2008
Hammond	708_B_3	Georgia	Floyd	112	1955	2008
Hammond	708_B_4	Georgia	Floyd	510	1970	2008
Wansley	6052_B_1	Georgia	Heard	891	1976	2008
Harding Street	990_B_70	Indiana	Marion	435	1973	2008
Cogentrix Hopewell	10377_B_1A	Virginia	Hopewell (city)	18	1987	2008
Cogentrix Hopewell	10377_B_1B	Virginia	Hopewell (city)	18	1987	2008
Cogentrix Hopewell	10377_B_1C	Virginia	Hopewell (city)	18	1987	2008
Ghent	1356_B_4	Kentucky	Carroll	478	1984	2008
Council Bluffs	1082_B_3	Iowa	Pottawattamie	690	1978	2008
PPL Brunner Island	3140_B_3	Pennsylvania	York	749	1969	2008
PPL Montour	3149_B_1	Pennsylvania	Montour	774	1972	2008
PPL Montour	3149_B_2	Pennsylvania	Montour	766	1973	2008
Comanche	470_B_1	Colorado	Pueblo	366	1973	2008
Comanche	470_B_2	Colorado	Pueblo	370	1975	2008
Cayuga	1001_B_2	Indiana	Vermillon	473	1972	2008
Winyah	6249_B_1	South Carolina	Georgetown	295	1975	2008
Winyah	6249_B_2	South Carolina	Georgetown	295	1977	2008
Winyah	6249_B_3	South Carolina	Georgetown	295	1980	2008
Chesterfield	3797_B_6	Virginia	Chesterfield	658	1969	2008
Brayton Point	1619_B_1	Massachusetts	Bristo	243	1963	2008
Brayton Point	1619_B_2	Massachusetts	Bristo	244	1964	2008
Weston	4078_B_4	Wisconsin	Marathon	519	2008	2008
	8_B_10	Alabama	Walker	690	1972	2007
Gorgas						
Gorgas	8_B_8	Alabama	Walker	165	1956	2007
Gorgas	8_B_9	Alabama	Walker	175	1958	2007
John E Amos	3935_B_3	West Virginia	Putnam	1,300	1973	2007
Mountaineer	6264_B_1	West Virginia	Mason	1,300	1980	2007
Cardinal	2828_B_1	Ohio	Jefferson	600	1967	2007
Cardinal	2828_B_2	Ohio	Jefferson	600	1967	2007
Roxboro	2712_B_2	North Carolina	Person	639	1968	2007
Roxboro	2712_B_4A	North Carolina	Person	343	1980	2007
Roxboro	2712_B_4B	North Carolina	Person	343	1980	2007
Cogentrix Virginia Leasing Corp	10071_B_1A	Virginia	Portsmouth	19	1988	2007
Cogentrix Virginia Leasing Corp	10071_B_1B	Virginia	Portsmouth	19	1988	2007
Cogentrix Virginia Leasing Corp	10071_B_1C	Virginia	Portsmouth	19	1988	2007
Killen Station	6031_B_2	Ohio	Adams	615	1982	2007
Marshall	2727_B_2	North Carolina	Catawba	378	1966	2007
Marshall	2727_B_3	North Carolina	Catawba	657	1969	2007
Cogentrix Hopewell	10377_B_2A	Virginia	Hopewell (city)	18	1987	2007
Cogentrix Hopewell	10377_B_2B	Virginia	Hopewell (city)	18	1987	2007
Cogentrix Hopewell	10377_B_2C	Virginia	Hopewell (city)	18	1987	2007
Ghent	1356_B_3	Kentucky	Carroll	478	1981	2007

Louisa	6664_B_101	lowa	Louisa	700	1983	2007
Allen S King	1915_B_1	Minnesota	Washington	571	1968	2007
Mitchell	3948_B_1	West Virginia	Marshall	800	1971	2007
Gibson	6113_B_1	Indiana	Gibson	630	1975	2007
Gibson	6113_B_2	Indiana	Gibson	628	1975	2007
Winyah	6249_B_4	South Carolina	Georgetown	270	1981	2007
Pleasant Prairie	6170_B_2	Wisconsin	Kenosha	617	1985	2007
Cross	130_B_3	South Carolina	Berkeley	620	2007	2007
Wygen II	55479_B_4	Wyoming	Campbell	90	2007	2007
Council Bluffs	1082_B_4	Iowa	Pottawattamie	790	2007	2007


Assumed BART Facilities and Units

State	County	Fac ID	Facility Name	Unit ID
MI	Bay	B2840	CE - KARN/WEADOCK	EU00036
MI	Bay	B2840	CE - KARN/WEADOCK	EU00037
MI	Eaton	B4001	LAN. BW&L ERICKSON	EU00007
MI	Houghton	B6553	UP POWER CO / PORTAGE	EU00008
MI	Huron	B2815	DTE - HARBOR BEACH	EU00009
MI	Ingham	B2647	LAN. BW&L Eckert	RG00023
MI	Ingham	B2647	LAN. BW&L Eckert	RG00023
MI	Ingham	B2647	LAN. BW&L Eckert	RG00023
MI	Ingham	B2647	LAN. BW&L Moores Park	RG00021
MI	Marquette	B4261	WE-ENERGIES	EU00029
MI	Marquette	B4261	WE-ENERGIES	EU00030
MI	Marquette	B4261	WE-ENERGIES	EU00031
MI	Marquette	B4261	WE-ENERGIES	EU00032
MI	Marquette	B4261	WE-ENERGIES	EU00033
MI	Monroe	B2816	DTE - MONROE	EU00062
MI	Monroe	B2816	DTE - MONROE	EU00068
MI	Monroe	B2816	DTE - MONROE	EU00063
MI	Monroe	B2816	DTE - MONROE	EU00064
MI	Ottawa	B2835	CE – CAMPBELL	EU00062
MI	Ottawa	B2835	CE – CAMPBELL	EU00061
MI	Saint Clair	B2796	DTE - ST. CLAIR / BELLE RIVER	EU00111
MI	Saint Clair	B6145	DTE – GREENWOOD	EU00009
MI	Wayne	B2132	WYANDOTTE	EU00036
MI	Wayne	B2185	DETROIT PLD, MISTERSKY	EU00014
MI	Wayne	B2811	DTE – TRENTON	EU00035
ОН	Lake	0243160009	CEI., EASTLAKE PLANT	B005
ОН		0247030013	Orion Power Midwest	B012
ОН		0285010188	Dept of Public Utilities, City of Orrville	B001
ОН		0285010188	Dept of Public Utilities, City of Orrville	B004
ОН		0448020006	Toledo Edison Co., Bay Shore	B003
OH		0448020006	Toledo Edison Co., Bay Shore	B004
ОН		0616000000	Conesville Power Plant	B003
ОН		0616000000	Conesville Power Plant	B004
ОН		0616000000	Conesville Power Plant B007	
ОН		0641050002	Cardinal Power Plant	B001
OH		0641050002	Cardinal Power Plant	B002

				T _
ОН		0641050002	Cardinal Power Plant	B003
ОН		0641050002	Cardinal Power Plant	B004
ОН		0641050002	Cardinal Power Plant	B008
ОН		0641050002	Cardinal Power Plant	B009
OH		0641050002	Cardinal Power Plant	B009
ОН	Jefferson	0641160017	W. H. SAMMIS PLANT	B011
OH	Jefferson	0641160017	W. H. SAMMIS PLANT	B012
ОН	Jefferson	0641160017	W. H. SAMMIS PLANT	B013
OH		0684000000	Muskingum River Power Plant	B006
OH	Adams	0701000007	DP&L, J.M. Stuart Generating Station	B001
ОН	Adams	0701000007	DP&L, J.M. Stuart Generating Station	B002
ОН	Adams	0701000007	DP&L, J.M. Stuart Generating Station	B003
ОН	Adams	0701000007	DP&L, J.M. Stuart Generating Station	B004
ОН		0701000060	DP&L, Killen Station	B001
OH		1409040243	City of Hamilton Dept of Public Utilities	B002
ОН		1409040243	City of Hamilton Dept of Public Utilities	B008
ОН		1409040243	City of Hamilton Dept of Public Utilities	B009
OH		1413100008	CG&E W. C. BECKJORD	B005
ОН		1413100008	CG&E W. C. BECKJORD	B006
ОН		1431350093	CG&E MIAMI FORT STATION	B015
IL	Peoria	856	Ameren – Edwards	2
IL	Sangamon	963	CWLP – Dallman	31
IL	Sangamon	963	CWLP – Dallman	32
IL	Christian	876	Dominion – Kincaid	1
IL	Christian	876	Dominion – Kincaid	2
WI	COLUMBIA	111003090	Alliant Energy-Columbia Generating	B20
WI	COLUMBIA	111003090	Alliant Energy-Columbia Generating	B21
WI	COLUMBIA	111003090	Alliant Energy-Columbia Generating	B22
WI	GRANT	122014530	Alliant Energy, Nelson Dewey	B22 (unit 2)
WI	MILWAUKEE	241007690	We Energies-Oak Creek Station	B26 (Unit 6)
WI	MILWAUKEE	241007690	We Energies-Oak Creek Station	B27 (Unit 7)
WI	MILWAUKEE	241007690	We Energies-Oak Creek Station	B28
WI	MILWAUKEE	241007800	We Energies-Valley Station	B21
WI	MILWAUKEE	241007800	We Energies-Valley Station	B23
WI	MILWAUKEE	241007800	We Energies-Valley Station	B24
WI	BROWN	405031990	WI Public Service Corp - JP Pulliam	B27 (unit 8)
WI	SHEBOYGAN	460033090	WP & L Alliant Energy – Edgewater	B24
\\/\/1	DUEEN O	606024440	Dairyland Power Coop Alma Station	DOE (+DOC)
WI	BUFFALO	606034110	(J.P. Madgett boilers)	B25 (+B26)
WI	BUFFALO	606034110	Dairyland Power Coop Alma Station	B27
WI	VERNON	663020930	Dairyland Power Coop Genoa Station	B20
WI	VERNON	663020930	Dairyland Power Coop Genoa Station	B25
IN	Porter	995	Bailly	7
IN	Porter	995	Bailly	8
IN	Vermillion	1001	Cayuga	1
IN	Vermillion	1001	Cayuga	2
IN	Montgomery	1024	Crawfordsville	6
IN	Warrick	1012	Culley	2
•		<u> </u>	1	

	1			,
IN	Warrick	1012	Culley	3
IN	Gibson	6113	Gibson	1
IN	Gibson	6113	Gibson	2
IN	Cass	1032	Logansport	6
IN	Sullivan	6213	Merom	1
IN	Sullivan	6213	Merom	2
IN	LaPorte	997	Michigan City	12
IN	Lake	996	Mitchell	11
IN	Pike	994	Petersburg	1
IN	Pike	994	Petersburg	2
IN	Pike	994	Petersburg	3
IN	Pike	1043	Ratts	1
IN	Pike	1043	Ratts	2
IN	Wayne	7335	RPL	2
IN	Jasper	6085	Schahfer	14
IN	Jasper	6085	Schahfer	15
IN	Lake	981	Stateline	4
IN	Marion	990	Stout	70
IN	Dearborn	988	Tanners Creek	4
IN	Vigo	1010	Wabash River	6
IN	Warrick	6705	Warrick	4
IA		07-02-005	Cedar Falls Utilities	Unit #7 (EU10.1A)
			Central Iowa Power Cooperative	CombTurbines (EU
IA		88-01-004	(CIPCO) – Summit Lake Station	1/1G, EU2/2G) `
		70.00.000	Central Iowa Power Cooperative	Unit # 2 (EU 2 &
IA		70-08-003	(CIPCO) – Fair Station	EU 2G)
IA	1	85-01-006	City of Ames - Steam Electric Plant	Boiler #7 (EU 2)
IA		29-01-013	Interstate Power & Light - Burlington	Main Plant Boiler. Boiler #4. Sixteen
IA		03-03-001	Interstate Power & Light - Lansing	units in total.
			y y	Boiler #2. Six units
IA		23-01-014	Interstate Power & Light - ML Kapp	in total.
				Boiler #4. Fourteen
IA		57-01-042	Interstate Power & Light - Prairie Creek	units in total.
IA	+	78-01-026	MidAmerican Energy Co - Council Bluffs	Boiler #3 (EU003)
IA		97-04-010	MidAmerican Energy Co - Neal North	Boilers #1-3 (EU001 - EU003)
IA		97-04-011	MidAmerican Energy Co - Neal South	Boiler #4 (EU003)
IA		70-01-011	Muscatine Power and Water	Boiler #8
IA		63-02-005	Pella Municipal Power Plant	Boilers #6-8
		00 02 000	. Sha manapan . Short tark	
MN		2709900001	Austin Utilities NE Power Station	EU001
MN		2713700027	Hibbing Public Utilities	EU003
MN		2703100001	MN Power, Taconite Harbor	EU003
MN		2706100001	MN Power, Boswell Energy Center	EU003
MN	1	2701500010	New Ulm Public Utilities	EU003 - Boiler 4
MN		2711100002	Otter Tail Power Hoot Lake	EU003
MN		2710900011	Rochester Public Utilities, Silver Lake	EU003
MN	1	2710900011	Rochester Public Utilities, Silver Lake	EU004
MN		2713700028	Virginia Public Utilities	EU003 - Boiler 9
MN		2714100004	Xcel Energy, Sherco	EU001, EU002
MN		2716300005	Xcel Energy, Allen S King	EU001 - Boiler 1
	1	2. 1000000	,	

MN	2705300015	Xcel Energy, Riverside	EU003 - Boiler 8
MO	290710003	Ameren -Labadie	B1, B2, B3, B4
MO	291830001	Ameren - Sioux	B1, B2
MO	290990016	Ameren - Rush Island	B1, B2
MO	290950031	Auila - Sibley	B3 - 5C
МО	291430004	Assoc. Electric - New Madrid	B1(EP-01), B2 (EP-02)
MO	290770039	City Utilities Springfield - Southwest	B1 (E09)
MO	290770005	City Utilities Springfield - James River	E07, E08
MO	290970001	Empire Distric Electric - Asbury	B7
MO	290830001	KC Power and Light - Montrose	EP08
МО	290210004	Aqula - Lake Road	EP06
МО	291750001	Assoc. Electric - Thomas Hill	EP01, EP02
MO	290950021	Trigen - Kansas City	B1A
MO	290190002	City of Columbia Municipal Power Plant	EP02
MO	291950010	Marshall Munipal Utilities	EP05
MO	290950050	Independence Power & Light-Blue Valley	B3 (EP05)
			,
WV	3943	Fort Martin	
WV	6004	Pleasants	
WV	3948	Mitchell	
WV	3935	Amos	
WV	6264	Mountaineer	
WV	3944	Harrison	
TN	3396	TVA Bull Run	
TN	3399	TVA Cumberland	
KY	1363	Cane Run	
KY	1364	Mill Creek	
KY	6041	Spurlock	
KY	1384	John Sherman Cooper	
KY	1353	Big Sandy	
KY	1356	Ghent	
KY	1355	Brown	
KY	1374	Owensboro Municipal	
KY	1372	Henderson Municipal	
KY	1378	Paradise	
KY	1361	Coleman	
KY	1382	Reid/Henderson 2	
KY	6639	Green	

Documentation of the Base G2 and Best & Final 2002 Base Year, 2009 and 2018 Emission Inventories for VISTAS

Prepared for:

Visibility Improvement State and Tribal Association of the Southeast (VISTAS)

March 14, 2008

Prepared by:

MACTEC Engineering and Consulting, Inc.

William R. Barnard

Willia Bel

Sr. Principal Scientist

Edward Sabo

Principal Scientist

han / Co

Table of Contents

Introduction		
1.0 2002 BASE Y	EAR INVENTORY DEVELOPMENT	9
	Sources	
	velopment of 2002 Point Source Inventory	
1.1.1.1	Data Sources	
1.1.1.2	Initial Data Evaluation	
1.1.1.3	PM Augmentation	12
1.1.1.4	EGU Analysis	15
1.1.1.5	QA Review of Base F Inventory	16
1.1.1.6	Additional Base G Updates and Corrections	17
1.1.1.7	Summary of Best & Final 2002 Inventory	19
1.1.2 Dev	velopment of Typical Year EGU inventory	25
1.2 Area	Sources	25
1.2.1 De	velopment of a "typical" year fire inventory	26
1.2.2 Des	velopment of non-fire inventory	35
1.2.3 200)2 Base G inventory updates	38
1.2.3.1	Changes resulting from State review and comment	38
1.2.4 Am	monia and paved road emissions	41
1.2.5 Gla	obal Changes Made for Base G	42
1.2.6 Qua	ality Assurance steps	43
·-	E SOURCES	
1.3.1 Des	velopment of on-road mobile source input files and VMT estimates	45
1.3.1.1	Emissions from on-road mobile sources	
1.3.2 Des	velopment of non-road emission estimates	49
1.3.2.1	Emissions from NONROAD model sources	
1.3.2.2	Emissions from Commercial Marine Vessels, Locomotives, and Airplanes	
Base G Revi	sions:	81
1.3.2.3	Emissions from NONROAD Model Sources in Illinois, Indiana, and Ohio	87
1.3.3 Qua	ality Assurance steps	89
2.0 PROJECTIO	N INVENTORY DEVELOPMENT	90
2.1 Point	Sources	90
2.1.1 EG	U Emission Projections	90
2.1.1.1	Chronology of the Development of EGU Projections	
2.1.1.2	VISTAS IPM runs for EGU sources	
2.1.1.3	Post-Processing of IPM Parsed Files	95
2.1.1.4	Eliminating Double Counting of EGU Units	97
2.1.1.5	Quality Assurance Steps	
2.1.1.6	S/L Adjustments to IPM Modeling Results for Base G Projections	
2.1.1.7	S/L Adjustments to IPM Modeling Results for Base G2 2018 Projections	
2.1.1.8	S/L Adjustments to IPM Modeling Results for Best & Final Projections	
2.1.1.9	Conversion of MRPO BaseM 2009 EGU Data to SMOKE Input Format	
2.1.1.10	Summary of 2009/2018 EGU Point Source Inventories	
2.1.2 Noi	n-EGU Emission Projections	116

i

	2.1.2	.1	Growth assumptions for non-EGU sources	116
	2.1.2	2	Source Shutdowns	118
	2.1.2	3	Control Programs applied to non-EGU sources	120
	2.1.2	.4	Quality Assurance steps	123
	2.1.2	.5	Additional Base G Updates and Corrections	123
	2.1.2	.6	Additional Best & Final Updates and Corrections	126
	2.1.2	.7	Conversion of MRPO BaseM 2009 non-EGU Data to SMOKE Input Format	127
	2.1.2	.8	Summary of the 2009/2018 non-EGU Point Source Inventories	127
2.2	A	REA S	OURCES	131
2	.2.1	Statio	onary area sources	131
	2.2.1	.1	Stationary area source controls	132
	2.2.1	.2	Stationary area source growth	134
	2.2.1	.3	Differences between 2009/2018	135
2	.2.2	Agric	cultural area sources	135
	2.2.2	.1	Control assumptions for agricultural area sources	136
	2.2.2	2	Growth assumptions for agricultural area sources	
2	.2.3	Char	ages to Prescribed Fire for 2009/2018 Base G	141
2	.2.4		ity Assurance steps	
2.3	λ	~	SOURCES	
	.3.1		lopment of on-road mobile source input files	
2	2.3.1		Preparation of revised 2018 input data files	
	2.3.1		Preparation of initial 2009 input data files	
2	.3.2		Data	
_	.3.3		G Revisions	
_				
2	.3.4		Plopment of non-road emission estimates	
	2.3.4		NONROAD model sources	
	2.3.4		Non-NONROAD model sources	
	2.3.4		Emissions from NONROAD Model Sources in Illinois, Indiana, and Ohio	
~				
2	.3.5	Qual	ity Assurance steps	19/

Appendix A: State Emission Totals by Pollutant and Sector

Appendix B: State VMT totals

Appendix C: State Tier 1 Emission Totals

Appendix D: VISTAS Tier 1 Emission Totals

Appendix E: Aircraft PM Excerpt from 2001 Tucson Report

Appendix F: Comparison of Base F and Base G On-Road Mobile Emissions

Appendix G: Conversion of MRPO Base M Point Source Data to SMOKE Input Format

Appendix H: EGU Controls for Coal and Oil/gas Units for the Base G/G2 Inventory

Appendix I: EGU Controls for Coal and Oil/gas Units for the B&F Inventory

List of Tables

Table I-1	Inventory Version in Use by Year and Source Sector Through B&F - 2002
Table I-2	Inventory Version in Use by Year and Source Sector Through B&F - 2009
Table I-3	Inventory Version in Use by Year and Source Sector Through B&F - 2018
Table 1.1-1	State Data Submittals Used for the Base F 2002 Point Source Inventory.
Table 1.1-2	Comparison of Particulate Matter Emissions from the S/L Data Submittals and the Base G 2002 VISTAS Point Source Inventory
Table 1.1-3	Summary of Updates and Corrections to the Base F 2002 Inventory Incorporated into the 2002 Base G Inventory.
Table 1.1-4	Base G / B&F 2002 VISTAS Point Source Inventory for SO ₂ (tons/year).
Table 1.1-5	Base G / B&F 2002 VISTAS Point Source Inventory for NO _x (tons/year).
Table 1.1-6	Base G / B&F 2002 VISTAS Point Source Inventory for VOC (tons/year).
Table 1.1-7	Base G / B&F 2002 VISTAS Point Source Inventory for CO (tons/year).
Table 1.1-8	Base G / B&F 2002 VISTAS Point Source Inventory for PM ₁₀ -PRI (tons/year).
Table 1.1-9	Base G / B&F 2002 VISTAS Point Source Inventory for PM _{2.5} -PRI (tons/year).
Table 1.1-10	Base G / B&F 2002 VISTAS Point Source Inventory for NH ₃ (tons/year).
Table 1.1-11	Comparison of SO ₂ and NO _x Emissions (tons/year) for EGUs.
Table 1.2-1	Emissions from Fires in the VISTAS Region – Comparison between Original Base Year 2002 (VISTAS 3.1), 2002 Actual and Typical Year Base G Emissions.
Table 1.2-2	Summary of State Data Submittals for the 2002 VISTAS Area Source Base F Inventory
Table 1.2-3	Data Source Codes and Data Sources for VISTAS 2002 Base F Area Source Emissions Inventory.
Table 1.3-1	Representative day mapping for January episode
Table 1.3-2	Summary of Base F NONROAD Modeling Revisions
Table 1.3-3	Base F NONROAD Input File Sequence and Structural Revisions
Table 1.3-4	Summary of Base G NONROAD Modeling Revisions
Table 1.3-5	Spring 2006 NONROAD Input File Sequence and Structural Revisions
Table 1.3-6	Initial 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions as Reported in February 2004 Pechan Report (annual tons)
Table 1.3-7	PM-to-NO _x Ratios by Aircraft Type In Initial 2002 Base Year Inventory.
Table 1.3-8	Tucson, AZ PM-to-NO _x Ratios by Aircraft Type.
Table 1.3-9	Non-Corresponding Aircraft Emissions Records
Table 1.3-10	Initial 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions with Modified Aircraft PM Emission Rates (annual tons)

iii MACTEC, Inc.

List of Tables (continued)

Table 1.3-11 Change in Initial 2002 Base Year Emissions due to Aircraft PM Emission Rate Modifications. Table 1.3-12 CERR Aircraft NO_x Records with No Corresponding PM Record. Table 1.3-13 Calculated Emission Ratios for VA. Table 1.3-14 Base F 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions (tons/year) Table 1.3-15 Change in 2002 Emissions, Base F Inventory Relative to Initial Inventory Table 1.3-16 Base F Comparison of Aircraft Emissions (Airports with Aircraft $NO_x > 200$ tons per year) Table 1.3-17 Base G VA Aircraft Records Updates Table 1.3-18 Calculated Base G Emission Ratios for VA. Table 1.3-19 Base G-Revised 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions (tons/year) Table 1.3-20 Change in 2002 Emissions, Base G Inventory Relative to Base F Inventory Base G Comparison of Aircraft Emissions Table 1.3-21 (Airports with Aircraft $NO_x > 200$ tons per year) Table 1.3-22 Non-Default Files Used for MRPO Modeling Table 2.1-1 Adjustments to IPM Control Determinations Specified by S/L Agencies for the Base G/G2 2009/2018 EGU Inventories. Other Adjustments to IPM Results Specified by S/L Agencies Table 2.1-2 for the Base G/G2 2009/2018 EGU Inventories. Table 2.1-3 Additional Adjustments to IPM Results Specified by S/L Agencies for the B&F 2009/2018 EGU Inventories. Table 2.1-4 EGU Point Source SO₂ Emission Comparison for 2002/2009/2018. Table 2.1-5 EGU Point Source NO_x Emission Comparison for 2002/2009/2018. Table 2.1-6 EGU Point Source VOC Emission Comparison for 2002/2009/2018. Table 2.1-7 EGU Point Source CO Emission Comparison for 2002/2009/2018. Table 2.1-8 EGU Point Source PM₁₀-PRI Emission Comparison for 2002/2009/2018. Table 2.1-9 EGU Point Source PM_{2.5} -PRI Emission Comparison for 2002/2009/2018. Table 2.1-10 EGU Point Source NH₃ Emission Comparison for 2002/2009/2018. Table 2.1-11 Summary of Source Shutdowns Incorporated in Base G Inventory. Table 2.1-12 Non-EGU Point Source Control Programs Included in 2009/2018 Projection Inventories.

Summary of Updates and Corrections Incorporated into the

iv

Base G 2009/2018 Non-EGU Inventories.

Table 2.1-13

MACTEC, Inc.

List of Tables (continued)

Table 2.1-14 Summary of Updates and Corrections Incorporated into the B&F 2009/2018 Non-EGU Inventories. Table 2.1-15 Non-EGU Point Source SO₂ Emission Comparison for 2002/2009/2018. Table 2.1-16 Non-EGU Point Source NO_x Emission Comparison for 2002/2009/2018. Table 2.1-17 Non-EGU Point Source VOC Emission Comparison for 2002/2009/2018. Table 2.1-18 Non-EGU Point Source CO Emission Comparison for 2002/2009/2018. Table 2.1-19 Non-EGU Point Source PM₁₀-PRI Emission Comparison for 2002/2009/2018. Table 2.1-20 Non-EGU Point Source PM25-PRI Emission Comparison for 2002/2009/2018. Non-EGU Point Source NH₃ Emission Comparison for 2002/2009/2018. Table 2.1-21 Table 2.2-1 2002 Base Year Emissions and Percentage Difference for Base F and Base G (based on actual emissions). 2009 Projection Year Emissions and Percentage Difference for Base F and Table 2.2-2 Base G (based on actual emissions). Table 2.2-3 2018 Projection Year Emissions and Percentage Difference for Base F and Base G (based on actual emissions). Table 2.2-4 Percentage Difference Between Base F and Base G Fire Emissions by State Table 2.3-1 2002 versus 2018 VMT (million miles per year) Table 2.3-2 VMT and HDD Rule Estimates for North Carolina (million miles per year) VMT and HDD Rule Estimates for South Carolina (million miles per year) Table 2.3-3 Table 2.3-4 VMT and HDD Rule Estimates for Tennessee (million miles per year) VMT and HDD Rule Estimates for Virginia (million miles per year) Table 2.3-5 Table 2.3-6 Pre-Base F 2002 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons, as of the fall of 2004) Table 2.3-7 Locally Generated Growth Factors for North Carolina Table 2.3-8 Estimated Emission Reduction Impacts based on T-4 Rule Table 2.3-9 Estimated Emission Reduction Impacts Relative to VISTAS 2002 Base Year Values Table 2.3-10 Diesel CMV Adjustment Ratios for Palm Beach County, FL Overall Adjustment Factors for Palm Beach County, FL Table 2.3-11 SO₂ Emissions for Diesel Rail in Autauga County, AL from the CAIR Projections Table 2.3-12 Table 2.3-13 Growth Options based on CAIR Data Base F 2009 Aircraft, Locomotive, and Non-Recreational Marine Emissions Table 2.3-14 (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories Table 2.3-15 Base F 2018 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Growth Using 1996 and 2020 EPA Inventories)

Change in Emissions between 2009 and 2002 Base F Inventories (Based on

Table 2.3-16

List of Tables (continued)

Table 2.3-17 Change in Emissions between 2018 and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)
Table 2.3-18 Base G 2002 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons)
Table 2.3-19 Locally Generated Growth Factors for Kentucky
Table 2.3-20 Base G 2009 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories
Table 2.3-21 Base G 2018 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories
Table 2.3-22 Change in Emissions between 2009 Base G and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)
Table 2.3-23 Change in Emissions between 2018 Base G and 2002 Base F Inventories (Based

on Growth Using 1996 and 2020 EPA Inventories)

vi MACTEC, Inc.

List of Figures

- Figure 1.2-1 CO Emissions from Agricultural Burning for the Original Base Year, 2002 Actual Base G, and 2002 Typical Base G Inventories.
- Figure 1.2-2 CO Emissions from Land Clearing Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.
- Figure 1.2-3. CO Emissions from Prescribed Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.
- Figure 1.2-4 CO Emissions from Wildfire Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.
- Figure 2.2-1 Prescribed Fire Projection for Okeefenokee NWR for 2009
- Figure 2.3-1 Impacts of the Apparent CAIR Inventory Discrepancy
- Figure 2.3-2 Total Aircraft, Locomotive, and CMV CO Emissions (Base F)
- Figure 2.3-3 Locomotive CO Emissions (Base F)
- Figure 2.3-4 Total Aircraft, Locomotive, and CMV NO_x Emissions (Base F)
- Figure 2.3-5 Locomotive NO_x Emissions (Base F)
- Figure 2.3-6 Total Aircraft, Locomotive, and CMV PM₁₀ Emissions (Base F)
- Figure 2.3-7 Locomotive PM₁₀ Emissions (Base F)
- Figure 2.3-8 Total Aircraft, Locomotive, and CMV PM_{2.5} Emissions (Base F)
- Figure 2.3-9 Locomotive PM_{2.5} Emissions (Base F)
- Figure 2.3-10 Total Aircraft, Locomotive, and CMV SO₂ Emissions (Base F)
- Figure 2.3-11 Locomotive SO₂ Emissions (Base F)
- Figure 2.3-12 Total Aircraft, Locomotive, and CMV VOC Emissions (Base F)
- Figure 2.3-13 Locomotive VOC Emissions (Base F)
- Figure 2.3-14 Total Aircraft, Locomotive, and CMV CO Emissions (Base G)
- Figure 2.3-15 Locomotive CO Emissions (Base G)
- Figure 2.3-16 Total Aircraft, Locomotive, and CMV NO_x Emissions (Base G)
- Figure 2.3-17 Locomotive NO_x Emissions (Base G)
- Figure 2.3-18 Total Aircraft, Locomotive, and CMV PM₁₀ Emissions (Base G)
- Figure 2.3-19 Locomotive PM₁₀ Emissions (Base G)
- Figure 2.3-20 Total Aircraft, Locomotive, and CMV PM_{2.5} Emissions (Base G)
- Figure 2.3-21 Locomotive PM_{2.5} Emissions (Base G)
- Figure 2.3-22 Total Aircraft, Locomotive, and CMV SO₂ Emissions (Base G)
- Figure 2.3-23 Locomotive SO₂ Emissions (Base G)
- Figure 2.3-24 Total Aircraft, Locomotive, and CMV VOC Emissions (Base G)
- Figure 2.3-25 Locomotive VOC Emissions (Base G)

vii MACTEC, Inc.

Acronyms and Abbreviations

AEO Annual Energy Outlook

AF&PA American Forest and Paper Association

APCD Air Pollution Control District
ATP Anti-Tampering Program

BLRID Boiler Identification (Boiler ID)

CAA Clean Air Act

CAIR Clean Air Interstate Rule

CEM Continuous Emissions Monitoring

CAMD Clean Air Markets Division

CERR Consolidated Emissions Reporting Rule

CMU Carnegie Mellon University
CMV commercial marine vessels

CE Control Efficiency
CO carbon monoxide

DENR North Carolina Department of Environment and Natural Resources

DHEC South Carolina Department of Health and Environmental Control

EDMS Emissions Data Management Systems

ESD Emissions Standards Division EPA Environmental Protection Agency

EGU Electric Generating Unit ICF ICF International, Inc.

FIP Federal Implementation Plan

FLM Federal Land Manager
FTP File transfer protocol
FR Federal Register
FS Forest Service

HDD Heavy Duty Diesel

HDD RULE Heavy Duty Diesel Rule ICF ICF International, Inc.

ID Identification

I/M Inspection and Maintenance IPM® Integrated Planning Model®

IAQTR Interstate Air Quality Transport Rule

LTO Landing and take off

MACT Maximum achievable control technology

viii MACTEC, Inc.

Acronyms and Abbreviations (continued)

MACTEC Engineering and Consulting, Inc.

MOBILE 6 MOBILE emissions estimation model version 6

MRPO Midwest Regional Planning Organization

NH₃ Ammonia

NEI National Emission Inventory

NIF National Emission Inventory Format

NLEV National Low Emission Vehicle regulation

NMIM National Mobile Inventory Model

NONROAD no acronym (model name)

NO_x Oxides of nitrogen

NWR National Wildlife Refuge

OTB On the books
OTW On the way

ORIS Office of Regulatory Information Systems
OTAQ Office of Transportation and Air Quality

OTC Ozone Transport Commission

PFC Portable fuel containers

PM Particulate matter

PM₁₀-FIL Particulate matter less than or equal to 10 microns in diameter that can be

captured on a filter

PM₁₀-PRI Particulate matter less than or equal to 10 microns in diameter that includes

both the filterable and condensable components of particulate matter

PM_{2.5}-FIL Particulate matter less than or equal to 2.5 microns in diameter that can be

captured on a filter

PM_{2.5}-PRI Particulate matter less than or equal to 2.5 microns in diameter that includes

both the filterable and condensable components of particulate matter

PM-CON Particulate matter created by the condensation of hot materials to form

particulates, usually less than 2.5 microns in diameter

ppmW parts per million by weight

PRI Primary

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
REMI Regional Economic Models, Inc.

RFG Reformulated gasoline RVP Reid Vapor Pressure

ix MACTEC, Inc.

Acronyms and Abbreviations (continued)

SCC Source Classification CodeSIP State Implementation PlanSIWG Special Interest Workgroup

S/L/T State/Local/Tribal

SMOKE Sparse Matrix Operator Kernel Emissions Modeling System

S/L State and Local SO₂ Oxides of Sulfur

T4 Tier 4

VISTAS Visibility Improvement State and Tribal Association of the Southeast

VMT Vehicle Miles Traveled

VOC Volatile organic compounds

WRAP Western Regional Air Partnership

Documentation of the Base G2 and Best & Final 2002 Base Year, 2009 and 2018, Emission Inventories for VISTAS

Introduction

Base G2 document was delivered final in Aug (?) 2007. In fall 2007 states updated specific point source EGU and non-EGU facility record in Best and Final (B&F) inventories for 2009 and 2018 to account for BART controls, consent decrees, corrections to Base G2, and source specific controls. Only EGU and non-EGU point source records were changed. Area, non-road, on-road remained the same as Base G2. In this report all records for area, non-road, and on-road were used in B&F modeling the same as Base G2. This report has been updated from the Base G2 report submitted in July 2007 just for B&F changes to EGU and non-EGU sources. A history of the development of the VISTAS inventory follows. Specific sections of the document detail the modifications made as the inventory progressed from Base F through B&F.

The Base G2 inventory included changes in 2018 controls on specific electric generating units in GA, FL, NC, and WV. There were no changes in 2009 controls for EGU and no changes between the Base G and Base G2 inventories for non-EGU point, on-road, non-road, or area sources in 2009 or 2018. The Base G2 modeling run included changes for 2018 EGU controls plus corrections in 2002 typical, 2009, and 2018 for errors in emissions processing in Base G. These corrections in emissions processing are not seen when comparing the Base G and G2 inventory files.

Base G and Base G2 inventories represent two separate model runs, as does the B&F. Since Base G2 supersedes Base G, VISTAS will maintain only the Base G2 and B&F model files since both were used in State Implementation Plan submittals.

History of VISTAS Base and Projection Year Emission Inventory Development

This section is provided to supply the history behind the development of the base and projection year inventories provided to the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) and the Association for Southeast Integrated Planning (ASIP). Through the various iterations, the inventories that have been developed have typically had version numbers provided by the contractors who developed the inventories and to a certain extent these were also based on their purpose. Different components of the 2002 base year inventories have been supplied by E.H. Pechan and Associates, Inc. (Pechan), MACTEC Engineering and Consulting, Inc.

1

MACTEC, Inc.

(MACTEC), and by Alpine Geophysics, Inc. (AG). The projection year inventories were developed by MACTEC and AG.

The initial 2002 base year inventory was jointly developed by Pechan and MACTEC. Pechan developed the on-road and non-road mobile source components of the inventory while MACTEC developed the point and area source component of the inventory. This version of the inventory included updates to on-road mobile that incorporated information from the 1999 NEI Version 2 final along with updated information on VMT, fuel programs, and other inputs to the MOBILE6 model to produce a draft version of the 2002 inventory. For non-road sources, a similar approach was used. Updated State information on temperatures and fuel characteristics were obtained from VISTAS States and used with the NONROAD 2002 model to calculate 2002 emissions for NONROAD model sources. These estimates were coupled with data for commercial marine vessels, locomotives and airplanes projected to 2002 using appropriate growth surrogates. A draft version of these inventories was prepared in late 2003, with a final version in early 2004. An overview of the development of the on-road component can be found at: http://www.vistas-sesarm.org/documents/Pechan drafton-roadinventory 082803.ppt while an overview of the non-road component can be found at:

http://www.vistas-sesarm.org/documents/Pechan_Non-roadInventory_082803.ppt.

Similarly, draft versions of the 2002 point and area source base year inventories were prepared by MACTEC in the same timeframe (late 2003 for the draft, final in early 2004). The point source component was based on data submitted by the VISTAS States or on the 1999 NEI. The data submitted by the States ranged from 1999 to 2001 and was all projected to 2002 using appropriate growth surrogates from Economic Growth Analysis System (EGAS) version 4. Toxic Release Inventory (TRI) data were used to augment the inventory for NH₃. Continuous Emissions Monitor (CEM) data from the U.S. EPA's Clean Air Markets Division was used to supply emissions for electric generating utilities (EGUs). Particulate matter emissions were augmented (when missing) by using emission factor ratios. Details on all these calculations are discussed in Section 1.1.1.3 of this document.

The area source component of the 2002 draft base year emissions was prepared similarly to the point sources, using State submittals and the 1999 NEI Version 2 final as the basis for projecting emissions to 2002 using EGAS growth factors. For ammonia area sources the Carnegie Mellon University (CMU) ammonia model was used to calculate emissions. Finally, data on acreage burned on a fire by fire basis was solicited from State forestry agencies in order to calculate fire emissions on a fire by fire basis. Virtually all VISTAS State forestry agencies provided data for these calculations at least for wild and

prescribed fires. An overview of the point and area source development methods can be found at:

http://www.vistas-sesarm.org/documents/MACTEC_draftpointareainventory_82803.ppt.

Three interim versions of the 2002 base year inventory were developed. The first was delivered in August of 2003, the second in April of 2004 and the final one in October of 2004. The August 2003 and April 2004 inventories were prepared by MACTEC and Pechan. A draft version of the revised 2002 base year inventory was released in June of 2004, with a final version released in October 2004. That 2002 base year inventory was solely prepared by MACTEC. The October 2004 inventory incorporated 2002 Consolidated Emissions Reporting Rule (CERR) data into the inventory along with some updated data from the VISTAS States. This inventory is typically referred to as version 3.1 of the VISTAS inventory.

Closely following the version 3.1 2002 base year inventory, a "preliminary" 2018 projection inventory was developed. This "preliminary" 2018 inventory was developed in late 2004 (Oct/Nov) and was designed solely for use in modeling sensitivity runs to provide a quick and dirty assessment of what "on the books" and "on the way" controls could be expected to provide in terms of improvements to visibility and regional haze impairment. A brief overview of the history of the three versions of the 2002 base year and the 2018 preliminary inventory use can be found at: http://www.vistas-sesarm.org/documents/STAD1204/2002and2018Emissions14Dec2004.ppt.

Following preparation of the final 3.1 version of the 2002 base year inventory, States were asked to review and provide comments on that inventory to MACTEC for update and revision. At the same time MACTEC prepared a revised draft version of the 2018 projection inventory (January 2005) and a draft version of a 2009 projection inventory (April 2005). All of these were known as version 3.1 and were provided to the VISTAS States for review and comment. Comments were received and updates to the inventories based on these comments were prepared. The revised inventories were provided to the VISTAS States. At that time to be consistent with the modeling nomenclature being used by AG in performing their modeling runs, the inventory became the Base F VISTAS inventory. The Base F inventory was delivered for review and comment in August of 2005. In addition, MACTEC delivered a report entitled Documentation of the Revised 2002 Base Year, Revised 2018, and Initial 2009 Emission Inventories for VISTAS on August 2, 2005 that described the methods used to develop the Base F inventories. For the Electric Generating Utilities (EGU) different versions of the Integrated Planning Model were used between Base D and Base F, resulting in different projections of future EGU emissions.

Over the period from August 2005 until June/July 2006 MACTEC received comments and updates to some categories from VISTAS States, particularly EGU. In addition, a new NONROAD model (NONROAD05) was released. Thus additional updates to the inventory were prepared based on the comments received along with revised NONROAD emission estimates from NONROAD05. The resultant inventory became the Base G inventory.

Following release of the Base G inventory in early 2007, four States specified additional changes to reflect their best estimates of EGU emission levels and controls in 2018. The resulting 2018 EGU emission inventory is referred to as Base G2, which was released in July 2007.

The current version of the VISTAS inventory is referred to as the "Best and Final (B&F)" inventory. States specified additional changes to the point source inventory to reflect improved knowledge of EGU emission levels and controls in 2009 and 2018. States also specified changes to nonEGU sources reflecting new information on anticipated controls and shutdowns. No changes to any other source sector (e.g., area, fire, nonroad, onroad) were made for the B&F inventory. The 2018 B&F inventory was released in October 2007, and the 2009 B&F inventory was released in December 2007.

This document details the development of the Base G/G2/B&F inventories for 2002, 2009 and 2018. The information that follows describes the development of the VISTAS inventory by sector from Base F forward. Unless specific updates were made to an inventory sector, the methods used for Base F were retained. Table I-1 through Table I-3 indicate roughly which version of the inventory is in use for each sector of the inventory as of the B&F inventory.

Under a separate contract, AG was asked to obtain and convert emission inventory data for the five states that make up the Midwest Regional Planning Organization (MRPO) for use by VISTAS/ASIP modelers. Details of this effort are documented in an Appendix to this report.

4

Table I-1 Inventory Version in Use by Year and Source Sector Through B&F - 2002

Source	AL	FL	GA	KY	MS	NC	SC	TN	VA	WV
EGU	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Non-EGU	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with
Point	some source	some source	some source	some source	some source	some source	some source	some source	some source	some source
	specific	specific	specific	specific	specific	specific	specific	specific	specific	specific
	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in
Area ¹	Base G Base F for	Base G Base F except	Base G Base F	Base G Base F	Base G Base F	Base G Base F for	Base G Base F	Base G Base F	Base G Base F for	Base G Base F
	ammonia sources (CMU Model) and for some area sources, Base G for selected sources updated by the State with	for some emissions zeroed out (and records removed) for some southern FL counties for Base G.				ammonia sources (CMU Model) and for some area sources, Base G for selected sources updated by the State with			ammonia Sources (CMU Model) and for some area sources, Base G for selected sources updated by the State with	
	State supplied data					State supplied data. Some corrections applied by MACTEC to correct PM values	D. G.		State supplied data.	
On-road	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Non-road	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources, except aircraft and locomotives updated for Base G.	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources except for aircraft in Cincinnati/N. KY Int. Airport, which are Base G.	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources	Base G for all sources included in the NONROAD model. NC moved from Southern to Mid-Atlantic State in seasonal adjustment file. Base F for non-NONROAD model sources	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources, except for aircraft emissions which are Base G.	Base G for all sources included in the NONROAD model. Base F for non-NONROAD model sources
Fires	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
	Typical	Typical	Typical	Typical	Typical	Typical	Typical	Typical	Typical	Typical
Notes:							<u> </u>			

Base G global Area Source changes that apply to ALL States: A) removal of Stage II refueling from area source file to non-road and on-road; B) modification of PM2.5 ratio for several fugitive dust sources per WRAP methodology; C) addition of portable fuel container (PFC) emissions to all States based on OTAQ report.

5

Table I-2 Inventory Version in Use by Year and Source Sector Through B&F - 2009

Source	AL	FL	GA	KY	MS	NC	SC	TN	VA	WV
EGU ¹	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final
Non-EGU	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
Point ²	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology
	but with	but with	but with	but with	but with	but with	but with	but with	but with	but with
	revised	revised	revised	revised	revised	revised	revised	revised	revised	revised
	growth	growth	growth	growth	growth	growth	growth	growth	growth	growth
	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for
	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired
	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in
	Base G and source-	Base G and source-	Base and source-	Base G and source-	Base G and source-	Base G and source-	Base G and source-	Base and source-	Base G and source-	Base G and source-
	specific	specific	specific	specific	specific	specific	specific	specific	specific	specific
	changes in	changes in	changes in	changes in	changes in	changes in	changes in	changes in	changes in	changes in
	B&F	B&F	B&F	B&F	B&F	B&F	B&F	B&F	B&F	B&F
Area	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with
	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO
	growth	growth	growth	growth	growth	growth	growth	growth	growth	growth
	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for
	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired
	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.
	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural
	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia
	sources from	sources from	sources from	sources from	sources from	sources from	sources from	sources from	sources from	sources from
1	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.
						G.				
						Some				
						specific				
						source categories				
						updated using				
						State				
						supplied file				
						to override				
						projected				
						values.				
On-road	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Non-road	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all
	sources	sources	sources	sources	sources	sources	sources	sources	sources	sources
	included in	included in	included in	included in	included in	included in	included in	included in	included in	included in
	the	the	the	the	the	the	the	the	the	the
	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD
	model.	model.	model.	model.	model.	model.	model.	model.	model.	model.
	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
	projection	projection	projection	projection	projection	projection	projection	projection	projection	projection
	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology
	used for non-	used for non-	used for non-	used for non-	used for non-	used for non-	used for non-	used for non-	used for non-	used for non-
	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD
	model	model	model	model	model	model	model	model	model	model
	sources.	sources	sources	sources	sources	sources	sources	sources	sources	sources
	sources.	Sources	Sources	except for	Sources	Sources	Sources	Sources	Sources	sources
				aircraft in						
		1		Cincinnati/N.						
		1		KY Int.						
		1		Airport,						
1		1		which are						
		1		Base G using						
		1		State						
		1		supplied						
		1		growth						
		ļ		factors.						
Fires	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
	typical except	typical	typical except	typical except	typical except	typical except	typical except	typical except	typical except	typical except
•	for Rx fires	I	for Rx fires	for Rx fires	for Rx fires	for Rx fires	for Rx fires	for Rx fires	for Rx fires	for Rx fires

Notes:

All EGU emissions updated with new IPM runs in Base G; additional EGU-specific changes specified by States for Best & Final. Revised growth factors from DOE AEO2006 fuel use projections

6

Table I-3 Inventory Version in Use by Year and Source Sector Through B&F - 2018

Source	AL	FL	GA	KY	MS	NC	SC	TN	VA	WV
EGU ¹	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final	Best & Final
Non-EGU	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
Point ²	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology
	but with	but with	but with	but with	but with	but with	but with	but with	but with	but with
	revised	revised	revised	revised	revised	revised	revised	revised	revised	revised
	growth	growth	growth	growth	growth	growth	growth	growth	growth	growth
	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for
	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired
	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in
	Base G and	Base G and	Base G and	Base G and	Base G and	Base G and	Base G and	Base G and	Base G and	Base G and
	source-	source-	source-	source-	source-	source-	source-	source-	source-	source-
	specific	specific	specific	specific	specific	specific	specific	specific	specific	specific
	changes in	changes in	changes in	changes in	changes in	changes in	changes in	changes in	changes in	changes in
	B&F	Base G2 and	Base G2 and	B&F	B&F	Base G2 and	B&F	B&F	B&F	Base G2 and
		B&F	B&F			B&F				B&F
Area	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with
	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO
	growth	growth	growth	growth	growth	growth	growth	growth	growth	growth
	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for
	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired
	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.
	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural
	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia
	sources from	sources from	sources from	sources from	sources from	sources from	sources from	sources from	sources from	sources from
	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.
						_				
						Some				
						specific				
						source				
						categories				
						updated				
						using State				
						supplied file				
						to override				
						projected				
0 1	D C	D 0	D 0	D G	D 0	values.	D 0	D 0	D 0	D 0
On-road	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Non-road	Base G for	Base G for	Base G for	Base G for	Base G for	Base G for	Base G for	Base G for	Base G for	Base G for
	all sources	all sources	all sources	all sources	all sources	all sources	all sources	all sources	all sources	all sources
	included in	included in	included in	included in	included in	included in	included in	included in	included in	included in
	the	the	the	the	the	the	the	the	the	the
	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD
	model.	model.	model.	model.	model.	model.	model.	model.	model.	model.
	D E	D E	D E	D E	D E	D E	D E	D E	D E	D E
	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
	projection methodology	projection	projection	projection	projection methodology	projection methodology	projection	projection	projection	projection methodology
	used for non-	methodology used for non-	methodology used for non-	methodology used for non-	used for non-	used for non-	methodology used for non-	methodology used for non-	methodology used for non-	used for non-
	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD
	model	model	model	model	model	model	model	model	model	model
	sources.	sources	sources	sources	sources	sources	sources	sources	sources	sources
				except for						
				aircraft in						
				Cincinnati/N.						
	1			KY Int.			ĺ			
				Airport,			ĺ			
ĺ	1			which are			ĺ			
ĺ	1			Base G using			ĺ			
ĺ	1			State			ĺ			
ĺ	1			supplied			ĺ			
	1			growth			1			
	L			factors.			L			
Fires	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
	typical	typical	typical	typical	typical	typical	typical	typical	typical	typical
	except for Rx		except for Rx	except for Rx	except for Rx	except for Rx	except for Rx	except for Rx	except for Rx	except for Rx
	fires		fires	fires	fires	fires	fires	fires	fires	fires
Notes:										

Notes:

- All EGU emissions updated with new IPM runs in Base G; additional EGU-specific changes specified by States for Base G2 and B&F.
- 2. Revised growth factors from DOE AEO2006 fuel use projections

1.0 2002 Base Year Inventory Development

1.1 Point Sources

This section details the development of the 2002 base year inventory for point sources. There were two major components to the development of the point source sector of the inventory. The first component was the incorporation of data submitted by the Visibility Improvement State and Tribal Association of he Southeast (VISTAS) States and local (S/L) agencies to the United States Environmental Protection Agency (EPA) as part of the Consolidated Emissions Reporting Rule (CERR) requirements Work on incorporating the CERR data into the revised base year involved: 1) obtaining the data from EPA or the S/L agency, 2) evaluating the emissions and pollutants reported in the CERR submittals, 3) augmenting CERR data with annual emission estimates for PM₁₀-PRI and PM_{2.5}-PRI; 4) evaluating the emissions from electric generating units, 5) completing quality assurance reviews for each component of the point source inventory, and 6) updating the database with corrections or new information from S/L agencies based on their review of the 2002 inventory. The processes used to perform those operations are described in the first portion of this section.

The second component was the development of a "typical" year inventory for electric generating units (EGUs). VISTAS determined that a typical year electric generating units (EGU) inventory was necessary to smooth out any anomalies in emissions from the EGU sector due to meteorology, economic, and outage factors in 2002. The typical year EGU inventory is intended to represent the five year (2000-2004) period that will be used to determine the regional haze reasonable progress goals. The second part of this section discusses the development of the typical year EGU inventory.

1.1.1 Development of 2002 Point Source Inventory

MACTEC developed a draft 2002 emission inventory in June 2004 (*Development of the Draft 2002 VISTAS Emission Inventory for Regional Haze Modeling – Point Sources*, MACTEC, June 18, 2004). The starting point for the draft 2002 emission inventory was EPA's 1999 National Emission Inventory (NEI), Version 2 Final (NEI99V2). For several states, we replaced the NEI99V2 data with more recent inventories for either calendar year 1999, 2000, or 2001 as submitted by the S/L agencies. We also performed several other updates, including updating emission estimates for selected large source of ammonia, incorporating 2002 Continuous Emissions Monitoring-(CEM)-based SO₂ and NO_x emissions for electric utilities, adding PM₁₀ and PM_{2.5} emissions when they were missing from an S/L submittal, and performing a variety of additional Quality assurance/Quality control (QA/QC) checks.

9

The next version of the 2002 inventory (referred to as Base F) was released in August 2005 (*Documentation of the Revised 2002 Base Year, Revised 2018, and Initial 2009 Emission Inventories for VISTAS*, MACTEC, August 2, 2005). The primary task in preparing the Base F 2002 base year inventory was the replacement of NEI99V2 data with data submitted by the VISTAS S/L agencies as part of the CERR submittal and included in EPA's 2002 NEI.

The next version of the 2002 inventory (referred to as Base G) was released in August 2006 and is documented in this report. The primary task in preparing the Base G 2002 base year inventory was the incorporation of corrections and new information as submitted by the S/L agencies based on their review of the Base F inventory. Note that no changes to the Base G 2002 point source inventory were made during the Base G2 and B&F update cycles (in other words, for the 2002 actual and typical inventories, Base G = Base G2 = B&F).

The following subsections document the data sources for the Base G/B&F inventory, the checks made on the CERR submittals, the process for augmenting the inventory with PM_{10} and $PM_{2.5}$ emissions, the evaluation of EGU emissions, other QA/QC checks, and other Base G updates. The final subsection summarizes the Base G/B&F 2002 inventory by state, pollutant, and sector (EGU and non-EGU).

1.1.1.1 Data Sources

Several data sources were used to compile the Base F point source inventory: 1) the inventories that the S/L submitted to EPA from May through July 2004 as required by the CERR; 2) supplemental data supplied by the S/L agencies that may have been revised or finalized after the CERR submittal to EPA, and 3) the draft VISTAS 2002 inventory in cases where S/L CERR data were not available. For the Base G inventory, we replaced data from Hamilton County, Tennessee, using data from Hamilton County's CERR submittal as contained in EPA's 2002 NEI inventory (in Base F, the inventory for Hamilton County was based on the draft VISTAS 2002 inventory, which in turn was based on the 1999 NEI).

Table 1.1-1 summarizes the data used as the starting point for the Base F 2002 inventory. Once all of the files were obtained, MACTEC ran the files through the EPA National Emission Inventory Format (NIF) Basic Format and Content checking tool to ensure that the files were submitted in standard NIF format and that there were no referential integrity issues with those files. In a couple of cases small errors were found. For example, in one case non-standard pollutant designations were used for particulate matter (PM) and ammonia emissions. MACTEC contacted each VISTAS State point source contact person to resolve the issues with the files and corrections were made. Once all corrections to the native files were made, MACTEC continued with the incorporation of the data into the VISTAS point source files. S/L agencies completed a detailed review of the Base F inventory. Additional updates and corrections to the Base F

inventory were requested by S/L agencies and incorporated into the Base G inventory. The Base G changes are documented in more detail in Section 1.1.1.6. No additional changes to the Base G inventory were made as part of the Base G2/B&F round of updates.

Table 1.1-1 State Data Submittals Used for the Base F 2002 Point Source Inventory.

State / Local Program	Point Source Emissions Data Source
AL	С
FL	В
GA	В
KY	С
MS	В
NC	С
SC	С
TN	С
VA	В
WV	В
Davidson County, TN	В
Hamilton County, TN	D
Memphis/Shelby County, TN	В
Knox County, TN	В
Jefferson County, AL	В
Jefferson County, KY	В
Buncombe County, NC	В
Forsyth County, NC	В
Mecklenburg County, NC	В

Kev

A = Draft VISTAS 2002

1.1.1.2 Initial Data Evaluation

For the Base F inventory, we conducted an initial review of the 2002 point source CERR data in accordance with the QA procedures specified in the Quality Assurance Project Plan (QAPP) for this project. The following evaluations were completed to identify potential data quality issues associated with the CERR data:

Compared the number of sites in the CERR submittal to the number of sites in the VISTAS draft 2002 inventory; for all States, the number of sites in the CERR submittal was less than in the VISTAS draft 2002 inventory, since the CERR data was limited to major sources, while the VISTAS draft 2002 inventory contained data for both major and minor sources; verified with S/L contacts that minor sources not included in the CERR point source inventory were included in the CERR area source inventory.

B = CERR Submittal from EPA's file transfer protocol (FTP) site

C = Other (CERR or other submittal sent directly from S/L agency to MACTEC)

D = CERR Submittal from EPA's NEI 2002 Final Inventory

- Checked for correct pollutant codes and corrected to make them NIF-compliant; for example, some S/L agencies reported ammonia emissions using the CAS Number or as "ammonia", rather than the NIF-compliant "NH₃" code.
- Checked for types of particulate matter codes reported (i.e., PM-FIL, PM-CON, PM-PRI, PM₁₀-PRI, PM10-FIL, PM_{2.5}-PRI, PM_{2.5}-FIL); corrected codes with obvious errors (i.e., changed PMPRI to PM-PRI). (The PM augmentation process for filling in missing PM pollutants is discussed later in Section 1.1.1.3)
- Converted all emission values that weren't in tons to tons to allow for preparation of emission summaries using consistent units.
- Checked start and end dates in the PE and EM tables to confirm consistency with the 2002 base year.
- Compared annual and daily emissions when daily emissions were reported; in some cases, the daily value was non-zero (but very small) but the annual value was zero. This was generally the result of rounding in an S/L agency's submittal.
- Compared ammonia emissions as reported in the CERR submittals and the 2002 Toxics Release Inventory; worked with S/L agencies to resolve any outstanding discrepancies.
- Compared SO₂ and NO_x emissions for EGUs to EPA's Clean Air Markets Division CEM database to identify any outstanding discrepancies. (A full discussion of the EGU emissions analysis is discussed later in Section 1.1.1.4)
- Prepared State-level emission summaries by pollutant for both the EGU and non-EGU sectors to allow S/L agencies to compare emissions as reported in the 1999 NEI Version 2, the VISTAS draft 2002 inventory, and the CERR submittals.
- Prepared facility-level emission summaries by pollutant to allow S/L agencies to review facility level emissions for reasonableness and accuracy.

We communicated the results of these analyses through email/telephone exchanges with the S/L point source contacts as well as through Excel summary spreadsheets. S/L agencies submitted corrections and updates as necessary to resolve any QA/QC issues from these checks.

12

1.1.1.3 PM Augmentation

Particulate matter emissions can be reported in many different forms, as follows:

PM Category	Description
PM-PRI	Primary PM (includes filterable and condensable)

PM-CON	Primary PM, condensable portion only (all less than 1 micron)
PM-FIL	Primary PM, filterable portion only
PM ₁₀ -PRI	Primary PM ₁₀ (includes filterable and condensable)
PM ₁₀ -FIL	Primary PM ₁₀ filterable portion only
PM _{2.5} -PRI	Primary PM _{2.5} (includes filterable and condensable)
PM _{2.5} -FIL	Primary PM _{2.5} filterable portion only

S/L agencies did not report PM emissions in a consistent manner. The State/local inventories submitted for VISTAS included emissions data for either PM-FIL, PM-PRI, PM₁₀-FIL, PM₁₀-FIL, PM₁₀-PRI, PM_{2.5} -PRI, and/or PM-CON. From any one of these pollutants, EPA has developed augmentation procedures to estimate PM₁₀-PRI, PM₁₀-FIL, PM_{2.5} -PRI, PM_{2.5} -FIL, and PM-CON. If not included in a State/local inventory, PM₁₀-PRI and PM_{2.5} -PRI were calculated by adding PM₁₀-FIL and PM-CON or PM_{2.5} -FIL and PM-CON, respectively.

The procedures for augmenting point source PM emissions are documented in detail in Appendix C of *Documentation for the Final 1999 National Emissions Inventory {Version 3} for Criteria Air Pollutants and Ammonia – Point Sources*, January 31, 2004). Briefly, the PM data augmentation procedure includes the following five steps:

- Step 1: Prepare S/L/T PM and PM₁₀ Emissions for Input to the PM Calculator
- Step 2: Develop and Apply Source-Specific Conversion Factors
- Step 3: Prepare Factors from PM Calculator
- Step 4: Develop and Apply Algorithms to Estimate Emissions from S/L/T Inventory Data
- Step 5: Review Results and Update the NEI with Emission Estimates and Control Information.

Please refer to the EPA documentation for a complete description of the PM augmentation procedures.

Table 1.1-2 compares the original PM emission estimates from the S/L CERR submittals and the revised 2002 VISTAS emissions estimates calculated using the above methodology. This table is intended to show that we took whatever States provided in the way of PM and filled in gaps to add in PM-CON where emissions were missing in order to calculate PM₁₀-PRI and PM_{2.5}-PRI for all processes to get a complete set of particulate data. We did not compare any other pollutants besides PM, since for other pollutants CERR emissions equal VISTAS emissions. As noted in Table 1.1-2, we made significant revisions to the PM emissions for Kentucky in the Base F inventory and for South Carolina in the Base G inventory.

13

Table 1.1-2 Comparison of Particulate Matter Emissions from the S/L Data Submittals and the Base G 2002 VISTAS Point Source Inventory

State	Database	PM-PRI	PM-FIL	PM-CON	PM ₁₀ -PRI	PM ₁₀ -FIL	PM _{2.5} -PRI	PM _{2.5} -FIL
AL	CERR	28,803	9,174	0	16,522	6,548	8,895	4,765
	VISTAS	43,368	33,336	10,129	32,791	22,661	23,290	13,328
FL	CERR	0	33,732	0	0	32,254	0	0
	VISTAS	61,728	37,325	24,403	57,243	32,840	46,147	21,744
GA	CERR	42,846	0	0	27,489	0	15,750	0
	VISTAS	44,835	37,088	7,799	33,202	25,403	22,777	15,085
KY	CERR	0	3,809	0	19,748	1,360	0	0
	VISTAS	27,719	22,349	5,329	21,326	15,963	14,173	8,749
MS	CERR	23,925	0	0	20,968	0	10,937	0
	VISTAS	23,928	17,632	6,296	21,089	14,793	11,044	5,739
NC	CERR	48,110	0	0	36,222	0	24,159	0
	VISTAS	48,114	41,407	6,708	36,992	30,284	27,512	21,113
SC	CERR	0	43,837	0	0	32,656	0	21,852
	VISTAS	43,844	38,633	5,210	34,799	29,588	26,418	21,207
TN	CERR	1,660	25,500	21,482	43,413	22,164	34,167	12,140
	VISTAS	56,797	32,085	24,715	50,937	26,269	41,442	16,774
VA	CERR	0	0	0	17,065	0	12,000	0
	VISTAS	40,856	36,414	4,442	17,065	12,623	12,771	8,607
WV	CERR	0	29,277	0	0	14,778	0	8445
	VISTAS	36,188	29,392	6,795	22,053	15,258	15,523	8,733

Note 1: CERR refers to data as submitted by S/L agencies; VISTAS refers to data calculated by MACTEC using the PM augmentation methodologies described in this document.

Note 2: KY DEP's initial CERR submittal reported particulate matter emissions using only PM-PRI pollutant code. MACTEC used this pollutant code during the initial PM augmentation routine. In February 2005, KY DEP indicated that data reported using the PM-PRI code should actually have been reported using the PM₁₀-PRI code. MACTEC performed a subsequent PM augmentation in April 2005 using the PM₁₀-PRI code. These changes were reflected in the Base F emission inventory.

Note 3: South Carolina Department of Health and Environmental Control (SC DHEC) initial CERR submittal reported particulate matter emissions using the PM-FIL, PM₁₀-FIL, and PM_{2.5} -FIL pollutant codes. MACTEC used these pollutant codes during the initial PM augmentation routine. In August 2005, SC DHEC indicated that data reported using the PM-FIL, PM₁₀-FIL, and PM_{2.5} -FIL pollutant codes should actually have been reported using the PM-PRI, PM₁₀-PRI, and PM_{2.5} _PRI codes. MACTEC performed a subsequent PM augmentation in April 2006 using the revised pollutant codes. These changes were reflected in the Base G emission inventory.

Note 4: The emission values in the VISTAS emission rows above differ slightly from the final values in the Base G inventory. This is due to several corrections and updates to the 2002 inventory submitted by S/L agencies after the PM augmentation was performed as discussed in Section 1.1.1.6.

14

After the PM augmentation process was performed, we executed a series of checks to identify potential inconsistencies in the PM inventory. These checks included:

- PM-PRI less than PM₁₀-PRI, PM_{2.5} -PRI, PM₁₀-FIL, PM_{2.5} -FIL, or PM-CON;
- PM-FIL less than PM₁₀-FIL, PM_{2.5} -FIL;
- PM₁₀-PRI less than PM_{2.5} -PRI, PM₁₀-FIL, PM_{2.5} -FIL or PM-CON;
- PM₁₀-FIL less than PM_{2.5} -FIL;
- PM25-PRI less than PM_{2.5}-FIL or PM-CON;
- The sum of PM_{10} -FIL and PM-CON not equal to PM_{10} -PRI; and
- The sum of PM_{2.5} -FIL and PM-CON not equal to PM_{2.5} -PRI.

S/L agencies were asked to review this information and provide corrections where the inconsistencies were significant. In general, corrections (or general directions) were provided in the case of the potential inconsistency issues. In other cases, the agency provided specific process level pollutant corrections.

Note that for the Base G inventory, only the PM₁₀-PRI and PM_{2.5} -PRI emission estimates were retained since they are the only two PM species that are included in the air quality modeling. Other PM species were removed from the Base G inventory to facilitate emissions modeling.

1.1.1.4 EGU Analysis

We made a comparison of the annual SO₂ and NO_x emissions for EGUs as reported in the S/L agencies CERR submittals and EPA's Clean Air Markets Division (CAMD) CEM database to identify any outstanding discrepancies. Facilities report hourly CEM data to EPA for units that are subject to CEM reporting requirements of the NO_x State Implementation Plan (SIP) Call rule and Title IV of the Clean Air Act (CAA). EPA sums the hourly CEM emissions to the annual level, and we compared these annual CEM emissions to those in the S/L inventories. The 2002 CEM inventory containing NO_x and SO₂ emissions and heat input data were downloaded from the EPA CAMD web site (www.epa.gov/airmarkets).

The first step in the EGU analysis involved preparing a crosswalk file to match facilities and units in the CAMD inventory to facilities and units in the S/L inventories. In the CAMD inventory, the Office of Regulatory Information Systems (ORIS) identification (ID) code identifies unique facilities and the unit ID identifies unique boilers and internal combustion engines (i.e., turbines and reciprocating engines). In the S/L inventories, the State and county FIPS and State facility ID together identify unique facilities and the emission unit ID identifies unique boilers or internal combustion engines. In most cases, there is a one-to-one correspondence between the CAMD identifiers and the S/L identifiers. However, in some of the S/L inventories, the emissions for multiple emission units are summed and reported under one emission unit ID. We created an Excel spreadsheet that contained an initial crosswalk with the ORIS ID and unit ID in the CEM inventory matched to the State and county Federal

15

Implementation Plan (FIPS), State facility ID, and emission unit ID in the S/L inventory. The initial crosswalk contained both the annual emissions summed from the CAMD database as well as the S/L emission estimate. It should be noted that the initial matching of the IDs in both inventories was based on previous crosswalks that had been developed for the preliminary VISTAS 2002 inventory and in-house information compiled by MACTEC and Alpine Geophysics. The matching at the facility level was nearly complete. In some cases, however, S/L agency or stakeholder assistance was needed to match some of the CEM units to emission units in the S/L inventories.

The second step in the EGU analysis was to prepare an Excel spreadsheet that compared the annual emissions from the hourly CAMD inventory to the annual emissions reported in the S/L inventory. The facility-level comparison of CEM to emission inventory NO_x and SO₂ emissions found that for most facilities, the annual emissions from the S/L inventory equaled the CAMD CEM emissions. Minor differences could be explained because the facility in the S/L inventory contained additional small or emergency units that were not included in the CAMD database.

The final step was to compare the SO₂ and NO_x emissions for select Southern Company units in the VISTAS region. Southern Company is a super-regional company that owns EGUs in four VISTAS States – Alabama, Florida, Georgia, and Mississippi – and participates in VISTAS as an industry stakeholder. Southern Company independently provided emission estimates for 2002 as part of the development of the preliminary VISTAS 2002 inventory. In most cases, these estimates were reviewed by the States and incorporated into the States CERR submittal. The exception to this was a decision made by Georgia's Department of Environmental Protection (GDEP) to utilize CEM-based emissions for the actual 2002 emissions inventory for sources within the State when Southern Company also provided data. There were no major inconsistencies between the Southern Company data, the CAMD data, and the S/L CERR data.

The minor inconsistencies included small differences (<2 percent) in emission estimates, exclusion/inclusion of small gas-fired units in the different databases, and grouping of emission units in S/L CERR submittals where CAMD listed each unit individually. We compared SO₂ and NO_x emissions on a unit by unit basis and did not find any major inconsistencies.

1.1.1.5 QA Review of Base F Inventory

QA checks were run on the Base F point source inventory data set to ensure that all corrections provided by the S/L agencies and stakeholders were correctly incorporated into the S/L inventories and that there were no remaining QA issues. After exporting the inventory to ASCII text files in NIF 3.0, the EPA QA program was run on the ASCII files and the QA output was reviewed to verify that all QA issues that could be addressed were resolved.

Throughout the inventory development process, QA steps were performed to ensure that no double counting of emissions occurred, and to ensure that a full and complete inventory was developed for VISTAS. QA was an important component to the inventory development process and MACTEC performed the following QA steps on the point source component of the VISTAS revised 2002 base year inventory:

- 1. Facility level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources.
- 2. State-level EGU and non-EGU comparisons (by pollutant) were developed between the Base F 2002 base year inventory, the draft VISTAS 2002 inventory, and the 1999 NEI Version 2 inventory.
- 3. Data product summaries and raw NIF 3.0 data files were provided to the VISTAS Emission Inventory Technical Advisor and to the Point Source, EGU, and non-EGU Special Interest Work Group representatives for review and comment. Changes based on these comments were reviewed and approved by the S/L point source contact prior to implementing the changes in the files.
- 4. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from Base F1 to Base F2.

1.1.1.6 Additional Base G Updates and Corrections

S/L agencies completed a detailed review of the Base F inventory. Table 1.1-3 summarizes the updates and corrections to the Base F inventory that were requested by S/L agencies and incorporated into the Base G inventory.

There was a discrepancy between the base year 2002 and 2009/2018 emissions for PM₁₀-PRI, PM_{2.5}-PRI, and NH₃. The 2002 emissions were provided directly by the S/L agencies and were estimated using a variety of techniques (i.e., EPA emission factors, S/L emission factors, site-specific emission factors, and source test data). The 2009/2018 emissions, on the other hand, were estimated by Pechan (see Section 2.1.1.3) using an emission factor file based solely on AP-42 emission factors. An adjustment was made for 2002 EGU PM and NH₃ emissions to reconcile these differences. The post-processed Integrated Planning Model[®] (IPM[®]) 2009/2018 output uses a set of PM and NH₃ emission factors that are "the most recent EPA approved uncontrolled emission factors" – these are most likely not the same emission factors used by States and emission inventory preparation contractors for estimating these emissions in 2002 for EGUs in the VISTAS domain. VISTAS performed a set of modifications to replace 2002 base year PM and NH₃ emission estimates with estimates derived from the most recent EPA-approved emission factors. For further details of the methodology used to make this adjustment, see *EGU Emission Factors and Emission Factor Assignment*, memorandum from Greg Stella to VISTAS State Point Source Contacts and VISTAS EGU Special Interest Workgroup, June 13, 2005.

17

Table 1.1-3 Summary of Updates and Corrections to the Base F 2002 Inventory Incorporated into the 2002 Base G Inventory.

Affected State(s)	Nature of Update/Correction				
TN, WV	The latitude and longitude values for TN (except the four local programs) and WV were truncated to two decimal places in the Base F inventory. MACTEC re-exported the NIF ER tables in a manner that so that the latitude and longitude were not truncated in the Base G inventory.				
AL	Corrected the latitude and longitude for two facilities: Ergon Terminalling (Site ID: 01-073-010730167) and Southern Power Franklin (Site ID: 01-081-0036).				
	Corrections to stack parameters at 10 facilities for stacks with parameters that do not appear to fall into the ranges typically termed "acceptable" for AQ modeling.				
FL	Corrected emission values for the Miami Dade RRF facility (Site ID: 12-086-0250348).				
GA	Hercules Incorporated (12-051-05100005) had an erroneous process id (#3) within emission unit id SB9 and was deleted. This removes about 6,000 tons of SO ₂ from the 2002 inventory.				
	Provided a revised file of location coordinates at the stack level that was used to replace the location coordinated in the ER file.				
NC	Made several changes to Base F inventory to correct the following errors:				
	1. Corrected emissions at Hooker Furniture (Site ID: $37-081-08100910$), release point G-29, 9211.38 tons volatile organic compounds (VOC's) should be 212.2 tons, 529.58 tons PM ₁₀ should be 17.02 tons, 529.58 tons PM2.5 should be 15.79 tons in 2002 inventory.				
	2. Identified many stack parameters in the ER file that were unrealistic. Several have zero for height, diameter, gas velocity, and flow rate. NC used the procedures outlined in Section 8 of the document ""National Emission Inventory QA and Augmentation Report" to correct unrealistic stack parameters.				
	3. Identified truncated latitude and longitude values in Base F inventory. NC updated all Title V facility latitude and longitude that was submitted to EPA for those facilities in 2004. Smaller facilities with only two decimal places were not corrected.				
	4. Corrected emissions for International Paper (3709700045) Emission Unit ID, G-12, should be 1.8844 tons VOCs instead of 2819.19 tons in 2002				
SC	Corrected PM species emission values. SC DHEC's initial CERR submittal reported particulate matter emissions using the PM-FIL, PM ₁₀ -FIL, and PM25-FIL pollutant codes. In August 2005, SC DHEC indicated that data reported using the PM-FIL, PM ₁₀ -FIL, and PM25-FIL pollutant codes should actually have been reported using the PM-PRI, PM ₁₀ -PRI, and PM25_PRI codes. MACTEC performed a subsequent PM augmentation in April 2006 using the revised pollutant codes. These changes were reflected in the Base G emission inventory.				
TN	Identified six facilities that closed in 2000/2001 but had non-zero emissions in the 2002 Base F inventory. MACTEC changed emissions to zero for all pollutants in the Base G 2002 inventory.				
	Supplied updated emission inventory for the Bowater facility (47-107-0012) based on the facility's updated 2002 emission inventory update.				
	Replaced data from Hamilton County, Tennessee, using data from Hamilton County's CERR submittal as contained in EPA's 2002 NEI (in Base F, the inventory for Hamilton County was based on the draft VISTAS 2002 inventory, which in turn was based on the 1999 NEI).				
	Updated emissions for PCS Nitrogen Fertilizer LP (Site ID: 47-157-00146)				
WV	Updated emissions for Steel of West Virginia (Site ID: 54-011-0009)				
	Made changes to several Site ID names due to changes in ownership				
	Made corrections to latitude/longitude and stack parameters at a few facilities for stacks with parameters that do not appear to fall into the ranges typically termed "acceptable" for AQ modeling.				

18

1.1.1.7 Summary of B&F 2002 Inventory

Tables 1.1-4 through 1.1-10 summarize the B&F 2002 base year inventory. All values are in tons. Note that no changes to the Base G 2002 point source inventory were made during the Base G2 and B&F update cycles (in other words, Base G = Base G2 = B&F)

For the purposes of Tables 1.1-4 through 1.1-10, EGU emissions include the emissions from all processes with a Source Classification Code (SCC) of either 1-01-xxx-xx (External Combustion Boilers – Electric Generation) or 2-01-xxx-xx (Internal Combustion Engines – Electric Generation). Emissions for all other SCCs are included in the non-EGU column. Note that aggregating emissions into EGU and non-EGU sectors based on the above SCCs causes a minor inconsistency with the EGU emissions reported in EPA's CAMD database. The EGU emissions summarized in these tables may include emissions from some smaller electric generating units in the VISTAS inventory that are not in CAMD's 2002 CEM database or the IPM forecasted emissions. The minor inconsistencies result in a less than 2 percent difference between the summary tables below and the data from CAMD's CEM database.

Table 1.1-4 Base G / B&F 2002 VISTAS Point Source Inventory for SO₂ (tons/year).

State	All Point Sources	EGUs	Non-EGUs
AL	544,309	447,828	96,481
FL	518,721	453,631	65,090
GA	568,731	514,952	53,778
KY	518,086	484,057	34,029
MS	103,388	67,429	35,960
NC	522,113	477,990	44,123
SC	259,916	206,399	53,518
TN	413,755	334,151	79,604
VA	305,106	241,204	63,903
WV	570,153	516,084	54,070
Total	4,324,278	3,743,725	580,556

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-5 Base G / B&F 2002 VISTAS Point Source Inventory for NO_x (tons/year).

State	All Point Sources	EGUs	Non-EGUs
AL	244,348	161,038	83,310
FL	302,834	257,677	45,156
GA	196,767	147,517	49,251
KY	237,209	198,817	38,392
MS	104,661	43,135	61,526
NC	196,782	151,854	44,928
SC	130,394	88,241	42,153
TN	221,652	157,307	64,344
VA	147,300	86,886	60,415
WV	277,589	230,977	46,612
Total	2,059,536	1,523,449	536,087

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-6 Base G / B&F 2002 VISTAS Point Source Inventory for VOC (tons/year).

State	All Point Sources	EGUs	Non-EGUs
AL	49,332	2,295	47,037
FL	40,995	2,524	38,471
GA	34,952	1,244	33,709
KY	46,321	1,487	44,834
MS	43,852	648	43,204
NC	62,170	988	61,182
SC	38,927	470	38,458
TN	85,254	926	84,328
VA	43,906	754	43,152
WV	15,775	1,180	14,595
Total	461,484	12,516	448,970

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-7 Base G / B&F 2002 VISTAS Point Source Inventory for CO (tons/year).

State	All Point Sources	EGUs	Non-EGUs
AL	185,550	11,279	174,271
FL	139,045	57,113	81,933
GA	140,561	9,712	130,850
KY	122,555	12,619	109,936
MS	59,871	5,303	54,568
NC	64,461	13,885	50,576
SC	63,305	6,990	56,315
TN	122,348	7,084	115,264
VA	70,688	6,892	63,796
WV	100,220	10,341	89,879
Total	1,068,604	141,218	927,388

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-8 Base G / B&F 2002 VISTAS Point Source Inventory for PM₁₀-PRI (tons/year).

State	All Point Sources	EGUs	Non-EGUs
AL	32,886	7,646	25,240
FL	57,243	21,387	35,857
GA	32,834	11,224	21,610
KY	21,326	4,701	16,626
MS	21,106	1,633	19,472
NC	36,592	22,754	13,838
SC	35,542	21,400	14,142
TN	49,814	14,640	35,174
VA	17,211	3,960	13,252
WV	22,076	4,573	17,503
Total	326,630	113,918	212,714

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-9 Base G / B&F 2002 VISTAS Point Source Inventory for PM_{2.5} -PRI (tons/year).

State	All Point Sources	EGUs	Non-EGUs		
AL	23,291	4,113	19,178		
FL	46,148	15,643	30,504		
GA	22,401	4,939	17,462		
KY	14,173	2,802	11,372		
MS	11,044	1,138	9,906		
NC	26,998	16,498	10,500		
SC	27,399	17,154	10,245		
TN	39,973	12,166	27,807		
VA	12,771	2,606	10,165		
WV	15,523	2,210	13,313		
Total	239,721	79,269	160,452		

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-10 Base G / B&F 2002 VISTAS Point Source Inventory for NH₃ (tons/year).

State	All Point Sources	EGUs	Non-EGUs
AL	2,200	317	1,883
FL	1,657	234	1,423
GA	3,697	83	3,613
KY	1,000	326	674
MS	1,359	190	1,169
NC	1,234	54	1,180
SC	1,553	142	1,411
TN	1,817	204	1,613
VA	3,230	127	3,104
WV	453	121	332
Total	18,200	1,798	16,402

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

1.1.2 Development of Typical Year EGU inventory

VISTAS developed a typical year 2002 emission inventory for EGUs to avoid anomalies in emissions due to variability in meteorology, economic, and outage factors in 2002. The typical year inventory represents the five year (2000-2004) period and was used to determine the regional haze reasonable progress goals. Actual 2002 emissions were used when comparing the CMAQ modeling results to the 2002 measurements in the model performance evaluation. A detailed discussion of how the actual and typical year EGU inventories were used for modeling is contained in the *Technical Support Document for VISTAS Emissions and Air Quality Modeling to Support Regional Haze State Implementation Plans* located on the VISTAS web site (http://www.vistas-sesarm.org)

Data from EPA's CAMD were used to develop normalization factors for producing a 2002 typical year inventory for EGUs. We used the ratio of the 2000-2004 average heat input and the 2002 actual heat input to normalize the 2002 actual emissions. MACTEC obtained data from EPA's CAMD for utilities regulated by the Acid Rain program. Annual data for the period 2000 to 2004 were obtained from the CAMD web site (www.epa.gov/airmarkets). The parameters available were the SO_2 and NO_x emission rates, heat input, and operating hours. We used the actual 2002 heat input and the average heat input for the 5-year period from 2000-2004 as the normalization factor, as follows:

Normalization Factor: 2000-2004 average heat input 2002 actual heat input

If the unit did not operate for all five years, then the 2000-2004 average heat input was calculated for the one or two years in which the unit did operate. For example, if the unit operated only during 2002, then the normalization factor would be 1.0. The annual actual emissions were multiplied by the normalization factor to determine the typical emissions for 2002, as follows:

Typical Emissions = 2002 actual emissions x Normalization Factor

After applying the normalization factor, some adjustments were needed for special circumstances. For example, a unit may not have operated in 2002 and thus have zero emissions. If the unit had been permanently retired prior to 2002, then we used zero emissions for the typical year. If the unit had not been permanently retired and would normally operate in a typical year, then we used the 2001 (or 2000) heat input and emission rate to calculate the typical year emissions.

The Southern Company provided typical year data for their sources. Hourly emissions data for criteria pollutants were provided. MACTEC aggregated the hourly emissions into annual values. Further documentation of how Southern Company created the typical year inventory for their

units can be found in *Developing Southern Company Emissions and Flue Gas Characteristics* for VISTAS Regional Haze Modeling (April 2005, presented at 14th International Emission Inventory Conference http://www.epa.gov/ttn/chief/conference/ei14/session9/kandasamy.pdf). Since Southern Company only supplied filterable particulate emissions, we ran the PM₁₀/PM_{2.5} augmentation routine to calculate annual emission estimates for PM₁₀-PRI and PM_{2.5}-PRI. The Southern Company typical year data were used for Southern Company sources in Alabama, Florida, and Mississippi. Georgia EPD elected to use the typical year normalization factor derived from the CAMD data instead of the Southern Company typical year data (as was used in the Base F inventory).

The final step was to replace the 2002 actual emissions with the 2002 typical year data described above. MACTEC provided the raw data and results of the typical year calculations in a spreadsheet for S/L agency review and comment. Any comments made were incorporated into the Base G inventory.

Table 1.1-11 summarizes emissions by State and pollutant for the actual 2002 EGU inventory and the typical year EGU inventory. For the entire VISTAS region, actual 2002 SO₂ emissions were about 1.6 percent higher than the typical year emissions. The differences on a state-be-state basis ranged from actual emissions being 2.3 percent lower in Kentucky to 10.9 percent higher in Mississippi. For the entire VISTAS region, actual 2002 NO_x emissions were about 1.7 percent lower than the typical year emissions. The differences on a state-be-state basis ranged from actual emissions being 1.6 percent lower in Kentucky to 6.3 percent higher in Mississippi.

Table 1.1-11 Comparison of SO₂ and NO_x Emissions (tons/year) for EGUs.

	SO ₂ En	nissions (tons/yea	ar)	NO _x Er	nissions (tons/yea	ar)
State	Actual 2002	Typical 2002	Percentage Difference	Actual 2002	Typical 2002	Percentage Difference
AL	447,828	423,736	5.4	161,038	154,704	3.9
FL	453,631	444,383	2.0	257,677	255,678	0.8
GA	514,952	517,633	-0.5	147,517	148,126	-0.4
KY	484,057	495,153	-2.3	198,817	201,928	-1.6
MS	67,429	60,086	10.9	43,135	40,433	6.3
NC	477,990	478,489	-0.1	151,854	148,812	2.0
SC	206,399	210,272	-1.9	88,241	88,528	-0.3
TN	334,151	320,146	4.2	157,307	152,137	3.3
VA	241,204	233,691	3.1	86,886	85,081	2.1
WV	516,084	500,381	3.0	230,977	222,437	3.7
Total	3,743,725	3,683,968	1.6	1,523,449	1,497,864	1.7

Note: a negative percentage difference indicates actual emissions are less than the typical year emissions.

1.2 Area Sources

This section details the development of the Base G 2002 base year inventory for area sources. There are three major components of the area source sector of the inventory. The first component is the "typical" year fire inventory. Version 3.1 of the VISTAS base year fire inventory provided actual 2002 emissions estimates. Since fire emissions are not easily grown or projected, in order to effectively represent fires in both the base and future year inventories, VISTAS determined that a typical year fire inventory was necessary. Development of the "typical" year fire inventory covered wildfire, prescribed burning, agricultural fires and land clearing fires. The first part of this section of the report discusses the development of the typical year fire inventory. The methodology provided in that section is identical to the documentation provided for Base F since the "typical" year inventory was developed as part of the Base F development effort. The major change in Base G for the fire component of the inventory was the development of projection year inventories that represent alternatives to the "typical" year inventory. These alternative projections incorporated projected changes in the acreage burned for prescribed fires on Federal lands. These projections are an augmentation of the "typical" year inventory.

The second component of the area source inventory was the incorporation of data submitted by the VISTAS States to the United States Environmental Protection Agency (EPA) as part of the CERR. Work on incorporating the CERR data into the revised base year involved: 1) obtaining the data from EPA, 2) evaluating the emissions and pollutants reported in order to avoid double counting and 3) backfilling from the existing VISTAS 2002 base year inventory for missing sources/pollutants. The processes used to perform those operations are described in the second portion of this section. That work was performed as part of the Base F inventory effort. In general no changes to that method were made as part of the Base G inventory updates. The methods used for the Base F inventory development effort using the CERR submittals have been maintained in this document. Where necessary, additional documentation has been added to 1) reflect changes that resulted from VISTAS States review of the Base F inventory and the incorporation of those changes into Base G, 2) changes made to how certain sources were estimated or 3) addition of new sources not found in Base F.

The final component of the area source inventory was related to the development of NH₃ emission estimates for livestock and fertilizers and paved road PM emissions. For the NH₃ emission estimates for livestock and fertilizers we used version 3.6 of the Carnegie Mellon University (CMU) NH₃ model. For the paved road PM emissions, we used the most recent estimates developed by EPA as part of the National Emission Inventory (NEI) development effort. EPA had developed an improved methodology for estimating paved road emissions so those values were substituted directly into the inventory after receiving consensus from all of the VISTAS States to perform the replacement. Details on these methods are provided in the third

portion of this section of the document. That section is virtually identical to that from the Base F inventory document as there were only a couple of changes to the ammonia portion of the inventory and some updates to all fugitive dust categories including paved roads on a global basis between Base F and Base G.

Finally, quality assurance steps for each component of the area source inventory are discussed.

1.2.1 Development of a "typical" year fire inventory

Typical year fire emissions were developed starting from the actual fire acreage data and emission calculated for each VISTAS State. The table below shows the data submitted by each State in the VISTAS region indicating what data was received from each State for the purposes of calculating actual fire emissions.

Fire Type	AL	FL	GA	KY	MS	NC	SC	TN	VA	WV
Land Clearing	✓	✓	✓				✓			
Ag Burning	✓	✓	✓				✓			
Wildfires	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Prescribed	✓	✓	✓	✓	✓	✓	✓	✓		✓

In order to effectively characterize fire emissions in the VISTAS region, a typical (as opposed to strictly 2002 year based inventory) was required. Development of a typical year fire inventory provided the capability of using a comparable data set for both the base year and future years. Thus fire emissions would remain the same for air quality and visibility modeling in both the base and any future years. MACTEC originally proposed five different methods for developing the typical fire year to the VISTAS Fire Special Interest Work Group (SIWG) and requested their feedback and preference for developing the final typical year inventory. The method that was selected by SIWG members was to use a method similar to that used to develop an early version of a 2018 projection inventory. For that early 2018 inventory, State level ratios of acres over a longer term record (three or more years) developed for each fire type relative to 2002. The 2002 acreage was then scaled up or down based on these ratios to develop a typical year inventory. For Base F and G, the decision of the VISTAS Fire SIWG was to base the ratio on county level data for States that supplied long term fire-by-fire acreage data rather than Statelevel ratios. Where States did not supply long term fire-by-fire acreage data, MACTEC reverted to using State-level ratios. With one broad exception (wildfires) this method was implemented for all fires. MACTEC solicited long term fire-by-fire acreage data by fire type from each VISTAS State. A minimum of three or more years of data were used to develop the ratios. Those

26

data were then used to develop a ratio for each county based on the number of acres burned in each county for each fire type relative to 2002.

Thus if we had long term county prescribed fire data from a State, we developed a county acreage ratio of:

$$Ratio = \frac{\text{Long term average county level Rx acres}}{2002 \text{ actual county level Rx acreage}}$$

This ratio was then multiplied times the actual 2002 acreage to get a typical value (basically the long term average county level acres). Wherever possible this calculation was performed on a fire by fire basis. The acreage calculated using the ratio was then used with the fuel loading and emission factor values that we already had (and had been reviewed by the SIWG) to calculate emissions using the same method used for the 2002 actual values (which were previously documented). The following lists indicate which counties used the State ratios by fire type.

	Land Clearing	Ag	gricultural Fires	Pres	scribed Burning
FIPS	COUNTY	FIPS	COUNTY	FIPS	COUNTY
12086	Miami-Dade County	13063	Clayton County	13059	Clarke County
12037	Franklin County	13083	Dade County	13083	Dade County
12043	Glades County	13089	Dekalb County	13089	Dekalb County
12045	Gulf County	13097	Douglas County	13097	Douglas County
12049	Hardee County	13121	Fulton County	13121	Fulton County
12057	Hillsborough County	13135	Gwinnett County	13123	Gilmer County
12073	Leon County	13137	Habersham County	13135	Gwinnett County
12077	Liberty County	13215	Muscogee County	13139	Hall County
12081	Manatee County	13227	Pickens County	13215	Muscogee County
12095	Orange County	13241	Rabun County	13241	Rabun County
12097	Osceola County	13247	Rockdale County	13247	Rockdale County
12103	Pinellas County	13311	White County		
12115	Sarasota County				
13015	Bartow County				
13021	Bibb County				
13045	Carroll County				
13047	Catoosa County				
13057	Cherokee County				
13059	Clarke County				
13063	Clayton County				
13073	Columbia County				
13077	Coweta County				
13083	Dade County				
13089	Dekalb County				
13097	Douglas County				
13117	Forsyth County				
13121	Fulton County				
13129	Gordon County				
13135	Gwinnett County				
13137	Habersham County				
13143	Haralson County				
13147	Hart County				

27

	Land Clearing	Ag	ricultural Fires	Prescribed Burning		
FIPS	COUNTY	FIPS	COUNTY	FIPS	COUNTY	
13151	Henry County					
13169	Jones County					
13215	Muscogee County					
13237	Putnam County					
13241	Rabun County					
13291	Union County					
13311	White County					

There were three exceptions to this method.

Exception 1: Use of State Ratios for Wildfires

The first exception was that wildfires estimates were developed using State ratios rather than county ratios. This change was made after initial quality assurance of the draft estimates revealed that some counties were showing unrealistic values created by very short term data records or missing data that created unrealistic ratios. In addition, exceptionally large and small fires were removed from the database since they were felt to be atypical. For example the Blackjack Complex fire in Georgia was removed from the dataset because the number of acres burned was "atypical" in that fire. We also removed all fires less than 0.1 acres from the dataset.

Exception 2: Correction for Blackened Acres on Forest Service Lands

Following discussions with the United States Forest Service (Forest Service) (memo from Cindy Huber and Bill Jackson, dated August 13, 2004), it was determined that the acres submitted by the Forest Service for wildfires and prescribed fires represented perimeter acres rather than "blackened" acres. Thus for wildfires and prescribed fires on Forest Service lands, a further correction was implemented to correct the perimeter acre values to blackened acres. The correction was made based on the size of the fire. For prescribed fires over 100 acres in size the acreage was adjusted to be 80 percent of the initial reported value. For prescribed fires of 100 acres or less the acreage values were maintained as reported. For wildfires, all reported acreage values were adjusted to be 66 percent of their initially reported values. These changes were made to all values reported for Forest Service managed lands.

Exception 3: Missing/Non-reported data

When we did not receive data from a VISTAS State for a particular fire type, a composite average for the entire VISTAS region was used to determine the typical value for that type fire. For example, if no agricultural burning long term acreage data was reported for a particular State, MACTEC determined an overall VISTAS regional average ratio that was used to multiply

28

times the 2002 values to produce the "typical" values. This technique was applied to all fire types when data was missing.

In addition, for wildfires and prescribed burning, ratios were developed for "northern" and "southern" tier States within the VISTAS region and those ratios were applied to each State with missing data depending upon whether they were considered a "northern" or "southern" tier State. Development of "southern" and "northern" tier data was an attempt to account for a change from a predominantly pine/evergreen ecosystem (southern) to a pine/deciduous ecosystem (northern). States classified as "southern" included: AL, FL, GA, MS, and SC. States classified as "northern" included: KY, NC, TN, VA, and WV.

Finally for land clearing and agricultural fires, there are no NH₃ and SO₂ emissions. This is due to the lack of emission factors for these pollutants for these fire types.

Table 1.2-1 shows fire emissions from the original base year emission inventory (VISTAS 3.1), the actual 2002 emissions and the typical year emissions for the entire VISTAS region. The actual 2002 and typical fire emissions represent the Base F and Base G 2002 emissions. The typical emissions also represent the 2009 and 2018 emissions for all fire types with the exception of prescribed burning. Revisions made to the typical year prescribed fire emissions for 2009 and 2018 are detailed in the projection section. Also, State level Base G emissions from fires for all years can be found in the tables in Appendix A. Values for fires in those tables are "typical" year values.

Figures 1.2-1 through 1.2-4 show the State by State changes in emissions between the original 2002 base year fire inventories, the actual 2002 and the typical year inventories for carbon monoxide (CO) by fire type. Due to the relative magnitude of CO emissions compared to other criteria and PM pollutants from fires; this pollutant is normally chosen to represent the distribution of fires in the example plots.

29

Table 1.2-1 Emissions from Fires in the VISTAS Region – Comparison between Original Base Year 2002 (VISTAS 3.1), 2002 Actual and Typical Year Base G Emissions.

		СО	NH ₃	NO _x	PM ₁₀ -FIL	PM ₁₀ -PRI	PM _{2.5} -FIL	PM _{2.5} -PRI	SO ₂	VOC
Total LC	Actual (Base G)	492,409	0	14,568	62,146	62,146	62,146	62,146	0	33,799
	Typical (Base G)	675,838	0	19,995	80,598	80,598	80,598	80,598	0	46,389
	VISTAS 3.1	484,240	0	14,327	61,325	61,325	61,325	61,325	0	33,238
Total Ag	Actual (Base G)	164,273	0	903	30,958	30,958	30,385	30,385	0	21,946
	Typical (Base G)	161,667	0	903	30,465	30,465	29,892	29,892	0	21,595
	VISTAS 3.1	331,073	0	903	41,480	41,480	40,192	40,192	0	41,875
Total WF	Actual (Base G)	298,835	1,333	6,628	28,923	28,923	24,926	24,926	1,611	16,804
	Typical (Base G)	547,174	2,451	11,955	53,070	53,070	45,635	45,635	3,072	28,491
	VISTAS 3.1	275,766	1,230	6,133	26,680	26,680	23,002	23,002	1,476	15,718
Total RX	Actual (Base G)	1,678,216	7,616	36,561	168,938	168,938	145,175	145,175	9,839	78,988
	Typical (Base G)	1,635,776	7,425	35,650	164,811	164,811	141,636	141,636	9,590	76,990
	VISTAS 3.1	1,724,940	7,822	37,556	173,590	173,590	149,181	149,181	10,101	81,188

Key: LC = Land Clearing; Ag = Agricultural burning; WF = wildfires; RX = prescribed burning. Actual and Typical represent Base F and Base G (e.g., no change in methodology for Base F and Base G) for 2002.

Figure 1.2-1 CO Emissions from Agricultural Burning for the Original Base Year, 2002 Actual Base G, and 2002 Typical Base G Inventories.

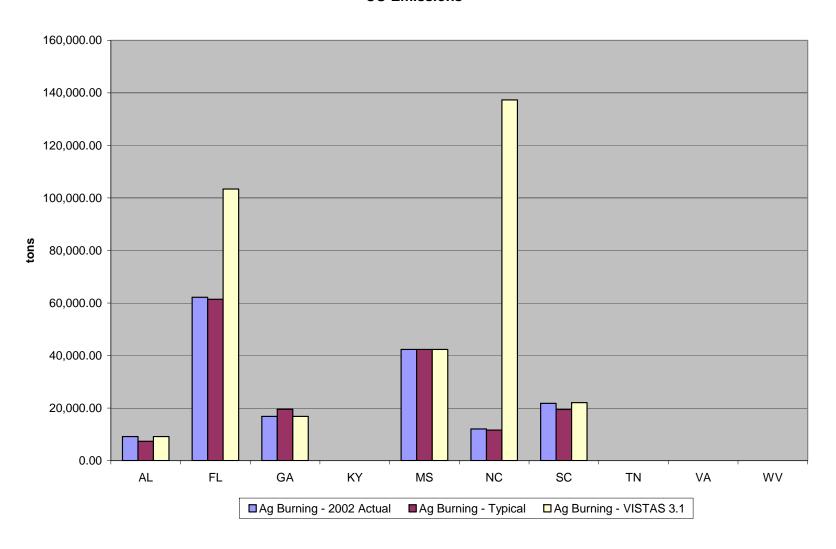


Figure 1.2-2 CO Emissions from Land Clearing Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.

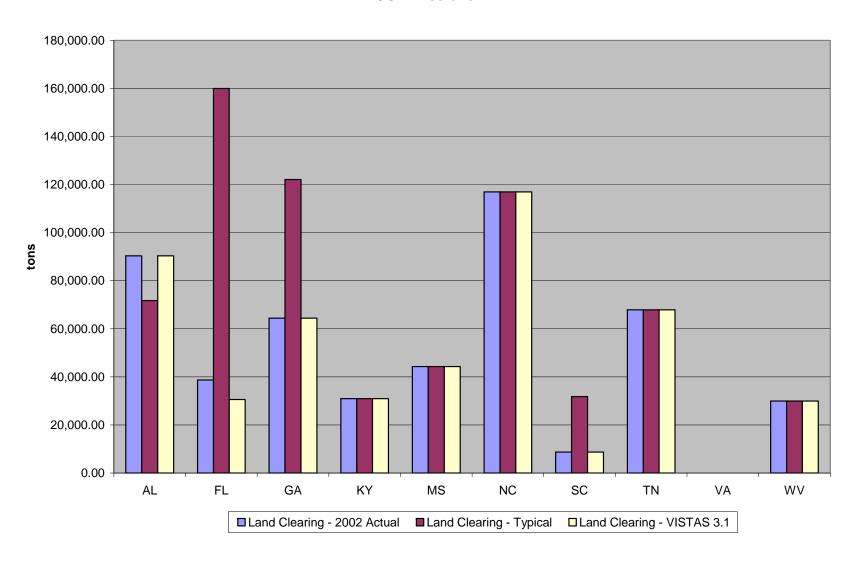


Figure 1.2-3 CO Emissions from Prescribed Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.

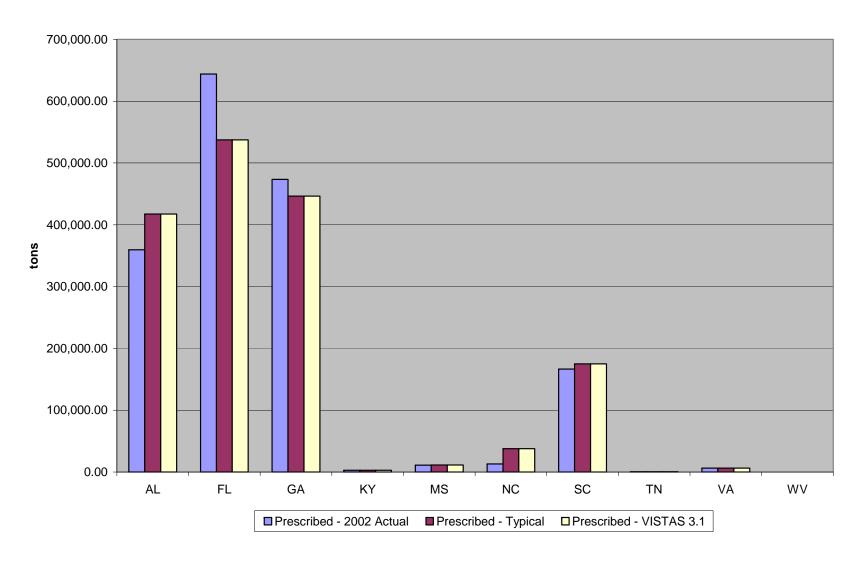
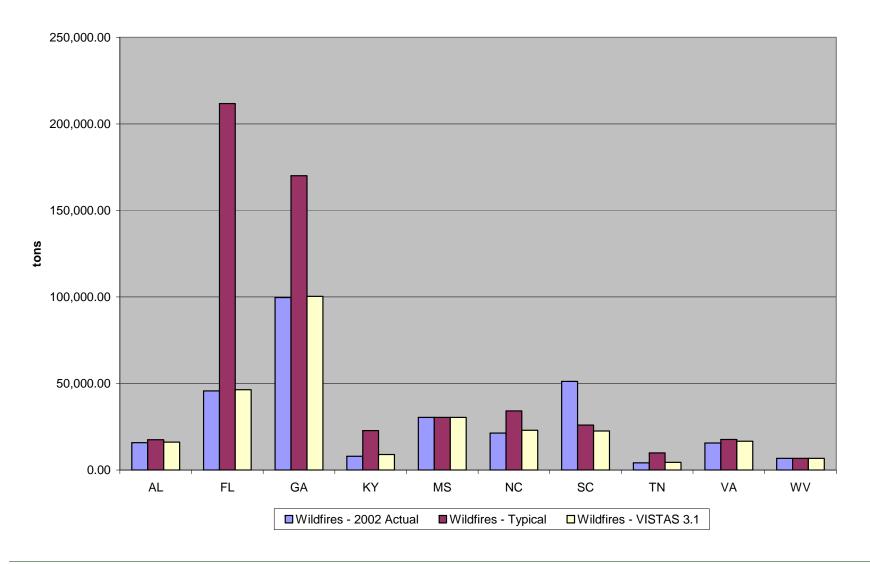



Figure 1.2-4 CO Emissions from Wildfire Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.

1.2.2 Development of non-fire inventory

The second task in preparing the area source component of the Base F and Base G 2002 base year inventory was the incorporation of data submitted by the VISTAS States to the EPA as part of the CERR. With few exceptions, Base F and Base G inventories for this component of the inventory are identical. Modifications to the Base F methodology (described below) only resulted from modifications from the VISTAS States during review of the Base F inventory. The changes made to the inventory based on these reviews are described in the last portion of this section of the report. The information presented below describes the method used to incorporate CERR data as part of Base F.

Work on incorporating the CERR data into the 2002 Base F inventory involved: 1) obtaining the data from EPA, 2) evaluating the emissions and pollutants reported in order to avoid double counting and 3) backfilling from the earlier version of the VISTAS 2002 base year inventory for missing sources/pollutants. The processes used to perform those operations are described below. This work did not include any of the fire emission estimates described above. In addition it did not include emission estimates for ammonia from agricultural and fertilizer sources. Finally it did not include PM emissions from paved roads. Each of those categories was estimated separately.

Data on the CERR submittals was obtained from EPA's Draft NEI download file transfer protocol (FTP) site where the data are stored after they've been processed for review. The data submitted in National Emission Inventory Format (NIF) was downloaded from that site. Once all of the files were obtained, MACTEC ran the files through the EPA NIF Format and Content checking tool to ensure that the files were submitted in standard NIF format and that there were no issues with those files. In a couple of cases small errors were found. For example, in one case a county FIPs code that was no longer in use was found. MACTEC contacted each VISTAS State area source contact person to resolve the issues with the files and corrections were made. Once all corrections to the native files were completed, MACTEC continued with the incorporation of the data into the VISTAS area source files.

Our general assumption was that unless we determined otherwise, the CERR submittals represented full and complete inventories. Where a State submitted a complete inventory, our plan was to simply delete the previous 2002 base year data and replace it with the CERR submittal. Prior to this replacement however, we stripped out the following emissions:

- 1. All wildfire, prescribed burning, land clearing and agricultural burning emissions submitted to EPA by the States as part of the CERR process were removed since they were to be replaced with emissions estimated using methods described earlier.
- 2. All fertilizer and agricultural ammonia emission records submitted to EPA by the States as part of the CERR process were removed. These were replaced with the estimates developed using the CMU Ammonia model.

35

3. All emissions from paved roads submitted to EPA by the States as part of the CERR process were removed. These emissions were replaced with updated emissions developed by U.S. EPA as part of their 2002 NEI development effort.

This approach was used for most State and Local emission submittals to prepare the Base F inventory. There were a few cases where alternative data were used to prepare the Base F inventory. In general, these alternatives involved submittal of alternative files to the CERR data by S/L agencies. Table 1.2-2 below summarizes the data used to prepare the Base F inventory. In general the data were derived from one of the following sources:

- 1. CERR submittal obtained from EPA FTP site as directed by VISTAS States;
- 2. State submitted file (either revised from CERR submittal or separate format);
- 3. VISTAS original 2002 base year (VISTAS version 3.1 base year file); or
- 4. EPA's preliminary 2002 NEI.

Table 1.2-2 Summary of State Data Submittals for the 2002 VISTAS Area Source
Base F Inventory

State / Local Program	Area Source Emissions Data Source			
AL	В			
FL	В			
GA	С			
KY	A			
MS	В			
NC	С			
SC	В			
TN	В			
VA	В			
WV	A/C			
Davidson County, TN	В			
Hamilton County, TN	С			
Memphis/Shelby County, TN	A			
Knox County, TN	В			
Jefferson County, AL	* so B from State			
Jefferson County, KY	В			
Buncombe County, NC	* so C from State			
Forsyth County, NC	* so C from State			
Mecklenburg County, NC	* so C from State			

36

A = VISTAS 2002 (version 3.1)

B = CERR Submittal from EPA's ftp site

C = Other (CERR or other submittal sent directly from State to MACTEC)

^{* =} No response

In order to track the sources of data in the final Base F and Base G NIF files, a field was added to the NIF format files developed for VISTAS to track each data source. A field named Data_Source was added to the EM table. A series of codes were added to this field to mark the source of each emissions value in the Base F and Base G inventories. Values in this field are detailed in Table 1.2-3.

Table 1.2-3 Data Source Codes and Data Sources for VISTAS 2002 Base F Area Source Emissions Inventory.

Data Source Codes	Data Source
Base	F Codes
CMU Model	CMU Ammonia model v 3.6
E-02-X or E-99-F or L-02-X or S-02-X	EPA CERR submittal (from FTP site)
EPA Paved	EPA Paved Road emissions estimates
EPAPRE02NEI	EPA Preliminary 2002 NEI
STATEFILE	State submitted file
VISTBASYR31	VISTAS 2002 Base Year version 3.1
VISTRATIO	Developed from VISTAS Ratios (used only for missing pollutants)
Additional	Base G Codes
ALBASEGFILE	Base G update file provided by AL
NCBASEGFILE	Base G update file provided by NC
OTAQRPT	Portable Fuel Container Emissions from OTAQ Report
STELLA	Revised data provided by VISTAS EI Advisor Greg Stella
VABASEGFILE	Base G update file provided by VA
VAStateFile	Revisions/additions to Base G update file provided by VA

Most States submitted complete inventories for Base F. Virginia's inventory required a two stage update. Virginia's CERR submittal only contained ozone precursor pollutants (including CO). For Virginia, MACTEC's original plan was to maintain the previous 2002 VISTAS base year emissions for non-ozone pollutants and then do a simple replacement for ozone pollutants. However during the QA phase of the work, MACTEC discovered that there were categories that had ozone precursor or CO emissions in the submittal that weren't in the original 2002 VISTAS base year inventory that should have PM or SO₂ emissions. For those records, MACTEC used an

37

emissions ratio to build records for emissions of these pollutants. Data for Virginia PM and SO_2 emissions were generated by developing SCC level ratios to NO_x from the VISTAS 2002 base year inventory (version 3.1) or from emission factors and then calculating the emissions based on that ratio.

1.2.3 2002 Base G inventory updates

After the Base F inventory was submitted and used for modeling, VISTAS States were provided an opportunity for further review and comment on the Base F inventory. As a result of this review and comment period, several VISTAS States provided revisions to the Base F inventory.

In addition to and as an outgrowth of some of the comments provided by the States during the review process, some of the changes made to the inventory were made globally across the entire VISTAS region. This section discusses the specific State changes followed by the global changes made to the area source component of the inventory for all VISTAS States.

1.2.3.1 Changes resulting from State review and comment

<u>Alabama</u>

Alabama suggested several changes and had questions concerning a few categories in the Base F inventory. The changes/questions were:

1. For Source Classification Code (SCC) 2102005000 (Industrial Boilers: Residual Oil) and SCC 2103007000 (Institutional/Commercial Heating: Liquefied Petroleum Gas) the Alabama noted that the Base F VISTAS inventory had values for NO_x , VOC and CO for the State, but no values for SO_2 , PM_{10} or $PM_{2.5}$.

MACTEC evaluated this information and found that there were actually emissions for two counties in AL for that SCC that had either SO₂ and/or PM emissions. The data used to develop the 2002 Base F inventory for AL came from the preliminary 2002 CERR submittals (see above) which should have included SO₂ and PM but did not except for two counties. According to MACTEC's protocol for use of these files, the files received from EPA were to be used "as is" unless the States provided comments during the Base F comment period to correct the CERR submittal. No comments were received from AL on the CERR submittal used for Base F. For 2002 Base G, AL provided an updated database file for these SCCs for all counties in the State that provided revised values for emissions and included SO₂ and PM. The revised file was used to update the Base F data for Base G.

2. AL noted that the Base F inventory included SCC 2401002000 (Solvent Utilization, Surface Coating, Architectural Coatings - Solvent-based, Total: All Solvent Types) and 2401003000 (Solvent Utilization, Surface Coating,

Architectural Coatings - Water-based, Total: All Solvent Types) as well as SCC 2401001000 (Solvent Utilization, Surface Coating, Architectural Coatings, Total: All Solvent Types). This resulted in double counting of the emissions for this category. AL suggested removal of the breakdown SCCs and use of the total SCC.

MACTEC deleted records for the breakdown SCCs and retained the total all solvents SCC emissions.

3. AL found the SCCs listed below missing from the Base F VISTAS inventory.

	VOC	
SCC	Emissions	SCC Description
2401025000	1139.91	Surface Coatings: Metal Furniture, all coating types
2401030000	425.27	Surface Coatings: Paper, all coating types
2401065000	344.08	Surface Coatings: Electronic and Other Electrical, all coating
		types
2430000000	504.29	Solvent Utilization, Rubber/Plastics, All Processes, Total: All
		Solvent Types
2440020000	3043.78	Solvent Utilization, Miscellaneous Industrial, Adhesive
		(Industrial) Application, Total: All Solvent Types
Total for AL	5457.32	

MACTEC found that the emissions for these SCCs were included in the Base F inventory, but with slightly different total emissions. AL provided an updated county-level emissions file for use in updating the Base G inventory. That file was used to update the NIF records for AL for those SCCs.

4. AL noted that emissions in the Base F inventory were found for SCC 2465000000 and SCCs 2465100000, 2465200000, 2465400000, 2465600000, and 2465800000. These last five SCCs represent a subset of the emissions in the 246500000 SCC resulting in potential double counting of emissions.

MACTEC deleted all emissions associated with the Total SCC 2465000000 and retained the subset SCCs for the Base G inventory.

<u>Florida</u>

Florida provided comments indicating that they felt that emissions from the following sources and counties were too high, especially for CO and PM and were likely zero:

39

- motor vehicle fire Palm Beach County
- woodstoves Miami Dade, Hillsborough, Orange, Polk, Ft Myers, Pasco and Sarasota Counties
- fireplaces Miami Dade and Hillsborough Counties

Emissions from these sources in the counties specified were set to zero by MACTEC for the Base G inventory.

North Carolina

North Carolina provided corrected emission files for 2002 Base F. A text file with emission values was provided and used to update the Base F emissions to Base G. The updated emissions were applied directly to the Base F NIF file. The file provided was similar to the "EM" NIF table. An update query was used to update the data supplied in the text file to the Access database NIF file. All changes were implemented.

South Carolina

South Carolina had two issues concerning the Base F inventory. These issues related to 1) additional SCCs that were in BASE F 2009 and 2018, but not in 2002 Base F and 2) SCCs that were in the U.S. EPA 2002 NEI inventory, but not in the VISTAS 2002, 2009, or 2018 Base F inventory.

MACTEC investigated the additional SCCs found in 2009 and 2018 Base F and found that the SCCs actually were not missing in the 2002 Base F inventory but only had emissions for PM. Thus the emissions were maintained as they were provided in Base F.

With respect to the SCCs that were found in the U.S. EPA 2002 NEI, MACTEC investigated and found that they were not included in the Base F inventory because they were not included in the 2002 CERR submittal used to produce the Base F updates. The SCCs were apparently added by EPA later in the NEI development process. In addition, MACTEC also evaluated whether or not the SCCs were found in other VISTAS States Base F inventories. MACTEC found that some States included them and some did not, there was no consistency between the States. MACTEC also found that typically emissions for these SCCs were low in emissions, generally with emissions of only a few tons to tens of tons per year. The decision was made with South Carolina concurrence not to add these SCCs to the Base G inventory. These SCCs were: 210205000, 2102011000, 2103007000, 2103011000, 2104007000, 2104011000, 2302002100, 2302002200, 2302003100, 2302003200, 2610000500, 2810001000, and 281001500.

Virginia

Virginia provided an updated 2002 base year emissions file. The data in that file were used to update the Base F inventory emission values to those for Base G. In addition, Virginia provided information on several source categories that required controls for future year projections since the sources were located in counties/cities in northern Virginia and were subject to future year Ozone Transport Commission (OTC) regulations. MACTEC added in the base year control levels to the Base G inventory file for these categories so that they could be estimated correctly in future years. The controls added were for mobile equipment repair/refinishing sources, architectural and industrial maintenance coating sources, consumer products sources, and solvent metal cleaning sources. Minor errors were found in some entries for the initial file provided and VA provided a revised file with corrections and minor additions.

1.2.4 Ammonia and paved road emissions

The final component of the Base F inventory development was estimation of NH₃ emission estimates for livestock and fertilizers and paved road PM emissions. For the NH₃ emission estimates for livestock and fertilizers we used version 3.6 of the CMU NH₃ model (http://www.cmu.edu/ammonia/). Results from this model were used for all VISTAS States. The CMU model version 3.6 was used in large part because it had been just recently been updated to include the latest (2002) Census of Agriculture animal population statistics. Prior to inclusion of the CMU model estimates, MACTEC removed any ammonia records for agricultural livestock or fertilizer emissions from the VISTAS 2002 initial base year inventory. MACTEC also generated emissions from human perspiration and from wildlife using the CMU model and added those emissions for each State.

For the Base G ammonia inventory, MACTEC removed all wildlife and human perspiration emissions. VISTAS decided to remove these emissions from the inventory. Human perspiration was dropped due to a discrepancy in the units used for the emission factor that was not resolved prior to preparing the estimates and wildlife was dropped because VISTAS felt the activity data was too uncertain. Thus all emissions from these two categories were deleted in the Base G 2002 inventory.

For the paved road PM Base F emissions, we used the most recent estimates developed by EPA as part of the NEI development effort (Roy Huntley, U.S. EPA, email communication, 8/30/2004). EPA had developed an improved methodology for estimating paved road emissions for 2002 and had used that method to calculate emissions for that source category. MACTEC obtained those emissions from EPA and those values were substituted directly into the inventory after receiving consensus from all of the VISTAS States to perform the replacement. These files were obtained in March of 2005 in NIF format from the EPA FTP site.

For the Base G emissions, modifications were made to the emissions estimates based on changes suggested by work of the Western Regional Air Partnership and U.S. EPA. Details of these changes are provided below in the section on global changes made as part of the Base G inventory updates.

1.2.5 Global Changes Made for Base G

There were three global changes made between the Base F and the Base G inventory (beyond the removal of wildlife and human perspiration NH₃ emissions). These changes were:

- 1. Removal of Stage II emissions from the area source inventory and inclusion in the mobile sector of the inventory,
- 2. Adjustment of fugitive dust PM_{2.5} emissions, and
- 3. Addition of emissions from portable fuel containers.

As part of the Base F review process, several VISTAS States had expressed surprise that the Stage II refueling emission estimates were in the area source component of the inventory. This decision had been made with SIWG agreement early on in the inventory development process because 1) some States had included it in their CERR submittals and 2) because the non-road and on-road mobile estimates had differing activity factor units and could not be easily combined. However for Base G, the VISTAS States all agreed, especially in light of the different ways in which the emissions were reported in the CERR, to remove the Stage II refueling emissions from the area source inventory and include them in the non-road and on-road sectors. Thus all records related to Stage II refueling were removed from the area source component of the Base G inventory.

PM_{2.5} emissions from several fugitive dust sources were also updated for Base G. The Western Regional Air Partnership (WRAP) and U.S. EPA had been investigating overestimation of the PM_{2.5} / PM₁₀ ratio in several fugitive dust categories and U.S. EPA was in the process of making revisions to AP-42 for several categories during preparation of the Base G inventory. Based on data received from U.S. EPA, VISTAS decided to revise the PM_{2.5} emissions from construction, paved roads and unpaved road sources. PM_{2.5} emissions in Base F were multiplied by 0.67, 0.6, and 0.67 for construction, paved roads and unpaved roads respectively to produce the values found in Base G. No changes were made to PM₁₀, only to PM_{2.5}.

Finally, as part of Virginia's comments on the Base F inventory, emissions from portable fuel containers were mentioned as being absent from the inventory. MACTEC was tasked with developing a methodology that could be used to add these emissions to the Base G area source inventory. In investigating options for a method of estimating emissions, MACTEC found that the U.S. EPA had prepared a national inventory of emissions by State for portable fuel

containers. Data on emissions from this source prepared by U.S. EPA were presented in, "Estimating Emissions Associated with Portable Fuel Containers (PFCs), Draft Report, Office of Transportation and Air Quality, United States Environmental Protection Agency, Report # EPA420-D-06-003, February 2006".

State-level emission estimates for 2005 derived from Appendix Table B-2 of the PFCs report were used as the starting point for developing 2002 county-level emissions estimates. State emissions were derived from that table by using all of the emission estimates in that table with the exception of values for vapor displacement and spillage from refueling operations. Those components of the State emissions were left out of the State-level emissions to avoid double counting refueling emissions in the non-road sector. For the purposes of 2002 emission estimates for Base G, the 2005 values were assumed equal to 2002 values.

The 2005 State-level estimates minus the refueling component from Appendix Table B-2 of the report were summed for each State and then allocated to the county-level. The county-level allocation was based on the fuel usage information obtained from the NONROAD 2005 model runs conducted as part of the Base G inventory development effort (see the 2002 base year Base G non-road section below). MACTEC used the spillage file from the NONROAD model (normally located in the DATA\EMSFAC directory in a standard installation of NONROAD) to determine the SCCs that used containers for refueling. The spillage file contains information by SCC and horsepower indicating whether or not the refueling occurs using a container or a pump. All SCC and horsepower classes using containers were extracted from the file and cross-referenced with the fuel usage by county for those SCC/horsepower combinations from the appropriate year model runs (2002, 2009 or 2018). Then the fuel usages by county from the NONROAD 2005 runs prepared for VISTAS were summed for those SCCs by county. The county level fuel use was then divided by the State total fuel use for the same SCCs to determine the fraction of total State fuel usage and that fraction was used to allocate the State-level emissions to the county.

1.2.6 Quality Assurance steps

Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, and to ensure that a full and complete inventory was developed for VISTAS. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the area source component of the 2002 Base F inventory:

1. All CERR and NIF format State supplied data submittals were run through EPA's Format and Content checking software.

- 2. SCC level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources.
- 3. Tier comparisons (by pollutant) were developed between the revised 2002 base year inventory and the previous (version 3.1) base year inventory.
- 4. Fields were either added or used within each NIF data table to track the sources of data for each emission record.
- 5. Data product summaries were provided to both the VISTAS Emission Inventory Technical Advisor and to Area Source and Fires SIWG representatives for review and comment. Changes based on these comments were implemented in the files.
- 6. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from 1.0 to 2.0. A minor change would cause a version number to go from 1.0 to 1.1. Minor changes resulting from largely editorial changes would result in a change from 1.00 to 1.01.

In addition, for the fires inventory, data related to fuel loading and fuel consumption was reviewed and approved by the VISTAS Fire SIWG to ensure that values used for each type of fire and each individual fire were appropriate. Members of the VISTAS Fire SIWG included representatives from most State Divisions of Forestry (or equivalent) as well as U.S. Forest Service and National Park Service personnel.

For Base G, similar QA steps to those outlined above for Base F were undertaken. In addition, all final NIF files were checked using the EPA Format and Content checking software and summary information by State and pollutant were prepared comparing the Base F and Base G inventories.

1.3 Mobile Sources

This section describes the revisions made to the initial 2002 VISTAS Base Year emission inventory on-road mobile source input files. For this work actual emission estimates were not made, rather data files consistent with Mobile Emissions Estimation Model Version 6 (MOBILE6) were developed and provided to the VISTAS modeling contractor. These input data files were then run during the VISTAS modeling to generate on-road mobile source emissions using episodic and meteorological specific conditions configured in the sparse matrix operator Kernel Emissions modeling system (SMOKE) emissions processor.

During initial discussions with the VISTAS Mobile Source SIWG, some States indicated a desire to use CERR mobile source emissions data in place of the VISTAS 2002 inventories generated by E.H. Pechan and Associates, Inc. (the initial VISTAS 2002 Base Year inventory files).

However, the CERR emissions data by itself were not sufficient for an inventory process that includes both base and future year inventories. MACTEC needed to be able to replicate the CERR data rather than simply obtain CERR emissions estimates. The reason for this is that only input files were being prepared to provide revised 2002 estimates during the VISTAS modeling process, rather than the actual emission estimates and that the 2002 input data files would be used as a starting point for the projected emission estimates. This meant that the appropriate vehicle miles traveled (VMT), MOBILE6, and/or NONROAD model input data needed to be provided. If these data were provided with the CERR emissions estimates we used it as the starting point for revision of the 2002 Base Year inventory. However MACTEC did not have access to the on-road mobile CERR submissions from EPA, so re-submittal of these data directly to MACTEC was requested in order to begin compiling the appropriate input file data.

In those cases where States did not provide CERR on-road mobile source input data files, our default approach was to maintain the data input files and VMT estimates for the initial 2002 Base Year inventory prepared by Pechan.

1.3.1 Development of on-road mobile source input files and VMT estimates

Development of the 2002 on-road input files and VMT was a multi-step process depending upon what the State mobile source contacts instructed us to use as their data. Information provided below provides incremental revisions made to on-road mobile source inventories or inputs in series from one inventory version to the next. In general the process involved one of three steps from the original 2002 on-road mobile source data.

Base F Revisions

- 1. The first step was to evaluate the initial 2002 base year files and make any non-substantive changes (i.e., changes only to confirm that the files posted for 2002 by Pechan were executable and that all the necessary external files needed to run MOBILE6 were present). This approach was taken for AL, FL, GA, MS, SC, and WV. For these States the determination was made that the previous files would be okay to use as originally prepared. For SC, the VMT file was updated, but that did not affect the MOBILE6 input files.
- 2. For other States, modification to the input files was required. The information below indicates what changes were made for other States in the VISTAS region.

KY – For Kentucky, the Inspection and Maintenance (I/M) records in the input files for Jefferson County were updated in order to better reflect the actual I/M program in the Louisville metropolitan area.

NC - Substantial revisions were implemented to these input files based on input from the State. The modifications necessary to reflect the desires of the State led to complete replacement of the previous input files. Among the changes made were:

- The regrouping of counties (including the movement of some counties from one county group to another and the creation of new input files for previously grouped counties).
 There were originally 32 input files; after the changes there were 49. The pointer file was corrected to reflect these changes.
- Travel speeds were updated in over 3000 scenarios.
- All I/M records were updated.
- All registration distributions were updated.
- I/M VMT fractions were updated (which only affected the pointer file).
- VMT estimates were updated (which has no direct effect on the MOBILE6 input files but does ultimately affect emissions).
- 3. VA and TN For these States, new input files were provided due to substantive changes that the State wanted to make relative to the 2002 initial base year input files. In addition, revised VMT data were developed for each State.

Base G Revisions

For the production of the VISTAS 2002 Base G inventory, VISTAS states reviewed the Base F inputs, and provided corrections, updates and supplemental data.

For all states modeled, the Base G updates include:

Adding Stage II refueling emissions calculations to the SMOKE processing.

Revised the HDD compliance for all states. (REBUILD EFFECTS = .1)

In addition to the global changes, individual VISTAS states made the following updates:

KY – updated VMT and M6 input values for selected counties.

NC – revised VMT and registration distributions.

TN - revised VMT and vehicle registration distributions for selected counties.

VA – revised winter RFG calculations in Mobile 6 inputs.

WV - revised VMT input data.

AL, FL, and GA did not provide updates for Base G and therefore the Base F inputs were used for these States.

1.3.1.1 Emissions from on-road mobile sources

The MOBILE6 module of the Sparse Matrix Operator Kernel Emissions (SMOKE) model was used to develop the on-road mobile source emissions estimates for CO, NO_X, NH₃, SO₂, PM, and VOC emissions. The MOBILE6 parameters, vehicle fleet descriptions, and VMT estimates are combined with gridded, episode-specific temperature data to calculate the gridded, temporalized emission estimates. The MOBILE6 emissions factors are based on episode-specific temperatures predicted by the meteorological model. Further, the MOBILE6 emissions factors model accounts for the following:

- Hourly and daily minimum/maximum temperatures;
- Facility speeds;
- Locale-specific inspection/maintenance (I/M) control programs, if any;
- Adjustments for running losses;
- Splitting of evaporative and exhaust emissions into separate source categories;
- VMT, fleet turnover, and changes in fuel composition and Reid vapor pressure (RVP).

The primary input to MOBILE6 is the MOBILE shell file. The MOBILE shell contains the various options (e.g. type of inspection and maintenance program in effect, type of oxygenated fuel program in effect, alternative vehicle mix profiles, RVP of in-use fuel, operating mode) that direct the calculation of the MOBILE6 emissions factors. The shells used in these runs were based on VISTAS Base F modeling inputs as noted in the previous section.

For this analysis, the on-road mobile source emissions were produced using selected weeks (seven days) of each month and using these days as representative of the entire month. This selection criterion allows for the representation of day-of-the-week variability in the on-road motor vehicles, and models a representation of the meteorological variability in each month. The modeled weeks were selected from mid-month, avoiding inclusion of major holidays.

47

The parameters for the SMOKE runs are as follows:

Episodes:

2002 Initial Base Year, and

2009 and 2018 Future years, using 2009/2018 inventories and modeled using the same meteorology and episode days as 2002.

Episode represented by the following weeks per month:

January 15-21

February 12-18

March 12-18

April16-22

May 14-20

June 11-17

July 16-22

August 13-19

September 17-23

October 15-21

November 12-18

December 17-23

Days modeled as holidays for annual run:

New Year's Day - January 1

Good Friday – March 29

Memorial Day – May 27

July 4th

Labor Day – September 2

Thanksgiving Day – November 28, 29

Christmas Eve – December 24

Christmas Day – December 25

Output time zone:

Greenwich Mean Time (zone 0)

Projection:

Lambert Conformal with Alpha=33, Beta=45, Gamma=-97, and center at (-97, 40).

Domain:

36 Kilometer Grid: Origin at (-2736, -2088) kilometers with 148 rows by 112 columns and 36-km square grid cells.

12 Kilometer Grid: Origin at (108, -1620) kilometers with 168 rows by 177 columns and 12-km square grid cells.

CMAQ model species:

The CMAQ configuration was CB-IV with PM. The model species produced were: CO, NO, NO₂, ALD₂, ETH, FORM, ISOP, NR, OLE, PAR, TERPB, TOL, XYL, NH₃, SO₂, SULF, PEC, PMFINE, PNO₃, POA, PSO₄, and PMC.

48

Meteorology data:

Daily (25-hour). SMOKE requires the following five types of MCIP outputs: (1) Grid cross 2-d, (2) Grid cross 3-d, (3) Met cross 2-d, (4) Met cross 3-d, and (5), Met dot 3-d.

The reconstructed emissions based on the representative week run were calculated by mapping each day of week (Mon, Tue, Wed, etc.) from the modeled month to the same day of week generated in the representative week run. In the case of holidays, these days were mapped to representative week Sundays. An example of this mapping for the January episode is presented in Table 1.3-1 below. Note that although the emissions were generated for individual calendar years (2002, 2009 and 2018) the meteorology is based on 2002.

Table 1.3-1 Representative day mapping for January episode

(Highlighted representative week)

Modeled	Representative	Modeled	Representative	Modeled	Representative
Date	Day	Date	Day	Date	Day
1/1/2002*	1/20/2002	1/11/2002	1/18/2002	1/22/2002	1/15/2002
1/2/2002	1/16/2002	1/12/2002	1/19/2002	1/23/2002	1/16/2002
1/3/2002	1/17/2002	1/13/2002	1/20/2002	1/24/2002	1/17/2002
1/4/2002	1/18/2002	1/14/2002	1/21/2002	1/25/2002	1/18/2002
1/5/2002	1/19/2002	1/15/2002	1/15/2002	1/26/2002	1/19/2002
1/6/2002	1/20/2002	1/16/2002	1/16/2002	1/27/2002	1/20/2002
1/7/2002	1/21/2002	1/17/2002	1/17/2002	1/28/2002	1/21/2002
1/8/2002	1/15/2002	1/18/2002	1/18/2002	1/29/2002	1/15/2002
1/9/2002	1/16/2002	1/19/2002	1/19/2002	1/30/2002	1/16/2002
1/10/2002	1/17/2002	1/20/2002	1/20/2002	1/31/2002	1/17/2002
		1/21/2002	1/21/2002		
* Modeled ho	liday				

1.3.2 Development of non-road emission estimates

Emissions from non-road sources were estimated in two steps. First, emissions for non-road sources that are included in the NONROAD model were developed. Second, emissions from sources not included in the NONROAD model were estimated. The sections below detail the procedures used for each group of sources.

1.3.2.1 Emissions from NONROAD model sources

An initial 2002 base year emissions inventory for non-road engines and equipment covered by the EPA NONROAD model was prepared for VISTAS in early 2004. The methods and assumptions used to develop the inventory are presented in a February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc. Except as otherwise stated below, all

aspects of the preparation methodology documented in that report continue to apply to the revised NONROAD modeling discussed in this section.

Revisions to the initial 2002 NONROAD emissions inventory were implemented to ensure that the latest State and local data were considered, as well as to more accurately reflect gasoline sulfur contents for 2002 and correct other State-specific discrepancies. Those revisions comprise the Base F VISTAS non-road inventory. This section details the specific revisions made to the NONROAD model input files for the Base F and Base G VISTAS base year inventories, and provides insight into some key differences between the versions of the NONROAD model employed for the Base F and Base G inventories and the previous version employed for the initial 2002 base year inventory prepared by Pechan.

Revisions to the initial 2002 emissions inventory prepared by Pechan were actually implemented in two stages. An initial set of revisions was implemented in the fall of 2004. Those revisions resulted in the Base F inventory. These were followed by a second set of revisions in the spring of 2006. Those estimates produced the Base G base year inventory. To accurately document the combined effects of both sets of revisions, each set is discussed separately below. Unless otherwise indicated, all revisions implemented in Base F were carried directly into the Base G revision process without change. Thus, the inventories that resulted from the Base F revisions served as the starting point for the Base G revisions.

For Base F, three VISTAS States provided detailed data revisions for consideration in developing revised model inputs. These States were:

- 1. North Carolina
- 2. Tennessee (including a separate submission for Davidson County), and
- 3. Virginia.

The remaining seven VISTAS States indicated that the initial 2002 VISTAS input files prepared by Pechan continued to reflect the most recent data available. These States were:

- 1. Alabama,
- 2. Florida,
- 3. Georgia,
- 4. Kentucky,
- 5. Mississippi,
- 6. South Carolina, and
- 7. West Virginia.

However, it should be recognized that the NONROAD input files for *all* ten VISTAS States were updated to reflect gasoline sulfur content revisions for the Base F 2002 base year inventory (as

discussed below). The original files prepared by Pechan are available on their FTP site in the /pub/VISTAS/MOB_0104/ directory.

Before presenting the specific implemented revisions, it is important to note that the Base F 2002 base year inventory utilized a newer release of the NONROAD model than was used for the initial 2002 base year inventory (prepared by Pechan). The Base F 2002 base year inventory, as developed in spring 2004, was based on the Draft NONROAD2004 model, which was released by the EPA in May of 2004. This model is no longer available on EPA's website. The initial 2002 base year inventory (prepared by Pechan) was based on the Draft NONROAD2002a version of the model (which is also no longer available on EPA's website). Key differences between the models are as follows:

- Draft NONROAD2004 included the effects of the Tier 4 non-road engine and equipment standards (this did not impact the Base F 2002 inventory estimates, but did affect Base F future year forecasts).
- Draft NONROAD2004 included the *exhaust* emission impacts of the large spark-ignition engine standards; the evaporative impacts of these standards are *not* incorporated (this does not impact 2002 inventory estimates, but does affect future year forecasts).
- Draft NONROAD2004 included revised equipment population estimates.
- The PM_{2.5} fraction for *diesel* equipment in Draft NONROAD2004 had been updated from 0.92 to 0.97.
- Draft NONROAD2004 included revisions to recreational marine activity, useful life, and emission rates.

To the extent that these revisions affect 2002 emissions estimates, they will be reflected as differentials between the initial and Base F 2002 VISTAS base year inventories. It is perhaps important to identify that, at the time of the Base F inventory revisions; the EPA recognized the Draft NONROAD2004 model as an appropriate mechanism for SIP development. Although the model was designated as a draft update, it reflected the latest and most accurate NONROAD planning data at that time, as evidenced by the EPA's use of that version for the Tier 4 Final Rulemaking.

Prior to the Base G inventory revisions implemented in 2006, the EPA released another updated version of the NONROAD model, designated as Final NONROAD2005 (which can be downloaded from: http://www.epa.gov/OMSWWW/nonrdmdl.htm#model). This version ostensibly represents the final version of the model, although certain components of it have been updated since its first release in December 2005. For the Base G inventory developed in the first

51

half of 2006, all updates of the Final NONROAD2005 model through March 2006 are included. Key differences between Final NONROAD2005 and Draft NONROAD2004 are as follows:

- Final NONROAD2005 reflects the latest basic emission rate and deterioration data.
- Final NONROAD2005 includes emission estimates for a range of evaporative emissions categories not included in Draft NONROAD2004 (tank and hose permeation, hot soak, and running loss emissions).
- Final NONROAD2005 includes a revised diurnal emissions algorithm.
- Final NONROAD2005 includes a revised equipment scrappage algorithm.
- Final NONROAD2005 includes revised state and county equipment allocation data.
- Final NONROAD2005 allows separate sulfur content inputs for marine and land-based diesel fuel.
- Final NONROAD2005 includes revised conversion factors for hydrocarbon emissions.
- Final NONROAD2005 includes the evaporative emission impacts of the large spark-ignition engine standards (this does not impact 2002 inventory estimates, but does affect future year forecasts).

Unfortunately, due to the extensive revisions associated with Final NONROAD2005, input files created for use with Draft NONROAD2004 (e.g., Base F input files) and earlier versions of the model cannot be used directly with Final NONROAD2005 (used for Base G). This created a rather significant impact in that the VISTAS NONROAD modeling process involves the consideration of over 200 unique sets of input data. To avoid creating new input files for each of these datasets, a conversion process was undertaken wherein each of the Draft NONROAD2004 (Base F) input data files were converted into the proper format required for proper execution in Final NONROAD2005 (Base G). This process consisted of the following steps:

Revise the Draft NONROAD2004 (Base F) input files to include the following two line EPA-developed comment at the end of the input file header (this is a nonsubstantive change implemented solely for consistency with input files produced directly using Final NONROAD2005):

¹ The necessary conversions where developed by comparing substantively identical input files created using the graphical user interfaces for both Draft NONROAD2004 and Final NONROAD2005. The differences between the input files indicated the specific revisions necessary to convert existing VISTAS input files into Final NONROAD2005 format.

```
9/2005 epa: Add growth & tech years to OPTIONS packet and Counties & Retrofit files to RUNFILES packet.
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following two command lines after the "Weekday or weekend" command in the PERIOD packet:

```
Year of growth calc:
Year of tech sel :
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following command line after the "Diesel sulfur percent" command in the OPTIONS packet:

```
Marine Dsl sulfur %: 0.2638
```

Note that the value 0.2638 (2638 parts per million by weight [ppmW]) is applicable only for 2002 modeling and was accordingly revised (as described below) for both the 2009 and 2018 Base G forecast inventories. The 2638 ppmW sulfur value for 2002 marine diesel fuel was taken from the 48-State (excludes Alaska and Hawaii) tabulation presented in the April 27, 2004 EPA document "Diesel Fuel Sulfur Inputs for the Draft NONROAD2004 Model used in the 2004 Non-road Diesel Engine Final Rule." It should also be noted that this value differs by about 5 percent from the 2500 ppmW value previously used for the initial 2002 VISTAS modeling (performed by Pechan). Prior to Final NONROAD2005 (used for Base G), the NONROAD model allowed only a single diesel fuel sulfur input that was applied to both land-based and marine equipment. As documented in the February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc., a value of 2500 ppmW sulfur was used for all 2002 VISTAS NONROAD modeling. Given the ability of Final NONROAD2005 to distinguish a separate sulfur content for marine equipment and the existing EPA guidance document suggesting an appropriate marine sulfur value of 2638 ppmW for 2002, the existing modeling value of 2500 ppmW was modified (for marine equipment only).

Replace the Draft NONROAD2004 (Base F) input files RUNFILES packet command line:

```
TECHNOLOGY : c:\non-road\data\tech\tech.dat
```

with the command lines:

```
EXH TECHNOLOGY : c:\non-road\data\tech\tech-exh.dat
EVP TECHNOLOGY : c:\non-road\data\tech\tech-evp.dat
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following two command lines after the "EPS2 AMS" command in the RUNFILES packet:

```
US COUNTIES FIPS : c:\non-road\data\allocate\fips.dat
RETROFIT :
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following command line after the "Rec marine outbrd" command in the ALLOC FILES packet:

```
Locomotive NOx : c:\non-road\data\allocate\XX_rail.alo
```

Where "XX" varies across input files. For any given file, "XX" is the two digit abbreviation of the state associated with the scenario being modeled (e.g., for Alabama modeling, XX=AL).

Replace the Draft NONROAD2004 (Base F) input files EMFAC FILES packet command line:

```
Diurnal : c:\non-road\data\emsfac\diurnal.emf
```

with the eight command lines:

```
Diurnal : c:\non-road\data\emsfac\evdiu.emf

TANK PERM : c:\non-road\data\emsfac\evtank.emf

NON-RM HOSE PERM : c:\non-road\data\emsfac\evhose.emf

RM FILL NECK PERM : c:\non-road\data\emsfac\evneck.emf

RM SUPPLY/RETURN : c:\non-road\data\emsfac\evsupret.emf

RM VENT PERM : c:\non-road\data\emsfac\evvent.emf

HOT SOAKS : c:\non-road\data\emsfac\evhotsk.emf

RUNINGLOSS : c:\non-road\data\emsfac\evrunls.emfEVP
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following command line after the "PM exhaust" command in the DETERIORATE FILES packet:

```
Diurnal : c:\non-road\data\detfac\evdiu.det
```

Once revised in this format, the VISTAS non-road input files developed for use with Draft NONROAD2004 (Base F) were executable under the Final NONROAD2005 model (Base G).

The only additional revisions implemented to develop a Final NONROAD2005-based inventory (Base G) involved elimination of non-default equipment allocation files for North Carolina and West Virginia. Due to concerns about improper equipment allocation across counties under the Draft NONROAD2004 model (used for Base F), as well as for earlier versions of the NONROAD model, North Carolina had produced alternative allocation data files indicating the

number of employees in air transportation by county, the number of wholesale establishments by county, and the number of employees in landscaping services by county. For the same reason, West Virginia had produced alternative equipment allocation files indicating the number of employees in air transportation by county, the tonnage of underground coal production by county, the number of golf courses and country clubs by county, the number of wholesale establishments by county, the number of employees in logging operations by county, the number of employees in landscaping services by county, the number of employees in manufacturing operations by county, the number of employees in oil and gas drilling and extraction operations by county, and the number of recreational vehicle parks and campgrounds by county. These alternative equipment allocation files were used for all VISTAS inventory modeling conducted prior to the release of Final NONROAD2005 (i.e., through Base F). However, both North Carolina and West Virginia determined that the default allocation file revisions associated with the release of Final NONROAD2005 were appropriate to address the concerns that led to the development of the alternative allocation files. As a result, all alternative allocation file commands were removed from VISTAS NONROAD2005 (Base G) input files for North Carolina and West Virginia, so that the entire region under the Base G inventory is now modeled using the default allocation files provided with NONROAD2005.

In addition to the alternative equipment allocation files, North Carolina had previously developed an alternative seasonal adjustment file that was used for the Base F inventory in place of the default file provided with Draft NONROAD2004 (and earlier model versions). The alternative data file implemented a single change, namely reclassifying North Carolina as a southeastern state rather than a mid-Atlantic state (as identified in the default data file). Since Final NONROAD2005 continues to identify North Carolina as a mid-Atlantic state, North Carolina requested that the southeastern reclassification be continued for all NONROAD2005 modeling (Base G). To ensure that any other revisions associated with the seasonal adjustment file released with NONROAD2005 were not overlooked, the previously developed alternative seasonal adjustment file for North Carolina was scrapped and a new alternative file was created from the default seasonal adjustment file provided with Final NONROAD2005 for Base G inventory development. The alternative file, which was used for all North Carolina modeling, reclassifies North Carolina from a mid-Atlantic to a southeastern state. This represents the only non-default data file used for VISTAS NONROAD2005-based (Base G) modeling.

The remainder of this section documents all changes to the originally established VISTAS input file values as documented in the February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc. Unless specifically stated below, all values from that report continue to be used without change in the latest VISTAS modeling.

Base F Revisions:

For the initial 2002 base year inventory (developed by Pechan), all NONROAD modeling runs for VISTAS were performed utilizing a gasoline sulfur content of 339 ppmW and a diesel sulfur content of 2,500 ppmW. Although the EPA-recommended non-road diesel fuel sulfur content for 2002 is 2,283 ppmW, the 2,500 ppmW sulfur content used for the initial 2002 base year VISTAS inventory was designed to remove the effect of lower non-road diesel fuel sulfur limits applicable only in California. (The EPA recommended inputs can be found in "Diesel Fuel Sulfur Inputs for the Draft NONROAD2004 Model used in the 2004 Non-road Diesel Engine Final Rule," EPA, April 27, 2004.) This correction is appropriate and was retained for the Base F 2002 inventory. Thus, the Base F inventory continued to assume a diesel fuel sulfur content of 2,500 ppmW across the VISTAS region.

However, 339 ppmW is not the EPA recommended 2002 gasoline sulfur content for either eastern conventional gasoline areas or Federal Reformulated Gasoline (RFG) areas. The recommended sulfur content for eastern conventional gasoline is 279 ppmW year-round, while the recommended sulfur content for RFG areas is 129 ppmW during the summer season and 279 ppmW during the winter season. (Conventional gasoline and RFG sulfur contents for 2002 can be found in "User's Guide to MOBILE6.1 and MOBILE6.2, Mobile Source Emission Factor Model," EPA420-R-03-010, U.S. EPA, August 2003 [pages 149-155] (available at link at http://www.epa.gov/otaq/m6.htm) and in the source code for MOBILE6.2 at Block Data BD05.) Given the differences in the EPA-recommended values and the value used to generate the initial 2002 base year inventory, the input files for Base F for all VISTAS areas were updated to reflect revised gasoline sulfur content assumptions.

Since the VISTAS NONROAD modeling is performed on a seasonal basis, and since gasoline sulfur content in RFG areas varies with the RFG season, seasonally-specific gasoline sulfur content values were estimated for use in RFG area modeling. In addition, 25 counties in Georgia are subject to a summertime gasoline sulfur limit of 150 ppmW, so that seasonal sulfur content estimates were also estimated for these counties. The initial 2002 base year NONROAD inventory (prepared by Pechan) for these Georgia counties was based on a year-round 339 ppmW gasoline sulfur content, but that oversight was corrected in the Base F 2002 base year inventory. Based on the seasonal definitions employed in the NONROAD model, monthly sulfur contents were averaged to estimate seasonal gasoline sulfur contents as follows:

56

Month/Season	RFG Areas	Conventional Gasoline Areas	Georgia Gasoline Control Areas
March	279 ppmW	279 ppmW	279 ppmW
April	279 ppmW	279 ppmW	279 ppmW
May	129 ppmW	279 ppmW	150 ppmW
Spring	229 ppmW	279 ppmW	236 ppmW
June	129 ppmW	279 ppmW	150 ppmW
July	129 ppmW	279 ppmW	150 ppmW
August	129 ppmW	279 ppmW	150 ppmW
Summer	129 ppmW	279 ppmW	150 ppmW
September	129 ppmW	279 ppmW	150 ppmW
October	279 ppmW	279 ppmW	279 ppmW
November	279 ppmW	279 ppmW	279 ppmW
Fall	229 ppmW	279 ppmW	236 ppmW
December	279 ppmW	279 ppmW	279 ppmW
January	279 ppmW	279 ppmW	279 ppmW
February	279 ppmW	279 ppmW	279 ppmW
Winter	279 ppmW	279 ppmW	279 ppmW

Note that the seasonal data are based on simple arithmetic averages and do not consider any monthly variation in activity (and fuel sales), and that the transition between summer and winter seasons is also not considered. Additionally, the summer fuel control season is treated as though it applies from May through September, while the summer RFG season actually ends on September 15 and the Georgia fuel control season does not officially begin until June 1. This treatment is consistent with the treatment of both fuel control programs in the VISTAS on-road vehicle modeling. Each of these influences will result in some error in the estimated sulfur content estimates, but it is expected that this error is small relative to the overall correction from a year-round sulfur content estimate of 339 ppmW.

All NONROAD modeling revisions made as part of the Base F inventory preparation process are presented in Table 1.3-2. Due to more involved updates in several areas, the number of NONROAD input files as well as sequence numbers used to represent these files was also updated in a few instances (as compared to the files used to create the initial 2002 VISTAS nonroad inventory, as documented in the February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc. These structural revisions are presented in Table 1.3-3, and are provided

57

solely for the benefit of NONROAD modelers as the indicated revisions have no impact on generated emission estimates.

Table 1.3-2 Summary of Base F NONROAD Modeling Revisions

State	Revisions Implemented
AL	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
FL	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all seasons for conventional gasoline counties.
	(2) Gasoline sulfur content changed from 339 ppmW to 150 ppmW in the summer for all gasoline control counties.
GA	(3) Gasoline sulfur content changed from 339 ppmW to 236 ppmW in the spring and fall for all gasoline control counties.
	(4) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in the winter for all gasoline control counties.
	Gasoline control counties: Barrow, Bartow, Butts, Carroll, Cherokee (a), Clayton (a), Cobb (a), Coweta (a), Dawson, De Kalb (a), Douglas (a), Fayette (a), Forsyth (a), Fulton (a), Gwinnett (a), Hall, Haralson, Henry (a), Jackson, Newton, Paulding (a), Pickens, Rockdale (a), Spalding, and Walton
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all seasons for conventional gasoline counties.
	(2) Gasoline sulfur content changed from 339 ppmW to 129 ppmW in the summer for all gasoline control counties.
KY	(3) Gasoline sulfur content changed from 339 ppmW to 229 ppmW in the spring and fall for all gasoline control counties.
	(4) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in the winter for all gasoline control counties.
	Gasoline control counties: Boone, Bullitt (b), Campbell, Jefferson, Kenton, and Oldham (b)
MS	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
NC	(2) Utilize revised (i.e., local) allocation files for three equipment categories.
	(3) Utilize revised (i.e., local) seasonal activity data.
SC	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
TN	(2) Gasoline Reid Vapor Pressure (RVP) values changed in accordance with local recommendations.
	(3) Temperature data changed in accordance with local recommendations.
	(4) Counties regrouped in accordance with local recommendations.

58

Table 1.3-2. Summary of Base F NONROAD Modeling Revisions (continued)

State	Revisions Implemented
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all seasons for conventional gasoline counties.
	(2) Gasoline sulfur content changed from 339 ppmW to 129 ppmW in the summer for all gasoline control counties.
	(3) Gasoline sulfur content changed from 339 ppmW to 229 ppmW in the spring and fall for all gasoline control counties.
	(4) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in the winter for all gasoline control counties.
VA	(5) Gasoline RVP values changed in accordance with local recommendations.
·	(6) Counties regrouped in accordance with local recommendations.
	(7) The control effectiveness for counties subject to Stage II controls revised to 77 percent in accordance with local recommendations.
	Gasoline control counties: Arlington Co., Fairfax Co., Loudoun Co., Prince William Co., Stafford Co., Alexandria City, Fairfax City, Falls Church City, Manassas City, Manassas Park City, Chesterfield Co., Hanover Co., Henrico Co., Colonial Heights City, Hopewell City, Richmond City, James City, York Co., Chesapeake City, Hampton City, Newport News City, Norfolk City, Poquoson City, Portsmouth City, Suffolk City, Virginia Beach City, and Williamsburg City (c)
WV	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
	(2) Continue to utilize local allocation files for nine equipment categories.

Notes:

- (a) County is subject to local control currently, but is scheduled to join the RFG program in January 2005.(b) Control area is a portion of the county, but modeling is performed as though the control applies countywide.
- (c) The EPA also lists Charles City County as an RFG area, but local planners indicate that Charles City County is a conventional gasoline area and it is modeled as such.

Table 1.3-3 Base F NONROAD Input File Sequence and Structural Revisions

State	Initial 2002 Base Year Inventory Input File Sequence Numbers	Revised 2002 Inventory Input File Sequence Numbers	Reason(s) for Change	Number of Revised 2002 Inventory NONROAD Input Files	
AL	01-08	01-08	No Structural Changes	32	(at 8 per season)
FL	09-10	09-10	No Structural Changes	8	(at 2 per season)
GA	11-13	11-13	No Structural Changes	12	(at 3 per season)
KY	14-22	14-22	No Structural Changes	36	(at 9 per season)
MS	48	48	No Structural Changes	4	(at 1 per season)
NC	23-25	23-25	No Structural Changes	12	(at 3 per season)
SC	26-32	26-32	No Structural Changes	28	(at 7 per season)
TN	33-34	33-34, 49-52	Counties Regrouped	24	(at 6 per season)
VA	35-43	35-38, 40-43	Counties Regrouped	32	(at 8 per season)
WV	44-47	44-47	No Structural Changes	16	(at 4 per season)
All	01-48	01-38, 40-52		204	(at 51 per season)

Note: (1) All files include internal revisions to reflect the data changes summarized in Table 1.3-3 above. This table is intended to present structural revisions that are of interest in assembling the NONROAD model input files into a complete VISTAS region inventory.

(2) The NONROAD model imposes an eight digit input file name limit, so all input files for the revised 2002 base year inventory follow a modified naming convention to allow each to be distinguished from the input files for the initial 2002 base year inventory. For the initial 2002 base year inventory, the naming convention was:

ss02aaqq, where: ss = the two character State abbreviation,

The indicated revisions do not (in and of themselves) result in emission estimate changes.

aa = a two character season indicator as follows: AU = autumn,

WI = winter, SP = spring, and SU = summer, and

qq = the two digit sequence number indicated above.

For the revised 2002 inventory, the naming convention was modified to:

ss02aFqq, where: ss = the two character State abbreviation,

= a one character season indicator as follows: A = autumn,

W = winter, S = spring, and X = summer, and

qq = the two digit sequence number indicated above.

Base G Revisions:

As described above, the primary modeling revision implemented for the Base G 2002 inventory was the use of the Final NONROAD2005 model (in place of the Base F use of Draft NONROAD2004). However, there were other minor revisions implemented for 13 Georgia counties and somewhat more significant revisions implemented for Tennessee. In Georgia, Stage II refueling control was assumed for 13 counties that previously were modeled as having no refueling control under Base F. In addition, to accommodate this Stage II change as well as forecast year changes in gasoline vapor pressure, corresponding changes in the structure and sequence of Georgia NONROAD input files were made. With the exception of the minor Stage II impacts, these structural and sequence changes have no impact on 2002 emission estimates, but allow for consistency between 2002 and forecast year input file structure and sequence. In Tennessee, more significant changes were implemented to gasoline vapor pressure assumptions, as well as similar minor changes in Stage II refueling control assumptions.

In accordance with instructions from Georgia regulators, Stage II refueling control was assumed in the following 13 Georgia counties at a control efficiency value of 81 percent for the Base G inventory:

Cherokee, Clayton, Cobb, Coweta, DeKalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding, and Rockdale.

No Stage II control was assumed in these counties in prior inventories.

Tennessee regulators provided revised monthly values for gasoline vapor pressure. Based on the seasonal definitions employed in the NONROAD model, monthly vapor pressures were averaged to estimate seasonal vapor pressures as follows:

Month/Season	Nashville Area	Memphis Area	Remainder of Tennessee
March	13.5 psi	13.5 psi	13.5 psi
April	13.5 psi	13.5 psi	13.5 psi
May	9.0 psi	9.0 psi	9.0 psi
Spring	12.0 psi	12.0 psi	12.0 psi
June	7.8 psi	7.8 psi	9.0 psi
July	7.8 psi	7.8 psi	9.0 psi
August	7.8 psi	7.8 psi	9.0 psi
Summer	7.8 psi	7.8 psi	9.0 psi
September 1-15	7.8 psi	7.8 psi	9.0 psi
September 16-30	11.5 psi	11.5 psi	11.5 psi
October	13.5 psi	13.5 psi	13.5 psi
November	13.5 psi	13.5 psi	13.5 psi
Fall	12.2 psi	12.2 psi	12.4 psi
December	15.0 psi	15.0 psi	15.0 psi
January	15.0 psi	15.0 psi	15.0 psi
February	13.5 psi	13.5 psi	13.5 psi
Winter	14.5 psi	14.5 psi	14.5 psi

Note: The Nashville area consists of Davidson, Rutherford, Sumner, Williamson and Wilson counties, the Memphis area consists of Shelby County.

As with the Base F revisions, the seasonal data are based on simple arithmetic averages and do not consider any monthly variation in activity (and fuel sales), nor is the transition between summer and winter seasons considered. Additionally, a monthly average of the September 1-15 and September 16-30 data is calculated prior to averaging the September-November data to estimate a fall average vapor pressure, so that the month of September is weighted identically to the months of October and November.

Tennessee regulators also indicated that Stage II vapor recovery was not in effect in Shelby County, so the Base F NONROAD input files for the county (which assumed Stage II was in place) were revised accordingly.

All Base G NONROAD modeling revisions are presented in Table 1.3-4. As indicated above, the differentiation of inputs across previously grouped counties also required revision to the overall number and sequence of VISTAS NONROAD input files (as compared to the files used to create both the initial VISTAS non-road inventory, as documented in the February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc., and the Base F revised inventory as

documented above. These structural revisions are presented in Table 1.3-5, and are provided solely for the benefit of NONROAD modelers as the indicated revisions have no impact on generated emission estimates.

Table 1.3-4 Summary of Base G NONROAD Modeling Revisions

State	Revisions Implemented
AL	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
FL	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
GA	 Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons. Stage II refueling vapor recovery implemented in 13 counties at an efficiency of 81 percent. Counties regrouped to accommodate base and forecast year data differentiations. Stage II control counties: Cherokee, Clayton, Cobb, Coweta, De Kalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding, and Rockdale
KY	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
MS	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
NC	 (1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons. (2) Revert to default equipment allocation files for all equipment categories. (3) Utilize revised (i.e., local) seasonal activity data.
SC	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
TN	 Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons. Gasoline RVP values changed in accordance with local recommendations. Stage II vapor recovery eliminated from Shelby County modeling.
VA	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
WV	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.(2) Revert to default equipment allocation files for all equipment categories.

63

Table 1.3-5 Spring 2006 NONROAD Input File Sequence and Structural Revisions

State	2002 Inventory Input File Sequence Numbers (Fall 2004)	2002 Inventory Input File Sequence Numbers (Spring 2006)	Reason(s) for Change		Number of al 2002 Inventory ROAD Input Files
AL	01-08	01-08	No Structural Changes	32	(at 8 per season)
FL	09-10	09-10	No Structural Changes	8	(at 2 per season)
GA	11-13	11-13, 53-54	Counties Regrouped	20	(at 5 per season)
KY	14-22	14-22	No Structural Changes	36	(at 9 per season)
MS	48	48	No Structural Changes	4	(at 1 per season)
NC	23-25	23-25	No Structural Changes	12	(at 3 per season)
SC	26-32	26-32	No Structural Changes	28	(at 7 per season)
TN	33-34, 49-52	33-34, 49-52	No Structural Changes	24	(at 6 per season)
VA	35-38, 40-43	35-38, 40-43	No Structural Changes	32	(at 8 per season)
WV	44-47	44-47	No Structural Changes	16	(at 4 per season)
All	01-38, 40-52	01-38, 40-54		212	(at 53 per season)

Note:

- (1) All files include internal revisions to reflect the data changes summarized in Table 1.3-5 above. This table is intended to present structural revisions that are of interest in assembling the NONROAD model input files into a complete VISTAS region inventory. The indicated revisions do not (in and of themselves) result in emission estimate changes.
- (2) The NONROAD model imposes an eight digit input file name limit, so all input files for the revised 2002 base year inventory follow a modified naming convention to allow each to be distinguished from the input files for the initial 2002 and fall 2004-revised 2002 base year inventory. For the initial 2002 base year inventory, the naming convention was:

ss02aaqq, where: ss = the two character State abbreviation,

aa = a two character season indicator as follows: AU = autumn,

WI = winter, SP = spring, and SU = summer, and

qq = the two digit sequence number indicated above.

For the fall 2004-revised 2002 inventory, the naming convention was modified to:

ss02aFqq, where: ss = the two character State abbreviation,

= a one character season indicator as follows: A = autumn,

W = winter, S = spring, and X = summer, and

qq = the two digit sequence number indicated above.

For the spring 2006-revised 2002 inventory, the naming convention was modified to:

ss02aCqq, where: ss = the two character State abbreviation,

= a one character season indicator as follows: A = autumn,

W = winter, S = spring, and X = summer, and

qq = the two digit sequence number indicated above.

1.3.2.2 Emissions from Commercial Marine Vessels, Locomotives, and Airplanes

An initial 2002 base year emissions inventory for aircraft, locomotives, and commercial marine vessels (CMV) was prepared for VISTAS in early 2004. The methods and data used to develop the inventory are presented in a February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc. A summary of the initial 2002 base year emissions inventory is presented in Table 1.3-6. Except as otherwise stated below, all aspects of the preparation methodology continue to apply to the Base F and Base G emission inventories.

Revisions to the initial 2002 emissions inventory (prepared by Pechan) were implemented to ensure that the latest State and local data were incorporated as well as to correct an overestimation of PM emissions from aircraft. Revisions were actually implemented in two stages. An initial set of revisions was implemented in the fall of 2004. Those revisions constitute the Base F inventory. These were followed by a second set of revisions in 2006, which constitute the Base G inventory. To accurately document the combined effects of both sets of revisions, each set is discussed separately below. Unless otherwise indicated, all revisions implemented for Base F were carried directly into the Base G revision process without change. Thus, the inventories that resulted from the Base F revisions served as the starting point for the Base G revisions.

Base F Revisions:

Revisions to the initial 2002 base year emissions inventory were implemented to ensure that the latest State and local data were incorporated as well as to correct an overestimation of PM emissions from aircraft. Seven of the ten VISTAS States provided revised inventory data in the form of emissions reported to the EPA under the CERR. States providing CERR data were Alabama, Georgia, Mississippi, North Carolina, Tennessee (excluding Davidson, Hamilton, Knox, and Shelby Counties), Virginia, and West Virginia.

In many cases, the CERR data were only marginally different than the initial 2002 base year inventory data, but there were several instances where significant updates were evident. The remaining three VISTAS States (Florida, Kentucky, and South Carolina), plus Davidson, Hamilton, Knox, and Shelby counties in Tennessee, indicated that the initial 2002 VISTAS inventory continued to reflect the most recent data available. Florida did provide updated aircraft emissions data for one county (Miami-Dade) and these data were incorporated into the Base F 2002 inventory as described below.

Since several States recommended retaining the initial 2002 base year inventory data for Base F, the initial step toward revising the 2002 inventory consisted of modifying the estimated aircraft PM emissions of the initial inventory. The overestimation of aircraft PM became evident shortly

after the release of the initial 2002 base year inventory, when it was determined that VISTAS region airports would constitute the top seven, and 11 of the top 15, PM sources in the nation. Moreover, PM emissions for one airport (Miami International) were a full order of magnitude larger than *all* other modeled elemental carbon PM emission sources. In addition, unexpected relationships across airports were also observed, with emissions for Atlanta's Hartsfield International being substantially less than those of Miami International, even though Atlanta handles over twice as many aircraft operations annually. Given the pervasiveness of this problem, and since the CERR data submitted by States was based on the initial 2002 VISTAS inventory data, aircraft PM emissions for the entire VISTAS region were recalculated.

Table 1.3-6 Initial 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions as Reported in February 2004 Pechan Report (annual tons)

Source	State	CO	NO _x	PM_{10}	$PM_{2.5}$	SO_2	VOC
	AL	3,787	175	688	475	17	196
	FL	28,518	11,955	46,352	31,983	1,050	3,703
	GA	3,175	992	3,919	2,704	94	353
	KY	2,666	657	2,597	1,792	63	263
A * C	MS	1,593	140	553	381	13	96
Aircraft (2275)	NC	6,088	1,548	6,115	4,219	148	613
(2213)	SC	6,505	515	452	312	88	863
	TN	6,854	2,665	7,986	5,510	225	920
	VA	17,676	5,607	14,476	9,988	234	3,229
	WV	1,178	78	310	214	8	66
	Total	78,040	24,332	83,448	57,578	1,940	10,302
	AL	1,195	9,217	917	843	3,337	736
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,874	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,687	43,233	1,903	1,750	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	4,129	31,397	1,390	1,278	5,753	980
	VA	1,198	3,426	929	855	3,258	596
	WV	2,094	15,882	668	614	720	497
	Total	29,503	218,760	10,858	9,989	40,146	7,779
Military Marine	VA	136	387	28	26	30	59
(2283)	Total	136	387	28	26	30	59
	AL	3,490	26,339	592	533	1,446	1,354
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
I a samations	MS	2,302	23,267	578	520	1,429	899
Locomotives (2285)	NC	1,638	16,502	410	369	1,001	654
(==00)	SC	1,160	11,690	291	261	710	462
	TN	4,530	44,793	1,110	999	2,689	1,805
	VA	1,928	19,334	1,407	1,266	3,443	798
	WV	1,105	11,150	277	249	681	436
	Total	21,980	211,588	6,118	5,505	14,947	8,738
Grand Total		129,659	455,067	100,452	73,099	57,062	26,877

67

Aircraft do emit PM while operating. However, official EPA inventory procedures for aircraft generally do not include PM emission factors and, therefore, aircraft PM is generally erroneously reported as zero. In an effort to overcome this deficiency, the developers of the initial VISTAS 2002 base year aircraft inventory (Pechan) estimated PM emission rates for aircraft using estimated NO_x emissions and an unreported PM-to- NO_x ratio (i.e., $PM = NO_x$ times a PM-to- NO_x ratio). According to the initial 2002 base year inventory documentation, this approach was applied only to commercial aircraft NO_x , but a review of that inventory indicates that the technique was also applied to military, general aviation, and air taxi aircraft in many, but not all, instances. Although there is nothing inherently incorrect with this approach, the accuracy and inconsistent application of the assumed PM-to- NO_x ratio results in grossly overestimated aircraft PM.

Through examination of the initial 2002 base year aircraft inventory (prepared by E.H. Pechan and Associates, Inc.), it is apparent that the commercial aircraft PM-to-NO_x ratio used to generate PM emission estimates was approximately equal to 3.95 (i.e., PM = NO_x times 3.95). While the majority of observed commercial aircraft PM-to-NO_x ratios in that inventory are equal to 3.95, a few range as low as 3.00. If all aircraft estimates are included (i.e., commercial plus military, general aviation, and air taxi), observed PM-to-NO_x ratios range from 0 to 123.0, and average 3.43 as illustrated in Table 1.3-7

Table 1.3-7 PM-to-NO_x Ratios by Aircraft Type In Initial 2002 Base Year Inventory.

Aircraft Type	Average PM-to-NO _x	Range of PM-to-NO _x	Average PM _{2.5} / PM ₁₀	Range of PM _{2.5} / PM ₁₀
Undefined (1)	0.046	0-0.062	0.690	0.690-0.690
Military	0.073	0-92.3	0.688	0.333-1.000
Commercial	3.953	3.00-3.953	0.690	0.667-0.696
General Aviation	2.059	0-9.00	0.689	0.500-1.000
Air Taxi	2.734	0-123.0	0.690	0.500-1.000
Aggregate	3.427	0-123.0	0.690	0.333-1.000

 $\textbf{Note:}\ (1)\ Two\ counties\ report\ aircraft\ emissions\ as\ SCC\ 2275000000\ "all\ aircraft."$

As indicated, the aggregate PM-to- NO_x ratio is similar in magnitude to the ratio for commercial aircraft. This results from the dominant nature of commercial aircraft NO_x emissions relative to NO_x from other aircraft types. It is surmised that ratios that deviate from 3.95 are based on PM emission estimates generated by local planners, which were retained without change in the PM estimation process (although a considerable number of unexplained "zero PM" records also exist

in the initial 2002 base year inventory dataset). Regardless, based on previous statistical analyses performed in support of aircraft emissions inventory development outside the VISTAS region, a PM-to-NO_x ratio of 3.95 is too large by over an order of magnitude.

In analyses performed for the Tucson, Arizona planning area, PM-to-NO_x ratios for aircraft over a standard aircraft landing and takeoff (LTO) cycle are shown in Table 1.3-8. Data for this table is taken from "Emissions Inventories for the Tucson Air Planning Area, Volume I., Study Description and Results," prepared for the Pima Association of Governments, Tucson, AZ, November 2001. Pages 4-40 through 4-42 of that report, which document the statistical derivation of these ratios, are included in this report as Appendix E.

Table 1.3-8 Tucson, AZ PM-to-NO_x Ratios by Aircraft Type.

Aircraft Type	PM-to-NO _x
Commercial Aircraft	0.26
Military Aircraft	0.88
Air Taxi Aircraft	0.50
General Aviation Aircraft	1.90

Note:

The PM and NO_x emission estimates presented in the Tucson study are for local aircraft operating mode times. For this work, emission estimates for Tucson were recalculated for a standard LTO cycle, so that the ratios presented are applicable to the standard LTO cycle and not a Tucson-specific cycle. Thus, the ratios presented herein vary somewhat from those associated with the emission estimates presented in the Tucson study report.

In reviewing these data, it should be considered that they apply to a standard (i.e., EPA-defined) commercial aircraft LTO cycle.² Aircraft PM-to-NO_x ratios vary with operating mode, so that aircraft at airports with mode times that differ from the standard cycle will exhibit varying ratios. However, conducting an airport-specific analysis for all airports in the VISTAS region was beyond the scope of this work. While local PM-to-NO_x ratios could vary somewhat from the indicated standard cycle ratios, any error due to this variation will be significantly less than the order of magnitude error associated with the 3.95 commercial aircraft ratio used for the initial 2002 base year inventory.

It should be recognized that while the Tucson area is far removed from the VISTAS region, the data analyzed to generate the PM-to-NO_x ratios is standard aircraft emission factor data routinely employed for inventory purposes throughout the United States (as encoded in models such as the

69

² As defined in AP-42, Compilation of Air Pollutant Emission Factors, Volume II, Mobile Sources, a standard commercial aircraft LTO cycle consists of 4 minutes of approach time, 26 minutes of taxi (7 minutes in plus 19 minutes out), 0.7 minutes of takeoff, and 2.2 minutes of climbout time (approach and climbout times being based on a 3000 foot mixing height).

Federal Aviation Administration's Emissions Data Management Systems [EDMS]). With the exception of aircraft operating conditions, there are no inherent geographic implications associated with the use of data from the Tucson study. As indicated above, issues associated with local operating conditions have been eliminated by recalculating the Tucson study ratios for a standard LTO cycle.

To implement the revised PM-to-NO_x ratios in the Base F inventory, *all* aircraft PM records were removed from the initial 2002 base year inventory (prepared by Pechan). This includes records for which local planners may have estimated PM emissions. This approach was taken for two reasons. First, there is no way to distinguish which records may have been generated by local planners. Second, the data available to local planners may be no better than that used to generate the presented PM-to-NO_x ratio data, so the consistent application of these data to the entire VISTAS region was determined to be the most appropriate approach to generating consistent inventories throughout the region. In undertaking this removal, it became apparent that there was an imbalance in the aircraft NO_x and PM records in the initial 2002 base year inventory. Whereas there were 1,531 NO_x records in the NIF emission data sets for this source category, there were only 1,212 PM records. The imbalance was distributed between three States, South Carolina, Tennessee, and Virginia as follows:

Table 1.3-9 Non-Corresponding Aircraft Emissions Records

Aircraft NO_x records with no corresponding PM record:							
Aircraft Type	South Carolina Virginia		Total				
Military Aircraft	8	100	108				
General Aviation Aircraft	14	94	108				
Air Taxi Aircraft	5	99	104				
Aggregate	27	293	320				
Aircraft PM records with no corresponding NO_x record:							
Aircraft Type	Tennessee		Total				
Air Taxi Aircraft	1		1				
Aggregate	1		1				

The unmatched PM record was for Hamilton County (Chattanooga), Tennessee and when removed, was not replaced since there was no corresponding NO_x record with which to estimate revised PM emissions. It is unclear how this orphaned record originated, but clearly there can be no air taxi PM emissions without other combustion-related emissions. Thus, the removal of the PM_{10} and $PM_{2.5}$ records for Hamilton County permanently reduced the overall size of the 2002 initial base year inventory database used as a starting point for Base F by two records.

Of the 320 unmatched NO_x records, 269 were records for which the reported emission rate was zero. Therefore, even though associated PM records were missing, the overall inventory was not affected. However, the 51 missing records for which NO_x emissions were non-zero, did impact PM estimates for the overall inventory.

Replacement PM_{10} records were calculated for all aircraft NO_x records using the PM-to- NO_x ratios presented above. Aircraft type-specific ratios were utilized in all cases, except for two counties where aircraft emissions were reported under the generic aircraft SCC 2275000000. For these counties (Palm Beach County, Florida and Davidson County, Tennessee), the commercial aircraft PM-to- NO_x ratio was applied since both contain commercial airports (Palm Beach International and Nashville International).

Replacement aircraft PM_{2.5} records were also developed. The initial 2002 base year inventory assumed that aircraft PM_{2.5} was 69 percent of aircraft PM₁₀. The origin of this fraction is not clear, but it is very low for combustion related PM. The majority of internal combustion engine related PM is typically 1 micron or smaller (PM_{1.0}), so that typical internal combustion engine PM_{2.5} fractions approach 100 percent. For example, the EPA NONROAD model assumes 92 percent for gasoline engine particulate and 97 percent for diesel engine particulate. Based on recent correspondence from the EPA, it appears that the agency is preparing to recommend a PM_{2.5} fraction of 98 percent for aircraft. (August 12, 2004 e-mail correspondence from U.S. EPA to Gregory Stella of Alpine Geophysics.) This is substantially more consistent with expectations based on emissions test data for other internal combustion engine sources and was used as the basis for the recalculated aircraft PM_{2.5} emission estimates in the Base F inventory.

Although a substantial portion of the initial 2002 base year inventory was ultimately replaced with data prepared by State and local planners under CERR requirements in developing the Base F inventory, it was necessary to first revise the initial 2002 base year aircraft inventory as described so that records extracted from the inventory for areas not supplying CERR data for the Base F update would be accurate. Therefore, in *no case* is the aggregated State data reported for the Base F inventory identical to that of the initial 2002 base year inventory. Even areas relying on the initial 2002 base year inventory will reflect updates in Base F due to changes in emissions of PM₁₀ and PM_{2.5} from aircraft.

Table 1.3-10 presents the updated initial 2002 base year inventory estimates. These estimates do not reflect any changes related to modifications made to incorporate the CERR data, but instead indicate the impacts associated solely with the recalculation of aircraft PM emissions alone to apply the more appropriate PM to NO_x ratios. Table 1.3-11 presents a summary of the net impacts of these changes, where an over 90 percent reduction in aircraft PM is observed for all VISTAS areas except South Carolina and Virginia. The reasons for the lesser changes in these two States is that the overall aircraft NO_x inventories for both include a large share of military

aircraft NO_x to which no (or very low) particulate estimates were assigned in the initial 2002 base year inventory. Since these operations are assigned non-zero PM emissions under the revised approach, the increase in military aircraft PM offsets a portion of the reduction in commercial aircraft PM. In Virginia, zero (or near zero) PM military operations were responsible for about 35 percent of total aircraft NO_x, while the corresponding fraction in South Carolina was almost 70 percent. As indicated, aggregate aircraft, locomotive, and commercial marine vessel PM is 70-75 percent lower in the updated 2002 base year inventory.

Table 1.3-10 Initial 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions with Modified Aircraft PM Emission Rates (annual tons)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO ₂	VOC
	AL	3,787	175	64	62	17	196
	FL	28,518	11,955	3,193	3,129	1,050	3,703
	GA	3,175	992	269	264	94	353
	KY	2,666	657	179	175	63	263
Aircraft	MS	1,593	140	44	43	13	96
(2275)	NC	6,088	1,548	419	411	148	613
(2273)	SC	6,505	515	409	401	88	863
	TN	6,854	2,665	707	692	225	920
	VA	17,676	5,607	2,722	2,667	234	3,229
	WV	1,178	78	25	24	8	66
	Total	78,040	24,332	8,030	7,870	1,940	10,302
	AL	1,195	9,217	917	843	3,337	736
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,874	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,687	43,233	1,903	1,750	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	4,129	31,397	1,390	1,278	5,753	980
	VA	1,198	3,426	929	855	3,258	596
	WV	2,094	15,882	668	614	720	497
	Total	29,503	218,760	10,858	9,989	40,146	7,779
Military Marine	VA	136	387	28	26	30	59
(2283)	Total	136	387	28	26	30	59
	AL	3,490	26,339	592	533	1,446	1,354
	FL	1,006	9,969	247	222	605	404
Locomotives (2285)	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
	MS	2,302	23,267	578	520	1,429	899
	NC	1,638	16,502	410	369	1,001	654
	SC	1,160	11,690	291	261	710	462
	TN	4,530	44,793	1,110	999	2,689	1,805
	VA	1,928	19,334	1,407	1,266	3,443	798
	WV	1,105	11,150	277	249	681	436
	Total	21,980	211,588	6,118	5,505	14,947	8,738
Grand Total		129,659	455,067	25,034	23,390	57,062	26,877

Table 1.3-11 Change in Initial 2002 Base Year Emissions due to Aircraft PM Emission Rate Modifications.

Source	State	CO	NO _x	PM_{10}	$PM_{2.5}$	SO_2	VOC
	AL	0%	0%	-91%	-87%	0%	0%
	FL	0%	0%	-93%	-90%	0%	0%
	GA	0%	0%	-93%	-90%	0%	0%
	KY	0%	0%	-93%	-90%	0%	0%
Aircraft	MS	0%	0%	-92%	-89%	0%	0%
(2275)	NC	0%	0%	-93%	-90%	0%	0%
(2213)	SC	0%	0%	-9%	+29%	0%	0%
	TN	0%	0%	-91%	-87%	0%	0%
	VA	0%	0%	-81%	-73%	0%	0%
	WV	0%	0%	-92%	-89%	0%	0%
	Total	0%	0%	-90%	-86%	0%	0%
	AL	0%	0%	0%	0%	0%	0%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	0%	0%	0%	0%	0%	0%
Commercial	MS	0%	0%	0%	0%	0%	0%
Marine	NC	0%	0%	0%	0%	0%	0%
(2280)	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	0%	0%	0%	0%	0%	0%
	WV	0%	0%	0%	0%	0%	0%
	Total	0%	0%	0%	0%	0%	0%
Military Marine	VA	0%	0%	0%	0%	0%	0%
(2283)	Total	0%	0%	0%	0%	0%	0%
	AL	0%	0%	0%	0%	0%	0%
Locomotives (2285)	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	0%	0%	0%	0%	0%	0%
	MS	0%	0%	0%	0%	0%	0%
	NC	0%	0%	0%	0%	0%	0%
	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	0%	0%	0%	0%	0%	0%
	WV	0%	0%	0%	0%	0%	0%
	Total	0%	0%	0%	0%	0%	0%
Grand Total		0%	0%	-75%	-68%	0%	0%

As indicated above, for the Base F 2002 base year inventory, data for all or portions of seven VISTAS States were replaced with corresponding data from recent (as of the fall of 2004) CERR submissions for 2002. Before replacing these data, however, an analysis of the CERR data was performed to ensure consistency with VISTAS inventory methods. It should perhaps also be noted that three of the CERR datasets provided for the Base F 2002 base year inventory (specifically those for Tennessee, Virginia, and West Virginia) included both annual and daily emissions data. Only the annual data were used. Daily values were removed.

Several important observations resulted from this analysis. First, it was clear that all of the CERR data continued to rely on the inaccurate aircraft PM estimation approach employed for the initial 2002 base year inventory. Therefore, an identical aircraft PM replacement procedure as described above for updating the initial 2002 base year inventory was undertaken for CERR supplied data. As a result, the CERR data for *all* VISTAS States has been modified for inclusion in the Base F 2002 VISTAS base year inventory due to PM replacement procedures.

As was the case with the initial VISTAS 2002 base year inventory, there were a substantial number of aircraft NO_x records without corresponding PM records, so that the number of recalculated PM records added to the CERR dataset is greater than the number of PM records removed. The aggregated CERR inventory data, reflecting data for all or parts of seven States, consisted of 13,656 records, of which 1,211 were aircraft NO_x records. However, the number of corresponding aircraft PM records was 662 (662 PM_{10} records and 662 $PM_{2.5}$ records). This imbalance was distributed as follows:

Table 1.3-12 CERR Aircraft NO_x Records with No Corresponding PM Record.

Aircraft Type	Georgia	Tennessee	Virginia	Total
Military Aircraft			136	136
Commercial Aircraft		4	136	140
General Aviation Aircraft	1		136	137
Air Taxi Aircraft			136	136
Aggregate	1	4	544	549

From this tabulation, it is clear that virtually the entire imbalance is associated with the Virginia CERR submission, with minor imbalances in Georgia and Tennessee. Of the 549 unmatched NO_x records, 461 were records for which the reported emission rate was zero. Therefore, even though the associated PM records were missing, the overall inventory was not affected. However, the 88 missing records for which NO_x emissions were non-zero do impact PM emission estimates for the overall inventory.

Replacement aircraft PM records (both PM₁₀ and PM_{2.5}) were generated for the CERR dataset using procedures identical to those described above for the updated initial 2002 base year inventory.

Further analysis revealed that the CERR data for Virginia included only VOC, CO, and NO_x emissions for all aircraft, locomotives, and non-recreational marine vessels. Since SO_2 , PM_{10} , and $PM_{2.5}$ records are included in the 2002 VISTAS inventory, an estimation method was developed for these emission species and applied to the Virginia CERR data. For PM, the

developed methodology was only employed for locomotive and marine vessel data since aircraft PM was estimated using the PM-to-NO_x ratio methodology described above.

Consideration was given to simply adding the Virginia SO₂ and non-aircraft PM records from the initial 2002 VISTAS inventory dataset, but it is very unlikely that either the source distribution or associated emission rates are identical across the CERR and initial VISTAS inventories. This was confirmed through a comparative analysis of dataset CO records. Therefore, an estimation methodology was developed using Virginia source-specific SO₂/CO, PM₁₀/CO, and PM_{2.5}/PM₁₀ ratios from the initial 2002 base year VISTAS inventory. The calculated ratios were then applied to the source-specific CERR CO emission estimates to derive associated source-specific SO₂, PM₁₀, and PM_{2.5} emissions for the Base F inventory.

Initially, the development of the emissions ratios from the initial 2002 base year inventory was performed at the State (i.e., Virginia), county, and SCC level of detail. However, it readily became clear that there were substantial inconsistencies in ratios for identical SCCs across counties. For example, in one county, the SO₂/CO ratio might be 0.2, while in the next county it would be 2.0. Since the sources in question are virtually identical (e.g., diesel locomotives) and since the fueling infrastructure for these large non-road equipment sources is regional as opposed to local in nature, such variations in emission rates are not realistic. Therefore, a more aggregated approach was employed in which SCC-specific emission ratios were developed for the State as a whole. Through this approach county-to-county variation in emission ratios is eliminated, but the underlying variation in CO emissions does continue to influence the resulting aggregate emission estimates. The applied emission ratios are as follows:

Table 1.3-13 Calculated Emission Ratios for VA.

Source	SCC	SO ₂ /CO	PM ₁₀ /CO	PM _{2.5} /CO	PM _{2.5} /PM ₁₀
Military Aircraft	2275001000	0.0215			
Commercial Aircraft	2275020000	0.3292		using	
General Aviation Aircraft	2275050000	0.0002		M-to-N O_x ratios escribed previou	
Air Taxi Aircraft	2275060000	0.0015			
Aircraft Refueling	2275900000	0.0000	0.0000	0.0000	
Diesel Commercial Marine	2280002000	0.3697	0.3434	0.3157	0.92
Residual Commercial Marine	2280003000	0.3697	0.3434	0.3157	0.92
Diesel Military Marine	2283002000	0.2422	0.2248	0.2068	0.92
Line Haul Locomotives	2285002005	3.2757	1.2999	1.1696	0.90
Yard Locomotives	2285002010	2.2908	1.2461	1.1205	0.90

75

It is important to recognize that the inconsistency of emissions ratios across Virginia counties for sources of virtually identical design, which utilize a regional rather than local fueling infrastructure, has potential implications for other VISTAS States. There is no immediately obvious reason to believe that such inconsistencies would be isolated to Virginia.

One final revision to the CERR dataset was undertaken as part of the Base F effort, and that was the removal of two records for unpaved airstrip particulate (SCC 2275085000) in Alabama. Otherwise identical records for these emissions were reported both in terms of filterable and primary particulate. The filterable particulate records were removed as all other particulate emissions in the VISTAS inventories are in terms of primary particulate. It is also perhaps worth noting that a series of aircraft refueling records (SCC 2275900000) for Virginia were left in place, even through typically such emissions would be reported under SCC 2501080XXX in the area source inventory. If additional VISTAS aircraft refueling emissions are reported under SCC 2501080XXX, then it may be desirable to recode these records.

Finally, data for areas of the VISTAS region not represented in the CERR dataset were added to the CERR data by extracting the appropriate records from the initial 2002 base year inventory (with revisions for aircraft PM to NO_x ratios). Specifically, records applicable to the States of Florida, Kentucky, South Carolina, and the Tennessee counties of Davidson, Hamilton, Knox, and Shelby were extracted from the revised initial 2002 inventory and added to the CERR dataset to establish the 2002 Base F inventory.

Following this aggregation, one last dataset revision was implemented to complete the development of the 2002 Base F inventory. As indicated in the introduction of this section, the initial 2002 base year emission estimates for Miami International Airport were determined to be excessive. Although the reason for this inaccuracy was not apparent, revised estimates for aircraft emissions in Miami-Dade County were obtained from Florida planners and used to overwrite the erroneous estimates. (Aircraft emission estimates were provided in an August 10, 2004 e-mail transmittal from Bruce Coward of Miami-Dade County to Martin Costello of the Florida Department of Environmental Protection.)

Table 1.3-14 presents a summary of the resulting Base F VISTAS 2002 base year inventory estimates for aircraft, locomotives, and non-recreational marine vessels. Table 1.3-15 provides a comparison of the Base F 2002 base year inventory estimates to those of the initial 2002 base year inventory. As indicated, total emissions for VOC, CO, NO_x, and SO₂ are generally within 10 percent, but final PM emissions are reduced by 70-80 percent due to the approximate 90 percent reductions in aircraft PM estimates. In addition, the significant changes in Georgia aircraft emissions are due to the CERR correction of Atlanta Hartsfield International Airport emissions, which were significantly underestimated in the initial 2002 base year inventory. The

reduction in Florida aircraft emissions due to the correction of Miami International estimates is also apparent.

Lastly, Table 1.3-16 provides a direct comparison of emission estimates from the initial and Base F 2002 base year inventories for all 16 VISTAS region airports with estimated annual aircraft NO_x emissions of 200 tons or greater (as identified at the conclusion of the Base F revisions).³ The table entries are sorted in order of decreasing NO_x and once again, the dramatic reduction in PM emissions is evident. However, in addition, the appropriate reversal of the relationship between Atlanta's Hartsfield and Miami International Airport is also depicted. As a rough method of quality assurance, Table 1.3-15 also includes a gross estimate of expected airport NO_x emissions using detailed NO_x estimates developed for Tucson International Airport in conjunction with the ratio of local to Tucson LTOs. (The Tucson NO_x estimates are revised to reflect a standard LTO cycle rather than the Tucson-specific LTO cycle. This should provide for a more realistic comparison to VISTAS estimates.) This is not meant to serve as anything other than a crude indicator of the propriety of the developed VISTAS estimates, and it is clear that the range of estimated-to-expected NO_x emissions has been substantially narrowed in the Base F 2002 base year inventory. Whereas estimated-to-expected ratios varied from about 0.2 to over 3.5 in the initial 2002 base year inventory, the range of variation is tightened on both ends, from about 0.5 to 1.75 for the Base F 2002 base year inventory. In effect, all estimates are now within a factor of two of the expected estimates, which is quite reasonable given likely variation in local and standard LTO cycles and variations in aircraft fleet mix across airports.

It is perhaps important to note that some shifting in county emissions assignments is evident between the initial and Base F 2002 base year aircraft inventories. For example, for the initial 2002 base year inventory, Atlanta Hartsfield estimates were assigned to Fulton County (FIP 13121), while they are assigned to Clayton County (FIP 13063) for the Base F 2002 base year inventory. Similarly, Dulles International Airport emissions were assigned solely to Fairfax County, Virginia (FIP 51059) in the initial 2002 base year inventory, but are split between Fairfax and Loudoun County (FIP 51107) for Base F. Such shifts reflect local planner decision-making and are not an artifact of the revisions described above.

³ Subsequent revisions performed for Base G result in the addition of the Cincinnati/Northern Kentucky International Airport to the group of airports with aircraft operations generating at least 200 tons of NO_x. These revisions are discussed below, including the addition of an appropriately modified version of the aircraft emissions table.

Table 1.3-14 Base F 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions (tons/year)

Source	State	CO	NO _x	PM_{10}	$PM_{2.5}$	SO_2	VOC
	AL	3,787	175	226	87	17	196
	FL	25,431	8,891	2,424	2,375	800	3,658
	GA	6,622	5,372	1,475	1,446	451	443
	KY	2,666	657	179	175	63	263
Aircraft	MS	1,593	140	44	43	13	96
(2275)	NC	6,088	1,548	419	411	148	613
(2213)	SC	6,505	515	409	401	88	863
	TN	7,251	2,766	734	719	235	943
	VA	9,763	2,756	1,137	1,115	786	2,529
	WV	1,178	78	25	24	8	66
	Total	70,884	22,899	7,072	6,797	2,607	9,670
	AL	1,196	9,218	917	844	3,337	737
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,875	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,688	43,233	1,903	1,751	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	3,624	27,555	1,217	1,120	4,974	860
	VA	972	2,775	334	307	359	483
	WV	1,528	11,586	487	448	525	362
	Total	28,207	209,972	9,911	9,118	36,275	7,413
Military Marine	VA	110	313	25	23	27	48
(2283)	Total	110	313	25	23	27	48
	AL	3,490	26,339	592	533	1,446	1,354
	FL	1,006	9,969	247	222	605	404
	GA	2,725	27,453	682	614	1,667	1,086
	KY	2,166	21,811	542	488	1,321	867
Locomotives	MS	2,302	23,267	578	520	1,429	899
(2285)	NC	1,638	16,502	410	369	1,001	654
(2203)	SC	1,160	11,690	291	261	710	462
	TN	2,626	25,627	633	570	1,439	1,041
	VA	1,186	11,882	1,529	1,375	3,641	492
	WV	1,311	13,224	329	296	808	517
	Total	19,611 118,812	187,764	5,833	5,248	14,066	7,777
Grand Total	Grand Total		420,948	22,841	21,186	52,976	24,908

Table 1.3-15 Change in 2002 Emissions, Base F Inventory Relative to Initial Inventory

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	0%	0%	-67%	-82%	0%	0%
	FL	-11%	-26%	-95%	-93%	-24%	-1%
	GA	+109%	+442%	-62%	-47%	+379%	+26%
	KY	0%	0%	-93%	-90%	0%	0%
Aircraft	MS	0%	0%	-92%	-89%	0%	0%
(2275)	NC	0%	0%	-93%	-90%	0%	0%
(2213)	SC	0%	0%	-9%	+29%	0%	0%
	TN	+6%	+4%	-91%	-87%	+4%	+2%
	VA	-45%	-51%	-92%	-89%	+236%	-22%
	WV	0%	0%	-92%	-89%	0%	0%
	Total	-9%	-6%	-92%	-88%	+34%	-6%
	AL	+0%	+0%	+0%	+0%	+0%	+0%
	FL	0%	0%	0%	0%	0%	0%
	GA	+0%	+0%	+0%	+0%	+0%	+0%
	KY	0%	0%	0%	0%	0%	0%
Commercial	MS	+0%	+0%	+0%	+0%	+0%	+0%
Marine	NC	+0%	+0%	+0%	+0%	+0%	+0%
(2280)	SC	0%	0%	0%	0%	0%	0%
	TN	-12%	-12%	-12%	-12%	-14%	-12%
	VA	-19%	-19%	-64%	-64%	-89%	-19%
	WV	-27%	-27%	-27%	-27%	-27%	-27%
	Total	-4%	-4%	-9%	-9%	-10%	-5%
Military Marine	VA	-19%	-19%	-12%	-12%	-12%	-19%
(2283)	Total	-19%	-19%	-12%	-12%	-12%	-19%
	AL	0%	0%	0%	0%	0%	0%
	FL	0%	0%	0%	0%	0%	0%
	GA	+3%	+3%	+3%	+3%	+3%	+3%
	KY	0%	0%	0%	0%	0%	0%
Locomotives	MS	0%	0%	0%	0%	0%	0%
(2285)	NC	0%	0%	0%	0%	0%	0%
(2203)	SC	0%	0%	0%	0%	0%	0%
	TN	-42%	-43%	-43%	-43%	-46%	-42%
	VA	-38%	-39%	+9%	+9%	+6%	-38%
	WV	+19%	+19%	+19%	+19%	+19%	+19%
	Total	-11%	-11%	-5%	-5%	-6%	-11%
Grand Total		-8%	-7%	-77%	-71%	-7%	-7%

79

Table 1.3-16 Base F Comparison of Aircraft Emissions (Airports with Aircraft $NO_x > 200$ tons per year)

Airport	FIP	со	NO _x	PM ₁₀	PM _{2.5}	SO ₂	voc	Approx. LTOs	Predicted NO _x	VISTAS to Predicted
			Initi	al 2002 E	Base Year	r Invento	ry			
Miami	12086	9,757	5,997	23,706	16,357	525	1,641	150,000	1,680	3.57
Orlando	12095	3,456	2,170	8,578	5,919	204	642	150,000	1,680	1.29
Memphis	47157	3,462	1,934	7,645	5,275	185	603	125,000	1,400	1.38
Reagan	51013	3,892	1,806	7,138	4,925	164	302	100,000	1,120	1.61
Hampton	51650	2,690	1,705	0	0	0	611	Military		
Dulles	51059	2,032	1,330	5,246	3,620	0	272	75,000	840	1.58
Orlando-Sanford	12117	3,615	1,225	4,837	3,337	100	351			
Atlanta	13121	1,457	913	3,608	2,490	86	274	420,000	4,704	0.19
Fort Lauderdale	12011	1,930	809	3,196	2,206	75	257	75,000	840	0.96
Charlotte	37119	1,643	788	3,113	2,148	75	255	150,000	1,680	0.47
Tampa	12057	1,399	785	3,101	2,140	74	240	75,000	840	0.93
Nashville	47037	1,819	653	40	28	33	239	60,000	672	0.97
Raleigh	37183	1,584	592	2,338	1,613	56	204	75,000	840	0.70
Louisville	21111	1,073	468	1,851	1,277	45	155	60,000	672	0.70
Jacksonville	12031	871	325	1,284	886	31	112	30,000	336	0.97
Palm Beach	12099	1,156	226	0	0	1	132	30,000	336	0.67
Aggregate		41,836	21,724	75,682	52,220	1,655	6,290			0.19-3.57
			Base	F 2002 I	Base Yea	r Invento	ory			
Atlanta	13063	4,121	5,288	1,435	1,406	443	337	420,000	4,704	1.12
Miami	12086	6,670	2,933	805	789	274	1,596	150,000	1,680	1.75
Orlando	12095	3,456	2,170	568	556	204	642	150,000	1,680	1.29
Memphis	47157	3,462	1,934	506	495	185	603	125,000	1,400	1.38
Orlando-Sanford	12117	3,615	1,225	338	332	100	351			
Fort Lauderdale	12011	1,930	809	217	212	75	257	75,000	840	0.96
Charlotte	37119	1,643	788	206	202	75	255	150,000	1,680	0.47
Tampa	12057	1,399	785	206	202	74	240	75,000	840	0.93
Nashville	47037	1,819	653	170	166	33	239	60,000	672	0.97
Reagan	51013	1,269	635	171	168	193	97	100,000	1,120	0.57
Dulles 1	51107	1,807	595	164	161	252	153	37,500	420	1.42
Raleigh	37183	1,584	592	156	153	56	204	75,000	840	0.70
Dulles 2	51059	1,095	591	156	153	252	115	37,500	420	1.41
Hampton	51650	858	535	471	461	18	305	Military		
Louisville	21111	1,073	468	123	121	45	155	60,000	672	0.70
Jacksonville	12031	871	325	87	85	31	112	30,000	336	0.97
Palm Beach	12099	1,156	226	59	58	1	132	30,000 336		0.67
Aggregate	Aggregate 37		20,550	5,838	5,721	2,312	5,793			0.47-1.75
Net Change -10% -5% -92% -89% +40% -8%										

Note: For the Base F inventory, Dulles International Airport emissions are split between two Virginia counties.

Predicted NO_x is based on the ratio of airport LTOs to test airport (Tucson International Airport) LTOs and NO_x.

This is not a rigorous comparison, but rather an approximate indicator of expected magnitude.

Base G Revisions:

Further revisions to the 2002 base year emissions inventory were implemented in response to additional state data submittals in the spring of 2006. The inventories developed through the Base F revision process (as described above) served as the starting point for the 2006 revisions. Thus, unless otherwise indicated below, all documented Base F revisions continue to apply to the Base G-revised 2002 base year inventory.

As part of the Base G review and update process, Virginia regulators provided 443 updated emission records for aircraft. These records reflected revisions to aircraft VOC, CO, and NO_x, and in a few cases SO₂, emissions records that were already in the Base F VISTAS 2002 inventory (as opposed to the addition of previously unreported data). The specific revisions broke down as follows:

Aircraft Type	VOC	CO	NO_x	SO_2	Total
Military Aircraft	9	9	9	1	28
Commercial Aircraft	12	12	12	17	53
General Aviation Aircraft	65	66	66	0	197
Air Taxi Aircraft	56	56	53	0	165
Aggregate	142	143	140	18	443

Table 1.3-17 Base G VA Aircraft Records Updates

Emissions values for each of the 443 records in the Base F 2002 VISTAS inventory were updated for Base G to reflect the revised data. However, as described above for the Base F revisions, all aircraft SO₂, PM₁₀, and PM_{2.5} emissions in Virginia are estimated on the basis of CO (in the case of SO₂) and NO_x emissions (in the cases of PM₁₀ and PM_{2.5}). Therefore, since Virginia regulators did not provide updated SO₂ emissions for all updated CO emissions records, or updated PM₁₀ or PM_{2.5} emissions for all updated NO_x emissions records, it was necessary to re-estimate aircraft SO₂, PM₁₀, and PM_{2.5} emissions in all cases where updated CO or NO_x emissions were provided for Base G (and explicit SO₂ and/or PM₁₀ and PM_{2.5} emissions were not).

The procedure used to estimate the SO₂, PM₁₀, and PM_{2.5} emissions revisions was identical to that described above for the Base F inventory revisions, except that revised SO₂-to-CO emissions ratios were calculated for commercial aircraft, where 12 pairs of revised CO and SO₂ emissions estimates were available. Although a single pair of revised CO and SO₂ emissions records was available for military aircraft, this was deemed an insufficient sample with which to replace the military aircraft SO₂-to-CO emissions ratios previously calculated in Base F. However, it is worth noting that the SO₂-to-CO emissions ratio for the revised military aircraft emissions pair

81

was within 16 percent of the previously calculated ratio, so any error associated with retention of the Base F ratio will be minor. Table 1.3-18 presents the emissions ratios.

Table 1.3-18 Calculated Base G Emission Ratios for VA.

Source	SCC	SO ₂ /CO (fall 2004)	SO ₂ /CO (spring 2006)	SO ₂ /CO (used in 2006)	PM ₁₀ /NO _x	PM _{2.5} /PM ₁₀
Military Aircraft	2275001000	0.0215	0.0180	0.0215	0.88	0.98
Commercial Aircraft	2275020000	0.3292	0.0696	0.0696	0.26	0.98
General Aviation Aircraft	2275050000	0.00016	n/a	0.00016	1.9	0.98
Air Taxi Aircraft	2275060000	0.0015	n/a	0.0015	0.5	0.98

Application of the SO_2 -to-CO emissions ratios to the 130 revised aircraft CO records, for which no corresponding SO_2 emission revisions were provided, resulted in an additional 130 aircraft SO_2 emission records updates for Virginia. Similarly, application of the PM_{10} -to- NO_x emissions ratios to the 140 revised aircraft NO_x records for which no corresponding PM_{10} emission revisions were provided, resulted in an additional 140 aircraft PM_{10} emission records updates for Virginia. Application of the $PM_{2.5}$ -to- PM_{10} emissions ratios to the 140 revised aircraft PM_{10} records resulted in an additional 140 aircraft $PM_{2.5}$ emission records updates for Virginia. Thus, in total, 853 (443+130+140+140) Virginia aircraft emissions records were updated for Base G.

Also as part of the Base G review and update process, Alabama regulators provided 178 updated PM emission records for aircraft (89 records for PM₁₀ and 89 records for PM_{2.5}), 42 additional emissions records for locomotives (14 records for VOC, 14 records for CO, and 14 records for NO_x), and 179 additional emission records for aircraft (30 records for VOC, 30 records for CO, 30 records for NO_x, 29 records for SO₂, 30 records for PM₁₀, and 30 records for PM_{2.5}). After review, it was determined that the 178 updated PM emission records for aircraft actually reflected the original (overestimated) aircraft PM data that was replaced universally throughout the VISTAS region for Base F. Implementing these latest revisions would, in effect, "undo" the Base F aircraft PM revisions. Following discussions with Alabama regulators, it was determined that the 178 aircraft PM records would not be updated for the Base G revisions.

The 42 additional emissions records for locomotives were determined to correspond exactly to existing SO_2 , PM_{10} , and $PM_{2.5}$ emissions records already in the Base F VISTAS 2002 inventory. It is not clear why these existing records contained no corresponding data for VOC, CO, and NO_x , but those data are now reflected through the additional 42 records that have now been added to the Base G 2002 VISTAS inventory for Alabama.

After examining the 179 additional aircraft emissions records in conjunction with Alabama regulators, it was determined that 17 of the records (commercial aircraft records in Dale,

Limestone, and Talladega counties) were erroneous and should be excluded from the update. The remaining 162 records reflected additional general aviation, air taxi, and military aircraft activity in 20 counties and were specifically comprised of 27 records each for VOC, CO, NO_x, SO₂, PM₁₀, and PM_{2.5}. There were no further issues with the VOC, CO, NO_x, and SO₂ records and these were added to the Base G 2002 VISTAS inventory without change. It was, however, apparent that the PM₁₀ and PM_{2.5} records reflected an overestimation of aircraft PM similar to that which was previously corrected throughout the VISTAS region for Base F (as documented above). To overcome this overestimation, the additional aircraft PM₁₀ and PM_{2.5} records provided by Alabama regulators were replaced with revised emission estimates developed on the basis of the PM₁₀-to-NO_x and PM_{2.5}-to-PM₁₀ ratios documented under the Base F revisions above. So although 27 aircraft PM₁₀ records and 27 aircraft PM_{2.5} records were added to the 2002 Alabama inventory, they reflected different emissions values than those provided directly by Alabama regulators.

In total, 204 additional emissions records (42 for locomotives and 162 for aircraft) were added to the Base G 2002 Alabama inventory.

Finally, as part of the Base G review and update process, Kentucky regulators provided 12 updated aircraft emission records for Boone County, to correct previously underestimated aircraft emissions associated with the Cincinnati/Northern Kentucky International Airport. VOC, CO, and NO_x emissions data were provided for military, commercial, general aviation, and air taxi aircraft. No associated updates for SO₂, PM₁₀, or PM_{2.5} emissions were provided. Corresponding PM₁₀ emission estimates were developed by applying the PM₁₀-to-NO_x ratios presented in Table 1.3-17 above to the updated NO_x emission estimates. PM_{2.5} emission estimates were developed by applying the PM_{2.5}-to-PM₁₀ ratios from that same table to the estimated PM₁₀ emissions. SO₂ emission estimates were developed by applying the SO₂-to-PM₁₀ ratios developed from the older data (i.e., the data being replaced) for Boone County aircraft to the updated PM₁₀ emissions. Thus, a total of 24 inventory records for Kentucky were updated (VOC, CO, NO_x, SO₂, PM₁₀, and PM_{2.5} for four aircraft types).

Upon implementation of the universe of updates, 877 existing emission records were revised (853 in Virginia and 24 in Kentucky) and 204 additional emission records (all in Alabama) were added to the 2002 VISTAS inventory. The total number of aircraft, locomotive, and commercial marine inventory records thus changed from 22,838 records in Base F to 23,042 records in Base G.

Table 1.3-19 presents a summary of the resulting Base G VISTAS 2002 base year inventory estimates for aircraft, locomotives, and non-recreational marine vessels. Table 1.3-20 provides a comparison of the Base G 2002 base year inventory estimates to those of the Base F 2002 base

year inventory. As indicated, total emissions for VOC, CO, NO_x, and SO₂ are generally within about 5 percent, with changes restricted to the states of Alabama, Kentucky, and Virginia.

Lastly, Table 1.3-21 provides an updated comparison of emission estimates from the Base F and Base G 2002 base year inventories for all 17 VISTAS region airports with estimated annual aircraft NO_x emissions of 200 tons or greater. As compared to Table 1.3-16, the table reflects the Base G addition of the Cincinnati/Northern Kentucky International Airport. Aircraft emission estimates for the other 16 airports are unchanged from their Base F values.

Table 1.3-19 Base G-Revised 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions (tons/year)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO ₂	VOC
	AL	5,595	185	238	99	18	276
	FL	25,431	8,891	2,424	2,375	800	3,658
	GA	6,620	5,372	1,475	1,446	451	443
	KY	5,577	925	251	246	88	397
Aircraft	MS	1,593	140	44	43	13	96
(2275)	NC	6,088	1,548	419	411	148	613
(2213)	SC	6,505	515	409	401	88	863
	TN	7,251	2,766	734	719	235	943
	VA	11,873	3,885	2,010	1,970	272	2,825
	WV	1,178	78	25	24	8	66
	Total	77,712	24,305	8,029	7,734	2,121	10,179
	AL	1,196	9,218	917	844	3,337	737
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,875	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,688	43,233	1,903	1,751	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	3,624	27,555	1,217	1,120	4,974	860
	VA	972	2,775	334	307	359	483
	WV	1,528	11,586	487	448	525	362
	Total	28,207	209,972	9,911	9,118	36,275	7,413
Military Marine	VA	110	313	25	23	27	48
(2283)	Total	110	313	25	23	27	48
	AL	3,518	26,623	592	533	1,446	1,365
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
Locomotives	MS	2,302	23,267	578	520	1,429	899
(2285)	NC	1,638	16,502	410	369	1,001	654
(2203)	SC	1,160	11,690	291	261	710	462
	TN	2,626	25,627	633	570	1,439	1,041
	VA	1,186	11,882	1,529	1,375	3,641	492
	WV	1,311	13,224	329	296	808	517
	Total	19,568	187,328	5,815	5,232	14,022	7,761
Grand Total		125,597	421,918	23,780	22,107	52,444	25,401

84

Table 1.3-20 Change in 2002 Emissions, Base G Inventory
Relative to Base F Inventory

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	+48%	+6%	+5%	+14%	+7%	+41%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	+109%	+41%	+40%	+40%	+41%	+51%
Aircraft	MS	0%	0%	0%	0%	0%	0%
(2275)	NC	0%	0%	0%	0%	0%	0%
(2213)	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	+22%	+41%	+77%	+77%	-65%	+12%
	WV	0%	0%	0%	0%	0%	0%
	Total	+10%	+6%	+14%	+14%	-19%	+5%
	AL	0%	0%	0%	0%	0%	0%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	0%	0%	0%	0%	0%	0%
Commercial	MS	0%	0%	0%	0%	0%	0%
Marine	NC	0%	0%	0%	0%	0%	0%
(2280)	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	0%	0%	0%	0%	0%	0%
	WV	0%	0%	0%	0%	0%	0%
	Total	0%	0%	0%	0%	0%	0%
Military Marine	VA	0%	0%	0%	0%	0%	0%
(2283)	Total	0%	0%	0%	0%	0%	0%
	AL	+1%	+1%	0%	0%	0%	+1%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	0%	0%	0%	0%	0%	0%
Locomotives	MS	0%	0%	0%	0%	0%	0%
(2285)	NC	0%	0%	0%	0%	0%	0%
(2203)	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	0%	0%	0%	0%	0%	0%
	WV	0%	0%	0%	0%	0%	0%
	Total	+0%	+0%	0%	0%	0%	+0%
Grand Total	Grand Total		+0%	+4%	+4%	-1%	+2%

Table 1.3-21 Base G Comparison of Aircraft Emissions (Airports with Aircraft $NO_x > 200$ tons per year)

Airport	FIP	СО	NO _x	PM ₁₀	PM _{2.5}	SO_2	voc	Approx. LTOs	Predicted NO _x	VISTAS to Predicted
			Base	F 2002 I	Base Yea	r Invento	ory			l
Atlanta	13063	4,121	5,288	1,435	1,406	443	337	420,000	4,704	1.12
Miami	12086	6,670	2,933	805	789	274	1,596	150,000	1,680	1.75
Orlando	12095	3,456	2,170	568	556	204	642	150,000	1,680	1.29
Memphis	47157	3,462	1,934	506	495	185	603	125,000	1,400	1.38
Orlando-Sanford	12117	3,615	1,225	338	332	100	351			
Fort Lauderdale	12011	1,930	809	217	212	75	257	75,000	840	0.96
Charlotte	37119	1,643	788	206	202	75	255	150,000	1,680	0.47
Tampa	12057	1,399	785	206	202	74	240	75,000	840	0.93
Nashville	47037	1,819	653	170	166	33	239	60,000	672	0.97
Reagan	51013	1,269	635	171	168	193	97	100,000	1,120	0.57
Dulles 1	51107	1,807	595	164	161	252	153	37,500	420	1.42
Raleigh	37183	1,584	592	156	153	56	204	75,000	840	0.70
Dulles 2	51059	1,095	591	156	153	252	115	37,500	420	1.41
Hampton	51650	858	535	471	461	18	305	Military		
Louisville	21111	1,073	468	123	121	45	155	60,000	672	0.70
Jacksonville	12031	871	325	87	85	31	112	30,000	336	0.97
Palm Beach	12099	1,156	226	59	58	1	132	30,000	336	0.67
Cincinnati	21015	467	144	38	37	14	54	50,000	560	0.26
Aggregate		38,296	20,694	5,876	5,758	2,326	5,847			0.26-1.75
30 3		· · · · · · · · · · · · · · · · · · ·	Base	G 2002 I	Base Yea	r Invento	ory	·		<u> </u>
Atlanta	13063	4,121	5,288	1,435	1,406	443	337	420,000	4,704	1.12
Miami	12086	6,670	2,933	805	789	274	1,596	150,000	1,680	1.75
Orlando	12095	3,456	2,170	568	556	204	642	150,000	1,680	1.29
Memphis	47157	3,462	1,934	506	495	185	603	125,000	1,400	1.38
Orlando-Sanford	12117	3,615	1,225	338	332	100	351			
Fort Lauderdale	12011	1,930	809	217	212	75	257	75,000	840	0.96
Charlotte	37119	1,643	788	206	202	75	255	150,000	1,680	0.47
Tampa	12057	1,399	785	206	202	74	240	75,000	840	0.93
Nashville	47037	1,819	653	170	166	33	239	60,000	672	0.97
Reagan	51013	1,269	635	171	168	193	97	100,000	1,120	0.57
Dulles 1	51107	1,807	595	164	161	252	153	37,500	420	1.42
Raleigh	37183	1,584	592	156	153	56	204	75,000	840	0.70
Dulles 2	51059	1,095	591	156	153	252	115	37,500	420	1.41
Hampton	51650	858	535	471	461	18	305	Military		
Louisville	21111	1,073	468	123	121	45	155	60,000	672	0.70
Cincinnati	21015	3,378	411	110	107	39	187	50,000	560	0.73
Jacksonville	12031	871	325	87	85	31	112	30,000	336	0.97
Palm Beach	12099	1,156	226	59	58	1	132	30,000	336	0.67
Aggregate		41,207	20,961	5,947	5,828	2,352	5,981			0.47-1.75
Net Change		+8%	+1%	+1%	+1%	+1%	+2%			

Note: For the revised inventory, Dulles International Airport emissions are split between two Virginia counties.

Predicted NO_x is based on the ratio of airport LTOs to test airport (Tucson International Airport) LTOs and NO_x.

This is not a rigorous comparison, but rather an approximate indicator of expected magnitude.

86

1.3.2.3 Emissions from NONROAD Model Sources in Illinois, Indiana, and Ohio

As part of the Base G update process, VISTAS requested that emissions estimates for 2002 be produced for the states of Illinois, Indiana, and Ohio. These estimates were to be produced at the same spatial (i.e., county level by SCC) and temporal resolution as estimates for the VISTAS region.

The requested estimates were produced by extracting a complete set of county-level input data applicable to each of the three states from the latest version of the EPA's NMIM (National Mobile Inventory Model) model. This included appropriate consideration of all non-default NMIM input files generated by the Midwest Regional Planning Organization (MRPO), as described below. These input data were then assembled into appropriate input files for the Final NONROAD2005 model and emission estimates were produced using the same procedure employed for the VISTAS region as part of the Base G updates.

A complete set of monthly input data was developed for each county in Illinois, Indiana, and Ohio by extracting data from the following NMIM database files (using the NMIM MySQL query browser):

county, countrynrfile, countyyear, countyyearmonth, countyyearmonthhour, gasoline, diesel, and natural gas

The database files:

countrynrfile, countyyear, countyyearmonth, and gasoline

were non-default database files provided to VISTAS by the MRPO, and are intended to reflect the latest planning data being used by MRPO modelers.

From these files, monthly data for gasoline vapor pressure, gasoline oxygen content, gasoline sulfur content, diesel sulfur content for land-based equipment, diesel sulfur content for marine-based equipment, natural gas sulfur content, minimum daily temperature, maximum daily temperature, and average daily temperature were developed. In addition, the altitude and Stage II refueling control status of each county, as well as the identity of the associated equipment population, activity, growth, allocation, and seasonal distribution files, was determined. These data were then assembled into Final NONROAD2005 input files on a seasonal basis, with monthly data being arithmetically averaged to produce seasonal equivalents as follows:

87

Winter = Average of December, January, and February

Spring = Average of March, April, and May Summer = Average of June, July, and August,

Fall = Average of September, October, and November

Unlike the VISTAS Base G approach, this approach results in the use of the following non-default data files during the Final NONROAD2005 modeling process:

Table 1.3-22 Non-Default Files Used for MRPO Modeling

Data File	Illinois	Indiana	Ohio				
Activity File	1700002.act	1800002.act	3900002.act				
Growth File	17000.grw	18000.grw	39000.grw				
Population File	17000.pop	18000.pop	39000.pop				
Season File	17000.sea	18000.sea	39000.sea				
Inboard Marine Allocation File	17000wib.alo	18000wib.alo	39000wib.alo				
Outboard Marine Allocation File	17000wob.alo	17000wob.alo 18000wob.alo 39000wob.alo					
Specific Fuel Consumption	MRPO-specific file provided by MRPO modelers (arbitrarily named "mrpoBSFC.emf" for this work)						

One compromise was made relative to the level of resolution that is available through the basic approach described above, that being the treatment of ambient temperature data. Because NMIM offers a unique temperature profile for every U.S. county -- developed by aggregating temperature data from included and surrounding weather stations on the basis of their distances from the county population centroid -- it is not possible to explicitly group counties with otherwise identical input streams. Ungrouped however, there would be 1,128 distinct input streams to be processed (102 Illinois counties plus 92 Indiana counties plus 88 Ohio counties at four seasons each), or over five times the number of files processed for the entire VISTAS region.

To surmount this problem and allow counties with similar temperature profiles to be grouped an approach was employed wherein counties were considered groupable if *all* temperature inputs⁴ are within \pm 2 °F of the corresponding group average. This criterion is quite stringent in that it results in less tolerant grouping than that employed for VISTAS modeling, which uses temperature data from the nearest meteorological station as opposed to "unique" meteorological

⁴ Non-road temperature inputs used for county grouping are: winter minimum, spring minimum, summer minimum, fall minimum, winter maximum, spring maximum, summer maximum, fall maximum, winter average, spring average, summer average, and fall average.

data for each county. Under this approach, the actual deviation for grouped counties is *much* less that \pm 2° F for the overwhelming majority of the 12 grouped temperature inputs.

In addition to the required temperature consistency, all other input data for counties to be grouped had to be identical for all four seasons. Using this criterion, Illinois emissions were modeled using 12 county groups, Indiana emissions were modeled using 9 county groups, and Ohio emissions were modeled using 10 county groups. Thus, 31 iterations of NONROAD2002 were required per season, as compared to the 53 iterations per season required for the VISTAS region.

It should be noted that a potential quality assurance issue was noted in assembling the NONROAD2005 input data for a number of Indiana counties. Specifically, the gasoline vapor pressure for most Indiana counties reflects a value of 9.0 psi in *all* spring, summer, fall, and winter months. This is likely to indicate a problem with the accuracy of the NMIM databases for these counties, but these data were used as defined for this work.

1.3.3 Quality Assurance steps

Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, and to ensure that a full and complete inventory was developed for VISTAS. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the area source component of the 2002 base year revised:

- 1. All CERR and NIF format State supplied data submittals were run through EPA's Format and Content checking software.
- 2. SCC level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources.
- 3. Tier comparisons (by pollutant) were developed between the revised 2002 base year inventory and the initial base year inventory.
- 4. Data product summaries were provided to both the VISTAS Emission Inventory Technical Advisor and to Mobile Source SIWG representatives for review and comment. Changes based on these comments were implemented in the files.
- 5. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from 1.0 to 2.0. A minor change would cause a version number to go from 1.0 to 1.1. Minor changes resulting from largely editorial changes would result in a change from 1.00 to 1.01.

2.0 Projection Inventory Development

2.1 Point Sources

We used different approaches for different sectors of the point source inventory:

- For the EGUs, VISTAS relied primarily on the Integrated Planning Model[®] (IPM[®]) to project future generation as well as to calculate the impact of future emission control programs. The IPM results were adjusted based on S/L agency knowledge of planned emission controls at specific EGUs.
- For non-EGUs, we used recently updated growth and control data consistent with the data used in EPA's CAIR analyses, and supplemented these data with available S/L agency knowledge of planned emission controls or other changes at specific non-EGUs and updated fuel use forecast data for the U.S. Department of Energy.

For both sectors, we generated 2009 and 2018 inventories for a combined on-the-books (OTB) and on-the-way (OTW) control scenario. The OTB/OTW control scenario accounts for post-2002 emission reductions from promulgated and proposed non-EGU federal control programs as of July 1, 2004; the final Clean Air Interstate Rule (CAIR); and State, local, and site-specific control programs as of October 1, 2007. Section 2.1.1 discusses the EGU projection inventory development, while Section 2.1.2 discusses the non-EGU projection inventory development.

2.1.1 EGU Emission Projections

The following subsections discuss the following specific aspects of the development of the EGU projections. First, we present a chronology of the EGU development process and discuss key decisions in selecting the final methods for performing the emissions projections. Next, we describe the development of the final set of IPM runs that are included in the VISTAS Base G inventory. Next, we describe the process of transforming the IPM parsed files into NIF format. Fourth, we discuss the process for ensuring that units accounted for in IPM were not double-counted in the non-EGU inventory. Fifth, we describe the QA/QC checks that were made to ensure that the IPM results were properly incorporated into the VISTAS inventory. Sixth, we document the changes to the IPM results that S/L agencies specified they wanted included in the VISTAS inventory based on new information that were not accounted for in the IPM runs. Finally, we present summaries of the B&F projected EGU emissions by year, state, and pollutant.

2.1.1.1 Chronology of the Development of EGU Projections

At the beginning of the EGU inventory development process, VISTAS considered three options for developing the VISTAS 2009 and 2018 projection inventories for EGUs:

- Option 1 Use the results of IPM modeling conducted in support of the proposed Clean Air Interstate Rule (CAIR) base and control case analyses as the starting point and refine the projections with readily available inputs from stakeholders; these IPM runs were conducted for 2010 and 2015, which VISTAS would use to represent projected emissions in 2009 and 2018 respectively.
- Option 2 Use the VISTAS 2002 typical year as the starting point, apply growth factors from the Energy Information Administration, and refine future emission rates with stakeholder input regarding utilization rates, capacity, retirements, and new unit information.
- Option 3 Use the results of a new round of IPM modeling sponsored by VISTAS and the Midwest Regional Planning Organization (MRPO). These runs incorporated VISTAS specific unit and regulation modified parameters, and generate results for 2009 and 2018 explicitly.

An additional consideration for each of the three options was the inclusion of emission projections developed by the Southern Company specifically for their units. Southern Company is a super-regional company which owns EGUs in Alabama, Florida, Georgia, and Mississippi and participates in VISTAS as an industry stakeholder. Southern Company used their energy budget forecast to project net generation and heat input for every existing and future Southern Company EGU for the years 2009 and 2018. Further documentation of how Southern Company generated the 2009/2018 inventory for their units can be found in *Developing Southern Company Emissions and Flue Gas Characteristics for VISTAS Regional Haze Modeling (April 2005, presented at 14th International Emission Inventory Conference).*

Each of these three options and the Southern Company projections were discussed in a series of conference calls with the VISTAS EGU Special Interest Work Group (SIWG) during the fall of 2004. During a conference call on December 6, 2004, the VISTAS EGU SIWG approved the use of the latest VISTAS/MRPO sponsored IPM runs (Option 3) to represent the 2009 and 2018 EGU forecasts of emissions for the OTB and OTW cases. During the call, Alabama and Georgia specified that they did not wish to use Southern Company provided emissions forecasts of 2009 and 2018 to represent the sources in their States. Mississippi decided to utilize the Southern Company projections to represent activity at Southern Company facilities in Mississippi. After the call, Florida decided against using Southern Company provided emissions forecasts of 2009 and 2018 to represent the sources in their State. Thus, Southern Company data was used only for Southern Company units in Mississippi for both the Base F and Base G projections.

The Option 3 IPM modeling resulted from a joint agreement by VISTAS and MRPO to work together to develop future year utility emissions based on IPM modeling. The decision to use

IPM modeling was based in part on a study of utility forecast methods by E.H. Pechan and Associates, Inc. (Pechan) for MRPO, which recommended IPM as a viable methodology (see *Electricity Generating Unit {EGU} Growth Modeling Method Task 2 Evaluation*, February 11, 2004). Although IPM results were available from EPA's modeling to support their rulemaking for the Clean Air Interstate Rule (CAIR), VISTAS stakeholders felt that certain model inputs needed to be improved. Thus, VISTAS and MRPO decided to hire contractors to conduct new IPM modeling and to post-process the IPM results. Southern Company projections in 2009 were roughly comparable with IPM. For 2018, Southern Company projections were generally less than IPM because of assumptions made by Southern Company on which units would be economical to control and incorrect data in the NEEDS database which feeds IPM.

In August 2004, VISTAS contracted with ICF International, Inc., to run IPM to provide utility forecasts for 2009 and 2018 under two future scenarios – Base Case and CAIR Case. The Base Case represents the current operation of the power system under currently known laws and regulations (as known at the time the run was made), including those that come into force in the study horizon. The CAIR Case is the Base Case with the proposed CAIR rule superimposed. The run results were parsed at the unit level for the 2009 and 2018 run years. Also in August 2004, MRPO contracted with E.H. Pechan to post-process the IPM outputs generated by ICF to provide model-ready emission files. The IPM output files were delivered by ICF to VISTAS in November (Future Year Electricity Generating Sector Emission Inventory Development Using the Integrated Planning Model (IPM®) in Support of Fine Particulate Mass and Visibility Modeling in the VISTAS and Midwest RPO Regions, January 2005), and the post-processed data files were delivered by Pechan to the MRPO in December 2004 (LADCO IPM Model Parsed File Post-Processing Methodology and File Preparation, February 8, 2005).

On March 10, 2005, EPA issued the final Clean Air Interstate Rule. VISTAS and MRPO, in conjunction with other RPOs, conducted another round of IPM modeling which reflected changes to control assumptions based on the final CAIR as well as additional changes to model inputs based on S/L agency and stakeholder comments. Several conference calls were conducted in the spring of 2005 to discuss and provide comments on IPM assumptions related to six main topics: power system operation, generating resources, emission control technologies, set-up parameters and rule, financial assumptions, and fuel assumptions. Based on these discussions, VISTAS sponsored a new set of IPM runs to reflect the final CAIR requirements as well as certain changes to IPM assumptions that were agreed to by the VISTAS states. This set of IPM runs is documented in *Future Year Electricity Generating Sector Emission Inventory Development Using the Integrated Planning Model (IPM®) in Support of Fine Particulate Mass and Visibility Modeling in the VISTAS and Midwest RPO Regions*, April 2005 (these runs are referred to as the VISTAS Phase I analysis).

Further refinements to the IPM inputs and assumptions were made by the RPOs, and ICF performed the following four runs using IPM during the summer of 2005 (these runs are referred to as the VISTAS/CENRAP Phase II analysis):

- Base Case with EPA 2.1.9 coal, gas and oil price assumptions.
- Base Case with EPA 2.1.9 coal and gas supply curves adjusted for AEO 2005 reference case price and volume relationships.
- Strategy Case with EPA 2.1.9 coal, gas and oil price assumptions.
- Strategy Case with EPA 2.1.9 coal and gas supply curves adjusted for AEO 2005 reference case price and volume relationships.

The above runs were parsed for 2009 and 2018 run years. The above four runs were based on VISTAS Phase I and the EPA 2.1.9 assumptions. The changes that were implemented in the above four runs are summarized below:

- Unadjusted AEO 2005 electricity demand projections were incorporated in the above four runs.
- The gas supply curves were adjusted for AEO 2005 reference case price and volume relationships. The EPA 2.1.9 gas supply curves were scaled such that IPM will solve for AEO 2005 gas prices when the power sector gas demand in IPM is consistent with AEO 2005 power sector gas demand projections.
- The coal supply curves used in EPA 2.1.9 were scaled in such a manner that the average mine mouth coal prices that the IPM is solving in aggregated coal supply regions are comparable to AEO 2005. Due to the fact that the coal grades and supply regions between AEO 2005 and the EPA 2.1.9 are not directly comparable, this was an approximate approach and had to be performed in an iterative fashion. The coal transportation matrix was not updated with EIA assumptions due to significant differences between the EPA 2.1.9 and EIA AEO 2005 coal supply and coal demand region configurations.
- The cost and performance of new units were updated to AEO 2005 reference case levels in all of the above four funs.
- The run years 2008, 2009, 2012, 2015, 2018, 2020 and 2026 were modeled.
- The AEO 2005 life extension costs for fossil and nuclear units were incorporated in the above runs.

- The extensive NEEDS comments provided by VISTAS, MRPO, CENRAP and MANE-VU were incorporated into the VISTAS Phase I NEEDS.
- MANE-VU's comments in regards to the state regulations in the northeast were incorporated.
- Renewable Portfolio Standards (RPS) in the northeast was modeled based on the Regional Greenhouse Gas Initiative analysis. A single RPS cap was modeled for MA, RI, NY, NJ, MD and CT. These states could buy credits from NY, PJM and New England model regions.
- The investments required under the Illinois power, Mirant and First Energy NSR settlements were incorporated in the above runs.

For the VISTAS/CENRAP Phase II set of IPM runs, ICF generated two different parsed files. One file includes all fuel burning units (fossil, biomass, landfill gas) as well as non-fuel burning units (hydro, wind, etc.). The second file contains just the fossil-fuel burning units (e.g., emissions from biomass and landfill gas are omitted). The RPOs decided to use the fossil-only file for modeling to be consistent with EPA, since EPA used the fossil only results for CAIR analyses. For the 10 VISTAS states, non-fossil fuels accounted for only 0.13 percent of the NOx emissions and 0.04 percent of the SO₂ emissions in the 2009 IPM runs.

S/L agencies reviewed the results of the VISTAS/CENRAP Phase II set of IPM runs, which were incorporated into the VISTAS Base F inventory. S/L agencies primarily reviewed and commented on the IPM results with respect to IPM decisions on NO_x post-combustion controls and SO₂ scrubbers. S/L agencies provided the latest information on when and where new SO₂ and NO_x controls are planned to come online. S/L agencies also reviewed the IPM results to verify that existing controls and emission rates were properly reflected in the IPM runs. As directed by the S/L agencies, adjustments to the IPM results were made to specific units with any new information they had as part of the permitting process or other contact with the industry that indicates which units will install controls as a result of CAIR and when these new controls will come on-line. Mississippi decided to continue to use the Southern Company projections instead of the IPM projections to represent emissions at Southern Company facilities in Mississippi. The initial set of state-specified changes to the VISTAS/CENRAP Phase II set of IPM runs were used to create the Base G projection inventory (and are documented later in Section 2.1.1.6). The second set of state specified changes were made only for the 2018 inventory, resulting in the Base G2 2018 inventory (documented later in Section 2.1.1.7). The final set of state specified changes applied to both the 2009 and 2018 inventories and were used to create the B&F 2009 and 2018 inventories (documented later in Section 2.1.1.8).

94

2.1.1.2 VISTAS IPM runs for EGU sources

The following general summary of the VISTAS IPM® modeling is based on ICF's documentation Future Year Electricity Generating Sector Emission Inventory Development Using the IPM® in Support of Fine Particulate Mass and Visibility Modeling in the VISTAS and Midwest RPO Regions, April 2005. The ICF documentation is to be used as an extension to EPA's proposed CAIR modeling runs documented in Documentation Supplement for EPA Modeling Applications (V.2.1.6) Using the IPM, EPA 430/R-03-007, July 2003.

IPM provides "forecasts of least-cost capacity expansion, electricity dispatch, and emission control strategies for meeting energy demand and environmental, transmission, dispatch, and reliability constraints." The underlying database in this modeling is U.S. EPA's National Electric Energy Data System (NEEDS) released with the CAIR Notice of Data Availability (NODA). The NEEDS database contains the existing and planned/committed unit data in EPA modeling applications of IPM. NEEDS includes basic geographic, operating, air emissions, and other data on these generating units. VISTAS States and stakeholders provided changes for:

- NO_x post-combustion control on existing units
- SO₂ scrubbers on existing units
- SO₂ emission limitations
- PM controls on existing units
- Summer net dependable capacity
- Heat rate for existing units
- SO₂ and NO_x control plans based on State rules or enforcement settlements

The years 2009 and 2018 were explicitly modeled.

2.1.1.3 Post-Processing of IPM Parsed Files

The following summary of the VISTAS/Midwest Regional Planning Organization (MRPO) IPM modeling is based on Pechan's documentation *LADCO IPM Model Parsed File Post-Processing Methodology and File Preparation*, February 8, 2005. The essence of the IPM model post-processing methodology is to take an initial IPM model output file and transform it into air quality model input files. ICF via VISTAS/MRPO provides an initial spreadsheet file containing unit-level records of both

- (1) "existing" units and
- (2) committed or new generic aggregates.

All records have unit and fuel type data; existing, retrofit (for SO_2 and NO_x), and separate NO_x control information; annual SO_2 and NO_x emissions and heat input; summer season (May-September) NO_x and heat input; July day NO_x and heat input; coal heat input by coal type;

nameplate capacity megawatt (MW), and State FIPS code. Existing units also have county FIPS code, a unique plant identifier (ORISPL) and unit ID (also called boiler ID) (BLRID); generic units do not have these data. The processing includes estimating various types of emissions and adding in control efficiencies, stack parameters, latitude-longitude coordinates, and State identifiers (plant ID, point ID, stack ID, process ID). Additionally, the generic units are sited in a county and given appropriate IDs. This processing is described in more detail below.

The data are prepared by transforming the generic aggregates into units similar to the existing units in terms of the available data. The generic aggregates are split into smaller generic units based on their unit types and capacity, are provided a dummy ORIS unique plant and boiler ID, and are given a county FIPS code based on an algorithm that sites each generic by assigning a sister plant that is in a county based on its attainment/nonattainment status. Within a State, plants (in county then ORIS plant code order) in attainment counties are used first as sister sites to generic units, followed by plants in PM nonattainment counties, followed by plants in 8-hour ozone nonattainment counties. Note that no LADCO or VISTAS States provided blackout counties that would not be considered when siting generics, so this process is identical to the one used for EPA IPM post-processing.

SCCs were assigned for all units; unit/fuel/firing/bottom type data were used for existing units' assignments, while only unit and fuel type were used for generic units' assignments. Latitude-longitude coordinates were assigned, first using the EPA-provided data files, secondly using the September 17, 2004 Pechan in-house latitude-longitude file, and lastly using county centroids. These data were only used when the data were not provided in the 2002 NIF files. Stack parameters were attached, first using the EPA-provided data files, secondly using a March 9, 2004 Pechan in-house stack parameter file based on previous EIA-767 data, and lastly using an EPA June 2003 SCC-based default stack parameter file. These data were only used when the data were not provided in the 2002 NIF files.

Additional data were required for estimating VOC, CO, filterable primary PM₁₀ and PM2.5, PM condensable, and NH₃ emissions for all units. Thus, ash and sulfur contents were assigned by first using 2002 EIA-767 values for existing units or SCC-based defaults; filterable PM10 and PM2.5 efficiencies were obtained from the 2002 EGU NEI that were based on 2002 EIA-767 control data and the PM Calculator program (a default of 99.2 percent is used for coal units if necessary); fuel use was back calculated from the given heat input and a default SCC-based heat content; and emission factors were obtained from an EPA-approved October 7, 2004 Pechan emission factor file based on AP-42 emission factors. Note that this updated file is not the one used for estimating emissions for previous EPA post-processed IPM files. Emissions for 28 temporal-pollutant combinations were estimated since there are seven pollutants (VOC, CO, primary PM₁₀ and PM_{2.5}, NH₃, SO₂ and NO_x) and four temporal periods (annual, summer season, winter season, July day).

The next step was to match the IPM unit IDs with the identifiers in VISTAS 2002 inventory. A crosswalk file was used to obtain FIPS State and county, plant ID (within State and county), and point ID. If the FIPS State and county, plant ID and point ID are in the 2002 VISTAS NIF tables, then the process ID and stack ID are obtained from the NIF; otherwise, defaults, described above, were used.

Pechan provided the post-processed files in NIF 3.0 format. Two sets of tables were developed: "NIF files" for IPM units that have a crosswalk match and are in the 2002 VISTAS inventory, and "NoNIF files" for IPM units that are not in the 2002 VISTAS inventory (which includes existing units with or without a crosswalk match as well as generic units).

For Base F and Base G projections, VISTAS reviewed the PM and NH₃ emissions from EGUs as provided by Pechan and identified significantly higher emissions in 2009/2018 than in 2002. VISTAS determined that Pechan used a set of PM and NH₃ emission factors that are "the most recent EPA approved uncontrolled emission factors" for estimating 2009/2018 emissions. These factors are most likely not the same emission factors used by States for estimating these emissions in 2002 for EGUs in the VISTAS domain. Thus, the emission increase from 2002 to 2009/2018 was simply an artifact of the change in emission factor, not anything to do with changes in activity or control technology application. Also, VISTAS identified an inconsistent use of SCCs for determining emission factors between the base and future years.

VISTAS resolution of the PM and NH₃ problem is fully documented in *EGU Emission Factors* and *Emission Factor Assignment*, memorandum from Greg Stella to VISTAS State Point Source Contacts and VISTAS EGU Special Interest Workgroup, June 13, 2005. The first step was the adjustment of the 2002 base year emissions inventory. Using the latest "EPA-approved" uncontrolled emission factors by SCC, Alpine Geophysics utilized CERR or VISTAS reported annual heat input, fuel throughput, heat, ash and sulfur content to estimate annual uncontrolled emissions for units identified as output by IPM. This step was conducted for non-CEM pollutants (CO, VOC, PM, and NH₃) only. For PM emissions, the condensable component of emissions was calculated and added to the resulting PM primary estimations. The resulting emissions were then adjusted by any control efficiency factors reported in the CERR or VISTAS data collection effort. The second adjustment was to the future year inventories. Alpine Geophysics updated the SCCs in the future year inventory to assign the same base year SCC. Using the same methods as described for the 2002 revisions, those non-IPM generated pollutants were estimated using IPM predicted fuel characteristics and base year 2002 SCC assignments.

2.1.1.4 Eliminating Double Counting of EGU Units

The following procedures were used to avoid double counting of EGU emissions in the 2009/2018 point source inventory. The 2002 VISTAS point source emission inventory contains both EGUs and non-EGUs. Since this file contains both EGUs and non-EGU point sources, and

EGU emissions are projected using the IPM, it was necessary to split the 2002 point source file into two components. The first component contains those emission units accounted for in the IPM forecasts. The second component contains all other point sources not accounted for in IPM.

As described in the previous section, Pechan developed 2009/2018 NIF files for EGUs from the IPM parsed files. All IPM matched units were initially removed from the 2009/2018 point source inventory to create the non-EGU inventory (which was projected to 2009/2018 using the non-EGU growth and control factors described in Section 2.1.2). This was done on a unit-by-unit basis based on a cross-reference table that matches IPM emission unit identifiers (ORISPL plant code and BLRID emission unit code) to VISTAS NIF emission unit identifiers (FIPSST state code, FIPSCNTY county code, State Plant ID, State Point ID). When there was a match between the IPM ORISPL/BLRID and the VISTAS emission unit ID, the unit was assigned to the EGU inventory; all other emission units were assigned to the non-EGU inventory.

If an emission unit was contained in the NIF files created by Pechan from the IPM output, the corresponding unit was removed from the initial 2009/2018 point source inventory. The NIF 2009/2018 EGU files from the IPM parsed files were then merged with the non-EGU 2009/2018 files to create the 2009/2018 Base F point source files.

Next, we prepared several ad-hoc QA/QC queries to verify that there was no double-counting of emissions in the EGU and non-EGU inventories:

- We reviewed the IPM parsed files {VISTASII_PC_1f_AllUnits_2009 (To Client).xls and VISTASII_PC_1f_AllUnits_2018 (To Client).xls} to identify EGUs accounted for in IPM. We compared this list of emission units to the non-EGU inventory derived from the VISTAS cross-reference table to verify that units accounted for in IPM were not double-counted in the non-EGU inventory. As a result of this comparison, we made a few adjustments in the cross-reference table to add emission units for four plants to ensure these units accounted for in IPM were moved to the EGU inventory.
- We reviewed the non-EGU inventory to identify remaining emission units with an Standard Industrial Classification (SIC) code of "4911 Electrical Services" or Source Classification Code of "1-01-xxx-xx External Combustion Boiler, Electric Generation". We compared the list of sources meeting these selection criteria to the IPM parsed file to ensure that these units were not double-counted.

S/L agencies also reviewed the 2009/2018 point source inventory to verify whether there was any double counting of EGU emissions. In two instances, S/L agencies provided corrections where an emission unit was double counted.

2.1.1.5 Quality Assurance Steps

Quality assurance was an important component to the inventory development process. The following QA steps on the EGU component of the VISTAS revised 2009/2018 EGU inventory:

- 1. Provided parsed files (i.e., Excel spreadsheets that provide unit-level results derived from the model plant projections obtained by the IPM) to the VISTAS EGU SIWG for review.
- 2. Provided facility level emission summaries for 2009/2018 for both the base case and CAIR case to the VISTAS EGU SIWG to ensure that emissions were consistent and that there were no missing sources.
- 3. Compared, at the State-level, emissions from the IPM parsed files and the post-processed NIF files to verify that the post-processed NIF files were consistent with the IPM parsed file results.

VISTAS requested S/L review of these files – the changes specified by states as a result of this review are documented in the following subsection.

2.1.1.6 S/L Adjustments to IPM Modeling Results for Base G Projections

After S/L agency review of the final set of IPM runs (as incorporated into the Base F inventory), S/L agencies specified a number of changes to the IPM results to better reflect current information on when and where future controls would occur. These changes to the IPM results primarily involved S/L agency addition or subtraction future emission controls based on the best available data from state rules, enforcement agreements, compliance plans, permits, and discussions/commitments from individual companies.

For example, Dominion Virginia Power released their company-wide plan to reduce emission to meet the requirements of CAIR and other programs. This plan varies substantially from the IPM results both in terms current and future controls and timing of these controls. As a result, VA DEQ developed their best estimates of future controls on EGUs in Virginia. Also, Duke Energy and Progress Energy have updated their plans for complying with North Carolina's Clean Smokestack Act. These plans vary substantially from the IPM results both in terms current and future controls and timing of these controls. As a result, NC DENR replaced the IPM emission projections for 2009 with projections from the Duke Energy and Progress Energy compliance plan. NC DENR elected to use the IPM results for 2018.

Some S/L agencies specified changes to the controls assigned by IPM to reflect their best estimates of emission controls. These changes involved either 1) adding selective catalytic reduction (SCR) or scrubber controls to units where IPM did not predict SCR or scrubber controls, or 2) removing IPM-assigned SCR or scrubber controls at units where the S/L agency indicated their were no firm plans for controls at those units. We generally used a control

efficiency of 90 percent when adding or removing SO₂ scrubber controls (unless a different control efficiency was provided by the State). We generally used a control efficiency of 90 percent when adding or removing NO_x SCR controls at coal-fired plants, 80 percent when adding or removing NO_x SCR controls at gas-fired plants, and 35 percent when adding or removing NO_x SNCR controls (unless a different control efficiency was provided by the State). The changes specified by the S/L agencies are summarized in Table 2.1-1. A comparison of the IPM and VISTAS control assumptions for all coal-fired EGUs in the Base G/G2 inventories are summarized in Appendix H. In addition to the changes to the IPM-assigned controls, the S/L agencies also specified other types of changes to the IPM results. These other specific changes to the IPM results are summarized in Table 2.1-2.

S/L agencies provided information and/or comment on changes in stack parameters from the 2002 inventory for 2009/2018 inventory. Changes to stack parameters were also made in cases where new controls are scheduled to be installed. In cases where an emission unit projected to have a SO₂ scrubber in either 2009 or 2018, some states were able to provide revised stack parameters for some units based on design features for the new control system. Other units projected to install scrubbers by 2009 or 2018 are not far enough along in the design process to have specific design details. For those units, the VISTAS EGU SIWG made the following assumptions: 1) the scrubber is a wet scrubber; 2) keep the current stack height the same; 3) keep the current flow rate the same, and 4) change the stack exit temperature to 169 degrees F (this is the virtual temperature derived from a wet temperature of 130 degrees F). VISTAS determined that exit temperature (wet) of 130 degrees F +/- 5 degrees F is representative of different size units and wet scrubber technology.

2.1.1.7 S/L Adjustments to IPM Modeling Results for Base G2 2018 Projections

Following release of the Base G inventory, four States specified additional changes to reflect their best estimates of emission controls in 2018. These additional changes are marked with an "*" in Tables 2.1-1 and 2.1-2. The following changes were requested and implemented in the VISTAS 2018 Base G2 EGU emissions and modeling inventories:

- <u>Florida</u> Removed scrubbers from Smith units 1 & 2. Added scrubbers to Crist units 4, 5, & 6. Forecast emissions (from 2002 base) using growth factors for Northside units 1A and 2A. These units were estimated to be non operational in the IPM base case run.
- Georgia Added scrubbers to Plant Scherer (Units 1-4) and Plant Yates (Units 6 & 7).
- **North Carolina** Remove scrubber from F Lee unit 3.
- West Virginia Pleasants Units 1 and 2 had SO2 emissions reduced to account for the facility's inclusion of previously bypassed 15% effluent stream to the scrubber and the control efficiency and emissions will reflect a change from 79.9% to 95% control.

Table 2.1-1 Adjustments to IPM Control Determinations Specified by S/L Agencies for the Base G/G2 2009/2018 EGU Inventories.

			N	O _x Retrofit Eı	nission Conti	ols	S	O ₂ Retrofit E	mission Conti	rols
State	Plant Name and ID	Unit	20)09	20	018	20	009	2	018
			IPM	State	IPM	State	IPM	State	IPM	State
AL	James H. Miller ORISID=6002	1 & 2	SCR during ozone season	SCR probable year round due to CAIR	SCR during ozone season	SCR probable year round due to CAIR	None	None	None	Scrubber
		3 & 4	SCR during ozone season	SCR year round from Consent Decree	SCR during ozone season	SCR year round from Consent Decree	None	None	None	Scrubber
	Barry	1, 2, 3	None	SNCR	SCR	SNCR	None	None	None	None
	ORISID=3	4	None	SNCR	SCR	SNCR	None	None	Scrubber	Scrubber
		5	None	None	SCR	SCR	None	None	Scrubber	Scrubber
	E C Gaston	1 - 4	SCR	None	SCR	None	None	None	Scrubber	Scrubber
	ORISID=26	5	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber
	Gorgas	6&7	None	None	None	None	None	None	None	None
	ORISID=8	8 & 9	None	None	None	None	None	Scrubber	None	Scrubber
		10	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	Charles R. Lowman	1	None	None	None	None	None	Scrubber	None	Scrubber
	ORISID=56	2 & 3	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
FL	Lansing Smith	1	None	None	SCR	SCR	None	None	Scrubber	None*
	ORISID=643	2	None	None	SCR	SCR	None	None	Scrubber	None*
	Northside ORISID=667	1A & 1B	No operation	No operation	No operation	No control, emissions forecasted using growth rates*	No operation	No operation	No operation	No control, emissions forecasted using growth rates*

101

Table 2.1-1 (continued)

			N	O _x Retrofit E	mission Cont	rols	S	SO ₂ Retrofit Emission Controls				
State	Plant Name and ID	Unit	2	009	2	2018)09	2	018		
			IPM	State	IPM	State	IPM	State	IPM	State		
FL	Crist	4	None	None	None	None	None	None	None	Scrubber*		
	ORISID=641	5	None	None	None	None	None	None	None	Scrubber*		
		6	None	None	None	None	None	None	None	Scrubber*		
GA	Bowen	1BLR	SCR	SCR	SCR	SCR	IPM had	None	Scrubber	Scrubber		
	ORISID=703	2BLR	SCR	SCR	SCR	SCR	retrofit scrubbers	None	Scrubber	Scrubber		
		3BLR	SCR	SCR	SCR	SCR	but little	Scrubber	Scrubber	Scrubber		
		4BLR	SCR	SCR	SCR	SCR	emission reductions	Scrubber	Scrubber	Scrubber		
	Wansley	1	SCR	SCR	SCR	SCR	IPM had	Scrubber	Scrubber	Scrubber		
	ORISID=6052	2	SCR	SCR	SCR	SCR	retrofit scrubbers but little emission reductions	None	Scrubber	Scrubber		
	Kraft	1, 2	None	None	None	None	None	None	None	None		
	ORISID=733	3	None	None	SCR	None	None	None	None	None		
	McIntosh ORISID=6124	1	None	None	SCR	None	None	None	None	None		
	Yates	1	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber		
	ORISID=728	2, 3	None	None	None	None	None	None	None	None		
		4, 5	None	None	SCR	SCR	None	None	Scrubber	None		
		6, 7	None	None	SCR	SCR	None	None	Scrubber	Scrubber*		

Table 2.1-1 (continued)

	Plant Name and ID		NO _x Retrofit Emission Controls				SO ₂ Retrofit Emission Controls			
State		Unit	2009		2018		2009		2018	
			IPM	State	IPM	State	IPM	State	IPM	State
GA	Hammond	1	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	ORISID=708	2	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		3	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		4	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
	Scherer	1	None	None	None	None	None	None	None	Scrubber*
	ORISID=6257	2	None	None	None	None	None	None	None	Scrubber*
		3	None	None	None	None	None	None	None	Scrubber*
		4	None	None	None	None	None	None	None	Scrubber*
KY	Ghent	1	None	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
	ORISID=1356	2	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		3, 4	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	Coleman	C1	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	ORISID=1381	C2	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		C3	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	HMP&L Station 2	H1	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
		H2	None	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
	E W Brown	1	None	None	None	None	None	Scrubber	None	Scrubber
	ORISID=1355	2	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		3	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
SC	Jeffries	3	SCR	None	SCR	None	None	None	None	None
	ORISID=3319	4	None	None	None	None	None	None	None	None
	Wateree	WAT1	SCR	SCR	SCR	SCR	None	Scrubber	None	Scrubber
	ORISID=3297	WAT2	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber

Table 2.1-1 (continued)

	Plant Name and ID		NO _x Retrofit Emission Controls				SO ₂ Retrofit Emission Controls			
State		Unit	2009		2018		2009		2018	
			IPM	State	IPM	State	IPM	State	IPM	State
SC	Canadys	CAN1	None	None	None	None	None	None	None	None
	ORISID=3280	CAN2	None	None	None	None	None	None	None	None
		CAN3	None	None	None	None	None	Scrubber	None	Scrubber
	Rainey	CT1A	None	SCR	None	SCR	None	None	None	None
	ORISID=7834	CT1B	None	SCR	None	SCR	None	None	None	None
TN	Kingston	1 – 8	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
	ORISID=3407	9	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber
	Johnsonville	1 – 10	SCR	None	SCR	SCR	None	None	None	None
	ORISID=3406									
WV	Willow Island	2	SCR	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
	ORISID=3946									
	Kammer	1 -3	SCR	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
	ORISID=3947									

Note: See Appendix H for a complete list of IPM and VISTAS control determinations for all coal and oil/gas units.

Table 2.1-2 Other Adjustments to IPM Results Specified by S/L Agencies for the Base G/G2 2009/2018 EGU Inventories.

State	Plant Name and ID	Unit	Nature of Update/Correction
FL	Central Power and Lime ORISID= 10333	GEN1	Central Power and Lime (ORIS10333) is a duplicate entry. This is point 18 in Florida Crushed Stone (12-053-0530021). Removed IPM emissions for Central Power and Lime.
	Cedar Bay Generating ORISID=10672	GEN1	FLDEP disagrees with IPM projections - no knowledge of expansion of this facility and the cogeneration facility should not grow faster than the underlying industry. Cedar Bay is connected to Stone Container (12-031-0310067). Replaced IPM emissions with 2002 emissions for Cedar Bay (12-031-0310337) times the growth factors for Stone Container.
	Indiantown Cogeneration ORISID=50976	GEN1	FLDEP disagrees with IPM projections - no knowledge of expansion of this facility and the cogeneration facility should not grow faster than the underlying industry. Indiantown is connected to Louis Dreyfus Citrus (12-085-0850002). Replaced IPM emissions with 2002 emissions for Indiantown (12-085-0850102) times the growth factors for Louis Drefus Citrus.
GA	Bowen ORISID=703	1BLR 2BLR 3BLR 4BLR	IPM indicated retrofit scrubbers on all 4 units in 2009, but the IPM emissions showed little reductions from 2002 levels. Changed emissions to reflect scrubbers on 3BLR and 4BLR by 2009.
	Wansley ORISID=6052	1, 2	IPM indicated retrofit scrubbers on both units in 2009, but the IPM emissions showed little reductions from 2002 levels. Changed emissions to reflect one scrubber on Unit 1 by 2009.
	Riverside ORISID=734	4	All of plant Riverside was retired from service June 1, 2005; emissions set to zero in 2009 and 2018.
	McIntosh ORISID=727	CT10A CT10B CT11A CT11B	The McIntosh Combined Cycle facility became commercial June 1, 2005. Added 346 tons of NO _x and 121 tons of SO ₂ per unit to the 2009 and 2018 inventories.
	Longleaf Energy Station	1, 2	Longleaf Energy Station is being proposed by LS Power Development, Inc. GA specified that the emissions from this proposed plant be included in the 2018 projections. Boilers 1 and 2 added 1,882 tons of NO _x and 3,227 tons of SO ₂ per unit to the 2018 inventory.
	Duke Murray (55382)	1	Corrected coordinates to 34.7189 and -84.9353
MS	R D Morrow ORISID=6061	1, 2	Revised the 2018 emissions to reflect controls not indicated by IPM. The SO_2 emissions are much lower than IPM, but their expected NO_x emissions are actually higher than IPM. The controls will be coming online 2009 or 2010, so the 2009 inventory did not change.
	Jack Watson (2049) Victor J Daniel (6073) Chevron Oil (2047)	All	MS DEQ specified that the emission projections provided by the Southern Company for their units in Mississippi were to be used instead of the IPM results.

Table 2.1-2 (continued)

State	Plant Name and ID	Unit	Nature of Update/Correction
NC	G G Allen (2718) Belews Creek (8042)1 Buck (2720) Cliffside (2721) Dan River (2723) Marshall (2727) Riverbend (2732)	All	Replaced all IPM 2009 results with emission projections from Duke Power's NC Clean Air Compliance Plan for 2006. Used IPM results for 2018
	Asheville (2706) Cape Fear (2708) Lee (2709) Mayo (6250) Roxboro (2712) Sutton (2713) Weatherspoon (2716)	All	Replaced all IPM 2009 results with emission projections from Progress Energy's NC Clean Smokestacks Act Calendar Year 2005 Progress Report. Used IPM results for 2018, except for Lee #3* where IPM projected a retrofit scrubber but NC specified that no scrubber was to be applied.
	Dwayne Collier Battle Cogeneration Facility ORISID=10384	GEN1 GEN2	Dwayne Collier Battle is a duplicate entry. This is Cogentrix of Rocky Mount (37-065-3706500146, stacks G-26 and G-27). Duplicate entries were removed both the 2009 and 2018 inventories.
	Kannapolis Energy Partners ORISID=10626	GEN2 GEN3	Kannapolis Energy emissions are being used as credits for another facility. IPM emissions from this facility (37-025-ORIS10626) were removed from the EGU inventory for 2009 and 2018. Emissions from Kannapolis Energy (37-025-3702500113) were carried forward in the 2009/2018 inventory.
SC	Cross ORISID=130	1, 2	Unit 1: upgrade scrubber from 82 percent to 95 percent removal efficiency by June 30, 2006. Recalculate emissions based on upgrade in control efficiency. Unit 2: upgrade scrubber from 70 percent to 87 percent removal efficiency by June 30, 2006. Recalculate emissions based on upgrade in control efficiency.
	Winyah ORISID=6249	1 – 4	Unit 1: Install scrubber that meets 95 percent removal efficiency by Dec. 31, 2008; Upgrade ESP from 0.38 to 0.03 lb/mmBTU by Dec. 31, 2008 Unit 2: Replace scrubber with one that meets 95 percent
			removal efficiency from 45 percent by Dec. 31, 2008; Upgrade ESP from 0.10 to 0.03 lb/mmBTU by Dec. 31, 2008
			Unit 3: Upgrade scrubber from 70 percent to 90 percent removal efficiency by Dec. 31, 2012; Upgrade ESP from 0.10 to 0.03 lb/mmBTU by Dec. 31, 2012
			Unit 4: Upgrade scrubber from 70 percent to 90 percent removal efficiency by Dec. 31, 2007; Upgrade ESP from 0.10 to 0.03 lb/mmBTU by Dec. 31, 2007
			Recalculated SO ₂ and PM emissions based on upgrade in control efficiencies.

Table 2.1-2 (continued)

State	Plant Name and ID	Unit	Nature of Update/Correction
SC	Dolphus Grainger ORISID=3317	1, 2	Unit 1: Upgrade ESP from 0.60 to 0.03 lb/mmBTU by Dec. 31, 2012. Reduced PM ₁₀ and PM25 emissions in 2018 by 95 percent based on change in allowable emission rate Unit 2: Install low NO _x burners that meet 0.46 lb/mmBTU from 0.9 by May 1, 2004. Recalculated NO _x emissions using 0.46/lbs/mmBtu and IPM heat input Unit 2: Upgrade ESP from 0.60 to 0.03 lb/mmBTU by Dec. 31, 2012. Reduced PM ₁₀ and PM25 emissions in 2018 by 95
	Jeffries ORISID=3319	3, 4	percent based on change in allowable emission rate Unit 3: Upgrade ESP from 0.54 to 0.03 lb/mmBTU by Dec. 31, 2012. Reduced PM ₁₀ and PM25 emissions in 2018 by 94.44 percent based on change in allowable emission rate Unit 4: Upgrade ESP from 0.54 to 0.03 lb/mmBTU by Dec. 31, 2012. Reduced PM ₁₀ and PM25 emissions in 2018 by 94.44 percent based on change in allowable emission rate
	W S Lee ORISID=3264	1, 2	IPM does not indicate that these units are installing SOFA NO _x control technology by April 30, 2006 to meet 0.27 lb/mmBTU, down from 0.45 lb/mmBtu. Calculated NO _x emissions using IPM heat input and 0.27 lbs/mmBtu
	Generic Unit ORISID=900545	All	All predictions for generic units appear reasonable with the exception of Plant ID ORIS900545 Point ID GSC45 which was modeled in Georgetown County. It will be very difficult to add new generation this close to the Cape Romain Class I area. Santee Cooper has no plans for future generation in Georgetown County, but does have plans for new future generation in Florence County. This unit was moved to coordinates specified in Florence County.
VA	AEP Clinch River ORISID=3775	1, 2, 3	Used IPM results for 2009; replaced all 2018 IPM results with VADEQ's growth and control estimates (no SCR or scrubbers).
	AEP Glen Lyn ORISID=3776	51, 52, 6	Used 2009/2018 IPM results for units 51 and 52; used 2009 IPM for unit 6; replaced 2018 IPM for unit 6 with VADEQ's growth and control estimates (nor SCR or scrubber).
	Dominion Clover ORISID=7213	1, 2	Used 2009/2018 IPM results.
	Dominion Bremo ORISID=3796	3, 4	Used 2009/2018 IPM results.
	Dominion Chesterfield ORISID=3797	3, 4, 5, 6	Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates.
	Dominion Yorktown ORISID=3809	1, 2, 3	Units 1, 2: Used 2009/2018 IPM results for NOx and used VADEQ's growth and control estimates for SO2. Unit 3: IPM predicts zero heat input for this 880 MW #6 oil fired unit. Dominion plans to continue to operate Unit 3. Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates.

Table 2.1-2 (continued)

State	Plant Name and ID	Unit	Nature of Update/Correction
VA	Dominion Chesapeake ORISID=3803	1 – 4	Unit 1: Used 2009/2018 IPM for NOx; used 2009 IPM for SO2; used VADEQ's growth and control estimates for SO2 (added scrubber that IPM did not have) Unit 2: Used 2009/2018 IPM for NOx; used 2009 IPM for SO2; used VADEQ's growth and control estimates for SO2 (added scrubber that IPM did not have) Unit 3: Used VA DEQ's growth and control estimates for 2009 NOx (added SCR that IPM did not have); used IPM result for 2018 NOx; Used 2009/2018 IPM for SO2. Unit 4: Used VA DEQ's growth and control estimates for 2009 NOx (added SCR that IPM did not have); used IPM result for 2018 NOx; Used 2009/2018 IPM for SO2.
	Dominion Possum Point ORISID=3804	3 & 4 5 6	Unit 3&4: IPM had 137 tons of NO_x for these units in 2009 and 111 tons in 2018. VA DEQ specified that the permitted emission rates should be used, which equates to 3,066 tons in 2009 and 2018. Unit 5: IPM had zero heat input. Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates. Unit 6: Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates.
	Potomac River ORISID=3788	1 - 5	Units 1&2: IPM retired these units. Mirant has no plans at this time to retire any units. Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates. Units 3, 4, 5: Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates.
WV	Albright ORISID=3942	1, 2	IPM predicted early retirement for these units. AEP indicated there are no plans for early retirement. For 2009, used 2002 actual emissions as these units are not likely to retire by 2009. For 2018, used IPM prediction of retirement.
	Rivesville ORISID=3945	7, 8	IPM predicted early retirement for these units. AEP indicated there are no plans for early retirement. For 2009, used 2002 actual emissions as these units are not likely to retire by 2009. For 2018, used IPM prediction of retirement.
	Willow Island ORISID=3946	1, 2	Unit 1: IPM predicted early retirement for these units. AEP indicated there are no plans for early retirement. For 2009, used 2002 emissions as these units are not likely to retire by 2009. For 2018, used IPM prediction of retirement. Unit 2: IPM predicted SCR and scrubber for 2009. These controls will not be in place by 2009.
	North Branch ORISID=7537	1A, 1B	SO ₂ Permit Rate was corrected from 2.7 to 0.678 lb/MMBtu. Used SO ₂ Permit Rate and IPM predicted total fuel used to calculate SO ₂ emissions in 2009 and 2018
	Mt. Storm ORISID=3954	1, 2, 3	SO ₂ Permit Rate was corrected from 2.7 to 0.15 lb/MMBtu. Used SO ₂ Permit Rate of 0.15 lb/MMBtu and IPM predicted total fuel used to calculate SO ₂ emissions in 2009 and 2018
	Pleasants Power Station ORISID=6004	1, 2	IPM applied a scrubber with a 79.9% control efficiency; WV indicated that the control efficiency should be 95%.

2.1.1.8 S/L Adjustments to IPM Modeling Results for B&F Projections

For the B&F inventory, the S/L agencies were asked to review the Base G2 inventory with respect to the following items:

- Identify any updates needed to better reflect current information on when and where future controls would occur based on the best available data from state rules, enforcement agreements, compliance plans, permits, and discussions/commitments from individual companies;
- Identify any updates needed to change the IPM determination that most oil/gas steam units would either retire early or have no operation in 2009 or 2018; and
- Identify any updates needed to change the IPM assignment and VISTAS post-processing of generic units with specific information on new capacity.

The changes specified by the S/L agencies are summarized in Table 2.1-3. A comparison of the IPM and VISTAS control assumptions for all coal-fired EGUs in the B&F inventories are summarized in Appendix I.

Table 2.1-3 Additional Adjustments to IPM Results Specified by S/L Agencies for the B&F 2009/2018 EGU Inventories.

State	Plant Name and ID	Unit	Nature of Update/Correction
FL	Cape Canaveral Indian River Port Everglades Turkey Point Manatee Martin Riviera Anclote CD McIntosh Northside B Suwannee River	1, 2 1, 2, 3 1 - 4 1, 2 1, 2 1, 2 3, 4 1, 2 1 3	The IPM 2009/2018 solution has either shut-down these oil-fired units or converted them to natural gas only. FLDEP has reason to believe that these units may continue to operate using oil. For some of these units, the owner or operator of the units have provided (and FLDEP approved) an estimate of how the units will be operated in 2009/2018. For others, to be conservative, FLDEP assumed that the oil-fired units will operate in 2009/2018 exactly as they operated in 2002.
	Gulf Power Schultz ORISID=643	1 - 4	Plant is expected to shut down and was taken out of the 2018 projection.
	Northside ORISID=667	1A, 1B	These units were estimated to be non operational by IPM in 2009 and 2018. FLDEP believes these units will continue to operate. Emissions were estimated using the 2002 base case emissions and growth factors for Northside units 1A and 2A. The changes for 2009 were made in the B&F inventory; the changes for 2018 were made in the Base G2 inventory.
	Crist ORISID=641	4, 5 6, 7	IPM did not assign scrubbers to these units. Scrubbers are currently being installed and should be operational in 2009. SO2 emissions reduced by 90%.
GA	Mitchell ORISID=727	SG03	GADNR provided new emission projections for 2018.

Table 2.1-3 (continued)

State	Plant Name and ID	Unit	Nature of Update/Correction
GA	Kraft ORISID=733	SG03	GADNR provided new emission projections for 2018.
	McIntosh ORISID=6124	SG01	GADNR provided new emission projections for 2018.
	Bowen ORISID=703	SG03 SG04	GADNR provided new SO2 emission projections for 2009 and 2018 based on a 95% control efficiency instead of 90%.
	Hammond ORISID=708	SG01 to SG04	GADNR provided new SO2 emission projections for 2009 and 2018 based on a 95% control efficiency instead of 90%.
	Wansley ORISID=6052	SG01	GADNR provided new SO2 emission projections for 2009 and 2018 based on a 95% control efficiency instead of 90%.
KY	John Sherman Cooper ORISID=1384	1	IPM did not assign a scrubber to this unit in 2018. KDAQ believes that a scrubber should be assigned for 2018.
	John Sherman Cooper ORISID=1384	2	IPM assigned SCR in 2009. KDAQ does not expect SCR by then; emissions changed to reflect low-NOx burner.
	Spurlock Station ORISID=6041	1, 2	IPM did not assign scrubbers to these units in 2009. Per a consent decree and for BART, KDAQ specified a 90% reduction in SO2 emissions from SO2 controls.
	Big Sandy ORISID=1353	BSU1	IPM assigned a scrubber and SCR in 2009. KDAQ does not expect scrubber or SCR controls to be operational in 2009.
MS	Entergy Delta Entergy Rex Brown Entergy Baxter Wilson Entergy Gerald Andrus	1, 2 3, 4 1, 2 1	The IPM 2009/2018 solution has either shut-down these oil-fired units or converted them to natural gas only. MSDEQ has reason to believe that these units may continue to operate using oil. To be conservative, MSDEQ assumed that the oil-fired units will operate in 2009/2018 exactly as they operated in 2002.
NC	Cliffside ORISID=2721	7	Removed Unit 7 from the 2018 inventory since the NC Utilities Commission disapproved the permit application.
	Cape Fear ORISID=2798	1, 2	IPM assigned scrubbers to both units in 2018; NCDENR indicated that the facility projected Furnace Sorbent Injection. Increased SO2 emissions to reflect change in control efficiency.
SC	99 Oil-fired Units		The IPM 2009/2018 solution has either shut-down 99 oil-fired units or converted them to natural gas only. SCDHEC has reason to believe that these units may continue to operate using oil. To be conservative, SCDHEC assumed that the oil-fired units will operate in 2009/2018 exactly as they operated in 2002.
SC	Santee Cooper Cross ORISID=130	4	For both 2009 and 2018, added in a new 660 MW Unit 4 (not in IPM) that is identical to the new Unit 3 (which was in IPM). Used the new Unit 4 to replace the IPM-generated 500 MW coal-fired Generic Unit (ORIS900545) located in the adjacent county.

Table 2.1-3 (continued)

State	Plant Name and ID	Unit	Nature of Update/Correction
SC	New Santee Cooper Units Planned for Florence County	1, 2	Santee Cooper is planning two new coal burning units in Florence County, each at 660 MW. These units were not explicitly identified in IPM. Used these new units to replace three IPM-generated 500 MW coal-fired Generic Units (ORIS900145, ORIS900245, ORIS900345) in Darlington and Colleton Counties.
	USDOE SRS Area D ORISID=7652	1	Facility is replacing coal-fired boilers with three biomass boilers. Recalculated emissions for 2018 using emission factors for biomass combustion and IPM heat inputs.
VA	Dominion Chesapeake ORISID=3803	1 - 4	Changed SO2 emissions in 2009 and 2018 to reflect information from the facility on project SO2 controls.
	Dominion Southwest Virginia Project	1	For 2018, replace the IPM generated Generic Unit located in Russell county (ORISID=900251) to Wise County to reflect the planned Dominion facility going into Wise County. Used the potential to emit for the Dominion facility.
	Clinch River ORISID=3775	1, 2, 3	Changed emissions in 2018 to reflect requirements of Consent Order. The CO requires SNCR by 12/31/2009; IPM assigned SCR in 2018. The CO caps SO2 emissions at 16,300 tpy starting Jan 1, 2015.
WV	Pleasants Power Station ORISID=6004	1, 2	For both 2009 and 2018, Units 1 and 2 had SO2 emissions reduced to account for the facility's inclusion of previously bypassed 15% effluent stream to the scrubber. The control efficiency and emissions changed from 79.9% to 95% control.
	Nine Generic Units Generated by IPM		IPM placed 746 MW of new fossil fuel-fired generation in West Virginia - 173 MW coal-fired, 24 MW IGCC, and the remainder gas-fired. A 600 MW pulverized coal-fired EGU is under construction, scheduled to be online in 2010 [Longview]; a 98 MW CFB co-generation unit is permitted and expected to be built [Western Greenbrier]; and a 600 MW IGCC plant is currently in the permitting process [Mountaineer IGCC]. WVDEP decided to replace the IPM generic units in WV with the 3 units mentioned above.
	Longview Site ID: 54- 061-0134	1	For 2018 inventory, added Longview which is permitted, under construction, and scheduled to be online in 2010. The unit is a 600 MW pulverized coal-fired unit with baghouse, LNB, SCR, and wet FGD as required controls. Used permitted emission rates for 2018.
WV	Western Greenbriar Site ID: 54-025-0066	1	For 2018 inventory, added Western Greenbrier, which is permitted but not under construction. The unit is a 98 MW coal-fired CFB burning waste coal. Used permitted emission rates for 2018.
	Mountaineer IGCC Site ID: 54-053-00063	1	For 2018 inventory, added Mountaineer IGCC, which has applied for a permit to construct a nominal 600 MW IGCC. Used emission rates from the permit application for 2018.

2.1.1.9 Conversion of MRPO BaseM 2009 EGU Data to SMOKE Input Format

To support ASIP PM_{2.5} CAMx modeling of the future year 2009, Alpine Geophysics obtained and processed an emission inventory for the 5 MRPO states (Illinois, Indiana, Michigan, Wisconsin, and Ohio). Appendix x details the technical steps that were made as part of the conversion of the MRPO BaseM EGU files into IDA format for ASIP PM-2.5 CAMx modeling of the future year 2009.

2.1.1.10 Summary of 2009/2018 EGU Point Source Inventories

Tables 2.1-4 through 2.1-10 compare the Base G 2002 base year inventory to the Base F, Base G/G2 and B&F 2009/2018 projection inventories. The Base F projections rely primarily on the results of the IPM, while the Base G and B&F projections include the adjustments to the IPM results specified by the S/L agencies in the previous section.

Table 2.1-4 EGU Point Source SO₂ Emission Comparison for 2002/2009/2018.

	2002		2009			2018	
State	Actual Base G	Base F IPM Based	Base G IPM with State/local Updates	B&F IPM with Additional State/local Updates	Base F IPM Based	Base G2 IPM with State/local Updates	B&F IPM with Additional State/local Updates
AL	447,828	340,194	378,052	378,052	190,099	135,851	135,851
FL	453,631	195,790	186,055	291,831	141,551	138,340	194,028
GA	514,952	534,469	417,449	408,679	180,178	79,430	68,515
KY	484,057	371,944	290,193	271,669	229,603	226,062	222,102
MS	67,429	85,629	76,579	76,646	27,230	15,146	15,213
NC	477,990	205,018	242,286	242,286	110,382	114,771	120,165
SC	206,399	171,206	124,608	129,122	121,694	93,274	95,377
TN	334,151	255,400	255,410	255,410	112,662	112,672	112,672
VA	241,204	169,714	193,112	174,777	90,935	114,255	98,988
WV	516,084	226,127	277,489	268,952	124,466	105,935	106,199
	3,743,725	2,555,491	2,441,233	2,497,423	1,328,800	1,135,736	1,169,110

Table 2.1-5 EGU Point Source NO_x Emission Comparison for 2002/2009/2018.

	2002		2009			2018	
State	Actual Base G	Base F IPM Based	Base G IPM with State/local Updates	B&F IPM with Additional State/local Updates	Base F IPM Based	Base G2 IPM with State/local Updates	B&F IPM with Additional State/local Updates
AL	161,038	70,852	82,305	82,305	42,769	64,358	64,358
FL	257,677	89,610	86,165	132,535	77,080	74,640	87,645
GA	147,517	97,146	98,497	98,497	58,095	75,717	69,856
KY	198,817	107,890	92,021	97,263	64,378	64,378	64,378
MS	43,135	11,475	36,011	47,276	8,945	10,271	21,535
NC	151,853	66,431	66,522	66,521	60,914	62,353	61,110
SC	88,241	43,817	46,915	48,668	48,346	51,456	51,751
TN	157,307	41,767	66,405	66,405	31,725	31,715	31,715
VA	86,886	63,220	62,547	64,358	49,420	66,074	64,344
WV	230,977	63,510	86,328	85,476	51,241	51,241	51,474
	1,523,448	655,718	723,717	789,304	492,913	552,203	568,166

Note: Emission summaries above are based on SCCs 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-6 EGU Point Source VOC Emission Comparison for 2002/2009/2018.

	2002		2009			2018	18	
State	Actual Base G	Base F IPM Based	Base G IPM with State/local Updates	B&F IPM with Additional State/local Updates	Base F IPM Based	Base G2 IPM with State/local Updates	B&F IPM with Additional State/local Updates	
AL	2,295	2,441	2,473	2,473	2,952	2,952	2,952	
FL	2,524	1,867	1,910	2,730	2,324	2,422	3,047	
GA	1,244	1,571	2,314	2,314	1,903	2,841	2,816	
KY	1,487	1,369	1,369	1,369	1,426	1,426	1,426	
MS	648	406	404	564	1,124	1,114	1,274	
NC	988	974	954	954	1,272	1,345	1,302	
SC	470	660	660	723	906	906	931	
TN	926	932	932	932	977	976	976	
VA	754	685	778	788	903	1,014	980	
WV	1,180	1,342	1,361	1,361	1,387	1,387	1,387	
	12,516	12,247	13,155	14,208	15,174	16,383	17,091	

Table 2.1-7 EGU Point Source CO Emission Comparison for 2002/2009/2018.

	2002	2009			2018		
State	Actual Base G	Base F IPM Based	Base G IPM with State/local Updates	B&F IPM with Additional State/local Updates	Base F IPM Based	Base G2 IPM with State/local Updates	B&F IPM with Additional State/local Updates
AL	11,279	14,948	14,986	14,986	24,342	24,342	24,342
FL	57,113	45,391	35,928	71,072	63,673	54,146	85,495
GA	9,712	20,066	23,721	23,721	32,744	44,476	44,269
KY	12,619	15,812	15,812	15,812	17,144	17,144	17,144
MS	5,303	5,078	5,051	7,116	15,364	15,282	17,348
NC	13,885	15,141	14,942	14,942	19,612	20,223	19,870
SC	6,990	11,135	11,135	11,643	14,786	14,786	14,975
TN	7,084	7,221	7,213	7,214	7,733	7,723	7,723
VA	6,892	11,869	12,509	12,535	14,755	15,564	18,850
WV	10,341	11,328	11,493	11,493	11,961	11,961	12,397
	141,218	157,989	152,790	190,535	222,114	225,647	262,413

Note: Emission summaries above are based on SCCs 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-8 EGU Point Source PM_{10} -PRI Emission Comparison for 2002/2009/2018.

	2002		2009			2018	
State	Actual Base G	Base F IPM Based	Base G IPM with State/local Updates	B&F IPM with Additional State/local Updates	Base F IPM Based	Base G2 IPM with State/local Updates	B&F IPM with Additional State/local Updates
AL	7,646	6,959	6,969	6,969	7,822	7,822	7,822
FL	21,387	9,384	9,007	20,182	10,310	10,022	12,791
GA	11,224	17,088	17,891	17,891	18,329	20,909	20,732
KY	4,701	6,463	6,463	6,463	6,694	6,694	6,694
MS	1,633	5,487	4,957	5,182	7,624	7,187	7,412
NC	22,754	22,888	22,152	22,152	33,742	37,376	35,275
SC	21,400	28,650	19,395	20,041	37,864	28,826	27,640
TN	14,640	15,608	15,608	15,608	15,941	15,941	15,941
VA	3,960	4,479	5,508	5,606	12,744	13,832	12,551
WV	4,573	5,471	5,657	5,657	6,349	6,349	5,784
	113,918	122,477	113,607	125,750	157,419	154,958	152,642

Table 2.1-9 EGU Point Source PM_{2.5} -PRI Emission Comparison for 2002/2009/2018.

	2002	2009		2018			
State	Actual Base G	Base F IPM Based	Base G IPM with State/local Updates	B&F IPM with Additional State/local Updates	Base F IPM Based	Base G2 IPM with State/local Updates	B&F IPM with Additional State/local Updates
AL	4,113	3,916	3,921	3,921	4,768	4,768	4,768
FL	15,643	6,250	5,910	14,790	7,171	6,886	9,417
GA	4,939	10,104	10,907	10,907	11,403	13,983	13,881
KY	2,802	4,279	4,279	4,279	4,434	4,434	4,434
MS	1,138	5,310	4,777	4,996	7,469	7,033	7,252
NC	16,498	16,514	15,949	15,949	26,966	29,792	28,137
SC	17,154	23,366	16,042	16,548	32,180	25,032	23,794
TN	12,166	13,092	13,092	13,092	13,387	13,387	13,387
VA	2,606	3,194	4,067	4,165	11,101	11,976	10,773
WV	2,210	2,850	2,940	2,940	3,648	3,648	3,116
	79,269	88,875	81,884	91,587	122,527	120,939	118,959

Note: Emission summaries above are based on SCCs 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-10 EGU Point Source NH₃ Emission Comparison for 2002/2009/2018.

	2002		2009			2018	
State	Actual Base G	Base F IPM Based	Base G IPM with State/local Updates	B&F IPM with Additional State/local Updates	Base F IPM Based	Base G2 IPM with State/local Updates	B&F IPM with Additional State/local Updates
AL	317	359	359	359	1,072	1,072	1,072
FL	234	1,659	1,631	1,629	3,004	2,976	2,976
GA	83	686	686	686	1,677	1,677	1,677
KY	326	400	400	400	476	476	476
MS	190	333	333	334	827	827	827
NC	54	423	445	445	691	663	663
SC	142	343	343	370	617	617	625
TN	204	227	227	227	241	241	241
VA	127	632	694	694	558	622	606
WV	121	330	330	330	180	180	143
	1,798	5,392	5,448	5,474	9,343	9,351	9,306

2.1.2 Non-EGU Emission Projections

The general approach for assembling future year data was to use growth and control data consistent with the data used in EPA's Clean Air Interstate Rule analyses, supplement these data with available stakeholder input, and provide the results for stakeholder review to ensure credibility. We used the revised 2002 VISTAS base year inventory, based on the 2002 CERR submittals as the starting point for the non-EGU projection inventories. As described in Section 2.1.1.4, we split the point source inventory into EGU and non-EGU components. MACTEC performed the following activities to apply growth and control factors to the 2002 inventory to generate the 2009 and 2018 projection inventories:

- Obtained, reviewed, and applied the most current growth factors developed by EPA, based on forecasts from an updated Regional Economic Models, Inc. (REMI) model (version 5.5) and the latest *Annual Energy Outlook* published by the Department of Energy (DOE);
- Obtained, reviewed, and applied any State-specific or sector-specific growth factors submitted by stakeholders;
- Obtained and incorporated information regarding sources that have shut down after 2002 and set the emissions to zero in the projection inventories;
- Obtained, reviewed, and applied control assumptions for programs "on-the-books" and "on-the-way";
- Provided data files in NIF3.0 format and emission summaries in EXCEL format for review and comment; and
- Updated the database with corrections or new information from S/L agencies based on their review of the Base F 2009/2018 inventories.

The following sections discuss each of these steps.

2.1.2.1 Growth assumptions for non-EGU sources

This section describes the growth factor data used in developing the Base F inventory for 2009 and 2018, as well as the changes to the growth factor data made for the Base G inventory.

The growth factor data used in developing the Base F inventory were consistent with EPA's analyses for the CAIR rulemaking. These growth factors are fully documented in the reports entitled *Development of Growth Factors for Future Year Modeling Inventories* (dated April 30, 2004) and *CAIR Emission Inventory Overview* (dated July 23, 2004). Three sources of data were used in developing the growth factors for the Base F inventory:

State-specific growth rates from the Regional Economic Model, Inc. (REMI) Policy Insight® model, Version 5.5 (being used in the development of the EGAS Version 5.0). The REMI socioeconomic data (output by industry sector, population, farm sector value)

added, and gasoline and oil expenditures) are available by 4-digit SIC code at the State level.

- Energy consumption data from the DOE's Energy Information Administration's (EIA) Annual Energy Outlook 2004, with Projections through 2025 for use in generating growth factors for non-EGU fuel combustion sources. These data include regional or national fuel-use forecast data that were mapped to specific SCCs for the non-EGU fuel use sectors (e.g., commercial coal, industrial natural gas). Growth factors for the residential natural gas combustion category, for example, are based on residential natural gas consumption forecasts that are reported at the Census division level. These Census divisions represent a group of States (e.g., the South Atlantic division includes eight southeastern States and the District of Columbia). Although one would expect different growth rates in each of these States due to unique demographic and socioeconomic trends, EIA's projects all States within each division using the same growth rate.
- Specific changes for sectors (e.g., plastics, synthetic rubber, carbon black, cement manufacturing, primary metals, fabricated metals, motor vehicles and equipment) where the REMI-based rates were unrealistic or highly uncertain. Growth projections for these sectors were based on industry group forecasts, Bureau of Labor Statistics (BLS) projections and Bureau of Economic Analysis (BEA) historical growth from 1987-2002.

In addition to the growth data described above, we received two sets of growth projections from VISTAS stakeholders.

The American Forest and Paper Association (AF&PA) supplied growth projections for the pulp and paper sector, which were applied to SIC 26xx Paper and Allied Products. The AF&PA projection factors are for the U.S. industry and apply to all States equally. The numbers come from the 15-year forecast for world pulp and recovered paper prepared by Resource Information Systems Inc. (RISI).

SIC Code	Sector	AF&PA Gr	owth Factor
SIC Code	Sector	2002 to 2009	2002 to 2018
2611	Pulp Mills	1.067	1.169
2621	Paper Mills	1.067	1.169
2631	Paperboard Mills	1.067	1.169

For both the Base F and Base G inventories, we used the above AF&PA growth factors by SIC instead of the factors obtained from EPA's CAIR analysis.

For the Base F inventory, the NCDENR supplied recent projections for three key sectors in North Carolina where declining production was anticipated – SIC 22xx Textile Mill Products, 23xx Apparel and Other Fabrics, and 25xx Furniture and Fixtures. For the Base G inventory, NCDENR decided to use a growth factor of 1.0 for these SIC codes for both 2009 and 2018. Although NCDENR has data that shows a steady decline in these industries in NC, NCDENR wanted to maintain the emission levels at 2002 levels so the future emission reduction credits were available in the event that they are needed for nonattainment areas. The specific growth factors for these industrial sectors in North Carolina were:

	NCDENR Growth Factors for Specific Industrial Sectors							
SIC Code	Industrial	20	09	20	18			
SIC Code	Sector	Base F	Base G	Base F	Base G			
22xx	Textile Mill Products	0.6239	1.00	0.2792	1.00			
23xx	Apparel and Other Fabrics	0.5867	1.00	0.2247	1.00			
25xx	Furniture and Fixtures	0.8970	1.00	0.7647	1.00			

For the Base G inventory, we made one additional change to the growth factors. The Base F inventory relied on DOE's AEO2004 forecasts for projecting emissions for fuel-burning SCCs (applies mainly to ICI boilers 1-02-xxx-xx and 1-03-xxx-xx, as well as in-process fuel use). We replaced the AEO2004 data with the more recent AEO2006 forecasts (released in February 2006) to reflect changes in the energy market and to improve the emissions growth factors produced. We obtained the corresponding AEO2006 projection tables from DOE's web site located at http://www.eia.doe.gov/oiaf/aeo/supplement/supref.html. We developed tables comparing the growth factors based on AEO2004 and AEO2006. These comparison tables were reviewed by the S/L agencies. Based on this review, VISTAS decided to use the AEO2006 growth factors for fuel burning SCCs.

We used the EPA's EGAS model and updated the corresponding AEO2006 projection tables to create growth factors by SCC. We applied the updated growth factors to 2002 actual emissions and replaced the 2009 and 2018 emissions in NIF EM tables for the affected SCCs.

2.1.2.2 Source Shutdowns

A few states indicated that significant source shutdowns have occurred since 2002 and that emissions from these sources should not be included in the future year inventories. These sources are identified in Table 2.1-11.

Table 2.1-11 Summary of Source Shutdowns Incorporated in Base G Inventory.

State	Description of Source Shutdowns
AL	None specified.
FL	The following facilities are shutdown and projected emissions were set to zero in 2009/2018. 0570075 CORONET INDUSTRIES, INC. 1050050 U S AGRI-CHEMICALS CORP. 1050051 U.S. AGRI-CHEMICALS CORPORATION These facilities emitted 2,417 tons of SO ₂ and 113 tons of NO _x in 2002.
GA	Georgia indicated that the former Blue Circle (now LaFarge) facility in downtown Atlanta will likely shut down before 2009. The facility has two cement kilns, one of which is already shut down. The second kiln will continue to operate until the new facility in Alabama has enough milling capacity, after which the entire Atlanta facility will be completely closed down. This facility emitted 1,617 tons of SO ₂ and 587 tons of NO _x in 2002.
KY	None specified.
MS	AF&PA indicated that the International Paper Natchez Mill (28-001-2800100010) has shut down. This facility emitted 1,398 tons of SO_2 and 1,773 tons of NO_x in 2002.
	The Magnolia Resources - Pachuta Harmony Gas Plant (28-023-00031) is out of business and no longer holds an air permit. This facility emitted 2,257 tons of SO ₂ and 134 tons of NO _x in 2002.
NC	In Base F, two paper mills were identified as being shut down in the 2018 inventory. NCDENR indicated that these mills are not expected to close. The two facilities are Ecusta Business Development (37-175-3717500056) and International Paper (37-083-00007). Their emissions were added back into the Base G 2018 inventory.
	BASF Corporation (37-021-724) in Buncombe County is currently operating but has plans to shut down in 2007. This facility emitted 461 tons of SO_2 and 266 tons of NO_x in 2002.
SC	South Carolina provided a list of facilities that were identified as closing down on or after Jan. 1, 2003. The emissions for these facilities were set to zero in the 2009 and 2018 projection inventories. Emissions from these plants in 2002 were: 6,195 tons of SO ₂ , 2,994 tons of NO _x , and 2,836 tons of VOC. Most of the emissions were from one facility – Celanese Acetate (45-091-2440-0010) in York County.
TN	Davidson County (Nashville) indicated that significant source shutdowns have occurred since data were submitted for the 2002 CERR. Source number 47-037-00002 (Dupont) shut down a portion of their facility, which was permanently taken out of service. Source 47-037-00050 (Nashville Thermal Transfer Corp.) shut down their municipal waste combustors and replaced them with natural gas fired boilers with propane stand by.
	Weyerhaeuser (AKA Willamette) Power Boiler 7 (47-163-0022, EU ID = 017) is being shut down. This emission unit emitted 4,297 tons of SO_2 and 1,443 tons of NO_x in 2002.
	Liberty Fibers (47-063-0197) in Hamblen County has recently shut down. This facility emitted $5,377$ tons of SO_2 ; $2,057$ tons of NO_x ; and $9,059$ tons of VOC in 2002 .
VA	Rock-Tenn (51-680-00097) received a permit dated $9/13/2003$ which required the shutdown of units 1 and 2 by $2/27/2004$. This permit was part of a netting exercise that allowed the installation of a new NG/DO boiler. These two units emitted 507 tons of SO_2 and 276 tons of NO_x in 2002.
WV	None specified.

2.1.2.3 Control Programs applied to non-EGU sources

We used the same control programs for both the 2009 and 2018 non-EGU point inventory. Two control scenarios were developed: on-the-books (OTB) controls and on-the-way (OTW) controls. The OTB control scenario accounts for post-2002 emission reductions from promulgated federal, State, local, and site-specific control programs. The OTW control scenario accounts for proposed (but not final) control programs that are reasonably anticipated to result in post-2002 emission reductions. The methodologies used to account for the emission reductions associated with these emission control programs are discussed in the following sections.

Table 2.1-12 Non-EGU Point Source Control Programs Included in 2009/2018 Projection Inventories.

On-the-Books (Cut-off of July 1, 2004 for Base 1 adoption)

- Atlanta / Northern Kentucky / Birmingham 1-hr SIPs
- Industrial Boiler/Process Heater/RICE MACT (see Section 2.1.2.3.2)
- NO_x RACT in 1-hr NAA SIPs
- NO_x SIP Call (Phase I- except where States have adopted II already e.g. NC)
- Petroleum Refinery Initiative (October 1, 2003 notice; MS & WV)
- RFP 3 percent Plans where in place for one hour plans
- VOC 2-, 4-, 7-, and 10-year maximum achievable control technology (MACT0 Standards
- Combustion Turbine MACT

On-the-Way

■ NO_x SIP Call (Phase II – remaining States & IC engines)

2.1.2.3.1 OTB - NO_x SIP Call (Phase I)

Phase I of the NO_x SIP call applies to certain large non-EGUs, including large industrial boilers and turbines, and cement kilns. States in the VISTAS region affected by the NO_x SIP call have developed rules for the control of NO_x emissions that have been approved by EPA. We reviewed the available State rules and guidance documents to determine the affected sources and ozone season allowances. We also obtained and reviewed information in the EPA's CAMD NO_x Allowance Tracking System – Allowances Held Report. Since these controls are to be in effect by the year 2007, we capped the emissions for NO_x SIP call affected sources at 2007 levels and carried forward the capped levels for the 2009/2018 future year inventories. Since the NO_x SIP call allowances are given in terms of tons per ozone season (5 month period from May to

September), we calculated annual emissions by multiplying the 5-month allowances by a factor of 12 divided by 5.

2.1.2.3.2 OTB - Industrial Boiler/Process Heater MACT

EPA anticipates reductions in PM and SO₂ as a result of the Industrial Boiler/Process Heater MACT standard. The methods used to account for these reductions are the same as those used for the CAIR analysis. Reductions were included for existing units firing solid fuel (coal, wood, waste, biomass) which had a design capacity greater than 10 mmBtu/hr. EPA prepared a list of SCCs for solid fuel industrial and commercial/ institutional boilers and process heaters. We identified boilers greater than 10 mmBtu/hr using either the boiler capacity from the VISTAS 2002 inventory, or if the boiler capacity was missing, a default capacity based on a methodology developed by EPA for assigning default capacities based on SCC. The applied MACT control efficiencies were 4 percent for SO₂ and 40 for percent for PM₁₀ and PM2.5 to account for the cobenefit from installation of acid gas scrubbers and other control equipment to reduce HAPs. On June 8, 2007, the U.S. Court of Appeals for the District of Columbia Circuit vacated and remanded the NESHAP for Industrial, Commercial and Institutional Boilers and Process Heaters. VISTAS States decided to leave the emission reductions in place since they envision using a 112(j) strategy (e.g., the "MACT hammer") to obtain similar levels of control)

2.1.2.3.3 OTB - 2, 4, 7, and 10-year MACT Standards

Maximum achievable control technology (MACT) requirements were also applied, as documented in the report entitled *Control Packet Development and Data Sources*, dated July 14, 2004. The point source MACTs and associated emission reductions were designed from Federal Register (FR) notices and discussions with EPA's Emission Standards Division (ESD) staff. We did not apply reductions for MACT standards with an initial compliance date of 2001 or earlier, assuming that the effects of these controls are already accounted for in the 2002 inventories supplied by the States. Emission reductions were applied only for MACT standards with an initial compliance date of 2002 or greater.

2.1.2.3.4 OTB Combustion Turbine MACT

The projection inventories do not include the NO_x co-benefit effects of the MACT regulations for Gas Turbines or stationary Reciprocating Internal Combustion Engines, which EPA estimates to be small compared to the overall inventory.

2.1.2.3.5 OTB - Petroleum Refinery Initiative (MS and WV)

Three refineries in the VISTAS region are affected by two October 2003 Clean Air Act settlements under the EPA Petroleum Refinery Initiative. The refineries are: (1) the Chevron

refinery in Pascagoula, MS; (2) the Ergon refinery in Vicksburg, MS; and (3) the Ergon refinery in Newell, WV.

The first consent decree pertained to Chevron refineries in Richmond and El Segundo, CA; Pascagoula, MS; Salt Lake City, UT; and Kapolei, HI. Actions required under the Consent Decree will reduce annual emissions of NO_x by 3,300 tons and SO₂ by 6,300 tons. The consent decree requires a program to reduce NO_x emissions from refinery heaters and boilers through the installation of NO_x controls that meet at least an SNCR level of control. The refineries are to eliminate fuel oil burning in any combustion unit. The consent decree also requires reductions of NO_x and SO₂ from the fluid catalytic cracking unit and control of acid gas flaring incidents. The consent decree does not provide sufficient information to calculate emission reductions for the FCCU or flaring at the Pascagoula refinery. Therefore, we calculated a general percent reduction for NO_x and SO₂ by dividing the expected emission reductions at the five Chevron refineries by the total emissions from these five refineries (as reported in the 1999 NEI). This resulted in applying percent reductions of 45 percent for SO₂ and 28 percent for NO_x to FCCU and flaring emissions at the Chevron Pascagoula refinery.

The second consent decree pertained to the Ergon-West Virginia refinery in Newell, WV; and the Ergon Refining facility in Vicksburg, MS. The consent decree requires the two facilities to implement a 6-year program to reduce NO_x emission from all heaters and boilers greater than 40 mmBtu/hr, and to eliminate fuel oil burning in any combustion unit (except during periods of natural gas curtailment). Specifically, ultra low NO_x burners are required on Boilers A and B at Newell, a low NO_x-equivalent level of control for heater H-101 at Newell and heaters H-1 and H-3 at Vicksburg, and an ultra low NO_x burner level of control for heater H-451 at Vicksburg.

2.1.2.3.6 OTW - NO_x SIP Call (Phase II)

The final Phase II NO_x SIP call rule was finalized on April 21, 2004. States had until April 21, 2005, to submit SIPs meeting the Phase II NO_x budget requirements. The Phase II rule applies to large IC engines, which are primarily used in pipeline transmission service at compressor stations. We identified affected units using the same methodology as was used by EPA in the proposed Phase II rule (i.e., a large IC engine is one that emitted, on average, more than 1 ton per day during 2002). The final rule reflects a control level of 82 percent for natural gas-fired IC engines and 90 percent for diesel or dual fuel categories. As shown later in Table 2.1-12, several S/L agencies provided move specific information on the anticipated controls at the compressor stations. This information was used in the Base G inventory instead of the default approach used by EPA in the proposed Phase II rule.

2.1.2.3.7 Clean Air Interstate Rule

CAIR does not require or assume additional emission reductions from non-EGU boilers and turbines.

2.1.2.4 Quality Assurance steps

Final QA checks were run on the revised projection inventory data set to ensure that all corrections provided by the S/L agencies and stakeholders were correctly incorporated into the S/L inventories and that there were no remaining QA issues that could be addressed during the duration of the project. After exporting the inventory to ASCII text files in NIF 3.0, the EPA QA program was run on the ASCII files and the QA output was reviewed to verify that all QA issues that could be addressed were resolved

Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, and to ensure that a full and complete inventory was developed for VISTAS. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the point source component of the VISTAS revised 2002 base year inventory:

- Facility level emission summaries were prepared and evaluated to ensure that emissions were consistent and reasonable. The summaries included base year 2002 emissions, 2009/2018 projected emissions accounting only for growth, 2009/2018 projected emissions accounting for both growth and emission reductions from OTB and OTW controls.
- State-level non-EGU comparisons (by pollutant) were developed for the base year 2002 emissions, 2009/2018 projected emissions accounting only for growth, 2009/2018 projected emissions accounting for both growth and emission reductions from OTB and OTW controls.
- Data product summaries and raw NIF 3.0 data files were provided to the VISTAS Emission Inventory Technical Advisor and to the Point Source, EGU, and non-EGU Special Interest Work Group representatives for review and comment. Changes based on these comments were reviewed and approved by the S/L point source contact prior to implementing the changes in the files.
- Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from Base F1 to Base F2.

2.1.2.5 Additional Base G Updates and Corrections

Table 2.1-13 summarizes the updates and corrections to the Base F inventory that were requested by S/L agencies and incorporated into the Base G 2009/2018 inventories.

Table 2.1-13 Summary of Updates and Corrections Incorporated into the Base G 2009/2018 Non-EGU Inventories.

State	Nature of Update/Correction
AL	Corrected the latitude and longitude for two facilities: Ergon Terminalling (Site ID: 01-073-010730167) and Southern Power Franklin (Site ID: 01-081-0036).
	Corrections to stack parameters at 10 facilities for stacks with parameters that do not appear to fall into the ranges typically termed "acceptable" for AQ modeling.
FL	Corrected 2009/2018 emission values for the Miami Dade RRF facility (Site ID: 12-086-0250348) based on revised 2002 emissions and application of growth control factors for 2009/2018.
GA	Hercules Incorporated (12-051-05100005) had an erroneous process id (#3) within emission unit id SB9 and was deleted. This removes about 6,000 tons of SO ₂ from the 2009/2018 inventories.
	Provided a revised file of location coordinates at the stack level that was used to replace the location coordinated in the ER file.
	There are several sources that have updated their emissions from their BART eligible units. most of these changes were for fairly small (<50 tpy) sources.
NC	Made several changes to Base F inventory to correct the following errors: 1. Corrected emissions at Hooker Furniture (Site ID: 37-081-3708100910), release point G-29, to use the corrected values in 2002 and carry those same numbers through to 2009 and 2018 since NCDENR assumes zero growth for furniture industry.
	2. Identified many stack parameters in the ER file that were unrealistic. Several have zero for height, diameter, gas velocity, and flow rate. NC used the procedures outlined in Section 8 of the document ""National Emission Inventory QA and Augmentation Report" to correct unrealistic stack parameters.
	3. Identified truncated latitude and longitude values in Base F inventory. NC updated all Title V facility latitude and longitude that was submitted to EPA for those facilities in 2004. Smaller facilities with only two decimal places were not corrected.
	4. Corrected 2018 VOC emissions for International Paper (3709700045) Emission Unit ID, G-12, to reflect changes to the 2002 inventory.
	There are three Transcontinental Natural Gas Pipeline facilities in NC that are subject to the NO _x SIP call. NCDENR took 2004 emissions and grew them to 2009 & 2018 and capped those units that are subject to the NO _x SIP Call Rule. These facility IDs are 37-057-3705700300, 37-097-3709700225, and 37-157-3715700131.
	NCDENR applied NO $_x$ RACT to a two facilities located in the Charlotte nonattainment area. NCDENR provided 2009 & 2018 emissions for Philip Morris USA (37-025-3702500048) and Norandal USA (37-159-3715900057).
SC	Corrected PM species emission values. SC DHEC's initial CERR submittal reported particulate matter emissions using the PM-FIL, PM ₁₀ -FIL, and PM _{2.5} -FIL pollutant codes. In August 2005, SC DHEC indicated that data reported using the PM-FIL, PM ₁₀ -FIL, and PM _{2.5} -FIL pollutant codes should actually have been reported using the PM-PRI, PM ₁₀ -PRI, and PM _{2.5} -PRI codes. MACTEC performed a subsequent PM augmentation in April 2006 using the revised pollutant codes. These changes were reflected in the Base G 2009/2018 emission inventory.
	Specified that the Bowater Inc. facility (45-091-2440-0005) in York County conducted an expansion in 2003/2004 and plans a future expansion. SC provided updated emissions for 2009 and 2018 for this facility.

Table 2.1-13. Continued.

State	Nature of Update/Correction					
TN	Updated 2009/2018 emissions for Eastman Chemical (47-163-0003) based on final (Feb. 2005) BART rule.					
	Updated 2009/2018 emission inventory for the Bowater facility (47-107-0012) based on the facility's updated 2002 emission inventory update.					
	Replaced 2009/2018 data from Hamilton County, Tennessee, using data from Hamilton County's CERR submittal as contained in EPA's 2002 NEI (in Base F, the inventory for Hamilton County was based on the draft VISTAS 2002 inventory, which in turn was based on the 1999 NEI); applied growth and control factors to revised 2002 inventory to generate emission projections for 2009/2018.					
	Updated 2009/2018 emissions for PCS Nitrogen Fertilizer LP (Site ID: 47-157-00146) based on the facility's updated 2002 emission inventory update.					
	The 2002 NEI correctly reports the actual emissions for CEMEX (47-093-0008) after the NO_x SIP call. There is no reason to suspect that that rate would change in 2008, 2009, or 2018. Emissions for 2009/2018 were set equal to 2002 emissions.					
	In the Base F 2009/2018 inventories, NO_x controls were applied for two units at Columbia Gulf Transmission (47-111-0004). There are no plans for controls at these units, EO3 and EO4. The assumed control efficiency of 82 percent was backed out in the 2009/2018 inventories.					
VA	VADEQ provided 2009/2018 NO_x emission estimates for NO_x Phase II gas transmission sources at three Transco facilities (51-011-00011, 51-137-00027, 51-143-00120) which were used to replace the default NO_x Phase II control assumptions for these facilities.					
	VADEQ provided updated 2009/2018 NO_x and SO_2 emissions based on new controls required by a November 2005 permit modification and netting exercise. The entire power plant facility is limited to 213 tons of NO_x and 107 tons of SO_2 per year. The permit also allowed the installation of 3 new boilers, also under the 213 tons of NO_x /year cap.					
WV	Updated 2009/2018 emissions for Steel of West Virginia (Site ID: 54-011-0009) based on the facility's updated 2002 emission inventory update.					
	Made changes to several Site ID names due to changes in ownership					
	Base F emissions were much too high for Weirton Steel (54-021-0029). WV believes that the source is very unlikely to emit the NO_x SIP Call budgeted amounts in 2009 or 2018. WV provided revised emission estimates based on EGAS for 2009/2018.					
	Made corrections to latitude/longitude and stack parameters at a few facilities for stacks with parameters that do not appear to fall into the ranges typically termed "acceptable" for AQ modeling.					

125

2.1.2.6 Additional B&F Updates and Corrections

Table 2.1-14 summarizes the updates and corrections to the Base G non-EGU inventory that were requested by S/L agencies and incorporated into the B&F 2009/2018 non-EGU inventories. The changes were primarily related to better information on anticipated BART controls for specific facilities and emission units.

Table 2.1-14 Summary of Updates and Corrections Incorporated into the B&F 2009/2018 Non-EGU Inventories.

State	Nature of Update/Correction						
AL	For 2018, incorporated emission changes due to BART controls at Exxon Mobil (Site ID: 01-053-0007), International Paper (Site ID: 01-079-0001), and Solutia (Site ID: 01-103-0010). International Paper (Site ID: 01-079-0001) Unit 004 to be shutdown in the 2018 inventory.						
FL	For both 2009 and 2018, incorporated emission changes due to BART controls at Georgia Pacific (Site ID: 12-107-1070005) Unit 15.						
MS	For 2018 only, changed SO2 emission estimate for Pursue Energy (Site ID: 28-121-00036) based on the facility's estimates of the gas reserve at the site.						
	For 2018 only, changed emission estimates for all pollutants at several emission units at the Chevron Pascagoula Refinery (Site ID: 28-059-00058) to reflect BART source reductions.						
SC	For both 2009 and 2018, identified 15 facilities that have permanently closed. Emissions from these facilities set to zero for all pollutants.						
TN	For both 2009 and 2018, identified seven facilities that have permanently closed. Emissions from these facilities were set to zero for all pollutants.						
	For both 2009 and 2018, identified three emission units that have permanently closed. Emissions from these units were set to zero for all pollutants. 47-009-0130-002 (APAC – TN, IncHarrison Construction – Asphalt plant), 47-009-0130-003 (APAC – TN, IncHarrison Construction – Asphalt crusher), and 47-139-0004-001 (Intertrade - Number 6 acid plant)						
	The following individual source will be shut down in 2010: 47-001-0020-002 (DOE, Y-12 – Boilers 1-4). For the 2018 inventory only, emissions from this unit were set to zero for all pollutants.						
	A portion of 47-163-0003-020101 (Eastman, B-83-1 Stoker Boilers). This source previously consisted of 14 boilers (Boilers 11-24). Boilers 11-17 have been removed from service. Emissions for both 2009 and 2018 were reduced by 26.64%, based on the portion of the heat input capacity that is being removed from service.						
	SO2 emissions in 2018 from 47-163-0003-021520 (Eastman, B-253-1 Tangential PC Boilers) were reduced by 90% to reflect anticipated BART controls.						
	Reduced SO2 emissions at 47-157-00475 (Lucite International) in Shelby County as a result of a consent decree with U.S. EPA.						
VA	Changed SO2 emissions in 2009 and 2018 for thirteen facilities to reflect updated information from VADEQ regarding projected SO2 controls.						
WV	Weirton Steel (54-029-00001) and Wheeling Pittsburgh Steel (54-009-00002) have undergone significant, permanent process changes since 2002. WV DEP staff have consulted with facility staff and determined that calendar year 2004 emissions represent a better basis for future year emissions estimates. Therefore, WVDEP compiled emissions data from the 2004 inventory for these sources and applied the most current VISTAS growth factors to estimate emissions in 2009 and 2018.						

2.1.2.7 Conversion of MRPO BaseM 2009 non-EGU Data to SMOKE Input Format

To support ASIP PM_{2.5} CAMx modeling of the future year 2009, Alpine Geophysics obtained and processed an emission inventory for the 5 MRPO states (Illinois, Indiana, Michigan, Wisconsin, and Ohio). Appendix x details the technical steps that were made as part of the conversion of the MRPO BaseM non-EGU files into IDA format for ASIP PM-2.5 CAMx modeling of the future year 2009.

2.1.2.8 Summary of the 2009/2018 non-EGU Point Source Inventories

Tables 2.1-15 through 2.1-21 summarize the revised 2009/2018 non-EGU point source inventories. The "growth only" column does not include the shutdowns (section 2.1.2.2) or control factors (section 2.1.2.3), only the growth factors described in section 2.1.2.1.

Table 2.1-15 Non-EGU Point Source SO₂ Emission Comparison for 2002/2009/2018.

	2002		2009 2018				
State	Base G	Base F	Base G	B&F	Base F	Base G	B&F
AL	96,481	100,744	101,246	101,246	112,703	113,224	103,303
FL	65,090	68,549	65,511	62,651	79,015	75,047	71,810
GA	53,778	61,535	53,987	53,987	68,409	59,349	59,349
KY	34,029	35,470	36,418	36,418	38,806	40,682	40,682
MS	35,960	27,488	25,564	25,564	40,195	26,678	25,674
NC	44,123	48,751	42,536	42,536	50,415	46,314	46,314
SC	53,518	55,975	48,324	47,193	56,968	53,577	52,410
TN	79,604	89,149	70,678	64,964	96,606	77,247	56,682
VA	63,903	63,075	62,560	58,039	69,776	68,909	57,790
WV	54,070	54,698	55,973	55,598	60,137	62,193	61,702
	580,556	605,434	562,797	548,196	673,030	623,220	575,716

Table 2.1-16 Non-EGU Point Source NO_x Emission Comparison for 2002/2009/2018.

	2002		2009		2018		
State	Base G	Base F	Base G	B&F	Base F	Base G	B&F
AL	83,310	69,676	69,409	69,409	79,101	78,318	77,960
FL	45,156	44,859	46,020	47,125	50,635	51,902	52,959
GA	49,251	51,556	50,353	50,353	57,323	55,824	55,824
KY	38,392	36,526	37,758	37,758	40,363	41,034	41,034
MS	61,526	55,877	56,397	56,398	62,132	61,533	61,252
NC	44,929	44,877	34,767	34,768	47,200	37,801	37,802
SC	42,153	42,501	40,019	39,368	44,480	44,021	43,331
TN	64,344	63,431	57,883	57,514	70,313	63,453	62,519
VA	60,415	51,335	51,046	51,001	56,876	55,945	55,734
WV	46,612	40,433	38,031	38,023	44,902	43,359	43,280
	536,088	501,071	481,683	481,715	553,325	533,190	531,695

Note: Emission summaries above include all SCCs except 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-17 Non-EGU Point Source VOC Emission Comparison for 2002/2009/2018.

	2002	2009			2018		
State	Base G	Base F	Base G	B&F	Base F	Base G	B&F
AL	47,037	46,660	46,644	46,644	54,268	54,291	54,290
FL	38,471	36,675	36,880	36,882	42,787	42,811	42,813
GA	33,709	34,082	34,116	34,116	40,267	40,282	40,282
KY	44,834	47,648	47,785	47,785	55,564	55,861	55,861
MS	43,204	37,921	37,747	37,747	45,769	45,338	45,335
NC	61,182	70,464	61,925	61,925	76,027	70,875	70,875
SC	38,458	38,273	35,665	34,403	44,545	43,656	41,987
TN	84,328	89,380	74,089	73,498	111,608	93,266	92,456
VA	43,152	43,620	43,726	43,725	53,065	53,186	53,186
WV	14,595	14,012	13,810	13,043	16,632	16,565	15,582
	448,970	458,735	432,387	429,768	540,532	516,131	512,667

Table 2.1-18 Non-EGU Point Source CO Emission Comparison for 2002/2009/2018.

	2002		2009		2018		
State	Base G	Base F	Base G	B&F	Base F	Base G	B&F
AL	174,271	176,899	180,369	180,369	194,280	201,794	201,663
FL	81,933	83,937	87,037	87,661	96,642	96,819	97,438
GA	130,850	147,362	147,427	147,427	168,570	167,904	167,904
KY	109,936	121,727	122,024	122,024	139,121	139,437	139,437
MS	54,568	58,023	57,748	57,749	67,764	66,858	65,884
NC	50,576	53,955	53,744	53,744	61,127	62,197	62,197
SC	56,315	62,144	60,473	59,934	71,318	68,988	68,415
TN	115,264	123,844	119,665	119,216	146,407	140,942	140,556
VA	63,796	67,046	68,346	68,326	74,364	76,998	76,846
WV	89,879	100,248	100,045	93,839	119,318	119,332	111,302
	927,388	995,185	996,878	990,289	1,138,911	1,141,269	1,131,642

Note: Emission summaries above include all SCCs except 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-19 Non-EGU Point Source PM₁₀-PRI Emission Comparison for 2002/2009/2018.

	2002		2009		2018			
State	Base G	Base F	Base G	B&F	Base F	Base G	B&F	
AL	25,240	25,450	25,421	25,421	29,973	29,924	29,889	
FL	35,857	39,363	39,872	39,947	46,573	46,456	46,492	
GA	21,610	23,509	23,103	23,103	27,781	27,273	27,273	
KY	16,626	17,164	17,174	17,174	20,142	20,153	20,153	
MS	19,472	19,200	19,245	19,244	22,952	22,859	22,837	
NC	13,838	14,738	13,910	13,910	15,816	15,737	15,737	
SC	14,142	17,631	13,370	12,959	20,197	15,139	14,674	
TN	35,174	37,040	34,833	34,581	45,168	42,280	41,999	
VA	13,252	13,043	13,048	13,046	15,150	15,112	15,111	
WV	17,503	17,723	17,090	11,882	21,699	21,735	14,202	
	212,714	224,861	217,066	211,267	265,451	256,668	248,367	

Table 2.1-20 Non-EGU Point Source PM25-PRI Emission Comparison for 2002/2009/2018.

	2002		2009		2018			
State	Base G	Base F	Base G	B&F	Base F	Base G	B&F	
AL	19,178	19,256	19,230	19,230	22,628	22,598	22,584	
FL	30,504	33,387	33,946	34,019	39,436	39,430	39,486	
GA	17,462	19,361	18,982	18,982	22,882	22,416	22,416	
KY	11,372	11,680	11,686	11,686	13,734	13,739	13,739	
MS	9,906	9,144	9,199	9,199	10,768	10,739	10,719	
NC	10,500	11,192	10,458	10,458	11,927	11,825	11,825	
SC	10,245	13,101	9,390	9,048	14,947	11,086	10,699	
TN	27,807	29,302	27,577	27,367	35,750	33,532	33,293	
VA	10,165	9,980	9,988	9,988	11,604	11,594	11,605	
WV	13,313	13,364	12,769	7,638	16,474	16,516	9,124	
	160,452	169,767	163,225	157,615	200,150	193,475	185,490	

Note: Emission summaries above include all SCCs except 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-21 Non-EGU Point Source NH₃ Emission Comparison for 2002/2009/2018.

	2002		2009		2018		
State	Base G	Base F	Base G	B&F	Base F	Base G	B&F
AL	1,883	2,132	2,132	2,132	2,464	2,464	2,464
FL	1,423	1,544	1,544	1,544	1,829	1,829	1,829
GA	3,613	3,963	3,963	3,963	4,799	4,797	4,797
KY	674	733	760	760	839	901	901
MS	1,169	667	668	668	761	764	764
NC	1,180	1,288	1,285	1,285	1,422	1,466	1,466
SC	1,411	1,578	1,578	1,578	1,779	1,779	1,779
TN	1,613	1,861	1,841	1,840	2,240	2,214	2,213
VA	3,104	3,050	3,049	3,045	3,613	3,604	3,604
WV	332	341	341	314	416	413	378
	16,402	17,157	17,161	17,129	20,162	20,231	20,195

2.2 Area Sources

This section describes the methodology used to develop the 2009 and 2018 projection Base F and Base G projection inventories. This section describes two approaches to these projections. Separate methods for projecting emissions were used for non-agricultural (stationary area) and agricultural area sources (predominantly NH₃ emissions). The two methods used for these sectors are described in the sections that follow.

2.2.1 Stationary area sources

The general approach used to calculate Base F projected emissions for stationary area sources was as follows:

- 1. Use the VISTAS Base F 2002 base year inventory as the starting point for projections.
- 2. MACTEC then worked with the VISTAS States (via the Stationary Area Source SIWG) to obtain any State specific growth factors and/or future controls from the States to use in developing the projections.
- 3. MACTEC then back calculated uncontrolled emissions from the Base F 2002 base year inventory based on existing controls reported in the 2002 Base F base year inventory.
- 4. Controls (including control efficiency, rule effectiveness and rule penetration) provided by the States or originally developed for use in estimating projected emissions for U.S. EPA's Heavy Duty Diesel (HDD) rulemaking emission projections and used in the Clean Air Interstate Rule (CAIR) projections were then used to calculate controlled emissions. State submitted controls had precedence over the U.S. EPA developed controls.
- 5. Growth factors supplied from the States or the U.S. EPA's CAIR emission projections were then applied to project the controlled emissions to the appropriate year. In some cases EGAS Version 5 growth factors were used if no growth factor was available from either the States or the CAIR growth factor files. The use of EGAS Version 5 growth factors was on a case-by-case basis wherever State-supplied or CAIR factors were not available for SCCs found in the 2002 Base F inventory. Use of the EGAS factors was necessitated due to the CERR submittals used in constructing the Base F 2002 inventory. Use of the CERR data resulted in SCCs that were not found in the CAIR inventory and if no State-supplied growth factor was provided required the use of an EGAS growth factor.
- 6. MACTEC then provided the final draft Base F projection inventory for review and comment by the VISTAS States.

For Base F stationary area sources, no State-supplied growth or control factors were provided. Thus for all of the sources in this sector of the inventory, growth and controls for Base F were

applied based on controls initially identified for the CAIR and growth factors identified for the CAIR projections.

For the Base G projections, the Base G 2002 base year inventory (see section 1.2.3) was used as a starting point. States provided some updated future controls but growth factors used were identical to those used for Base F. The revised controls for Base G were largely for new sources added as part of the 2002 Base F comments. The calculation of Base G projections was identical to the six steps outlined above with the exception of revisions made to prescribed fire for 2009 and 2018 and for the State of North Carolina. North Carolina provided 2009 and 2018 updated emission files used to update the emissions for each year for several source categories. However not all sources in the inventory were included in these NC updates. As a consequence, the final Base G 2009 and 2018 inventory for NC included emissions updated using the NC supplied files and emissions developed using growth and control factors as outlined above.

In a few cases, additional growth factors had to be added for source categories that had not initially been included in the Base F inventory. These growth factors were obtained from EGAS 5.0. Finally updates to growth factors from EGAS 5.0 were made for fuel fired emission sources. The updated growth factors reflected the most recent data from the Department of Energy's Annual Energy Outlook (AEO). These data were used to reflect changes in energy efficiency resulting from new or updated fuel firing technologies.

2.2.1.1 Stationary area source controls

The controls obtained by MACTEC for the HDD rulemaking were controls for the years 2007, 2020, and 2030. Since MACTEC was preparing 2009 and 2018 projections, control values for intermediate years were prepared using a straight line interpolation of control level between 2007 and 2020. The equation used to calculate the control level was as follows:

$$CE = (((2020 CE - 2007 CE)/13)*YRS) + 2007 CE$$

Where:

CE = Control Efficiency for either 2009 or 2018

2020 CE = HDD Control Efficiency value for 2020

2007 CE = HDD Control Efficiency value for 2007

= Number of years between 2020 and 2007

YRS = Number of years beyond 2007 to VISTAS Projection year

For 2009 the value of YRS would be two (2) and for 2018 the value would be eleven (11). Control efficiency values were determined for VOC, CO and PM. Rule penetration values for each year in the HDD controls tables obtained by MACTEC were always 100 percent so those values were maintained for the VISTAS projections.

Prior to performing the linear interpolation of the controls, MACTEC evaluated controls from the CAIR projections (NOTE: Initially the controls came from the IAQTR projections, however the controls used in CAIR were virtually identical to those in IAQTR). Those controls appeared to be identical to those used for the HDD rulemaking. In addition, MACTEC received some additional information on some controls for area source solvents (email from Jim Wilson, E.H. Pechan and Associates, Inc. to Gregory Stella, VISTAS Emission Inventory Technical Advisor, 3/5/04) that were used to check against the controls in the HDD rulemaking files. Where those controls proved to be more stringent than the HDD values, MACTEC updated the control file with those values (which were then used in the interpolation to develop 2009 and 2018 values). Finally, for VOC the HDD controls were initially provided at the State-county-SCC level. However, upon direction from the VISTAS Emission Inventory Technical advisor, the VOC controls were consolidated at the SCC level and applied across all counties within the VISTAS region (email from Gregory Stella, Alpine Geophysics, 3/3/2004) to ensure that no controls were missed due to changes in county FIPS codes and/or SCC designations between the time the HDD controls were developed and 2002.

The equation below indicates how VOC emissions were projected for stationary area sources.

$$VOC_{2018} = VOC_{2002} x \left(1 - \left(\frac{VOC - CE_{2018}}{100} \right) \left(\frac{VOC - RE_{2018}}{100} \right) \left(\frac{VOC - RP_{2018}}{100} \right) \right)$$

Where:

 VOC_{2018} = VOC emissions for 2018

 VOC_{2002} = Uncontrolled VOC emissions for 2002

 VOC_CE_{2018} = Control Efficiency for VOC (in this example for 2018)

 VOC_RE_{2018} = Rule Effectiveness for VOC (in this example for 2018)

 VOC_RP_{2018} = Rule Penetration for VOC (in this example for 2018)

A similar equation could be constructed for either PM or CO. It should be noted that the control efficiencies calculated based on the HDD rulemaking were only applied if they were greater than any existing 2002 base year controls. No controls were found for SO₂ or NO_x area sources.

In the pre-Base F 2018 emission estimates, an energy efficiency factor was applied to energy related stationary area sources. The energy efficiency factor was applied along with the growth factor to account for both growth and changes in energy efficiency. That factor was not applied to the Base F projections since information supplied by U.S. EPA related to the CAIR growth factors indicated that growth values for those categories were derived from U.S. Department of Energy (DOE) and were felt to account for changes in growth and projected energy efficiency. For the Base G inventory, these energy efficiency factors were re-instituted and used in conjunction with EGAS 5.0 growth factors in a manner identical to that used for the pre-Base F inventories. The energy efficiency factors were derived from U.S. DOE's Annual Energy Outlook report.

One significant difference between the Base F and Base G control factors was for counties and independent cities in northern Virginia. Several counties and independent cities in northern Virginia are subject to Ozone Transport Commission rules. For these counties and independent cities, controls for portable fuel containers, mobile equipment repair/refinishing, consumer products, solvent metal cleaning, and the architectural and industrial maintenance rules were added. The counties/independent cities (FIPS code) included in the changes for Base G were: Alexandria City (51510), Arlington (51013), Fairfax City (51600), Fairfax (51059), Falls Church City (51610), Fredericksburg City (51630), Loudoun (51107), Manassas City (51683), Manassas Park City (51685), Prince William County (51153), Spotsylvania (51177), and Stafford (51179). Not all OTC rules applied to all counties/cities.

2.2.1.2 Stationary area source growth

As indicated above, growth factors for the Base F and Base G 2009 and 2018 inventories were obtained from the U.S. EPA and are linear interpolations of the growth factors used for the Clean Air Interstate Rule (CAIR) projections. The growth factors for the CAIR obtained by MACTEC were developed using a base year of 2001 and provided growth factors for 2010 and 2015. MACTEC used the TREND function in Microsoft ExcelTM to calculate 2002, 2009 and 2018 values from the 2001, 2010 and 2015 values. The TREND function provides a linear interpolation of intermediate values from a known series of data points (in this case the 2001, 2010 and 2015 values) based on the equation for a straight line. These values were calculated at the State and SCC level with the exception of paved road emissions (SCC = 2294000000). The growth factors for paved roads were available in the CAIR data set at the State, county and SCC level so they were applied at that level.

Prior to utilizing the growth factors from the CAIR projections, MACTEC confirmed that all SCCs found in the VISTAS 2002 base year inventory were in the CAIR file (for Base F the starting point was the version 3.1 2002 base year inventory, for Base G the starting point was the Base F 2002 base year inventory). Some SCCs were not found in the CAIR file. For those SCCs,

the growth factors used were derived in one of five ways. First where possible, they were taken from a beta version of EGAS 5.0. In other cases, the growth factor was set to one (i.e., no growth). In other cases, a similar SCC that had a CAIR growth factor was used. In a few cases a growth factor based on an average CAIR growth at the 6 digit SCC level was calculated. Finally a number of records used population as the growth surrogate. For the Base G inventory, CAIR growth factors for fuel fired area sources were replaced with EGAS 5.0 growth factors (used in conjunction with AEO fuel efficiency factors). A comment field in the growth factor file was used to mark those records that were not taken directly from the CAIR projection growth factors.

2.2.1.3 Differences between 2009/2018

Methodologically, there was no difference in the way that 2009 and 2018 emissions were calculated for stationary area sources. The individual control and growth factors were different (due to the linear interpolation used to calculate the values) but the calculation methods were identical. This applies to both Base F and Base G.

The only exception to this is for the State of North Carolina for Base G. North Carolina provided an emissions update file used to override calculated projections for a number of area source categories. The values in these files (provided for both 2009 and 2018) were used to overwrite the calculated projected emissions in the final NIF file.

2.2.2 Agricultural area sources

The general approach used to calculate projected emissions for agricultural area sources (predominantly NH₃ emission sources) was as follows:

- 1. MACTEC used the version 3.1 2002 base year inventory data (which was based on the CMU ammonia model version 3.6).
- 2. MACTEC worked with the VISTAS States (via the Agricultural Sources SIWG) to obtain any State specific growth and/or future controls from the States for agricultural sources.
- 3. Since the base year emissions were uncontrolled, and no future controls for these sources were identified, MACTEC projected the agricultural emissions using State-specific growth if available, otherwise the U.S. EPA's Interstate Air Quality Transport Rule (IAQTR)/Ammonia inventory was used to develop the growth factors used to project the revised 2002 base year inventory to 2009 or 2018. Since the IAQTR inventory was only used to construct growth factors rather than using the emissions directly, no updated growth factors were prepared from the CAIR inventory values.

4. MACTEC then provided the final draft inventory for review and comment by the VISTAS States.

No change in the agricultural area source emission projections were made between Base F and Base G other than the removal of wild animal and human perspiration as a result of their removal from the 2002 base year file for Base G.

2.2.2.1 Control assumptions for agricultural area sources

No controls were identified either by the individual VISTAS States or in the information provided in the EPA's IAQTR or CAIR Ammonia inventory documents. Thus all projected emissions for agricultural area sources represent simple growth with no controls.

2.2.2.2 Growth assumptions for agricultural area sources

Growth for several agricultural area source livestock categories was developed using the actual emission estimates developed by the EPA as part of the NEI. That work included projections for the years 2002, 2010, 2015, 2020, and 2030. The actual emissions themselves were not used other than to develop growth factors since the 2002 NEI upon which the growth projections were based was prepared prior to the release of the 2002 Census of Agriculture data which was included in the CMU model (version 3.6) used to develop the Base F 2002 VISTAS base year inventory. Thus VISTAS Agricultural Sources SIWG decided to use the NEI ammonia inventory projected emissions to develop the 2009 and revised 2018 growth factors used to project emission for VISTAS. Details on the NEI inventory and projections can be found at:

http://www.epa.gov/ttn/chief/ap42/ch09/related/nh3inventorydraft_jan2004.pdf. The actual data files for the projected emissions can be found at:

http://www.epa.gov/ttn/chief/ap42/ch09/related/nh3output01_23_04.zip.

In order to use the NEI projected emissions as growth factors, several steps were required. These steps were as follows:

- 1. NEI projected emissions were only available for the years 2002, 2010, 2015, 2020, and 2030, thus the first task was to calculate intermediate year emissions for 2009 and 2018. These values were calculated based on linear interpolation of the existing data.
- 2. Once the intermediate emissions were calculated, MACTEC developed emission ratios to provide growth factors for 2009 and 2018. Ratios of emissions were established relative to the 2002 NEI emissions.
- 3. Once the growth factors were established, MACTEC then evaluated whether or not all agricultural SCCs within the revised 2002 base year inventory had corresponding

growth factors. MACTEC established that not all SCCs within the base year inventory had growth factors. These SCCs fell into one of two categories:

- b. SCCs that had multiple entries in the NEI but only a single SCC in the 2002 VISTAS base year inventory. The NEI was established using a process model and for some categories of animals, emissions were calculated for several aspects of the process. The CMU model version 3.6 which was the basis for the VISTAS 2002 Base F inventory did not use a process model. As a consequence a mapping of SCCs in the NEI projections and corresponding SCCs in the CMU inventory was made and for those SCCs an average growth factor was calculated from the NEI projections for use with the corresponding SCC in the CMU based 2002 Base F inventory.
- c. There were also State, county, SCC trios in the 2002 VISTAS Base F inventory which had no corresponding emissions in the NEI files. For these instances, MACTEC first developed State level average growth factors from the NEI projections for use in growing these records. Even after developing State level average growth factors there were still some State/SCC pairs that did not have matching growth. For these records, MACTEC developed VISTAS regional average growth factors at the SCC level from the NEI data.
- 1. Once all of the growth factors were developed, they were used to project the emissions to 2009 and 2018. Growth factors were first applied at the State, county and SCC level. Then remaining records were grown with the State/SCC specific growth factors. Finally, any remaining ungrown records were projected at the SCC level using the VISTAS regional growth factor.

For the livestock categories, the NEI emission projections only had data for beef and dairy cattle, poultry and swine. Thus for other livestock categories and for fertilizers alternative growth factors were required.

The growth factors for other livestock categories and fertilizers were obtained from growth factors used for the IAQTR projections made by the U.S. EPA. The methodology for these categories was identical to that used for dairy, beef, poultry and swine with the exception that State/SCC and VISTAS/SCC growth factors were not required for these categories since the IAQTR data contained State, county and SCC level growth factors. The IAQTR data provided growth factors for 1996, 2007, 2010, 2015 and 2020. Linear interpolation was used to develop the growth factors for the intermediate years 2009 and 2018 required for the VISTAS projections.

There were a few exceptions to the methods used for projecting agricultural sources for the VISTAS projections. These exceptions were:

- 1. All swine emissions for North Carolina were maintained at 2002 levels for each projection year to capture a moratorium on swine production in that State.
- 2. Ammonia growth factors for a few categories (mainly feedlots) were assigned to be the same as growth factors for PM emissions from the NEI projections. This assignment was made because the CMU model showed emissions from these categories but the NEI projections did not show ammonia emissions but did show PM emissions.
- 3. No growth factors were found for horse and pony emissions. These emissions were held constant at 2002 levels.

There was no change in this method between Base F and Base G. Thus Base F and Base G agricultural emissions are the same in each inventory. Future efforts on the agricultural emissions category should look at any changes made to the CMU model to reflect the model farm approach used by EPA in their inventory plus any updated growth factors that may be more recent than the EPA inventory used to develop growth estimates for Base F/G.

2.2.2.2.1 Differences between 2009/2018

Methodologically, there was no difference in the way that 2009 and 2018 emissions were calculated for agricultural area sources. The growth factors were different (due to the linear interpolation used to calculate the values) but the calculation methods were identical. In addition there was no difference between Base F and Base G for this category. Thus Base F and Base G agricultural emissions are the same in each inventory.

Tables 2.2-1 show the differences between Base F and Base G emissions for all area sources (including agricultural sources but excluding fires) for the 2002 base year and 2009 and 2018 by State and pollutant.

Table 2.2-1 2002 Base Year Emissions and Percentage Difference for Base F and Base G (based on actual emissions).

			Actual A	rea 2002 - Base	\mathbf{G}		
State	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC
\mathbf{AL}	83,958	58,318	23,444	393,588	56,654	52,253	182,674
\mathbf{FL}	71,079	37,446	28,872	443,346	58,878	40,491	404,302
GA	108,083	80,913	36,142	695,414	103,794	57,559	299,679
KY	66,752	51,135	39,507	233,559	45,453	41,805	95,375
MS	37,905	58,721	4,200	343,377	50,401	771	131,808
NC	345,315	161,860	36,550	280,379	64,052	5,412	237,926
\mathbf{SC}	113,714	28,166	19,332	260,858	40,291	12,900	161,000
TN	89,828	34,393	17,844	212,554	42,566	29,917	153,307
VA	155,873	43,905	51,418	237,577	43,989	105,890	174,116
$\mathbf{W}\mathbf{V}$	39,546	9,963	12,687	115,346	21,049	11,667	60,443
				Base F			
\mathbf{AL}	83,958	59,486	23,444	393,093	73,352	47,074	196,538
\mathbf{FL}	105,849	44,902	29,477	446,821	81,341	40,537	439,019
GA	107,889	84,230	36,105	695,320	133,542	57,555	309,411
KY	66,752	51,097	39,507	233,559	52,765	41,805	100,174
MS	37,905	59,262	4,200	343,377	63,135	771	135,106
NC	373,585	164,467	48,730	303,492	69,663	7,096	346,060
SC	113,714	29,447	19,332	260,858	51,413	12,900	187,466
TN	89,235	35,571	17,829	211,903	49,131	29,897	161,069
VA	155,873	46,221	51,418	237,577	52,271	9,510	129,792
$\mathbf{W}\mathbf{V}$	39,546	10,779	12,687	115,346	25,850	11,667	61,490
					se G increased f		
\mathbf{AL}	0.00%	1.96%	0.00%	-0.13%	22.76%	-11.00%	7.05%
\mathbf{FL}	32.85%	16.61%	2.05%	0.78%	27.62%	0.12%	7.91%
GA	-0.18%	3.94%	-0.10%	-0.01%	22.28%	-0.01%	3.15%
KY	0.00%	-0.07%	0.00%	0.00%	13.86%	0.00%	4.79%
MS	0.00%	0.91%	0.00%	0.00%	20.17%	0.00%	2.44%
NC	7.57%	1.59%	24.99%	7.62%	8.05%	23.74%	31.25%
SC	0.00%	4.35%	0.00%	0.00%	21.63%	0.00%	14.12%
TN	-0.67%	3.31%	-0.09%	-0.31%	13.36%	-0.07%	4.82%
VA	0.00%	5.01%	0.00%	0.00%	15.84%	-1013.45%	-34.15%
$\mathbf{W}\mathbf{V}$	0.00%	7.57%	0.00%	0.00%	18.57%	0.00%	1.70%

 $\begin{tabular}{ll} \textbf{Table 2.2-2 2009 Projection Year Emissions and Percentage Difference for Base F and Base G (based on actual emissions).} \end{tabular}$

	Actual Area 2009 - Base G										
State	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC				
\mathbf{AL}	66,654	64,268	23,930	413,020	58,699	48,228	143,454				
\mathbf{FL}	57,011	38,616	28,187	503,230	64,589	36,699	420,172				
GA	94,130	89,212	37,729	776,411	112,001	57,696	272,315				
KY	57,887	53,005	42,088	242,177	46,243	43,087	94,042				
MS	27,184	63,708	4,249	356,324	51,661	753	124,977				
NC	301,163	170,314	39,954	292,443	69,457	5,751	187,769				
SC	90,390	30,555	19,360	278,299	41,613	13,051	146,107				
TN	74,189	35,253	18,499	226,098	44,124	30,577	154,377				
VA	128,132	46,639	52,618	252,488	44,514	105,984	147,034				
$\mathbf{W}\mathbf{V}$	31,640	10,625	13,439	115,089	20,664	12,284	55,288				
				Base F							
\mathbf{AL}	68,882	65,441	26,482	411,614	76,248	17,818	157,405				
\mathbf{FL}	101,356	46,950	31,821	507,515	90,487	52,390	462,198				
GA	103,579	92,838	38,876	776,935	146,691	57,377	294,204				
KY	64,806	53,023	42,122	242,345	54,397	40,779	94,253				
MS	37,161	64,289	4,789	356,516	65,321	637	125,382				
NC	332,443	173,187	53,550	317,847	75,570	7,607	252,553				
\mathbf{SC}	95,826	31,966	20,852	278,852	54,230	12,945	176,104				
TN	82,196	36,578	19,148	225,650	51,753	29,787	160,265				
VA	133,738	49,173	53,344	252,924	54,587	10,619	120,022				
$\mathbf{W}\mathbf{V}$	37,704	11,461	13,816	115,410	25,835	12,156	57,082				
	0		_		se G increased						
\mathbf{AL}	3.24%	1.79%	9.64%	-0.34%	23.02%	-170.67%	8.86%				
\mathbf{FL}	43.75%	17.75%	11.42%	0.84%	28.62%	29.95%	9.09%				
GA	9.12%	3.91%	2.95%	0.07%	23.65%	-0.56%	7.44%				
KY	10.68%	0.03%	0.08%	0.07%	14.99%	-5.66%	0.22%				
MS	26.85%	0.90%	11.27%	0.05%	20.91%	-18.10%	0.32%				
NC	9.41%	1.66%	25.39%	7.99%	8.09%	24.41%	25.65%				
SC	5.67%	4.41%	7.16%	0.20%	23.27%	-0.82%	17.03%				
TN	9.74%	3.62%	3.39%	-0.20%	14.74%	-2.65%	3.67%				
VA	4.19%	5.15%	1.36%	0.17%	18.45%	-898.09%	-22.51%				
$\mathbf{W}\mathbf{V}$	16.08%	7.29%	2.73%	0.28%	20.02%	-1.06%	3.14%				

Table 2.2-3 2018 Projection Year Emissions and Percentage Difference for Base F and Base G (based on actual emissions).

			Actual Ar	rea 2018 - Base	G						
State	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC				
\mathbf{AL}	59,626	71,915	25,028	445,256	62,323	50,264	153,577				
FL	53,903	40,432	30,708	578,516	72,454	38,317	489,975				
GA	93,827	99,885	41,332	880,199	123,704	59,729	319,328				
KY	54,865	55,211	44,346	256,052	47,645	44,186	103,490				
MS	22,099	69,910	4,483	375,495	53,222	746	140,134				
NC	290,809	180,866	43,865	315,294	71,262	6,085	189,591				
SC	83,167	33,496	20,592	304,251	44,319	13,457	161,228				
TN	68,809	36,291	19,597	246,252	46,692	31,962	182,222				
VA	121,690	50,175	56,158	275,351	46,697	109,380	150,919				
$\mathbf{W}\mathbf{V}$	28,773	11,504	14,828	121,549	21,490	12,849	60,747				
	Base F										
\mathbf{AL}	63,773	73,346	28,754	445,168	82,449	49,975	168,507				
FL	100,952	49,889	35,047	582,832	101,872	59,413	533,141				
GA	105,059	103,911	42,260	880,800	163,925	61,155	342,661				
KY	65,297	55,356	45,597	256,544	57,110	42,326	102,117				
MS	36,425	70,565	5,230	375,931	68,338	831	139,419				
NC	327,871	184,167	60,073	345,275	85,018	8,273	234,207				
SC	89,343	35,082	22,467	304,940	58,441	13,517	196,946				
TN	81,242	37,812	20,928	245,893	55,712	31,047	188,977				
VA	129,037	53,023	56,668	275,790	58,141	11,479	128,160				
WV	36,809	12,390	15,079	121,964	27,088	13,450	62,164				
			-	lues means Bas							
AL	6.50%	1.95%	12.96%	-0.02%	24.41%	-0.58%	8.86%				
\mathbf{FL}	46.61%	18.96%	12.38%	0.74%	28.88%	35.51%	8.10%				
GA	10.69%	3.87%	2.20%	0.07%	24.54%	2.33%	6.81%				
KY	15.98%	0.26%	2.74%	0.19%	16.57%	-4.40%	-1.34%				
MS	39.33%	0.93%	14.28%	0.12%	22.12%	10.19%	-0.51%				
NC	11.30%	1.79%	26.98%	8.68%	16.18%	26.45%	19.05%				
SC	6.91%	4.52%	8.34%	0.23%	24.16%	0.44%	18.14%				
TN	15.30%	4.02%	6.36%	-0.15%	16.19%	-2.95%	3.57%				
VA	5.69%	5.37%	0.90%	0.16%	19.68%	-852.83%	-17.76%				
$\mathbf{W}\mathbf{V}$	21.83%	7.15%	1.66%	0.34%	20.66%	4.46%	2.28%				

2.2.3 Changes to Prescribed Fire for 2009/2018 Base G

Just prior to release of version 3.1 of the VISTAS inventory several Federal agencies indicated that they had plans for increased prescribed fire burning in future years and that the "typical" fire inventory would likely not adequately capture those increases (memo from Bill Jackson and Cindy Huber, August 13, 2004). However data were not readily available to incorporate those changes up through the Base F inventory. As a consequence MACTEC worked with Federal Land Managers to acquire the data necessary to provide 2009 and 2018 specific projections for the prescribed fire component of the Base G fire inventory. The 2009 and 2018 projections developed using the method described below are being used by VISTAS as the 2009 and 2018

base case inventories for all States except FL. For FL the supplied data from the FLMs is not being used as FL felt that their data adequately reflected current and future prescribed burning practices. The "typical" fire projection is the 2002 base prescribed fire projection.

One of the biggest issues in preparing the projection was how best to incorporate the data. Two agencies submitted data: Fish and Wildlife Service (FWS) and Forest Service (FS). FWS submitted annual acreage data by National Wildlife Refuge (NWR) and county with estimates of acres burned per day for each NWR. FS provided fire-by-fire acreage estimates based on mapping projected burning acreage to current 2002 modeling days. However, FWS did not submit data for VISTAS original base year preparation process, thus there was no known FWS data in the 2002 actual or typical inventories. Thus MACTEC had to develop a method that could use the county level data submitted by FWS.

In addition, despite the fact that the FS submitted fire-by-fire data for the 2002 actual inventory and had mapped the projections to current burn days in the 2002 actual inventory, MACTEC could not do a simple replacement of those records with the 2009/2018 projections. This situation was created because several VISTAS States run a prescribed fire permitting program. To avoid double counting, only State data was used in those States for the 2002 actual inventory. Thus there were no Federal data in those States since the Federal data could have potentially duplicated State-supplied prescribed fire data. In VISTAS States without permit programs, the FS supplied data for 2002 was used and those records were marked in database. Thus for those States, the FS supplied 2009/2018 data could be directly substituted for the 2002 data.

The method used by MACTEC to include the FS data applied a county level data approach for FS data where a State had a prescribed fire permitting program and a fire-by-fire replacement for FS data in States without permit programs. MACTEC used a county level approach for all of the FWS data. The approach used for each data set is discussed below.

For the FWS data MACTEC summed the annual acres burned supplied by the FWS across all NWRs in a county. We then subtracted out 2002 acreage for that county from the FWS projected acreage annual total to avoid double counting. The remaining acreage was then multiplied by 0.8 to account for blackened acres instead of the total perimeter acres that were reported. The revised total additional FWS acreage was then added to the total county "typical" acreage to determine future acreage burned for either 2009 or 2018. MACTEC then allocated the increased acreage to current modeling days. The average daily acres burned data provided by FWS per NWR/county was used to allocate the acreage to the correct number of days required to burn all of the acres. Guidance supplied by FWS indicated that up to three times the average daily acres burned could potentially be allocated to any one day. Thus if the estimated acreage per day were 100 acres then up to 300 acres could actually be allocated to a particular day. This approach (use of up to three times the average daily acres burned) was used if there were an insufficient number of 2002

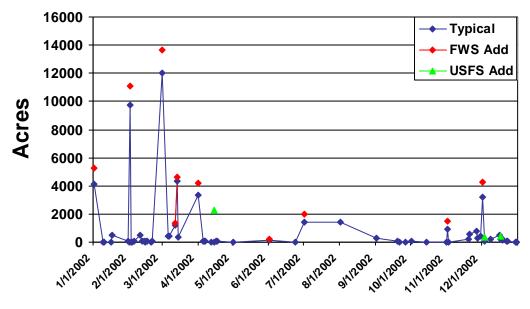
modeling days available to account for all of the acreage increase. MACTEC used an incremental approach to using the increase above the base average daily acres. First we used twice the average daily acreage if that was sufficient to completely allocate the increased acreage over the total number of days available. If that wasn't sufficient then we used three times the average daily acres burned to allocate the acreage. We applied the highest increases to days in the database that already had the highest acreage burned since we felt those days were most likely to represent days with representative conditions for conducting prescribed burns.

The approach used by MACTEC for the FS was slightly different. For States that had permit programs, we used similar approach to the FWS county level approach. First we summed the FS data at county level, we then added that value to the typical acreage and then we allocated the acres to current modeling days. The mapping to current modeling days was performed by Bill Jackson of the USFS and provided to MACTEC. For States that do not have a prescribed fire permit program, MACTEC simply replaced the current fire-by-fire records in the database with fire-by-fire records from the FS and recalculated emissions based on fuel model and fuel loading. We also applied the same 0.8 correction for blackened acres applied to all FS supplied acreage as the supplied values represented perimeter acres.

An additional problem with developing year-specific prescribed fire projections was how to adequately capture the temporal profile for those fires. In the 2002 actual fire inventory, fires occur on same days as state/FLM records. In the 2002 "typical" year inventory, fire acreage increased or decreased from acreage on the same fire days as were in the 2002 actual inventory, since the acres were simply increased for each day based on a multiplier used to convert from actual to typical.

When prescribed fires acreage was added to a future year, MACTEC added acreage to individual fire days proportional to the annual increase (if acreage on a day is 10 percent of annual, add 10 percent of projected increase to that same day).

The table below shows how the FWS data for Okefenokee NWR were allocated for 2009 for Clinch County (Okefenokee NWR is located in four different counties). You can see that the total additional acres for the Clinch County portion of Okefenokee NWR was 1,956 acres. Two hundred eighty (280) acres were the estimated average daily acres burned for that NWR/county combination. Thus to allocate the entire 1,956 acres would require almost 7 burn days (1,956 divided by 280). However only 5 burn days were found for Clinch County in the 2002 actual fire database. Thus we allocated twice the average acreage to the burn day with the most acres burned in the 2002 actual fire database (since our method allowed us to increase the average daily acres burned up to three times the recommended level). Thus the first burn day received 560 acres and all others received 280 except the final day which received 276 to make the total equal to the required 1,956 acres. The table also indicates that the increased acres burned


provided increases of from 10-48 percent in the acres burned on the individual burn days and an average of approximately 14 percent for the year as a whole.

							Total
CLINCH COUNTY	3/1/2002	4/1/2002	2/1/2002	1/1/2002	11/1/2002	12/1/2002	Annual
Acres (typical)	3,757	2,612	1,996	1,801	616	472	11,764
Add on FWS Projection	560	280	280	280	280	276	1,956
Total	4,316	2,891	2,276	2,080	895	747	13,720
Percent Increase	14.9%	10.7%	14.0%	15.6%	45.5%	58.5%	14.3%

The figure below shows the increases for prescribed burning in the four counties that comprise the Okefenokee NWR area (which also includes FS land). In this figure you can see the additional acreage added for the burn days from FWS and the individual day increases caused by projected increases in prescribed burning based on FS data. It should be noted that while the emissions represent 2009, all fire event dates listed are for 2002 to match up with the base year meteorology used in modeling exercises.

Table 2.2-4 shows the percentage difference between the 2009 and 2018 projections developed for Base F and Base G. Base G includes the revised prescribed burning estimates described above. Values are calculated using Base F as the basis for change, thus negative values imply an increase in emissions for Base G.

Figure 2.2-1 Prescribed Fire Projection for Okeefenokee NWR for 2009

Date of Fire Event

Table 2.2-4 Percentage Difference Between Base F and Base G Fire Emissions by State

State	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC
2009 Fires Base G 2018 Fires Base G														
AL	534,873	2,050	11,901	52,851	46,543	2,681	27,502	535,658	2,054	11,918	52,927	46,608	2,686	27,539
FL	923,310	3,157	19,791	98,470	88,756	4,129	51,527	923,310	3,157	19,791	98,470	88,756	4,129	51,527
GA	637,177	2,229	14,243	63,973	57,116	2,914	34,710	637,177	2,229	14,243	63,973	57,116	2,914	34,710
KY	31,810	143	682	3,093	2,653	187	1,497	33,296	150	714	3,237	2,777	196	1,567
MS	48,160	217	1,033	4,683	4,016	283	2,266	50,037	225	1,073	4,865	4,173	294	2,355
NC	96,258	433	2,065	9,359	8,027	566	4,530	111,266	501	2,387	10,819	9,279	655	5,236
SC	282,307	1,039	5,899	29,153	25,955	1,359	16,045	282,307	1,039	5,899	29,153	25,955	1,359	16,045
TN	17,372	78	373	1,689	1,449	102	817	18,860	85	405	1,834	1,573	111	888
VA	21,130	95	453	2,054	1,762	124	994	26,923	121	578	2,618	2,245	158	1,267
WV	3,949	18	85	384	329	23	186	5,013	23	108	487	418	29	236
2009 Fires Base F 2018 Fires Base F														
AL	514,120	1,957	11,456	50,833	44,812	2,559	26,526	514,120	1,957	11,456	50,833	44,812	2,559	26,526
FL	923,310	3,157	19,791	98,470	88,756	4,129	51,527	923,310	3,157	19,791	98,470	88,756	4,129	51,527
GA	620,342	2,153	13,882	62,336	55,712	2,815	33,918	620,342	2,153	13,882	62,336	55,712	2,815	33,918
KY	56,686	110	1,460	6,667	6,310	136	3,338	56,686	110	1,460	6,667	6,310	136	3,338
MS	128,471	177	3,328	14,693	13,680	100	13,625	128,471	177	3,328	14,693	13,680	100	13,625
NC	200,564	324	5,005	20,488	19,491	423	12,499	200,564	324	5,005	20,488	19,491	423	12,499
SC	253,005	908	5,270	26,304	23,511	1,187	14,666	253,005	908	5,270	26,304	23,511	1,187	14,666
TN	78,370	46	2,232	8,875	8,730	59	5,153	78,370	46	2,232	8,875	8,730	59	5,153
VA	19,159	159	978	18,160	17,361	99	912	19,159	159	978	18,160	17,361	99	912
WV	32,656	12	944	3,276	3,239	16	2,184	32,656	12	944	3,276	3,239	16	2,184
	,	` 8			ase G emissions)		2 5001	1.100/	4.0504	4.0004		4.0404	4.0504	2.0204
AL	-4.04%	-4.77%	-3.89%	-3.97%	-3.86%	-4.77%	-3.68%	-4.19%	-4.95%	-4.03%	-4.12%	-4.01%	-4.95%	-3.82%
FL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
GA	-2.71%	-3.52%	-2.60%	-2.63%	-2.52%	-3.52%	-2.34%	-2.71%	-3.52%	-2.60%	-2.63%	-2.52%	-3.52%	-2.34%
KY	43.88%	-29.52%	53.25%	53.61%	57.96%	-37.90%	55.15%	41.26%	-35.57%	51.07%	51.44%	56.00%	-44.34%	53.06%
MS	62.51%	-22.07%	68.95%	68.13%	70.64%	-183.85%	83.37%	61.05%	-26.83%	67.74%	66.89%	69.50%	-194.91%	82.72%
NC	52.01%	-33.75%	58.74%	54.32%	58.82%	-33.75%	63.76%	44.52%	-54.60%	52.31%	47.19%	52.40%	-54.60%	58.11%
SC	-11.58%	-14.52%	-11.93%	-10.83%	-10.39%	-14.52%	-9.40%	-11.58%	-14.52%	-11.93%	-10.83%	-10.39%	-14.52%	-9.40%
TN	77.83%	-69.40%	83.30%	80.97%	83.41%	-74.42%	84.14%	75.93%	-83.92%	81.87%	79.34%	81.98%	-89.36%	82.78%
VA	-10.29%	40.36%	53.67%	88.69%	89.85%	-25.40%	-9.03%	-40.53%	24.00%	40.97%	85.59%	87.07%	-59.79%	-38.93%
WV	87.91%	-48.65%	91.03%	88.28%	89.83%	-49.46%	91.49%	84.65%	-88.70%	88.61%	85.12%	87.09%	-89.73%	89.20%

2.2.4 Quality Assurance steps

Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, to ensure that a full and complete inventory was developed for VISTAS, and to make sure that projection calculations were working correctly. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the stationary and agricultural area source components of the 2009 and revised 2018 projection inventories:

- 1. All final files were run through EPA's Format and Content checking software.
- 2. SCC level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources.
- 3. Tier comparisons (by pollutant) were developed between the 2002 base year inventory and the 2009 and 2018 projection inventories. In addition, total VISTAS pollutant summaries were prepared to compare total emissions by pollutant between versions of the inventory (e.g., between Base F and Base G).
- 4. Data product summaries were provided to both the VISTAS Emission Inventory Technical Advisor and to the SIWG representatives for review and comment. Changes based on these comments were implemented in the files.
- 5. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from 1.0 to 2.0. A minor change would cause a version number to go from 1.0 to 1.1. Minor changes resulting from largely editorial changes would result in a change from 1.00 to 1.01.

2.3 Mobile Sources

Our general approach for assembling data was to use as much existing data from the pre-Base F preliminary projections as possible for these inventories, supplement these data with easily available stakeholder input, and provide the results for stakeholder review to ensure credibility. To develop the "base case" projections, MACTEC originally assembled data to develop two 2009 and 2018 base case inventories: 1) an inventory that included all "on-the-books" control programs and 2) an "on-the-way" inventory that included controls that were likely to be "on-the-way". For the Base F and Base G emission forecasts to the mobile source sector, "on-the-books" and "on-the-way" are defined with the same strategies and therefore only a single projection scenario was developed for each forecast year.

To ensure consistency across evaluation years, the 2009 and 2018 base case inventories were developed, to the maximum extent practical, using methodologies identical to those employed in

developing the 2002 on-road portion of the revised 2002 VISTAS base year inventory. All modifications to the 2002 inventory methods were developed in consultation with the Mobile Source Special Interest Workgroup (MSSIWG). Generally, modifications were only made to properly account for actual changes expected in the intervening period (i.e., between 2002 and 2009 and between 2002 and 2018), but the underlying inventory development methodology was identical, except to the extent requested by VISTAS or the MSSIWG.

MACTEC developed a preliminary 2018 inventory in early 2004. That inventory was designed to 1) be used for modeling sensitivity evaluations and 2) help establish the methods that would be used for the final 2018 inventory and the initial 2009 inventory. Since that work took place prior to the revision of the 2002 base year inventory data files, MACTEC provided a review of the data and methods used to develop on-road mobile source input files for the initial 2002 base year inventory prior to developing the preliminary 2018 inventory. Through this review, MACTEC determined the following:

- On-road VMT. Most States provided local data for 2002 (or a neighboring year that was converted to 2002 using appropriate VMT growth surrogates such as population). Since these data were not applicable to 2018 due to intervening growth, input for 2018 was solicited from the MSSIWG. At the same time we researched county-specific growth rate data utilized for recent national rulemakings as a backstop approach to State supplied VMT projections.
- Modeling Temperatures. Actual 2002 temperatures were used for the initial 2002 base year inventory.
- Vehicle Registration Mix (age fractions by type of vehicle). A mix of State, local, and MOBILE6 default data were used for the 2002 initial base year inventory. Forecast data were solicited from the States, with a fallback position that we hold the fractions constant at their 2002 values.
- Vehicle Speed by Roadway Type. For the 2002 initial base year inventory, speeds varying by vehicle and road type were used.
- VMT Mixes (fraction of VMT by vehicle type). A mix of State, local, and quasi MOBILE6 default (i.e., MOBILE6 defaults normalized to better reflect local conditions) data were used for the 2002 initial base year inventory. Forecast data were solicited from the States.
- Diesel Sales Fractions. As with the VMT mix data, the diesel sales fraction data employed for the 2002 initial base year inventory represents a mix of State, local, and quasi MOBILE6 default data. The issues related to updating these data to 2018 are also

similar, but are complicated by the fact that MOBILE6 treats diesel sales fraction on a model year, rather than age specific basis. Therefore, diesel sales fractions generally cannot be held constant across time. Once again, we solicited any local projections, with a fallback position that we would keep the data for 2002 and earlier model years constant for the forecast inventory, supplemented with MOBILE6 default data for 2003 and newer model years.

- State/Local Fuel Standards. For the 2002 initial base year inventory, these data were based on appropriate local requirements and updated data for 2018 was only required if changes were expected between 2002 and 2018. There are some national changes in required fuel quality for both on-road and non-road fuels that are expected to occur between 2002 and 2018 and these would be reflected in the 2018 inventory in the absence of more stringent local fuel controls. Expected changes in local fuel control programs were solicited.
- Vehicle Standards. The 2002 initial base year inventory assumed NLEV applicability. This was altered to reflect Tier 2 for 2018, unless a State indicated a specific plan to adopt the California LEV II program. If so, we made the required changes to implement those plans for the preliminary 2018 inventory.
- Other Local Controls. This includes vehicle emissions inspection (i.e., I/M) programs, Stage II vapor recovery programs, anti tampering programs, etc. By nature, the assumptions used for the 2002 initial base year inventory vary across the VISTAS region, but our presumption is that these data accurately reflected each State's situation as it existed in 2002. If a State had no plans to change program requirements between 2002 and 2018, we proposed to maintain the 2002 program descriptions without change. However, if a State planned changes, we requested information on those plans. In the final implementation of the Base F and earlier inventories, Stage II controls were exercised in the area source component of the inventory, since the units used to develop Stage II refueling estimates are different between MOBILE6 and the NONROAD models. However, in the Base G inventories, Stage II refueling was moved to the on-road and non-road sectors.

Once the preliminary 2018 (pre-Base F) base case projection inventory data were compiled, MACTEC applied the data and methods selected and proceeded to develop the preliminary (pre-base F) base case 2018 projection inventories. The resulting inventories were provided to the MSSIWG in a user-friendly format for review. After stakeholder review and comment, the final preliminary 2018 base case inventories and input files were provided to VISTAS in formats identified by the VISTAS Technical Advisor (in this case, MOBILE input files and VMT, NONROAD input files and annual inventory files for NONROAD in NIF 3.0 format). Annual

inventory files for MOBILE were not developed as part of this work, only input files and VMT forecasts. MOBILE emissions were calculated by VISTAS air quality modeling contractor using the provided files.

2.3.1 Development of on-road mobile source input files

As indicated above, MACTEC prepared a preliminary version of the 2018 base case mobile inventory input data files. These files were then updated to provide a final set of 2018 base case inventory input data files as well as a set of input files for 2009. The information below describes the updates performed on the preliminary 2018 files and the development of the 2009 input data files for Base F emission estimation.

Our default approach to preparing the revised 2018 and initial 2009 projection inventories for onroad mobile sources was to estimate the emissions by using either:

- 1. the revised 2002 data provided by each State coupled with the projection methods employed for the preliminary 2018 inventory, or
- 2. the same data and methods used to generate the preliminary 2018 inventory.

We also investigated whether or not there was more recent VMT forecasting data available (e.g., from the CAIR and if appropriate revised the default VMT growth rates accordingly. This did not affect any State that provided local VMT forecasting data, but would alter the VMT estimates used for other areas.

Since no preliminary 2009 inventory was developed there did not exist an option (2) above for 2009. As a consequence, MACTEC crafted the 2009 initial inventory for on-road mobile sources using methods identical to those employed for the 2018 preliminary inventories coupled with any changes/revisions provided by the States during the review of the revised 2002 base year and the 2018 preliminary inventories. Therefore, as was the case for 2018, we obtained from the States any input data revisions, methodological revisions, and local control program specifications (to the extent that they differed from 2002/2018).

2.3.1.1 Preparation of revised 2018 input data files

Preparation of the revised 2018 inventories required the following updates:

- 1. The evaluation year was updated to 2018 in all files.
- 2. The diesel fuel sulfur content was revised from 500 ppm to 11 ppm, consistent with EPA data for 2018 in all files.
- 3. Since the input data is model year, rather than age, specific for diesel sales fractions (with data for the newest 25 model years required), we updated all files that included

diesel sales fractions. In the revised 2002 base year files, the data included applied to model years 1978-2002. For 2018, the data included would reflect model years 1994-2018. To forecast the 2002 data, MACTEC took the data for 1994-2002 from the 2002 files and added data for 2003-2018. To estimate the data for these years, we employed the assumption employed by "default" in MOBILE6 -- namely that diesel sales fractions for 1996 and later are constant. Therefore, we set the diesel sales fractions for 2003-2018 at the same value as 2002.

4. VMT mix fractions must be updated to reflect expected changes in sales patterns between 2002 and 2018. If explicit VMT mix fractions are not provided, these changes are handled internally by MOBILE6 or externally through absolute VMT distributions. However, files that include explicit VMT mix fractions override the default MOBILE6 update and may or may not be consistent with external VMT distributions. MACTEC updated the VMT mix in such files as follows:

First, we calculated the VMT fractions for LDV, LDT1, LDT2, HDV, and MC from the external VMT files for 2018. This calculation was performed in accordance with section 5.3.2 of the MOBILE6 Users Guide which indicates:

LDV = LDGV + LDDV LDT1 = LDGT1 + LDDT LDT2 = LDGT2 HDV = HDGV + HDDV MC = MC

The resulting five VMT fractions were then split into the 16 fractions required by MOBILE6 using the distributions for 2018 provided in Appendix D of the MOBILE6 Users Guide. This approach ensures that explicit input file VMT fractions are consistent with the absolute VMT distributions prepared by MACTEC. These changes were made to all files that included VMT mixes.

5. All other input data were retained at 2002 values, except as otherwise instructed by the States. This includes all control program descriptions (I/M, Anti-Tampering Program [ATP], Stage II, etc.), all other fuel qualities (RVP, oxy content, etc.), all other vehicle descriptive data (registrations age distributions, etc.), and all scenario descriptive data. The State-specific updates performed are described below.

Kentucky:

MACTEC revised the 2018 input files for the Louisville, Kentucky area (Louisville Air Pollution Control District [APCD]) based on comments received relative to several components of

MOBILE input data. Based on these comments, the input files for Jefferson County, Kentucky were updated accordingly as follows:

- a) I/M and tampering program definitions were removed since the program was discontinued at the end of 2003.
- b) The "Speed VMT", "Facility VMT" and "Registration Age Distribution" file pointers were updated to reflect revised 2002 files provided by the Louisville APCD.
- c) The "VMT Mix" data, which was previously based on the default approach of "growing" 2002 data, was replaced by 2018-specific data provided by the Louisville APCD.

North Carolina:

North Carolina provided a wide range of revised input data, including complete MOBILE6 input files for July modeling. MACTEC did not use the provided input files directly as they did not match the 2002 NC input files for critical elements such as temperature distributions and gasoline RVP (while they were close, they were slightly different). To maintain continuity between 2002 and 2018 modeling, MACTEC instead elected to revise the 2002 input files to reflect all control program and vehicle-related changes implied by the new 2018 files, while retaining the basic temperature and gasoline RVP assumptions at their 2002 values. Under this approach, the following changes were made:

- a) NC provided a county cross reference file specific to 2018 that differed from that used for 2002. We removed files that were referenced in the 2002 input data and replaced those files with those referenced in the 2018 data. In addition, since NC only provided 2018 input files for July, we estimated the basic data for these new files for the other months by cross referencing the target files for 2002 by county against the target files for 2018 by county.
- b) We then revised the 2002 version of each input file to reflect the 2018 "header" data included in the NC-provided 2018 files. These data are exclusively limited to I/M and ATP program descriptions, so that the 2002 I/M and ATP data were replaced with 2018 I/M and ATP data.
- c) We retained the registration age fractions at their 2002 "values" (external file pointers) as per NC instructions.
- d) We retained all scenario-specific data (i.e., temperatures, RVP, etc.) at 2002 values, which (as indicated above), were slightly different in most cases from data included in the 2018 files provided by NC. We believe these differences were due to small deviations between the data assembled to support VISTAS 2002 and the process used to generate the 2018 files provided by NC, and that revising the VISTAS 2002 data to

- reflect these variations was not appropriate given the resulting inconsistencies that would be reflected between VISTAS 2002 and VISTAS 2018.
- e) NC also provided non-I/M versions of the 2018 input files that would generally be used to model the non-I/M portion of VMT. While these files were retained they were not used for the 2018 input data preparation.

Finally, NC also provided a speed profile file and a speed profile cross reference file for 2018. We did not use these in our updates as they have no bearing on the MOBILE6 input files, but they were maintained in case they needed to be included in SMOKE control files for a future year control strategy scenario.

Virginia:

In accordance with instructions from VA, the input files that referenced an external I/M descriptive program file (VAIM02.IM) were revised to reference an alternative external file (VAIM05.IM). This change was to make the I/M program more relevant to the year 2018.

One additional important difference was made with respect to the revised 2018 and initial 2009 on-road mobile source input data files for all States. MACTEC developed updated SMOKE ready input files rather than MOBILE6 files so that the input data could be used directly by the VISTAS modeling contractor to estimate on-road mobile source emissions during modeling runs.

2.3.1.2 Preparation of initial 2009 input data files

The methodology used to develop the 2009 on-road input files was based on forecasting the previously developed revised 2002 base year input files and is identical to that previously described for the revised 2018 methodology except as follows:

- 1. The evaluation year was updated to 2009.
- 2. Diesel fuel sulfur content was revised from 500 ppm to 29 ppm. The 29 ppm value was derived from an EPA report entitled "Summary and Analysis of the Highway Diesel Fuel 2003 Pre-compliance Reports" (EPA420-R-03-013, October 2003), which includes the Agency's estimates for the year-to-year fuel volumes associated with the transition from 500 ppm to 15 ppm diesel fuel. According to Table 2 of the report, there will be 2,922,284 barrels per day of 15 ppm diesel distributed in 2009 along with 110,488 barrels per day of 500 ppm diesel. Treating the 15 ppm diesel as 11 ppm on average (consistent with EPA assumptions and assumptions employed for the 2018 input files) and sales weighting the two sulfur content fuels results in an average 2009 diesel fuel sulfur content estimate of 29 ppm.

- 3. Diesel sales fractions were updated identically to 2018 except that the diesel sales fractions for 2003-2009 were set at the same value as those for 2002 (rather than 2003-2018).
- 4. VMT mix fractions were updated to 2009 using an identical method to that described for 2018.
- 5. All other input data were retained at 2002 values, except as otherwise instructed by individual States (see below). This includes all control program descriptions (I/M, ATP, Stage II, etc.), all other fuel qualities (RVP, oxy content, etc.), all other vehicle descriptive data (registration age distributions, etc.), and all scenario descriptive data.

In addition to the updates described above that were applied to all VISTAS-region inputs, the following additional State-specific updates were performed:

- **KY** Identical changes to those made for 2018 (but specific to 2009) were made for the 2009 input files.
- NC Identical changes to those made for 2018 (but specific to 2009) were made for the 2009 input files.
- **VA** Identical changes to those made for 2018 were made for 2009.

2.3.2 *VMT Data*

The basic methodology used to generate the 2009 and 2018 VMT for use in estimating on-road mobile source emissions was as follows:

- 1. All estimates start from the final VMT estimates used for the 2002 revised base year inventory.
- 2. Initial 2009 and 2018 VMT estimates were based on linear growth rates for each State, county, and vehicle type as derived from the VMT data assembled by the U.S. EPA for their most recent HDD (heavy duty diesel) rulemaking. The methodology used to derive the growth factors is identical to that employed for the preliminary 2018 VMT estimates (which is described in the next section).
- 3. For States that provided no independent forecast data, the estimates derived in step 2 are also the final estimates. These States are: Alabama, Florida, Georgia, Kentucky, Mississippi, and West Virginia. For States that provided forecast data, the provided data were used to either replace or augment the forecast data based on the HDD rule. These States, and the specific approaches employed, are detailed following the growth method description.

The steps involved in performing the growth estimates for VMT were as follows:

- 1. Linear growth estimates were used (although MACTEC investigated the potential use of nonlinear factors and presented that information to the MSSIWG, the decision was made to use linear growth factors instead of nonlinear).
- 2. Estimates were developed at the vehicle class (i.e., LDGV, LDGT1, LDGT2, etc.) level of detail since the base year 2002 estimates were presented at that level of resolution. In effect, the county and vehicle class specific growth factors were applied to the 2002 VMT estimates for each vehicle and road class.
- 3. Overall county-specific VMT estimates for each year (developed by summing the vehicle and road class specific forecasts) were then compared to overall county-specific growth. Since overall county growth is a more appropriate controlling factor as it includes the combined impacts of all vehicle classes, the initial year-specific vehicle and road class VMT forecasts were normalized so that they matched the overall county VMT growth. Mathematically, this process is as follows:

$$(Est_rv_f) = (Est_rv_i) * (C_20XX / Sum(Est_rv_i))$$

where:

Est_rv_f = the final road/vehicle class-specific estimates,

Est_rv_i = the initial road/vehicle class-specific estimates, and

 $C_{20}XX =$ the county-specific growth target for year 20XX.

Table 2.3-1 presents a basic summary of the forecasts for the preliminary 2018 inventory for illustrative purposes:

Table 2.3-1 2002 versus 2018 VMT (million miles per year)

State	2002	2018	Growth Factor
Alabama	55,723	72,966	1.309
Florida	178,681	258,191	1.445
Georgia	106,785	148,269	1.388
Kentucky	51,020	66,300	1.299
Mississippi	36,278	46,996	1.295
North Carolina	80,166	110,365	1.377
South Carolina	47,074	63,880	1.357
Tennessee	68,316	91,647	1.342
Virginia	76,566	102,971	1.345
West Virginia	19,544	24,891	1.274

The following States provided some types of forecast data for VMT. The information presented below indicates how those data were processed by MACTEC for use in the VISTAS projection inventories.

Kentucky:

Revised 2009 and 2018 VMT mix data were provided by the Louisville APCD. Therefore, the distribution of Jefferson County VMT by vehicle type within the KY VMT file was revised to reflect the provided mix. This did not affect the total forecasted VMT for either Jefferson County or the State, but does alter the fraction of that VMT accumulated by each of the eight vehicle types reflected in the VMT file. The following procedure was employed to make the VMT estimates consistent with the provided 2009/2018 VMT mix:

- a) The 16 MOBILE6 VMT mix fractions were aggregated into the following five vehicle types: LDV, LDT1, LDT2, HDV, and MC.
- b) The 8 VMT mileage classes were aggregated into the same five vehicle types (across all roadway types) and converted to fractions by normalizing against the total Jefferson County VMT.
- c) The ratio of the "desired" VMT fraction (i.e., that provided in the Louisville APCD VMT mix) to the "forecasted" VMT fraction (i.e., that calculated on the basis of the forecasted VMT data) was calculated for each of the five vehicle classes.
- d) All forecasted VMT data for Jefferson County were multiplied by the applicable ratio from step c as follows:

```
new LDGV = old LDGV * LDV ratio

new LDGT1 = old LDGT1 * LDT1 ratio

new LDGT2 = old LDGT2 * LDT2 ratio

new HDGV = old HDGV * HDV ratio

new LDDV = old LDDV * LDV ratio

new LDDT = old LDDT * LDT1 ratio

new HDDV = old HDDV * HDV ratio

new MC = old MC * MC ratio
```

The total forecasted VMT for Jefferson County was then checked to ensure that it was unchanged.

North Carolina:

North Carolina provided both VMT and VMT mix data by county and roadway type for 2018. Therefore, these data replaced the data developed for North Carolina using HDD rule growth

rates in their entirety. Similar data were submitted for 2009. Table 2.3-2 presents the resulting VMT estimates which differ from the "default" HDD rule estimates as follows:

Table 2.3-2 VMT and HDD Rule Estimates for North Carolina (million miles per year)

North Carolina						
2002	2002 106,795					
	State Data HDD Data					
2009	123,396	124,626				
2018	129,552	146,989				

As indicated, there are substantial reductions in the State-provided forecast data relative to that derived from the HDD rule. The growth rates for both 2009 and 2018 are only about half that implied by the HDD data (1.15 versus 1.17 for 2009 and 1.21 versus 1.38 for 2018). The resulting growth rates are the lowest in the VISTAS region.

NC did not provide VMT mix data for 2009. Therefore, the VMT mix fractions estimated using the "default" HDD rule growth rates were applied to the State-provided VMT estimates to generate vehicle-specific VMT. Essentially, the default HDD methodology produces VMT estimates at the county-road type-vehicle type level of detail, and these data can be converted into VMT fractions at that same level of detail. Note that these are not HDD VMT fractions, but VMT fractions developed from 2002 NC data using HDD vehicle-specific growth rates. In effect, they are 2002 NC VMT fractions "grown" to 2009.

The default VMT mix fraction was applied to the State-provided VMT data at the county and road type level of detail to generate VMT data at the county-road type-vehicle type level of detail. The one exception was for county 063, road 110, for which no VMT data were included in the HDD rule. For this single county/road combination, State-aggregate VMT mix fractions (using the HDD growth methodology) were applied to the county/road VMT data. The difference between road 110 VMT fractions across all NC counties is minimal, so there is no effective difference in utilizing this more aggregate approach vis-à-vis the more resolved county/road approach.

South Carolina:

South Carolina provided county and roadway type-specific VMT data for several future years. Data for 2018 was included and was used directly. Data for 2009 was not included, but was linearly interpolated from data provided for 2007 and 2010. The data were disaggregated into vehicle type-specific VMT using the VMT mixes developed for South Carolina using the HDD rule VMT growth rates. Table 2.3-3 presents the resulting VMT estimates which differ from the "default" HDD rule estimates as follows:

Table 2.3-3 VMT and HDD Rule Estimates for South Carolina (million miles per year)

South Carolina						
2002 47,074						
	State Data HDD Data					
2009	55,147	54,543				
2018	65,133	63,880				

Tennessee:

In general, Tennessee estimates are based on the HDD rule growth rate as described in step two. However, Knox County provided independent VMT estimates for 2018 and these were used in place of the HDD rule-derived estimates. The Knox County estimates were total county VMT data only, so these were disaggregated into roadway and vehicle-type VMT using the distributions developed for Knox County in step two using the HDD rule VMT growth rates. No data for Knox County were provided for 2009, so the estimates derived using the HDD rule growth factors were adjusted by the ratio of "Knox County provided 2018 VMT" to "Knox County HDD Rule-derived 2018 VMT." Table 2.3-4 presents the resulting VMT estimates which differ from the "default" HDD rule estimates as follows:

Table 2.3-4 VMT and HDD Rule Estimates for Tennessee (million miles per year)

Tennessee						
2002	2002 68,316					
	State Data HDD Data					
2009	78,615	78,813				
2018	91,417	91,647				

Virginia:

Virginia provided county and roadway type-specific annual VMT growth rates and these data were applied to Virginia -provided VMT data for 2002 to estimate VMT in both 2009 and 2018. Virginia provided VMT mix data for 2002, but not 2009 or 2018. Therefore, the estimated VMT data for both 2009 and 2018 were disaggregated into vehicle type-specific VMT using the VMT mixes developed for VA using the HDD rule VMT growth rates. Table 2.3-5 presents the resulting VMT estimates which differ from the "default" HDD rule estimates as follows:

Table 2.3-5 VMT and HDD Rule Estimates for Virginia (million miles per year)

Virginia						
2002 77,472						
	State Data HDD Data					
2009	88,419	89,196				
2018	104,944	104,164				

2.3.3 Base G Revisions

For the development of the VISTAS 2009 and 2018 Base G inventories and input files, VISTAS states reviewed the Base F inputs, and provided corrections, updates and supplemental data as noted below.

For all states modeled, the Base G updates include:

- Adding Stage II refueling emissions calculations to the SMOKE processing.
- Revised the HDD compliance. (REBUILD EFFECTS = .1)
- Revised Diesel sulfur values in 2009 to 43 ppm and 2018 to 11 ppm

In addition to the global changes, individual VISTAS states made the following updates:

- KY updated VMT and M6 input values for selected counties
- NC revised VMT estimates, speeds and vehicle distributions and updated registration distributions for Mobile 6.
- TN revised VMT and vehicle registration distributions for selected counties.
- WV revised VMT input data

AL, FL, and GA and VA did not provide updates for 2009/2018 Base G, and the Base F inputs were used for these States.

2.3.4 Development of non-road emission estimates

The sections that follow describe the projection process used to develop 2009 and 2018 non-road projection estimates, as revised through the spring of 2006, for sources found in the NONROAD model and those sources estimated outside of the model (locomotives, airplanes and commercial marine vessels).

2.3.4.1 NONROAD model sources

NONROAD model input files were prepared in both the fall of 2004 (Base F) and the spring of 2006 (Base G) based on the corresponding 2002 base year inventory input files available at the

time the forecasts were developed, with appropriate updates for the projection years. Generally, this means that the Base F 2002 base year input files (as updated through the fall of 2004) were used as the basis for Base F projection year input file development and Base G 2002 base year input files as updated through the spring of 2006 were used as the basis for Base G projection year input file development. Thus, all base year revisions are inherently incorporated into the associated projection year revisions. Other specific updates for the projection years for NONROAD model sources consist of:

- 1. Revise the emission inventory year in the model (as well as various output file naming commands) to be reflective of the projection year.
- 2. Revise the fuel sulfur content for gasoline and diesel powered equipment.
- 3. Implement a limited number of local control program charges (national control program changes are handled internally within the NONROAD model, so explicit input file changes are not required).

All equipment population growth and fleet turnover impacts are also handled internally within the NONROAD model, so that explicit changes input file changes are not required.

Base F Input File Changes:

To correctly account for diesel fuel sulfur content differences between the base and projection years, two sets of input and output files were prepared for each forecast year, one set for land-based equipment and one set for marine equipment. This two-step projection process was required for Base F, because diesel fuel sulfur contents varied between land-based and marine-based non-road equipment and the Draft NONROAD2004 used for Base F allowed only a single diesel fuel sulfur input. Thus, the model was executed separately for land-based and marine-based equipment for Base F, and the associated outputs subsequently combined. The specific diesel fuel sulfur contents modeled were as follows:

$Diesel \; S \; (ppm)$	2002	2009	2018
Land-Based	2500	348	11
Marine-Based	2500	408	56

As indicated, the Draft NONROAD2004 model was run with both sets of input files and the output file results were then combined to produce a single NONROAD output set.

To correctly account for the national reduction in gasoline sulfur content (a national control not explicitly handled by the NONROAD model), all NONROAD input files for both 2009 and 2018 were revised to reflect a gasoline fuel sulfur content of 30 ppmW.

Base G Input File Changes:

With the release of Final NONROAD2005 that was used for the Base G projection year inventory development, the NONROAD model is capable of handling separate diesel fuel sulfur inputs for land-based and marine-based non-road equipment in a single model execution. Therefore, the two step modeling process described above for Base F updates was no longer required. Instead, the differential diesel fuel sulfur values are assembled into a single NONROAD input file as follows:

Diesel S (pp	om) 2002	2009	2018
Land-Based	2500	348	11
Marine-Base	ed 2638	408	56

Additionally, revised gasoline vapor pressure data were provided by Georgia regulators for 20 counties⁵ where reduced volatility requirements were established in 2003. Since this requirement began after the 2002 base year, the vapor pressure values in the base year input files for these counties are not correct for either the 2009 or 2018 forecast years. Therefore, to correctly forecast emissions in these counties, the forecast year gasoline vapor pressure inputs were revised to:

Gasoline RVP (psi)	2002	2009	2018
Spring	9.87	9.2	9.2
Summer	9.0	7.0	7.0
Fall	9.87	9.2	9.2
Winter	12.5	12.5	12.5

The summer vapor pressure was simply set equal to the 2003 control value, while the spring and fall vapor pressures were adjusted to reflect a single month of the reduced volatility limit. The winter volatility was assumed to be unaffected by the summertime control requirement.

2.3.4.1.1 Differences between 2009/2018

Other than diesel fuel sulfur content and the year of the projections, there are no differences in the methodology used to estimate emissions from NONROAD model sources. As indicated above, however the Base F 2009/2018 projections were developed using Draft NONROAD2004, while the Base G 2009/2018 projections were made using Final NONROAD2005.

⁵ The specific counties are: Banks, Chattooga, Clarke, Floyd, Gordon, Heard, Jasper, Jones, Lamar, Lumpkin, Madison, Meriwether, Monroe, Morgan, Oconee, Pike, Polk, Putnam, Troup, and Upson.

2.3.4.2 Non-NONROAD model sources

Using the 2002 base year emissions inventory for aircraft, locomotives, and commercial marine vessels (CMV) prepared as described earlier in this document, corresponding emission projections for 2009 and 2018 were developed in both the fall of 2004 (Base F) and the spring of 2006 (Base G). This section describes the procedures employed in developing those inventories. The information presented is intended to build off of that presented in the section describing the 2002 Base F base year inventory. It should be recognized that for both the Base F and Base G inventories, the base year inventory used to develop the emission forecasts was the latest available at the time of forecast development. Generally, this means that the 2002 base year inventory as updated through the fall of 2004 was used as the basis for the Base F projection year inventory development, and the Base F 2002 base year inventory was used as the basis for Base G projection year inventory development. Thus, all base year revisions (as described earlier in this document) are inherently incorporated into the associated projection year revisions.

Base F Revisions:

Table 2.3-6 shows the 2002 base year emissions for each State in the VISTAS region for aircraft, locomotives and CMV (as they existed prior to Base F development).

Table 2.3-6 Pre-Base F 2002 Aircraft, Locomotive, and Non-Recreational
Marine Emissions
(annual tons, as of the fall of 2004)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	3,787	175	226	87	17	196
	FL	25,431	8,891	2,424	2,375	800	3,658
	GA	6,620	5,372	1,475	1,446	451	443
	KY	2,666	657	179	175	63	263
A	MS	1,593	140	44	43	13	96
Aircraft (2275)	NC	6,088	1,548	419	411	148	613
(2213)	SC	6,505	515	409	401	88	863
	TN	7,251	2,766	734	719	235	943
	VA	9,763	2,756	1,137	1,115	786	2,529
	WV	1,178	78	25	24	8	66
	Total	70,882	22,899	7,072	6,797	2,607	9,670
	AL	1,196	9,218	917	844	3,337	737
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,875	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,688	43,233	1,903	1,751	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	3,624	27,555	1,217	1,120	4,974	860
	VA	972	2,775	334	307	359	483
	WV	1,528	11,586	487	448	525	362
	Total	28,207	209,972	9,911	9,118	36,275	7,413
Military Marine	VA	110	313	25	23	27	48
(2283)	Total	110	313	25	23	27	48
	AL	3,490	26,339	592	533	1,446	1,354
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
T	MS	2,302	23,267	578	520	1,429	899
Locomotives (2285)	NC	1,638	16,502	410	369	1,001	654
(2200)	SC	1,160	11,690	291	261	710	462
	TN	2,626	25,627	633	570	1,439	1,041
	VA	1,186	11,882	1,529	1,375	3,641	492
	WV	1,311	13,224	329	296	808	517
	Total	19,540	187,044	5,815	5,232	14,022	7,750
Grand Total		118,739	420,228	22,823	21,170	52,931	24,881

Although some of the data utilized was updated, the methodology used to develop the Base F 2009 and 2018 emissions forecasts for aircraft, locomotives, and CMV is identical to that used earlier to develop preliminary 2018 Base 1 ("On the Books") and 2018 Base 2 ("On the Way") inventories. Briefly, the methodology relies on growth and control factors developed from inventories used in support of recent EPA rulemakings, and consists of the following steps:

- (a) Begin with the 2002 base year emission estimates for aircraft, locomotive, and CMV as described above (at the State-county-SCC-pollutant level of detail).
- (b) Detailed inventory data (both before and after controls) for these same emission sources for 1996, 2010, 2015, and 2020 were obtained from the EPA's Clean Air Interstate Rule (CAIR) Technical Support Document (which can be found at http://www.epa.gov/cair/pdfs/finaltech01.pdf). Using these data, combined growth and control factors for the period 2002-2009 and 2002-2018 were estimated using straight line interpolation between 1996 and 2010 (for 2009) and 2015 and 2020 (for 2018). This is done at the State-county-SCC-pollutant level of detail.
- (c) The EPA growth and control data are matched against the 2002 VISTAS base year data using State-county-SCC-pollutant as the match key. Ideally, there would be a one-to-one match and the process would end at this point. Unfortunately, actual match results were not always ideal, so additional matching criteria were required. For subsequent reference, this initial (highest resolution) matching criterion is denoted as the "CAIR-Primary" criterion.
- (d) A second matching criterion is applied that utilizes a similar, but higher-level SCC (lower resolution) matching approach. For example, SCC 2275020000 (commercial aircraft) in the 2002 base year inventory data would be matched with SCC 2275000000 (all aircraft) in the CAIR data. This criterion is applied to records in the 2002 base year emissions file that are not matched using the "CAIR-Primary" criterion, and is also performed at the State-county-SCC-pollutant level of detail. For subsequent reference, this is denoted as the "CAIR-Secondary" criterion. At the end of this process, a number of unmatched records remained, so a third level matching criterion was required.
- (e) In the third matching step, the most frequently used SCC in the EPA CAIR files for each of the aircraft, locomotive, and commercial marine sectors was averaged at the State level to produce a "default" State and pollutant-specific growth and control factor for the sector. The resulting factor is used as a "default" growth factor for all unmatched county-SCC-pollutant level data in each State. In effect, State-specific growth data are applied to county level data for which an explicit match between the VISTAS 2002 base year data and EPA CAIR data could not be developed. The default growth and control

- SCCs are 2275020000 (commercial aircraft) for the aircraft sector, 2280002000 (commercial marine diesel total) for the CMV sector, and 2285002000 (railroad equipment diesel total) for the locomotive sector. Matches made using this criterion are denoted as "CAIR-Tertiary" matches.
- (f) According to EPA documentation, the CAIR baseline emissions include the impacts of the (then proposed) Tier 4 (T4) non-road diesel rulemaking, which implements a low sulfur fuel requirement that affects both future CMV and locomotive emissions. However, the impacts of this rule were originally intended to be excluded from the initial VISTAS 2018 forecast, which was to include only "on-the-books" controls. (The T4 rule was finalized subsequent to the development of the preliminary 2018 inventory in March of 2004.) Given its final status, T4 impacts were moved into the "on the books" inventory for non-road equipment. In addition, since there are no other proposed rules affecting the non-road sector between 2002 and 2018, there is no difference between the 2018 "on the books" and 2018 "on the way" inventories for the sector; so that only a single forecast inventory (for each evaluation year) was developed. Nevertheless, since the algorithms developed to produce the VISTAS forecasts were developed when there was a distinction between the "on the books" and "on the way" inventories, the distinct algorithms used to produce the two inventories have been maintained even though the conceptual distinctions have been lost. This approach was taken for two reasons. First, it allowed the previously developed algorithms to be utilized without change. Second, it allowed for separate treatment of the T4 emissions impact which was important as those impacts changed between the proposed and final T4 rules. Thus, previous EPA inventories that include the proposed T4 impacts would not be accurate. Therefore, the procedural discussion continues to reflect the distinctions between non-T4 and T4 emissions, as these distinctions continue to be intrinsically important to the forecasting process. Therefore, a second set of EPA CAIR files that excluded the Tier 4 diesel impacts was obtained and the same matching exercise described above in steps (b) through (e) was performed using these "No T4" files. It is important to note that the matching exercise described in steps (b) through (e) cannot simply be replaced because the "No T4" files obtained from the EPA include only those SCCs specifically affected by the T4 rule (i.e., diesel CMV and locomotives). So in effect, the matching exercise was augmented (rather than replaced) with an additional three criteria analogous to those described in steps (c) through (e), and these are denoted as the "No T4-Primary," "No T4-Secondary," and "No T4-Tertiary" criteria. Because they exclude the impacts of the proposed T4 rule, matches using the "No T4" criteria supersede matches made using the basic CAIR criteria (as described in steps (c) through (e) above).

(g) The CAIR matching criteria were overridden for any record for which States provided local growth data. Only North Carolina provided these forecasts, as that State has provided specific growth factors for airport emissions in four counties. Because the provided data were based on forecasted changes in landings and takeoffs at major North Carolina airports, the factors were applied only to commercial (SCC 2275020000) and air taxi (SCC 2275060000) emissions. Emissions forecasts for military and general aviation aircraft operations, as well as all aircraft operations in counties other than the four identified in the North Carolina growth factor submission, continued to utilize the growth factors developed according to steps (b) through (f) above. Table 2.3-7 presents the locally generated growth factors applied in North Carolina.

Table 2.3-7 Locally Generated Growth Factors for North Carolina

FIP	2009 Factor	2018 Factor
37067	0.71	0.84
37081	0.97	0.89
37119	1.15	1.01
37183	0.88	0.81

Note:

Growth factor = Year Emissions/2002 Emissions. Under CAIR approach, 2009 = 1.16 to 1.17 for all 4 counties. Under CAIR approach, 2018 = 1.36 to 1.37 for all 4 counties.

(h) Using this approach, each State-county-SCC-pollutant was assigned a combined growth and control factor using the EPA CAIR forecast or locally provided data. The 22,838 data records for aircraft, locomotives, and CMV in the 2002 revised base year emissions file were assigned growth factors in accordance with the following breakdown:

records matched State-provided growth factors,
records matched using the CAIR-Primary criterion,
records matched using the CAIR-Secondary criterion,
records matched using the CAIR-Tertiary criterion,
records matched using the No T4-Primary criterion,
records matched using the No T4-Secondary criterion, and
records matched using the No T4-Tertiary criterion.

(i) Finally, the impacts of the T4 rule as adopted were applied to the grown "non T4" emission estimates. The actual T4 emission standards do not affect aircraft, locomotive, or CMV directly, but associated diesel fuel sulfur requirements do affect locomotives and CMV. Lower fuel sulfur content affects both SO₂ and PM emissions. Expected fuel sulfur

contents were obtained for each evaluation year from the EPA technical support document for the final T4 rule (*Final Regulatory Analysis: Control of Emissions from Non-road Diesel Engines*, EPA420-R-04-007, May 2004). According to that document, the average diesel fuel sulfur content for locomotives and CMV is expected to be 408 ppmW in 2009 and 56 ppmW in 2018. These compare to expected non-T4 fuel sulfur levels of 2599 ppmW in 2009 and 2336 ppmW in 2018. Table 2.3-8 uses calculated emissions estimates for base and T4 control scenarios to estimate emission reduction impacts.

Table 2.3-8 Estimated Emission Reduction Impacts based on T-4 Rule

				2009	2018
CMV SO ₂	=	Non-T4 SO ₂	×	0.1569	0.0241
Locomotive SC) ₂ =	Non-T4 SO ₂	×	0.1569	0.0241
CMV PM	=	Non-T4 PM	×	0.8962	0.8762
Locomotive PM	1 =	Non-T4 PM	×	0.8117	0.7734

However, since the diesel fuel sulfur content assumed for the 2002 VISTAS base year inventory, upon which both the 2009 and 2018 inventories were based, is 2500 ppmW, a small adjustment to the emission reduction multipliers calculated from the T4 rule is appropriate since they are measured relative to modestly different sulfur contents (2599 ppmW for 2009 and 2336 ppmW for 2018). Correcting for these modest differences produces the emission reduction impact estimates relative to forecasts based on the VISTAS 2002 inventory shown in Table 2.3-9.

Table 2.3-9 Estimated Emission Reduction Impacts Relative to VISTAS 2002 Base Year Values

				2009	2018
CMV SO ₂	=	Non-T4 SO ₂	×	0.1632	0.0225
Locomotive So	$O_2 =$	Non-T4 SO ₂	×	0.1632	0.0225
CMV PM	=	Non-T4 PM	×	0.9004	0.8685
Locomotive Pl	M =	Non-T4 PM	×	0.8187	0.7610

These factors were applied directly to the non-T4 emission forecasts to produce the final VISTAS 2009 and 2018 emissions inventories for aircraft, locomotive, and CMV.

The only exception is for Palm Beach County, Florida, where CMV emissions are reported as "all fuels" rather than separately by residual and diesel fuel components. To estimate T4 impacts in Palm Beach County, the ratio of diesel CMV emissions to total

CMV emissions in the remainder of Florida was calculated and the T4 impact estimates for Palm Beach County were adjusted to reflect that ratio. Table 2.3-10 shows the calculated diesel CMV ratios.

Table 2.3-10 Diesel CMV Adjustment Ratios for Palm Beach County, FL

GROWTH BASIS	SO ₂	PM
2009 (1996, 2020 Growth Basis)	0.2410	0.7861
2009 (1996, 2010, 2015, and 2020 Growth Basis)	0.1279	0.7875
2018 (1996, 2020 Growth Basis)	0.2432	0.7925
2018 (1996, 2010, 2015, and 2020 Growth Basis)	0.2624	0.7918

The differences between the growth bases are discussed in detail below.

Combining these ratios with the T4 impact estimates for diesel engines, as presented above, yields the following impact adjustment factors for Palm Beach County:

Table 2.3-11 Overall Adjustment Factors for Palm Beach County, FL

GROWTH BASIS		
2009 SO ₂ (19, 20 Growth Basis)	0.7894	[0.1632×0.2410+(1-0.2410)]
2009 SO ₂ (96, 10, 15, and 20 Growth Basis)	0.8930	[0.1632×0.1279+(1-0.1279)]
2018 SO ₂ (96, 20 Growth Basis)	0.7623	[0.0225×0.2432+(1-0.2432)]
2018 SO ₂ (96, 10, 15, and 20 Growth Basis)	0.7436	[0.0225×0.2624+(1-0.2624)]
2009 PM (19, 20 Growth Basis)	0.9217	[0.9004×0.7861+(1-0.7861)]
2009 PM (96, 10, 15, and 20 Growth Basis)	0.9216	[0.9004×0.7875+(1-0.7875)]
2018 PM (96, 20 Growth Basis)	0.8958	[0.8685×0.7925+(1-0.7925)]
2018 PM (96, 10, 15, and 20 Growth Basis)	0.8959	[0.8685×0.7918+(1-0.7918)]

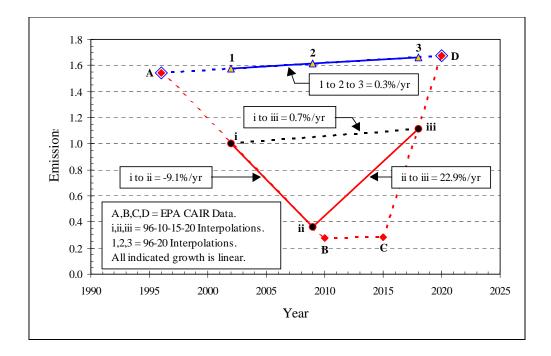
The differences between the growth bases are discussed in detail below.

Utilizing this approach, emission inventory forecasts for both 2009 and 2018 were developed. As indicated in step (b) above, basic growth factors were developed using EPA CAIR inventory data for 1996, 2010, 2015, and 2020. From these data, equivalent EPA CAIR inventories for 2002 and 2009 were developed through linear interpolation of the 1996 and 2010 inventories, while an equivalent CAIR inventory for 2018 was developed through linear interpolation of the 2015 and 2020 inventories. Growth factors for 2009 and 2018 were then estimated as the ratios of the CAIR 2009 and 2018 inventories to the CAIR 2002 inventory.

During the development of the preliminary 2018 VISTAS inventory in March 2004, this process yielded reasonable results and exhibited no particular systematic concerns. However, when the 2009 Base F inventory was developed, significant concerns related to SO₂ and PM were encountered. Essentially, what was revealed by the Base F 2009 forecast was a series of apparent

inconsistencies in the CAIR 2010 and 2015 emission inventories (as compared to the 1996 and 2020 CAIR inventories) that were masked during the construction of the "longer-term" 2018 inventory.

The apparent inconsistencies are best illustrated by looking at the actual data extracted from the CAIR inventory files. Note that although a limited example is being presented, the same general issue applies throughout the CAIR files. For FIP 01001 (Autauga County, Alabama) and SCC 2285002000 (Diesel Rail), the CAIR inventories indicate SO₂ emission estimates as shown in Table 2.3-12.


Table 2.3-12 SO₂ Emissions for Diesel Rail in Autauga County, AL from the CAIR Projections

YEAR	TONS
1996:	15.3445
2010:	2.7271
2015:	2.8178
2020:	16.6232

Clearly, there is a major drop in emissions between 1996 and 2010, followed by a major increase in emissions between 2015 and 2020. Several observations regarding these changes are important. First, the CAIR data were reported to exclude the T4 rule, so that the drop in emissions should be related to something other than simply a change in diesel fuel sulfur content. Second, if the T4 rule impacts were "accidentally" included in the estimates, there should be a resultant 90 percent drop in diesel sulfur between 2010 and 2015; so such inclusion is unlikely. Third, the rate of growth between 2015 and 2020 (43 percent *per year* compound or 97 percent *per year* linear) is well beyond any reasonable expectations for rail service; and fuel sulfur content during this period is constant both with and without T4. In short, there appeared to be no rational explanation for the data, yet the same basic relations are observed for thousands of CAIR inventory records.

For the most part, the issue seems to be centered on SO₂ and PM records, which are those records primarily affected by the T4 rule. But, as noted above, there does not seem to be any pattern of consistency that would indicate that either inclusion or exclusion of T4 rule impacts is the underlying cause. Moreover, where they occur, the observed growth extremes generally affect both SO₂ and PM equally, while one would expect PM effects to be buffered if the T4 rule was the underlying cause, since changes in diesel fuel sulfur content will only affect a fraction of PM (i.e., sulfate), while directly reducing SO₂.

The data presented in Figure 2.3-1 illustrates what this meant to the VISTAS forecasting process. Figure 2.3-1 depicts the same data presented above for Autauga County, Alabama, but normalized so that the interpolated 2002 CAIR emissions estimate equals unity. The "raw" CAIR data is depicted by the markers labeled A, B, C, and D. Interpolated data for 2002 and 2009, based on 1996 and 2010 CAIR data, is depicted by the markers labeled "i" and "ii." Interpolated data for 2018, based on 2015 and 2020 CAIR data is depicted by the marker labeled "iii." The relationship between marker "iii" and marker "i" is exactly the relationship used to construct the preliminary (e.g., pre-Base F) 2018 VISTAS inventory (i.e., a linear growth rate equal to 0.7 percent per year). Thus, it is easy to see that although there is a major "dip and rise" between 2002 and 2018, it is essentially masked unless data for intervening years are examined. Since no intervening year was examined for the preliminary 2018 inventory, the "dip and rise" was not discovered. However, upon the development of the 2009 inventory forecast, the issue became obvious, as the marker labeled "ii" readily illustrates. In effect, the 2009 inventory reflected very low negative "growth rates" for some SCCs and pollutants relative to the 2002 inventory, while the 2018 inventory reflected very high and positive growth rates for those same SCCs and pollutants. In effect, the path between 2002 and 2018 that previously looked like the dotted line connecting markers "i" and "iii," now looks like the solid line connecting markers "i", "ii," and "iii." For reference purposes, this path is hereafter referred to as the 1996, 2010, 2015, and 2020 growth basis, since all interpolated data is based on CAIR data for those four years.

169

Figure 2.3-1 Impacts of the Apparent CAIR Inventory Discrepancy

In light of the apparent discrepancies inherent in the 1996, 2010, 2015, and 2020 growth basis data and the inconsistencies its use would impart into the 2009 and 2018 VISTAS inventories, a secondary forecasting method was developed. This second method relies on the apparent consistency between the 1996 and 2020 non-T4 CAIR inventories, interpolating equivalent 2002, 2009, and 2018 inventories solely from these two inventories. In effect, the CAIR inventories for 2010 and 2015 are ignored. In Figure 2.3-1, this secondary approach is depicted by the data points that lie along the lines connecting markers A and D. Markers A and D represent the 1996 and 2020 CAIR inventories, and the markers labeled 1, 2, and 3 represent the interpolated 2002, 2009, and 2018 CAIR equivalent inventories. The growth rate between 2009 and 2002 is then equal to the ratio of the 2009 and 2002 CAIR inventories, while that between 2018 and 2002 is equal to the ratio of the 2018 and 2002 CAIR inventories. For the example data, the resulting linear growth estimate is 0.3 percent per year. For reference purposes, this path is hereafter referred to as the 1996-2020 growth basis, since all interpolated data are based on CAIR data for only those two years.

It is perhaps worth noting that the only elements of Figure 2.3-1 that have any bearing on the VISTAS inventories are the growth rates. The absolute CAIR data are of importance only in determining those rates, as all VISTAS inventories were developed on the basis of the VISTAS 2002 base year inventory, not any of the CAIR inventories. So referring to Figure 2.3-1, the two growth options are summarized in Table 2.3-13.

GROWTH BASIS PERCENT PER YEAR 1996, 2010, 2015, 2020 Growth Basis: -9.1% per year (linear) between 2002 and 2009 1996-2020 Growth Basis: +0.3%per year (linear) between 2002 and 2009 +22.9% per year (linear) between 2009 and 2018 1996, 2010, 2015, 2020 Growth Basis: 1996-2020 Growth Basis: +0.3%per year (linear) between 2009 and 2018 1996, 2010, 2015, 2020 Growth Basis: +0.7%per year (linear) between 2002 and 2018 1996-2020 Growth Basis: +0.3% per year (linear) between 2002 and 2018

Table 2.3-13 Growth Options based on CAIR Data

Of course, these specific rates are applicable only to the example case (i.e., diesel rail SO_2 in Autauga County, Alabama), but there are thousands of additional CAIR records that are virtually identical from a growth viewpoint.

While forecast inventories for aircraft, locomotives, and CMV were developed for 2009 and 2018 using both growth methods, it was ultimately decided to utilize the 1996-2020 growth basis for Base F since it provided more reasonable growth rates for 2009. Tables 2.3-14 and 2.3-15 present a summary of each Base F inventory, while Tables 2.3-16 and 2.3-17 present the associated change in emissions for each Base F forecast inventory relative to the Base F 2002 base year VISTAS inventory. The larger reduction in CMV SO₂ emissions in 2009 and 2018

(relative to 2002) for Virginia and West Virginia is notable relative to the other VISTAS States, but this has been checked and is attributable to a high diesel contribution to total CMV SO₂ in the 2002 inventories for these two States.

Figures 2.3-2 through 2.3-13 graphically depict the relationships between the various Base F inventories and preliminary 2002 and 2018 projections prepared prior to Base F. There are two figures for each pollutant, the first of which presents a comparison of total VISTAS regional emission estimates for aircraft, locomotives, and CMV, and the second of which presents total VISTAS region emission estimates for locomotives only. This two figure approach is intended to provide a more robust illustration of the differences between the various inventories, as some of the differences are less distinct when viewed through overall aggregate emissions totals. All of the figures include the following emissions estimates:

- The 2002 Base F base year VISTAS emissions inventory (labeled as "2002"),
- The 2002 pre-Base F base year VISTAS emissions inventory (labeled as "2002 Prelim"),
- The Base F 2009 VISTAS emissions inventory developed using growth rates derived from 1996 and 2020 EPA CAIR data (labeled as "2009"),
- The Base F 2018 VISTAS emissions inventory developed using growth rates derived from 1996 and 2020 EPA CAIR data (labeled as "2018"), and
- The pre-Base F 2018 VISTAS emissions inventory estimates as developed using growth rates derived from 1996, 2010, 2015, and 2020 EPA CAIR data (labeled as "2018 Prelim").

All 12 figures generally illustrate a reduction in emissions estimates between the 2002 pre-Base F emission estimates published in February 2004 (the initial 2002 VISTAS inventory) and the 2002 Base F emission estimates. This reduction generally results from emission updates reflected in the State 2002 CERR submittals used to develop the Base F 2002 base year inventory, although the major differences in aggregate PM emission estimates are driven to a greater extent by modifications in the methodology used to estimate aircraft PM in the Base F 2002 base year inventory (as documented under the base year inventory section of this report).

Table 2.3-14 Base F 2009 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	4,178	202	278	102	19	217
	FL	29,258	10,316	2,812	2,756	928	4,235
	GA	7,635	6,233	1,712	1,678	523	512
	KY	3,075	762	207	203	73	304
	MS	1,765	162	51	50	16	108
Aircraft (2275)	NC	6,551	1,601	436	427	153	644
(2213)	SC	7,372	559	446	437	98	975
	TN	8,020	3,096	824	807	268	1,050
	VA	10,994	3,094	1,239	1,214	907	2,892
	WV	1,312	91	28	28	9	74
	Total	80,159	26,116	8,033	7,704	2,993	11,011
	AL	1,280	8,888	872	802	2,753	768
	FL	6,236	43,198	1,838	1,691	5,864	1,467
	GA	1,097	7,599	317	291	974	256
	KY	7,087	48,039	2,158	1,985	8,350	1,649
Commercial	MS	6,074	41,437	1,821	1,676	6,587	1,415
Marine	NC	634	4,386	184	169	584	148
(2280)	SC	1,133	7,796	326	300	1,012	264
	TN	3,887	26,333	1,168	1,074	4,512	904
	VA	1,042	2,662	312	286	61	506
	WV	1,638	11,073	455	419	89	381
	Total	30,109	201,412	9,450	8,693	30,786	7,759
Military Marine	VA	118	299	23	21	5	50
(2283)	Total	118	299	23	21	5	50
	AL	3,648	23,529	452	406	242	1,279
	FL	1,052	8,905	189	170	101	382
	GA	2,769	24,398	507	456	271	1,003
	KY	2,264	19,597	415	374	221	819
I	MS	2,406	20,785	441	397	239	849
Locomotives (2285)	NC	1,712	14,741	313	282	167	618
	SC	1,213	10,443	222	200	119	437
	TN	2,745	23,924	483	435	240	984
	VA	1,236	11,134	1,167	1,050	608	467
	WV	1,369	12,177	251	226	135	489
	Total	20,412	169,635	4,440	3,995	2,343	7,328
Grand Total		130,798	397,462	21,946	20,413	36,126	26,148

Table 2.3-15 Base F 2018 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	4,681	236	345	122	23	245
	FL	34,178	12,147	3,312	3,246	1,093	4,976
	GA	8,939	7,340	2,016	1,976	616	601
	KY	3,602	898	244	239	86	357
A *	MS	1,986	190	60	58	18	122
Aircraft (2275)	NC	6,728	1,454	400	392	139	615
(2213)	SC	8,487	616	493	484	112	1,119
	TN	9,009	3,519	939	921	309	1,187
	VA	12,578	3,528	1,370	1,342	1,063	3,358
	WV	1,484	106	33	33	10	85
	Total	91,670	30,035	9,213	8,814	3,468	12,666
	AL	1,388	8,464	880	809	2,715	809
	FL	6,684	41,117	1,853	1,705	6,248	1,543
	GA	1,174	7,246	319	293	976	269
	KY	7,703	45,174	2,199	2,023	8,383	1,752
Commercial	MS	6,571	39,129	1,850	1,702	6,556	1,498
Marine	NC	679	4,179	185	170	596	155
(2280)	SC	1,217	7,406	329	303	1,027	278
	TN	4,225	24,763	1,190	1,095	4,808	960
	VA	1,133	2,517	314	289	9	537
	WV	1,781	10,412	459	422	13	404
	Total	32,554	190,407	9,578	8,811	31,330	8,205
Military Marine	VA	128	282	23	21	1	53
(2283)	Total	128	282	23	21	1	53
	AL	3,850	19,917	381	343	34	1,183
	FL	1,110	7,538	159	143	14	353
	GA	2,917	21,395	427	385	38	932
	KY	2,389	16,751	352	317	31	757
Lagamativas	MS	2,540	17,594	372	335	34	785
Locomotives (2285)	NC	1,807	12,478	264	237	24	571
(2230)	SC	1,280	8,840	187	168	17	404
	TN	2,897	21,735	407	367	34	910
	VA	1,300	10,173	983	885	86	436
	WV	1,444	10,831	212	190	19	453
	Total	21,534	147,252	3,744	3,368	333	6,785
Grand Total		145,885	367,975	22,557	21,015	35,132	27,709

Table 2.3-16 Change in Emissions between 2009 and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

Source	State	СО	NO _x	PM_{10}	PM _{2.5}	SO ₂	VOC
	AL	+10%	+15%	+23%	+18%	+16%	+11%
	FL	+15%	+16%	+16%	+16%	+16%	+16%
	GA	+15%	+16%	+16%	+16%	+16%	+16%
	KY	+15%	+16%	+16%	+16%	+16%	+16%
A	MS	+11%	+16%	+15%	+15%	+16%	+12%
Aircraft (2275)	NC	+8%	+3%	+4%	+4%	+3%	+5%
(2213)	SC	+13%	+9%	+9%	+9%	+12%	+13%
	TN	+11%	+12%	+12%	+12%	+14%	+11%
	VA	+13%	+12%	+9%	+9%	+15%	+14%
	WV	+11%	+16%	+15%	+15%	+16%	+12%
	Total	+13%	+14%	+14%	+13%	+15%	+14%
	AL	+7%	-4%	-5%	-5%	-18%	+4%
	FL	+6%	-4%	-5%	-5%	-12%	+4%
	GA	+6%	-3%	-5%	-5%	-17%	+4%
	KY	+7%	-4%	-4%	-4%	-13%	+5%
Commercial	MS	+7%	-4%	-4%	-4%	-15%	+5%
Marine	NC	+6%	-4%	-5%	-5%	-15%	+4%
(2280)	SC	+6%	-4%	-5%	-5%	-16%	+4%
	TN	+7%	-4%	-4%	-4%	-9%	+5%
	VA	+7%	-4%	-7%	-7%	-83%	+5%
	WV	+7%	-4%	-7%	-7%	-83%	+5%
	Total	+7%	-4%	-5%	-5%	-15%	+5%
Military Marine	VA	+7%	-4%	-7%	-7%	-83%	+5%
(2283)	Total	+7%	-4%	-7%	-7%	-83%	+5%
	AL	+5%	-11%	-24%	-24%	-83%	-6%
	FL	+5%	-11%	-24%	-24%	-83%	-6%
	GA	+4%	-9%	-24%	-24%	-83%	-5%
	KY	+5%	-10%	-23%	-23%	-83%	-6%
Locamativas	MS	+5%	-11%	-24%	-24%	-83%	-6%
Locomotives (2285)	NC	+5%	-11%	-24%	-24%	-83%	-6%
	SC	+5%	-11%	-24%	-24%	-83%	-6%
	TN	+5%	-7%	-24%	-24%	-83%	-6%
	VA	+4%	-6%	-24%	-24%	-83%	-5%
	WV	+4%	-8%	-24%	-24%	-83%	-5%
	Total	+4%	-9%	-24%	-24%	-83%	-5%
Grand Total		+10%	-5%	-4%	-4%	-32%	+5%

Table 2.3-17 Change in Emissions between 2018 and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

Source	State	СО	NO _x	PM_{10}	PM _{2.5}	SO ₂	VOC
	AL	+24%	+35%	+53%	+41%	+36%	+25%
	FL	+34%	+37%	+37%	+37%	+37%	+36%
	GA	+35%	+37%	+37%	+37%	+37%	+36%
	KY	+35%	+37%	+37%	+37%	+37%	+36%
	MS	+25%	+36%	+35%	+35%	+36%	+27%
Aircraft (2275)	NC	+10%	-6%	-5%	-5%	-6%	0%
(2213)	SC	+30%	+20%	+21%	+21%	+27%	+30%
	TN	+24%	+27%	+28%	+28%	+31%	+26%
	VA	+29%	+28%	+20%	+20%	+35%	+33%
	WV	+26%	+36%	+35%	+35%	+36%	+28%
	Total	+29%	+31%	+30%	+30%	+33%	+31%
	AL	+16%	-8%	-4%	-4%	-19%	+10%
	FL	+14%	-8%	-4%	-4%	-7%	+9%
	GA	+13%	-8%	-5%	-5%	-17%	+9%
	KY	+17%	-10%	-2%	-2%	-13%	+12%
Commercial	MS	+16%	-9%	-3%	-3%	-15%	+11%
Marine	NC	+13%	-8%	-4%	-4%	-14%	+9%
(2280)	SC	+14%	-9%	-4%	-4%	-15%	+10%
	TN	+17%	-10%	-2%	-2%	-3%	+12%
	VA	+17%	-9%	-6%	-6%	-98%	+11%
	WV	+17%	-10%	-6%	-6%	-98%	+12%
	Total	+15%	-9%	-3%	-3%	-14%	+11%
Military Marine	VA	+17%	-10%	-6%	-6%	-98%	+12%
(2283)	Total	+17%	-10%	-6%	-6%	-98%	+12%
	AL	+10%	-24%	-36%	-36%	-98%	-13%
	FL	+10%	-24%	-36%	-36%	-98%	-13%
	GA	+10%	-20%	-36%	-36%	-98%	-12%
	KY	+10%	-23%	-35%	-35%	-98%	-13%
T	MS	+10%	-24%	-36%	-36%	-98%	-13%
Locomotives (2285)	NC	+10%	-24%	-36%	-36%	-98%	-13%
	SC	+10%	-24%	-36%	-36%	-98%	-13%
	TN	+10%	-15%	-36%	-36%	-98%	-13%
	VA	+10%	-14%	-36%	-36%	-98%	-11%
	WV	+10%	-18%	-36%	-36%	-98%	-12%
	Total	+10%	-21%	-36%	-36%	-98%	-12%
Grand Total		+23%	-12%	-1%	-1%	-34%	+11%

Figure 2.3-2 Total Aircraft, Locomotive, and CMV CO Emissions (Base F)

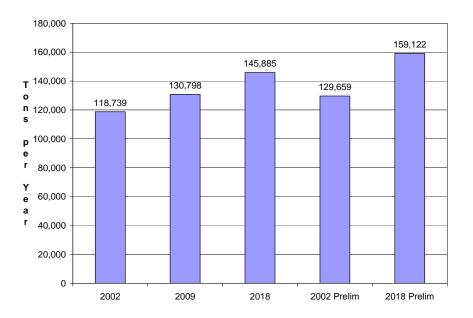


Figure 2.3-3 Locomotive CO Emissions (Base F)

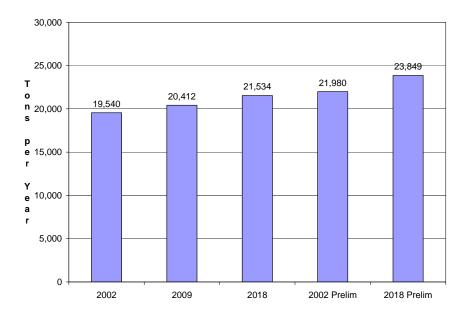


Figure 2.3-4 Total Aircraft, Locomotive, and CMV NO_x Emissions (Base F)

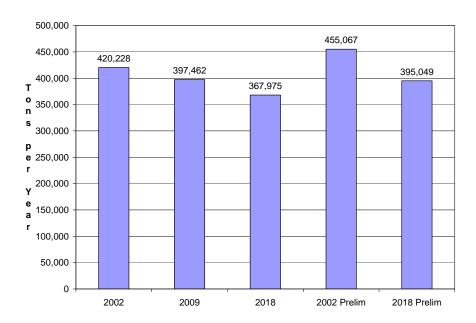


Figure 2.3-5 Locomotive NO_x Emissions (Base F)

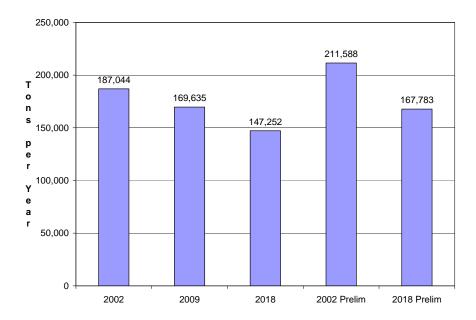


Figure 2.3-6 Total Aircraft, Locomotive, and CMV PM₁₀ Emissions (Base F)

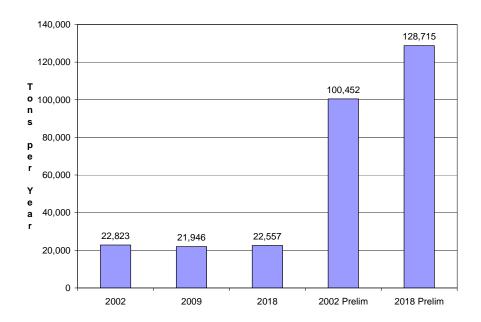


Figure 2.3-7 Locomotive PM₁₀ Emissions (Base F)

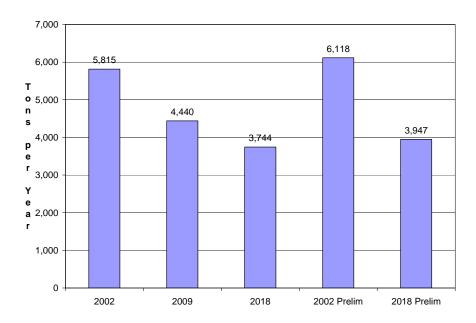


Figure 2.3-8 Total Aircraft, Locomotive, and CMV PM_{2.5} Emissions (Base F)

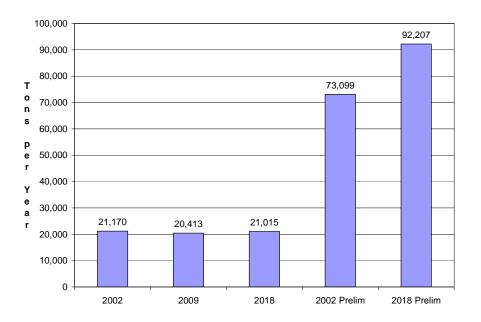


Figure 2.3-9 Locomotive PM_{2.5} Emissions (Base F)

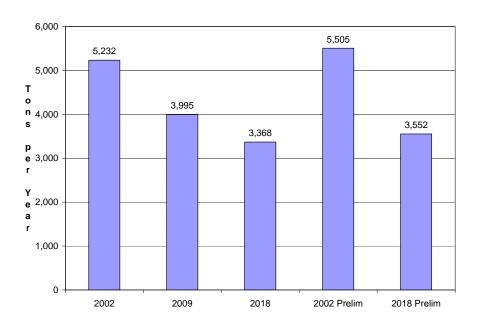


Figure 2.3-10 Total Aircraft, Locomotive, and CMV SO₂ Emissions (Base F)

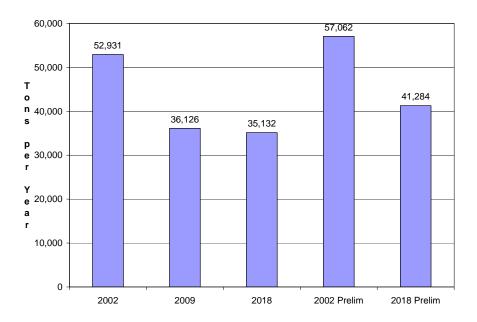


Figure 2.3-11 Locomotive SO₂ Emissions (Base F)

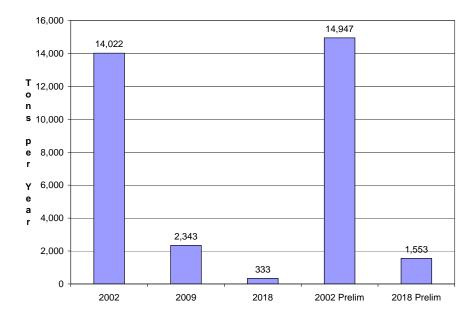


Figure 2.3-12 Total Aircraft, Locomotive, and CMV VOC Emissions (Base F)

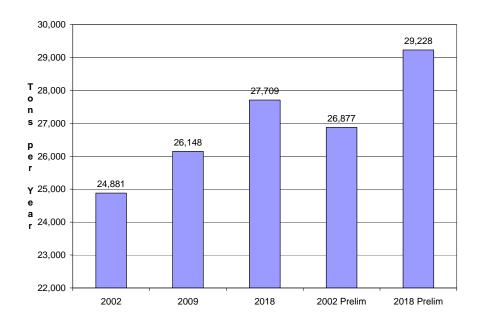
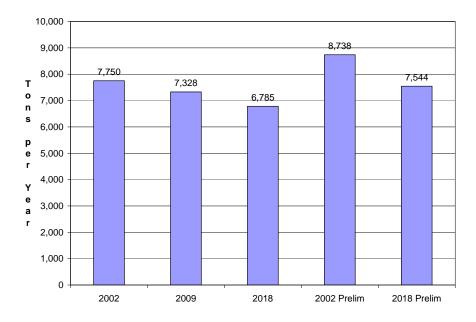



Figure 2.3-13 Locomotive VOC Emissions (Base F)

Base G Revisions:

Table 2.3-18 shows the Base G 2002 base year emissions for each State in the VISTAS region for aircraft, locomotives and CMV. Although some of these data are updated relative to those used as the basis of the Base F emissions forecasts, the methodology used to develop 2009 and 2018 emissions forecasts for aircraft, locomotives, and CMV for Base G is identical to that used for Base F (as documented above). The only exceptions are as follows:

(a) As indicated in the discussion of the Base F forecasts, the CAIR (growth rate) matching criteria were overridden for any record for which States provided local growth data. For Base F, only North Carolina provided such data. However, for Base G, Kentucky regulators provided growth data for aircraft emissions associated with Cincinnati/Northern Kentucky International Airport (located in Boone County, Kentucky). These data were applied to all pollutants and all aircraft types (i.e., military aircraft (SCC 2275001000), commercial aircraft (SCC 2275020000), general aviation aircraft (SCC 2275050000), and air taxi aircraft (SCC 2275060000)). Emissions forecasts for all aircraft operations in counties other than Boone continued to utilize the growth factors developed according to the CAIR matching criteria. Table 2.3-19 presents the locally generated growth factors applied in Kentucky. It should be recognized that although the locally provided growth factors presented in the table are significantly greater than those that would apply under the CAIR matching criteria, this is to be expected as local regulators noted a very significant decline in activity at the Cincinnati/Northern Kentucky International Airport in 2002 (relative to activity in preceding years). Moreover, this downward spike seems to have been alleviated since 2002, so that the provided growth factors represent not only "routine" growth expected between 2002 and the two forecast years, but growth required to offset the temporary decline observed in 2002.

Table 2.3-18 Base G 2002 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	5,595	185	238	99	18	276
	FL	25,431	8,891	2,424	2,375	800	3,658
	GA	6,620	5,372	1,475	1,446	451	443
	KY	5,577	925	251	246	88	397
A *	MS	1,593	140	44	43	13	96
Aircraft (2275)	NC	6,088	1,548	419	411	148	613
(2213)	SC	6,505	515	409	401	88	863
	TN	7,251	2,766	734	719	235	943
	VA	11,873	3,885	2,010	1,970	272	2,825
	WV	1,178	78	25	24	8	66
	Total	77,712	24,305	8,029	7,734	2,121	10,179
	AL	1,196	9,218	917	844	3,337	737
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,875	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,688	43,233	1,903	1,751	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	3,624	27,555	1,217	1,120	4,974	860
	VA	972	2,775	334	307	359	483
	WV	1,528	11,586	487	448	525	362
	Total	28,207	209,972	9,911	9,118	36,275	7,413
Military Marine	VA	110	313	25	23	27	48
(2283)	Total	110	313	25	23	27	48
	AL	3,518	26,623	592	533	1,446	1,365
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
I a samatina	MS	2,302	23,267	578	520	1,429	899
Locomotives (2285)	NC	1,638	16,502	410	369	1,001	654
(2200)	SC	1,160	11,690	291	261	710	462
	TN	2,626	25,627	633	570	1,439	1,041
	VA	1,186	11,882	1,529	1,375	3,641	492
	WV	1,311	13,224	329	296	808	517
	Total	19,568	187,328	5,815	5,232	14,022	7,761
Grand Total		125,597	421,918	23,780	22,107	52,444	25,401

Table 2.3-19 Locally Generated Growth Factors for Kentucky

FIP	2009 Factor	2018 Factor		
21015	1.31	1.81		

Note:

Growth factor = Year Emissions/2002 Emissions. Under CAIR approach, 2009 = 0.99 to 1.17. Under CAIR approach, 2018 = 0.97 to 1.40.

(b) Because of the additional emissions records added in Alabama, as discussed in the Base G 2002 base year inventory section of this report, the total number of emissions records in the Base G 2009 and 2018 forecasts increased to 23,042 (as compared to 22,838 for Base F). The 23,042 data records for aircraft, locomotives, and CMV were assigned growth factors in accordance with the following breakdown:

72 records matched State-provided growth factors,

4,287 records matched using the CAIR-Primary criterion,

240 records matched using the CAIR-Secondary criterion,

7,511 records matched using the CAIR-Tertiary criterion,

720 records matched using the No T4-Primary criterion,

3,858 records matched using the No T4-Secondary criterion, and

6,354 records matched using the No T4-Tertiary criterion.

Tables 2.3-20 and 2.3-21 present a summary of the resulting Base G 2009 and 2018 inventories, while Tables 2.3-22 and 2.3-23 present the associated change in emissions for each forecast inventory relative to the Base G 2002 base year VISTAS. As was the case with Base F, the larger reduction in CMV SO₂ emissions in 2009 and 2018 (relative to 2002) for Virginia and West Virginia is notable relative to the other VISTAS States, but is attributable to a high diesel contribution to total CMV SO₂ in the 2002 inventories for these two States.

Figures 2.3-14 through 2.3-25 graphically depict the relationships between the various inventories, as revised through Base G. There are two figures for each pollutant, the first of which presents a comparison of total VISTAS regional emission estimates for aircraft, locomotives, and CMV, and the second of which presents total VISTAS region emission estimates for locomotives only. This two figure approach is intended to provide a more robust illustration of the differences between the various inventories, as some of the differences are less distinct when viewed through overall aggregate emissions totals. All of the figures include the following emissions estimates:

- The Base G 2002 base year VISTAS emissions inventory (labeled as "2002"),
- The pre-Base F 2002 base year VISTAS emissions inventory (labeled as "2002 Prelim"),
- The Base G 2009 VISTAS emissions inventory developed using growth rates derived from 1996 and 2020 EPA CAIR data (labeled as "2009"),
- The Base G 2018 VISTAS emissions inventory developed using growth rates derived from 1996 and 2020 EPA CAIR data (labeled as "2018"), and
- The pre-Base F 2018 VISTAS emissions inventory estimates developed using growth rates derived from 1996, 2010, 2015, and 2020 EPA CAIR data (labeled as "2018 Prelim").

All 12 figures generally illustrate a reduction in emissions estimates between the pre-Base F 2002 emission estimates published in February 2004 and the Base G 2002 base year emission estimates. This reduction generally results from emission updates reflected in the Base F State CERR submittals, although the major differences in aggregate PM emission estimates are driven to a greater extent by modifications in the methodology used to estimate aircraft PM in the Base F revisions to the 2002 Base F base year inventory (as documented under the base year inventory section of this report).

Table 2.3-20 Base G 2009 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	6,265	213	292	116	21	309
	FL	29,258	10,316	2,812	2,756	928	4,235
	GA	7,635	6,233	1,712	1,678	523	512
	KY	6,959	1,135	307	301	108	487
A	MS	1,765	162	51	50	16	108
Aircraft (2275)	NC	6,991	1,795	486	477	171	709
(2213)	SC	7,372	559	446	437	98	975
	TN	8,020	3,096	824	807	268	1,050
	VA	13,141	4,244	2,124	2,082	306	3,153
	WV	1,312	91	28	28	9	74
	Total	88,716	27,844	9,083	8,732	2,447	11,612
	AL	1,280	8,888	872	802	2,753	768
	FL	6,236	43,198	1,838	1,691	5,864	1,467
	GA	1,097	7,599	317	291	974	256
	KY	7,087	48,039	2,158	1,985	8,350	1,649
Commercial	MS	6,074	41,437	1,821	1,676	6,587	1,415
Marine	NC	634	4,386	184	169	584	148
(2280)	SC	1,133	7,796	326	300	1,012	264
	TN	3,887	26,333	1,168	1,074	4,512	904
	VA	1,042	2,662	312	286	61	506
	WV	1,638	11,073	455	419	89	381
	Total	30,108	201,412	9,450	8,693	30,786	7,759
Military Marine	VA	118	299	23	21	5	50
(2283)	Total	118	299	23	21	5	50
	AL	3,677	23,783	452	406	242	1,289
	FL	1,052	8,905	189	170	101	382
	GA	2,769	24,398	507	456	271	1,003
	KY	2,264	19,597	415	374	221	819
T	MS	2,406	20,785	441	397	239	849
Locomotives (2285)	NC	1,690	14,662	311	279	165	613
(2203)	SC	1,213	10,443	222	200	119	437
	TN	2,745	23,924	483	435	240	984
	VA	1,236	11,134	1,167	1,050	608	467
	WV	1,369	12,177	251	226	135	489
	Total	20,420	169,808	4,437	3,993	2,341	7,333
Grand Total		139,362	399,364	22,994	21,440	35,578	26,754

Table 2.3-21 Base G 2018 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	7,126	249	361	139	24	352
	FL	34,178	12,147	3,312	3,246	1,093	4,976
	GA	8,939	7,340	2,016	1,976	616	601
	KY	9,078	1,446	391	383	138	623
A :	MS	1,986	190	60	58	18	122
Aircraft (2275)	NC	8,150	2,114	572	561	202	831
(2213)	SC	8,487	616	493	484	112	1,119
	TN	9,009	3,519	939	921	309	1,187
	VA	14,770	4,706	2,271	2,226	349	3,574
	WV	1,484	106	33	33	10	85
	Total	103,206	32,435	10,450	10,027	2,871	13,472
	AL	1,388	8,464	880	809	2,715	809
	FL	6,684	41,117	1,853	1,705	6,248	1,543
	GA	1,174	7,246	319	293	976	269
	KY	7,703	45,174	2,199	2,023	8,383	1,752
Commercial	MS	6,571	39,129	1,850	1,702	6,556	1,498
Marine	NC	678	4,179	185	170	596	155
(2280)	SC	1,217	7,406	329	303	1,027	278
	TN	4,225	24,763	1,190	1,095	4,808	960
	VA	1,133	2,517	314	289	9	537
	WV	1,781	10,412	459	422	13	404
	Total	32,554	190,407	9,578	8,811	31,330	8,205
Military Marine	VA	128	282	23	21	1	53
(2283)	Total	128	282	23	21	1	53
	AL	3,881	20,131	381	343	34	1,192
	FL	1,110	7,538	159	143	14	353
	GA	2,917	21,395	427	385	38	932
	KY	2,389	16,751	352	317	31	757
T	MS	2,540	17,594	372	335	34	785
Locomotives (2285)	NC	1,782	12,539	263	237	23	570
(2200)	SC	1,280	8,840	187	168	17	404
	TN	2,897	21,735	407	367	34	910
	VA	1,300	10,173	983	885	86	436
	WV	1,444	10,831	212	190	19	453
	Total	21,539	147,527	3,743	3,368	332	6,792
Grand Total		157,427	370,651	23,794	22,227	34,534	28,522

Table 2.3-22 Change in Emissions between 2009 Base G and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

Source	State	CO	NO _x	PM_{10}	$PM_{2.5}$	SO_2	VOC
	AL	+12%	+15%	+23%	+18%	+16%	+12%
	FL	+15%	+16%	+16%	+16%	+16%	+16%
	GA	+15%	+16%	+16%	+16%	+16%	+16%
	KY	+25%	+23%	+23%	+23%	+23%	+23%
	MS	+11%	+16%	+15%	+15%	+16%	+12%
Aircraft (2275)	NC	+15%	+16%	+16%	+16%	+16%	+16%
(2213)	SC	+13%	+9%	+9%	+9%	+12%	+13%
	TN	+11%	+12%	+12%	+12%	+14%	+11%
	VA	+11%	+9%	+6%	+6%	+12%	+12%
	WV	+11%	+16%	+15%	+15%	+16%	+12%
	Total	+14%	+15%	+13%	+13%	+15%	+14%
	AL	+7%	-4%	-5%	-5%	-18%	+4%
	FL	+6%	-4%	-5%	-5%	-12%	+4%
	GA	+6%	-3%	-5%	-5%	-17%	+4%
	KY	+7%	-4%	-4%	-4%	-13%	+5%
Commercial	MS	+7%	-4%	-4%	-4%	-15%	+5%
Marine	NC	+6%	-4%	-5%	-5%	-15%	+4%
(2280)	SC	+6%	-4%	-5%	-5%	-16%	+4%
	TN	+7%	-4%	-4%	-4%	-9%	+5%
	VA	+7%	-4%	-7%	-7%	-83%	+5%
	WV	+7%	-4%	-7%	-7%	-83%	+5%
	Total	+7%	-4%	-5%	-5%	-15%	+5%
Military Marine	VA	+7%	-4%	-7%	-7%	-83%	+5%
(2283)	Total	+7%	-4%	-7%	-7%	-83%	+5%
	AL	+5%	-11%	-24%	-24%	-83%	-6%
	FL	+5%	-11%	-24%	-24%	-83%	-6%
	GA	+4%	-9%	-24%	-24%	-83%	-5%
	KY	+5%	-10%	-23%	-23%	-83%	-6%
T	MS	+5%	-11%	-24%	-24%	-83%	-6%
Locomotives (2285)	NC	+3%	-11%	-24%	-24%	-83%	-6%
()	SC	+5%	-11%	-24%	-24%	-83%	-6%
	TN	+5%	-7%	-24%	-24%	-83%	-6%
	VA	+4%	-6%	-24%	-24%	-83%	-5%
	WV	+4%	-8%	-24%	-24%	-83%	-5%
	Total	+4%	-9%	-24%	-24%	-83%	-6%
Grand Total		+11%	-5%	-3%	-3%	-32%	+5%

Table 2.3-23 Change in Emissions between 2018 Base G and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

Source	State	CO	NO _x	PM_{10}	$PM_{2.5}$	SO_2	VOC
	AL	+27%	+35%	+52%	+41%	+36%	+28%
	FL	+34%	+37%	+37%	+37%	+37%	+36%
	GA	+35%	+37%	+37%	+37%	+37%	+36%
	KY	+63%	+56%	+56%	+56%	+56%	+57%
A *	MS	+25%	+36%	+35%	+35%	+36%	+27%
Aircraft (2275)	NC	+34%	+37%	+36%	+36%	+37%	+36%
(2213)	SC	+30%	+20%	+21%	+21%	+27%	+30%
	TN	+24%	+27%	+28%	+28%	+31%	+26%
	VA	+24%	+21%	+13%	+13%	+28%	+27%
	WV	+26%	+36%	+35%	+35%	+36%	+28%
	Total	+33%	+33%	+30%	+30%	+35%	+32%
	AL	+16%	-8%	-4%	-4%	-19%	+10%
	FL	+14%	-8%	-4%	-4%	-7%	+9%
	GA	+13%	-8%	-5%	-5%	-17%	+9%
	KY	+17%	-10%	-2%	-2%	-13%	+12%
Commercial	MS	+16%	-9%	-3%	-3%	-15%	+11%
Marine	NC	+13%	-8%	-4%	-4%	-14%	+9%
(2280)	SC	+14%	-9%	-4%	-4%	-15%	+10%
	TN	+17%	-10%	-2%	-2%	-3%	+12%
	VA	+17%	-9%	-6%	-6%	-98%	+11%
	WV	+17%	-10%	-6%	-6%	-98%	+12%
	Total	+15%	-9%	-3%	-3%	-14%	+11%
Military Marine	VA	+17%	-10%	-6%	-6%	-98%	+12%
(2283)	Total	+17%	-10%	-6%	-6%	-98%	+12%
	AL	+10%	-24%	-36%	-36%	-98%	-13%
	FL	+10%	-24%	-36%	-36%	-98%	-13%
	GA	+10%	-20%	-36%	-36%	-98%	-12%
	KY	+10%	-23%	-35%	-35%	-98%	-13%
T	MS	+10%	-24%	-36%	-36%	-98%	-13%
Locomotives (2285)	NC	+9%	-24%	-36%	-36%	-98%	-13%
()	SC	+10%	-24%	-36%	-36%	-98%	-13%
	TN	+10%	-15%	-36%	-36%	-98%	-13%
	VA	+10%	-14%	-36%	-36%	-98%	-11%
	WV	+10%	-18%	-36%	-36%	-98%	-12%
	Total	+10%	-21%	-36%	-36%	-98%	-12%
Grand Total		+25%	-12%	+0%	+1%	-34%	+12%

Figure 2.3-14 Total Aircraft, Locomotive, and CMV CO Emissions (Base G)

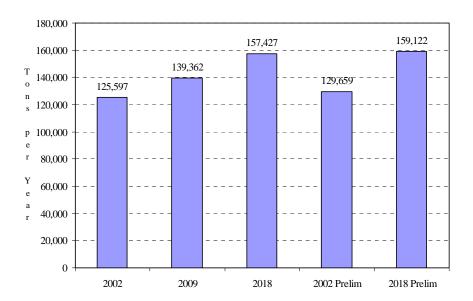


Figure 2.3-15 Locomotive CO Emissions (Base G)

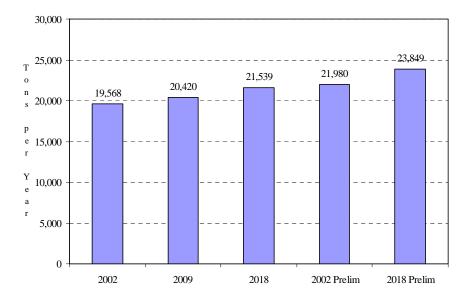


Figure 2.3-16 Total Aircraft, Locomotive, and CMV NO_x Emissions (Base G)

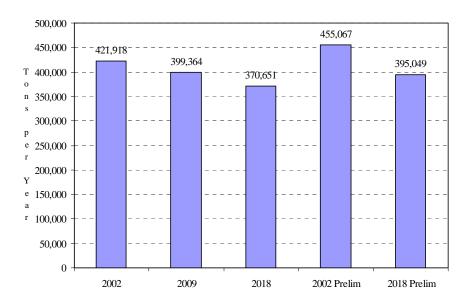


Figure 2.3-17 Locomotive NO_x Emissions (Base G)

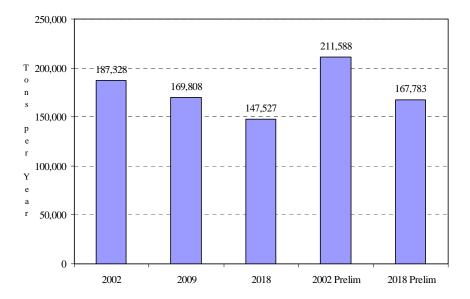


Figure 2.3-18 Total Aircraft, Locomotive, and CMV PM₁₀ Emissions (Base G)

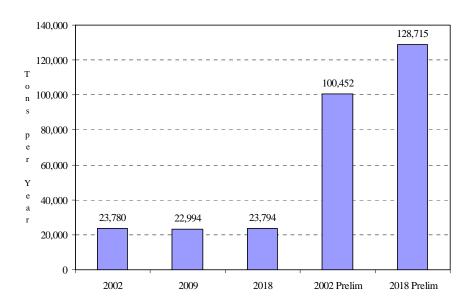


Figure 2.3-19 Locomotive PM₁₀ Emissions (Base G)

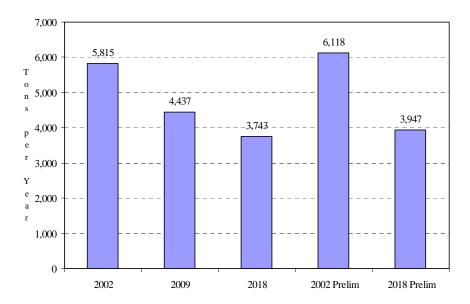


Figure 2.3-20 Total Aircraft, Locomotive, and CMV PM_{2.5} Emissions (Base G)

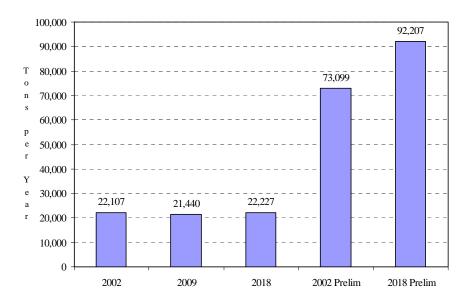


Figure 2.3-21 Locomotive PM_{2.5} Emissions (Base G)

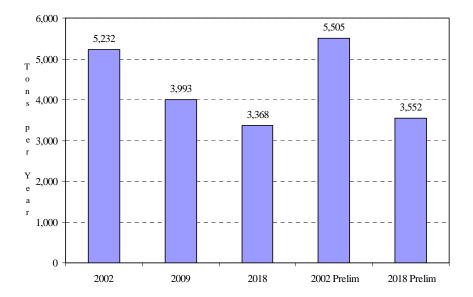


Figure 2.3-22 Total Aircraft, Locomotive, and CMV SO₂ Emissions (Base G)

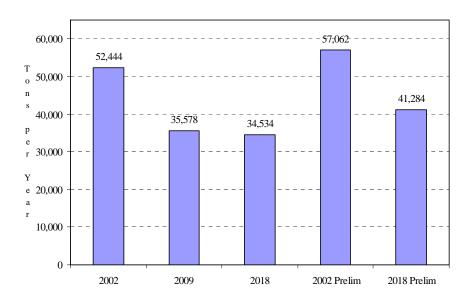


Figure 2.3-23 Locomotive SO₂ Emissions (Base G)

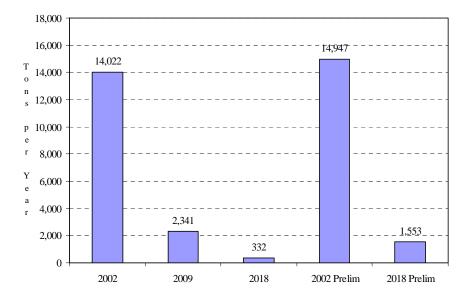


Figure 2.3-24 Total Aircraft, Locomotive, and CMV VOC Emissions (Base G)

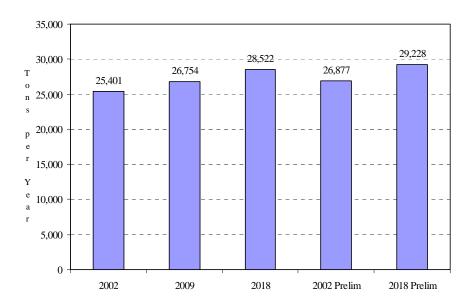
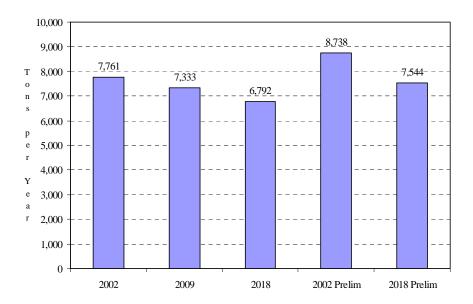



Figure 2.3-25 Locomotive VOC Emissions (Base G)

2.3.4.3 Emissions from NONROAD Model Sources in Illinois, Indiana, and Ohio

Base G projection inventories for 2009 and 2018 for NONROAD model sources in the states of Illinois, Indiana, and Ohio were produced using a methodology identical to that employed to develop a Base G 2002 base year inventory for the same states (as documented earlier in this report). This method consists of the extraction of a complete set of county-level input data applicable to each of the three states (in each of the two projection years) from the latest version of the EPA's NMIM model. This includes appropriate consideration of all non-default NMIM input files generated by the Midwest Regional Planning Organization as documented earlier in the discussion of the Base G 2002 base year inventory. These input data were then assembled into appropriate input files for the Final NONROAD2005 model and emission estimates were produced using the same procedure employed for the VISTAS region.

Changes noted between the base year (2002) and forecast year (2009 and 2018) input data extracted from NMIM include differences in gasoline vapor pressure, gasoline sulfur content, and diesel sulfur content in most counties. All temperature data (minimum, maximum, and average daily temperatures) was constant across years.

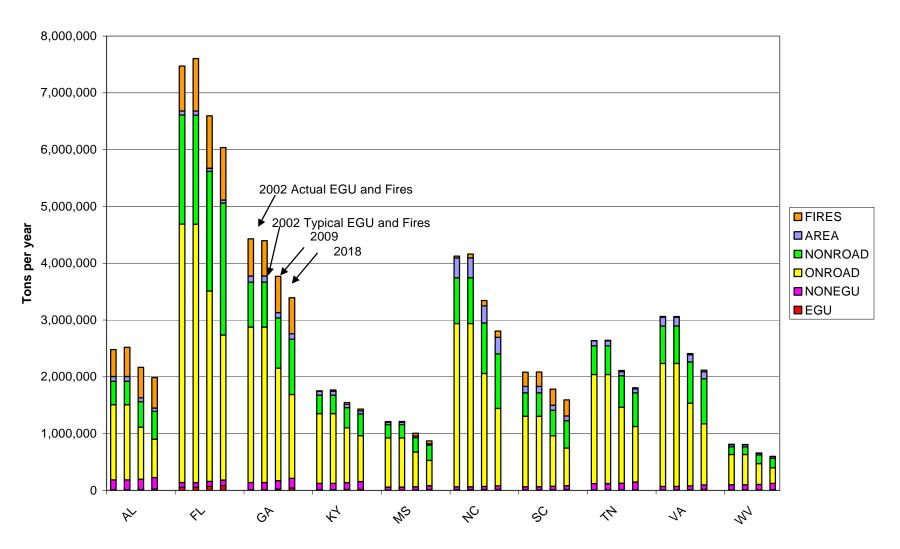
As described in the discussion of the Base G 2002 base year inventory, counties in the three states were grouped for modeling purposes using a temperature aggregation scheme that allowed for county-specific temperature variations of no more that 2 °F from group average temperatures (for all temperature inputs). The same grouping scheme was applied to projection year modeling, so that Illinois emissions were modeled using 12 county groups, Indiana emissions were modeled using 9 county groups, and Ohio emissions were modeled using 10 county groups. Thus, 31 iterations of NONROAD2002 were required per season per projection year, as compared to the 53 iterations per season per projection year required for the VISTAS region.

As was also described in the discussion of the Base G 2002 base year inventory, several non-default equipment population, growth, activity, seasonal distribution, and county allocation files are assigned by NMIM model inputs for these counties. As was the case for the base year inventory development, these same non-default assignments were retained for both projection inventories.

2.3.4.4 Differences between 2009/2018

Methodologically, there was no difference in the way that 2009 and 2018 emissions were calculated for non-road mobile sources. The actual value of the growth factors were different for each type of mobile source considered, but the calculation methods were identical.

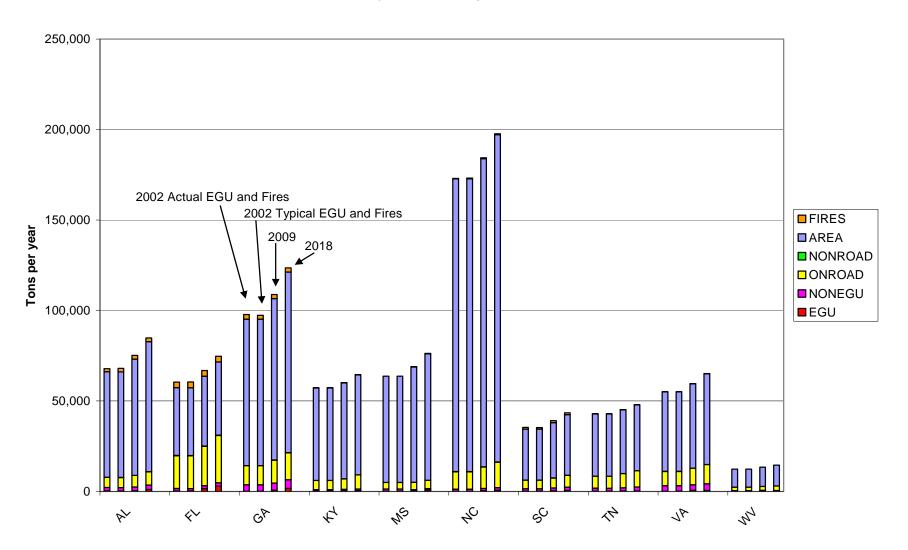
2.3.5 Quality Assurance steps


Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, to ensure that a full and complete inventory was developed for VISTAS, and to make sure that projection calculations were working correctly. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on mobile source components of the 2009 and revised 2018 projection inventories:

- 1. All final files (NONROAD only) were run through EPA's Format and Content checking software. Input data files for MOBILE and VMT growth estimates were reviewed by the corresponding SIWG and by the VISTAS Emission Inventory Technical Advisor.
- 2. SCC level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources (NONROAD only).
- 3. Tier comparisons (by pollutant) were developed between the 2002 base year inventory and the 2009 and 2018 projection inventories (NONROAD only). Total VISTAS level summaries by pollutant were developed for these sources to compare Base F and Base G emission levels.
- 4. Data product summaries were provided to both the VISTAS Emission Inventory Technical Advisor and to the SIWG representatives for review and comment. Changes based on these comments were implemented in the files.
- 5. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from 1.0 to 2.0. A minor change would cause a version number to go from 1.0 to 1.1. Minor changes resulting from largely editorial changes would result in a change from 1.00 to 1.01.

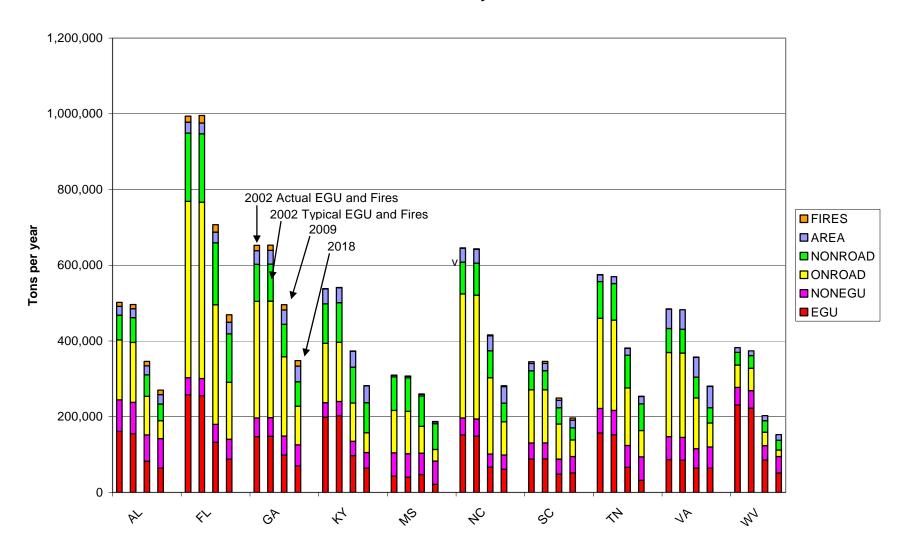
Appendix A:

STATE EMISSION TOTALS BY POLLUTANT AND SECTOR


Annual CO Emissions by Source Sector

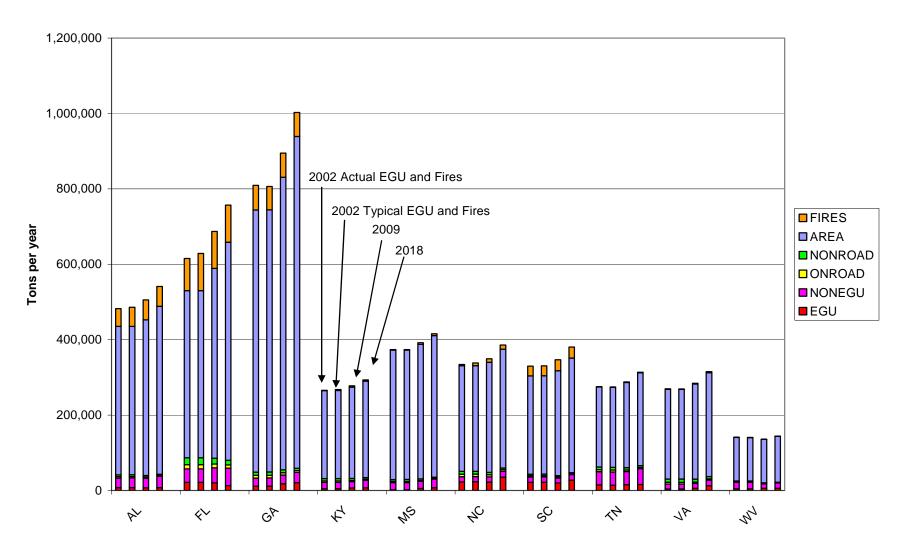
Annual CO Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	11,279	174,271	1,321,528	414,385	83,958	474,959	2002 Actual
	11,460	174,260	1,321,528	414,385	83,958	514,120	2002 Typical
AL	14,986	180,369	915,647	454,686	66,654	534,873	2009
	24,342	201,663	676,210	488,924	59,626	535,658	2018
	57,113	81,933	4,550,447	1,920,729	71,079	790,620	2002 Actual
	55,899	81,928	4,550,447	1,920,729	71,079	923,310	2002 Typical
FL	71,072	87,661	3,352,509	2,104,920	57,011	923,310	2009
	85,495	97,438	2,554,160	2,323,327	53,903	923,310	2018
	9,712	130,850	2,735,968	791,158	108,083	654,411	2002 Actual
	9,650	130,850	2,735,968	791,158	108,083	620,342	2002 Typical
GA	23,721	147,427	1,983,803	882,970	94,130	637,177	2009
	44,269	167,904	1,476,981	973,872	93,827	637,177	2018
	12,619	109,936	1,230,148	325,993	66,752	8,703	2002 Actual
	12,607	109,936	1,230,148	325,993	66,752	24,900	2002 Typical
KY	15,812	122,024	963,762	357,800	57,887	31,810	2009
	17,144	139,437	807,536	381,215	54,865	33,296	2018
	5,303	54,568	864,290	236,752	37,905	13,209	2002 Actual
	5,219	54,568	864,290	236,752	37,905	14,353	2002 Typical
MS	7,116	57,749	609,972	257,453	27,184	48,160	2009
	17,348	65,884	445,493	270,726	22,099	50,037	2018
	13,885	50,576	2,873,992	808,231	345,315	34,515	2002 Actual
	14,074	50,576	2,873,992	808,231	345,315	71,970	2002 Typical
NC	14,942	53,744	1,991,708	887,605	301,163	96,258	2009
	19,870	62,197	1,362,214	960,709	290,809	111,266	2018
	6,990	56,315	1,241,359	413,964	113,714	248,341	2002 Actual
	6,969	56,315	1,241,359	413,964	113,714	253,005	2002 Typical
SC	11,643	59,934	889,957	448,625	90,390	282,307	2009
	14,975	68,415	663,493	481,332	83,167	282,307	2018
	7,084	115,264	1,917,842	505,163	89,828	4,302	2002 Actual
	6,787	115,264	1,917,842	505,163	89,828	10,124	2002 Typical
TN	7,214	119,216	1,338,016	554,121	74,189	17,372	2009
	7,723	140,556	976,634	593,100	68,809	18,860	2018
	6,892	63,796	2,163,259	660,105	155,873	15,625	2002 Actual
	6,797	63,784	2,163,259	660,105	155,873	12,611	2002 Typical
VA	12,535	68,326	1,453,946	726,815	128,132	21,130	2009
	18,850	76,846	1,075,104	797,683	121,690	26,923	2018
	10,341	89,879	533,471	133,113	39,546	6,738	2002 Actual
	10,117	89,878	533,471	133,113	39,546	2,652	2002 Typical
wv	11,493	93,839	365,549	152,862	31,640	3,949	2009
	12,397	111,302	274,804	167,424	28,773	5,013	2018


Annual NH₃ Emissions by Source Sector

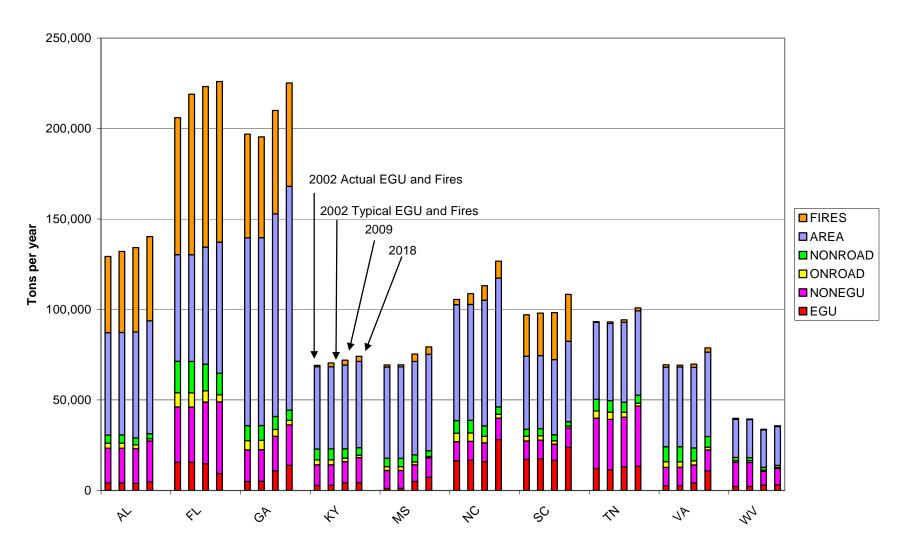
Annual NH₃ Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	317	1,883	5,588	33	58,318	1,689	2002 Actual
AL	239	1,883	5,588	33	58,318	1,957	2002 Typical
	359	2,132	6,364	36	64,268	2,050	2009
	1,072	2,464	7,298	42	71,915	2,054	2018
	234	1,423	18,114	134	37,446	3,102	2002 Actual
	222	1,423	18,114	134	37,446	3,157	2002 Typical
FL	1,629	1,544	21,781	148	38,616	3,157	2009
	2,976	1,829	26,163	171	40,432	3,157	2018
	83	3,613	10,546	60	80,913	2,578	2002 Actual
	86	3,613	10,546	60	80,913	2,153	2002 Typical
GA	686	3,963	12,687	68	89,212	2,229	2009
	1,677	4,797	14,873	79	99,885	2,229	2018
	326	674	5,055	31	51,135	39	2002 Actual
	321	674	5,055	31	51,135	112	2002 Typical
KY	400	760	5,796	34	53,005	143	2009
	476	901	7,811	40	55,211	150	2018
	190	1,169	3,585	23	58,721	59	2002 Actual
	198	1,169	3,585	23	58,721	65	2002 Typical
MS	334	668	4,035	25	63,708	217	2009
	827	764	4,566	29	69,910	225	2018
	54	1,179	9,702	65	161,860	155	2002 Actual
	55	1,179	9,702	65	161,860	324	2002 Typical
NC	445	1,285	11,825	72	170,314	433	2009
	663	1,465	14,065	83	180,866	501	2018
	142	1,411	4,694	33	28,166	980	2002 Actual
	141	1,411	4,694	33	28,166	908	2002 Typical
SC	370	1,578	5,523	36	30,555	1,039	2009
	625	1,779	6,473	41	33,496	1,039	2018
	204	1,613	6,625	43	34,393	19	2002 Actual
TN	197	1,613	6,625	43	34,393	46	2002 Typical
	227	1,840	7,782	48	35,253	78	2009
	241	2,213	9,021	55	36,291	85	2018
	127	3,104	7,852	48	43,905	70	2002 Actual
VA	130	3,104	7,852	48	43,905	57	2002 Typical
	694	3,045	9,086	53	46,639	95	2009
	606	3,604	10,624	61	50,175	121	2018
	121	332	1,908	9	9,963	30	2002 Actual
WV	121	332	1,908	9	9,963	12	2002 Typical
	330	314	2,148	11	10,625	18	2009
	143	378	2,497	13	11,504	23	2018


Annual NOx Emissions by Source Sector

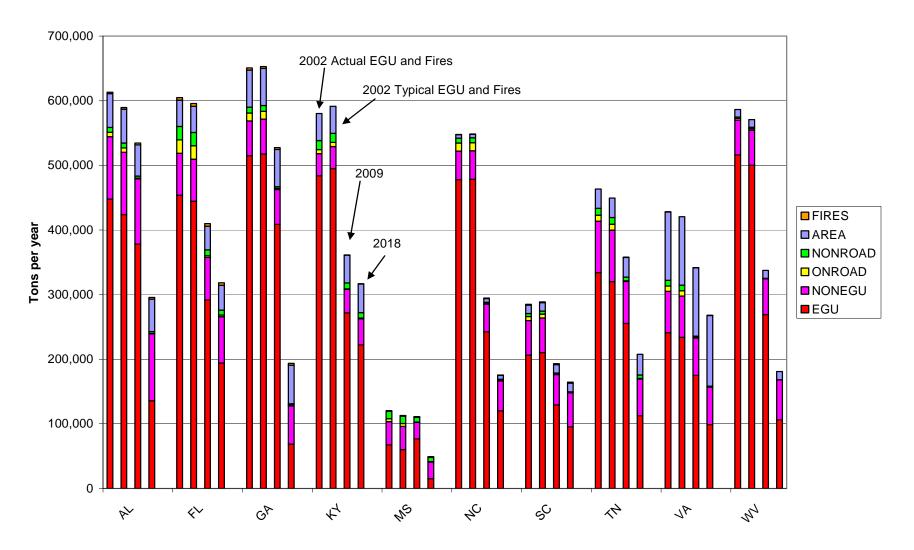
Annual NO_x Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	161,038	83,310	158,212	65,366	23,444	10,728	2002 Actual
	154,704	83,302	158,212	65,366	23,444	11,456	2002 Typical
AL	82,305	69,409	101,831	56,862	23,930	11,901	2009
	64,358	77,960	47,298	43,799	25,028	11,918	2018
	257,677	45,156	465,640	180,627	28,872	15,942	2002 Actual
	255,678	45,150	465,640	180,627	28,872	19,791	2002 Typical
FL	132,535	47,125	315,840	163,794	28,187	19,791	2009
	87,645	52,959	150,180	127,885	30,708	19,791	2018
	147,517	49,251	307,732	97,961	36,142	14,203	2002 Actual
	148,126	49,251	307,732	97,961	36,142	13,882	2002 Typical
GA	98,497	50,353	209,349	85,733	37,729	14,243	2009
	69,856	55,824	102,179	64,579	41,332	14,243	2018
	198,817	38,392	156,417	104,571	39,507	187	2002 Actual
	201,928	38,434	156,417	104,571	39,507	534	2002 Typical
KY	97,263	37,758	101,182	94,752	42,088	682	2009
	64,378	41,034	52,263	79,392	44,346	714	2018
	43,135	61,526	111,914	88,787	4,200	283	2002 Actual
	40,433	61,553	111,914	88,787	4,200	308	2002 Typical
MS	47,276	56,398	70,743	80,567	4,249	1,033	2009
	21,535	61,252	30,619	68,252	4,483	1,073	2018
	151,850	44,929	327,329	84,284	36,550	740	2002 Actual
	148,812	44,929	327,329	84,284	36,550	1,544	2002 Typical
NC	66,521	34,768	201,609	70,997	39,954	2,065	2009
	61,110	37,802	87,791	49,046	43,865	2,387	2018
	88,241	42,153	140,489	50,249	19,332	4,932	2002 Actual
	88,528	42,153	140,489	50,249	19,332	5,270	2002 Typical
SC	48,668	39,368	92,499	43,235	19,360	5,899	2009
	51,751	43,331	43,490	31,758	20,592	5,899	2018
	157,307	64,344	238,577	96,827	17,844	92	2002 Actual
	152,137	64,344	238,577	96,827	17,844	217	2002 Typical
TN	66,405	57,514	151,912	86,641	18,499	373	2009
	31,715	62,519	69,385	70,226	19,597	405	2018
	86,886	60,415	222,374	63,219	51,418	335	2002 Actual
	85,081	60,390	222,374	63,219	51,418	271	2002 Typical
VA	64,358	51,001	134,232	54,993	52,618	453	2009
	64,344	55,734	63,342	40,393	56,158	578	2018
	230,977	46,612	58,999	33,239	12,687	145	2002 Actual
	222,437	46,618	58,999	33,239	12,687	57	2002 Typical
WV	85,476	38,023	35,635	30,133	13,439	85	2009
	51,474	43,280	17,247	25,710	14,828	108	2018


Annual PM₁₀ Emissions by Source Sector

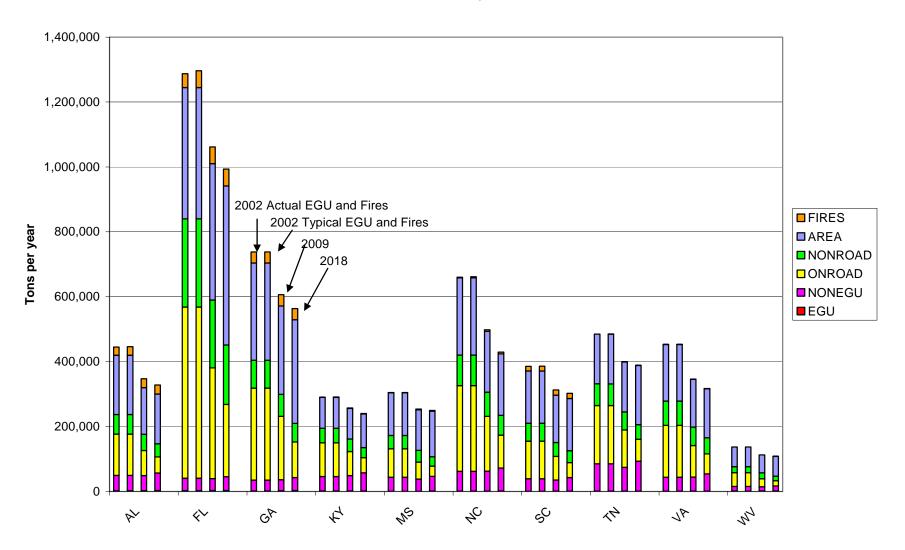
Annual PM_{10} Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	7,646	25,240	3,903	4,787	393,588	47,237	2002 Actual
AL	7,845	25,239	3,903	4,787	393,588	50,833	2002 Typical
	6,969	25,421	3,171	4,027	413,020	52,851	2009
	7,822	29,889	2,410	3,041	445,256	52,927	2018
	21,387	35,857	11,275	18,281	443,346	85,263	2002 Actual
FL	21,391	35,856	11,275	18,281	443,346	98,470	2002 Typical
	20,182	39,947	9,911	15,613	503,230	98,470	2009
	12,791	46,492	8,268	12,497	578,516	98,470	2018
	11,224	21,610	7,246	8,618	695,414	65,227	2002 Actual
GA	11,467	21,610	7,246	8,618	695,414	62,336	2002 Typical
	17,891	23,103	6,072	7,521	776,411	63,973	2009
	20,732	27,273	4,844	6,015	880,199	63,973	2018
	4,701	16,626	3,723	6,425	233,559	846	2002 Actual
KY	4,795	16,626	3,723	6,425	233,559	2,421	2002 Typical
	6,463	17,174	2,976	5,544	242,177	3,093	2009
	6,694	20,153	2,580	4,556	256,052	3,237	2018
	1,633	19,472	2,859	5,010	343,377	1,284	2002 Actual
MS	1,706	19,469	2,859	5,010	343,377	1,396	2002 Typical
	5,182	19,245	2,275	4,270	356,324	4,683	2009
	7,412	22,837	1,624	3,452	375,495	4,865	2018
	22,754	13,838	6,579	7,348	280,379	3,356	2002 Actual
NC	22,994	13,838	6,579	7,348	280,379	6,998	2002 Typical
	22,152	13,910	5,572	6,055	292,443	9,359	2009
	35,275	15,737	4,392	4,298	315,294	10,819	2018
	21,400	14,142	3,452	4,152	260,858	25,968	2002 Actual
SC	21,827	14,142	3,452	4,152	260,858	26,304	2002 Typical
	20,041	12,959	2,862	3,471	278,299	29,153	2009
	27,640	14,674	2,184	2,617	304,251	29,153	2018
	14,640	35,174	5,371	6,819	212,554	418	2002 Actual
TN	13,866	35,174	5,371	6,819	212,554	984	2002 Typical
	15,608	34,581	4,206	5,877	226,098	1,689	2009
	15,941	41,999	3,092	4,672	246,252	1,834	2018
	3,960	13,252	4,549	8,728	237,577	1,519	2002 Actual
VA	3,892	13,252	4,549	8,728	237,577	1,226	2002 Typical
	5,606	13,046	3,747	7,510	252,488	2,054	2009
	12,551	15,111	3,212	6,208	275,351	2,618	2018
	4,573	17,503	1,381	1,850	115,346	655	2002 Actual
WV	4,472	17,503	1,381	1,850	115,346	258	2002 Typical
	5,657	11,882	1,068	1,640	115,089	384	2009
	5,784	14,202	819	1,292	121,549	487	2018


Annual PM_{2.5} Emissions by Source Sector

Annual $PM_{2.5}$ Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	4,113	19,178	2,799	4,502	56,654	42,041	2002 Actual
	4,176	19,177	2,799	4,502	56,654	44,812	2002 Typical
AL	3,921	19,230	2,032	3,776	58,699	46,543	2009
	4,768	22,584	1,192	2,835	62,323	46,608	2018
	15,643	30,504	7,868	17,415	58,878	75,717	2002 Actual
	15,575	30,504	7,868	17,415	58,878	88,756	2002 Typical
FL	14,790	34,019	6,173	14,866	64,589	88,756	2009
	9,417	39,486	4,038	11,868	72,454	88,756	2018
	4,939	17,462	5,168	8,226	103,794	57,293	2002 Actual
	5,070	17,462	5,168	8,226	103,794	55,712	2002 Typical
GA	10,907	18,982	3,840	7,175	112,001	57,116	2009
	13,881	22,416	2,380	5,730	123,704	57,116	2018
	2,802	11,372	2,697	6,046	45,453	726	2002 Actual
	2,847	11,372	2,697	6,046	45,453	2,076	2002 Typical
KY	4,279	11,686	1,920	5,203	46,243	2,653	2009
	4,434	13,739	1,272	4,256	47,645	2,777	2018
	1,138	9,906	2,112	4,690	50,401	1,102	2002 Actual
	1,147	9,902	2,112	4,690	50,401	1,197	2002 Typical
MS	4,996	9,199	1,508	3,985	51,661	4,016	2009
	7,252	10,719	819	3,203	53,222	4,173	2018
	16,498	10,500	4,623	7,005	64,052	2,878	2002 Actual
	16,623	10,500	4,623	7,005	64,052	6,002	2002 Typical
NC	15,949	10,458	3,493	5,760	69,457	8,027	2009
	28,137	11,825	2,123	4,069	71,262	9,279	2018
	17,154	10,245	2,501	3,945	40,291	22,953	2002 Actual
	17,521	10,245	2,501	3,945	40,291	23,511	2002 Typical
SC	16,548	9,048	1,855	3,294	41,613	25,955	2009
	23,794	10,699	1,087	2,474	44,319	25,955	2018
	12,166	27,807	3,949	6,458	42,566	359	2002 Actual
	11,491	27,807	3,949	6,458	42,566	844	2002 Typical
TN	13,092	27,367	2,751	5,557	44,124	1,449	2009
	13,387	33,293	1,544	4,403	46,692	1,573	2018
	2,606	10,165	3,102	8,288	43,989	1,303	2002 Actual
,	2,650	10,165	3,102	8,288	43,989	1,052	2002 Typical
VA	4,165	9,988	2,241	7,136	44,514	1,762	'2009
	10,773	11,605	1,543	5,891	46,697	2,245	2018
	2,210	13,313	995	1,728	21,049	562	2002 Actual
,	2,163	13,313	995	1,728	21,049	221	2002 Typical
WV	2,940	7,638	684	1,528	20,664	329	2009
	3,116	9,124	405	1,198	21,490	418	2018


Annual SO₂ Emissions by Source Sector

Annual SO₂ Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	447,828	96,481	6,900	7,584	52,253	2,208	2002 Actual
	423,736	96,481	6,900	7,584	52,253	2,559	2002 Typical
AL	378,052	101,246	810	3,471	48,228	2,681	2009
	135,851	103,303	720	2,818	50,264	2,686	2018
	453,631	65,090	20,915	20,614	40,491	4,057	2002 Actual
	444,383	65,090	20,915	20,614	40,491	4,129	2002 Typical
FL	291,831	65,651	2,612	8,967	36,699	4,129	2009
	194,028	71,810	2,533	7,536	38,317	4,129	2018
	514,952	53,774	12,184	9,005	57,559	3,372	2002 Actual
	517,633	53,778	12,184	9,005	57,559	2,815	2002 Typical
GA	408,679	53,983	1,585	2,725	57,696	2,914	2009
	68,515	59,343	1,457	1,709	59,729	2,914	2018
	484,057	34,029	6,308	14,043	41,805	51	2002 Actual
	495,153	34,029	6,308	14,043	41,805	146	2002 Typical
KY	271,669	36,418	759	9,180	43,087	187	2009
	222,102	40,682	763	8,592	44,186	196	2018
	67,429	35,960	4,614	11,315	771	78	2002 Actual
	60,086	35,954	4,614	11,315	771	84	2002 Typical
MS	76,646	25,564	537	7,191	753	283	2009
	15,213	25,674	440	6,638	746	294	2018
	477,990	44,123	12,420	7,693	5,412	203	2002 Actual
	478,488	44,123	12,420	7,693	5,412	423	2002 Typical
NC	242,286	42,536	1,503	1,892	5,751	566	2009
	120,165	46,314	1,481	905	6,085	655	2018
	206,399	53,518	5,972	4,866	12,900	1,281	2002 Actual
	210,272	53,518	5,972	4,866	12,900	1,187	2002 Typical
SC	129,122	47,193	721	1,701	13,051	1,359	2009
	95,377	52,410	643	1,198	13,457	1,359	2018
	334,151	79,604	9,226	10,441	29,917	25	2002 Actual
	320,146	79,604	9,226	10,441	29,917	60	2002 Typical
TN	255,410	64,964	1,076	5,651	30,577	102	2009
	112,672	56,682	948	5,207	31,962	111	2018
	241,204	63,903	8,294	8,663	105,890	92	2002 Actual
	233,691	63,900	8,294	8,663	105,890	74	2002 Typical
VA	174,777	58,039	1,079	1,707	105,984	124	2009
	98,988	57,790	1,043	507	109,380	158	2018
	516,084	54,070	2,464	2,112	11,667	40	2002 Actual
	500,381	54,077	2,464	2,112	11,667	16	2002 Typical
wv	268,952	55,598	279	359	12,284	23	2009
	106,199	61,702	253	56	12,849	29	2018

Annual VOC Emissions by Source Sector

Annual VOC Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	2,295	47,037	127,295	60,487	182,674	25,278	2002 Actual
	2,288	47,035	127,295	60,487	182,674	26,526	2002 Typical
AL	2,473	46,644	76,990	50,249	143,454	27,502	2009
	2,952	54,291	49,175	40,407	153,577	27,539	2018
	2,524	38,471	527,209	272,072	404,302	42,724	2002 Actual
	2,531	38,471	527,209	272,072	404,302	51,527	2002 Typical
FL	2,730	36,882	340,947	209,543	420,172	51,527	2009
	3,047	42,813	222,303	183,452	489,975	51,527	2018
	1,244	33,709	283,421	85,965	299,679	33,979	2002 Actual
	1,256	33,709	283,421	85,965	299,679	33,918	2002 Typical
GA	2,314	34,116	195,125	67,686	272,315	34,710	2009
	2,816	40,282	109,763	56,761	319,328	34,710	2018
	1,487	44,834	103,503	44,805	95,375	410	2002 Actual
	1,481	44,834	103,503	44,805	95,375	1,172	2002 Typical
KY	1,369	47,786	73,942	38,558	94,042	1,497	2009
	1,426	55,861	47,066	30,920	103,490	1,567	2018
	648	43,204	87,672	41,081	131,808	622	2002 Actual
	629	43,203	87,672	41,081	131,808	675	2002 Typical
MS	564	37,747	52,107	36,197	124,977	2,266	2009
	1,274	45,335	31,616	28,842	140,134	2,355	2018
	988	61,182	263,766	94,480	237,926	1,624	2002 Actual
	986	61,182	263,766	94,480	237,926	3,387	2002 Typical
NC	954	61,925	168,676	74,056	187,769	4,530	2009
	1,302	70,875	101,099	61,327	189,591	5,236	2018
	470	38,458	116,163	55,016	161,000	14,202	2002 Actual
	470	38,458	116,163	55,016	161,000	14,666	2002 Typical
SC	723	34,403	72,603	43,061	146,107	16,045	2009
	931	41,987	46,301	36,131	161,228	16,045	2018
	926	84,328	179,807	66,450	153,307	202	2002 Actual
	890	84,328	179,807	66,450	153,307	476	2002 Typical
TN	932	73,498	115,181	55,358	154,377	817	2009
	976	92,456	67,324	45,084	182,222	888	2018
	754	43,152	159,790	74,866	174,116	735	2002 Actual
	747	43,152	159,790	74,866	174,116	593	2002 Typical
VA	788	43,726	96,770	57,009	147,034	994	2009
	980	53,186	61,964	49,052	150,919	1,267	2018
	1,180	14,595	42,174	18,566	60,443	317	2002 Actual
	1,140	14,595	42,174	18,566	60,443	125	2002 Typical
WV	1,361	13,043	24,843	18,069	55,288	186	2009
	1,387	15,582	16,121	14,086	60,747	236	2018

APPENDIX B:

STATE VMT TOTALS

State VMT Totals

Million Miles Per Year

2002	LDGV	LDGT1	LDGT2	HDDV	LDDV	LDDT	HDDV	MC	TOTAL
AL	31,982	12,728	4,347	1,630	63	69	4,709	196	55,723
FL	105,340	40,835	13,945	5,079	206	220	12,465	591	178,681
GA	61,660	24,394	8,331	3,103	121	132	8,673	371	106,785
KY	28,751	12,189	3,366	1,606	55	55	4,827	171	51,020
MS	23,933	6,724	439	1,025	330	125	3,610	92	36,278
NC	51,189	30,339	10,787	4,119	230	230	9,440	461	106,795
SC	26,672	10,750	3,671	1,395	52	58	4,306	171	47,074
TN	30,809	20,272	6,922	2,943	52	111	6,810	397	68,316
VA	36,336	24,784	8,667	2,148	61	139	4,969	369	77,472
WV	9,010	5,931	2,028	732	25	37	1,664	117	19,544

2009	LDGV	LDGT1	LDGT2	HDDV	LDDV	LDDT	HDDV	MC	TOTAL
AL	30,638	18,598	5,511	2,069	65	72	5,976	249	63,178
FL	107,641	62,449	18,697	6,820	215	230	16,743	794	213,590
GA	61,569	36,641	10,933	4,077	126	137	11,374	487	125,343
KY	28,006	16,984	4,428	1,983	58	57	5,983	231	57,729
MS	23,641	10,131	573	1,341	356	135	4,719	120	41,017
NC	48,495	43,484	15,122	4,576	40	224	10,928	527	123,396
SC	26,451	16,119	4,796	1,824	55	61	5,617	223	55,147
TN	28,775	28,650	8,521	3,627	52	111	8,391	490	78,615
VA	33,663	34,814	10,597	2,624	61	137	6,073	451	88,419
WV	8,128	8,205	2,427	878	25	37	1,995	140	21,835

2018	LDGV	LDGT1	LDGT2	HDDV	LDDV	LDDT	HDDV	MC	TOTAL
AL	31,706	23,562	6,990	2,634	67	84	7,607	317	72,966
FL	116,576	83,385	24,996	9,156	221	301	22,491	1,066	258,191
GA	65,214	47,687	14,245	5,332	129	171	14,853	637	148,269
KY	29,353	21,058	5,558	2,463	60	66	7,454	288	66,300
MS	24,787	12,984	736	1,727	372	159	6,076	155	46,996
NC	42,247	51,568	18,260	4,985	279	279	11,396	553	129,566
SC	27,930	20,880	6,220	2,375	57	75	7,306	290	65,133
TN	29,253	35,702	10,629	4,538	52	130	10,500	613	91,417
VA	35,030	44,438	13,543	3,358	62	164	7,770	578	104,944
WV	8,130	10,025	2,969	1,078	25	41	2,451	172	24,891

APPENDIX C:

STATE TIER 1 EMISSION TOTALS

State Tier 1 Emission Totals

State	Year	TIER1	TIER 1 NAME	co	NH3	NOX	PM10	PM2.5	SO2	VOC
AL	2002	01	FUEL COMB. ELEC. UTIL.	11,279	317	161,038	7,646	4,113	447,828	2,295
AL	2002	02	FUEL COMB. INDUSTRIAL	67,132	234	51,535	6,730	3,792	40,918	2,239
AL	2002	03	FUEL COMB. OTHER	70,498	169	19,237	6,411	5,528	39,606	56,120
A.T.	2002	0.4	CHEMICAL & ALLIED PRODUCT	5 701	25	2.022	1 220	000	10.770	7.072
AL	2002	04	MFG	5,721	35	2,032	1,220	888	12,770	7,273
AL	2002	05	METALS PROCESSING	38,247	376	6,011	9,107	7,803	14,039	3,299
AL	2002	06	PETROLEUM & RELATED	13,606	0	878	194	155	22,991	4,024
AL	2002	00	INDUSTRIES	15,000	U	0/0	194	133	22,991	4,024
AL	2002	07	OTHER INDUSTRIAL PROCESSES	47,676	1,468	25,252	22,689	9,516	17,904	25,304
AL	2002	08	SOLVENT UTILIZATION	216	0	226	149	126	3	108,437
AL	2002	09	STORAGE & TRANSPORT	174	0	230	1,086	636	13	16,522
AL	2002	10	WASTE DISPOSAL & RECYCLING	104,914	10	4,016	15,832	14,946	489	12,612
AL	2002	11	HIGHWAY VEHICLES	1,321,528	5,588	158,212	3,903	2,799	6,900	127,295
AL	2002	12	OFF-HIGHWAY	414,385	33	65,366	4,787	4,502	7,584	60,487
AL	2002	14	MISCELLANEOUS	385,005	59,596	8,065	402,646	74,483	2,208	19,161
	2002			2,480,381	67,827	502,098	482,402	129,287	613,255	445,065
	Total	0.1	EVEL COMP. ELEC LIEU	, , ,	,					
AL	2009	01	FUEL COMB. ELEC. UTIL.	14,986	359	82,305	6,969	3,921	378,052	2,473
AL	2009	02	FUEL COMB. INDUSTRIAL	68,146	274	36,301	6,140	3,438	40,651	2,191
AL	2009	03	FUEL COMB. OTHER	52,256	158	19,514	5,904	5,104	36,048	31,403
AL	2009	04	CHEMICAL & ALLIED PRODUCT MFG	6,118	38	2,273	1,257	912	13,660	6,613
AL	2009	05	METALS PROCESSING	38,969	500	6,021	9,062	7,756	16,629	3,305
AL	2009	06	PETROLEUM & RELATED INDUSTRIES	13,241	0	858	221	177	22,495	3,336
AL	2009	07	OTHER INDUSTRIAL PROCESSES	52,004	1,571	26,340	24,196	10,197	19,383	26,519
AL	2009	08	SOLVENT UTILIZATION	247	0	257	165	139	4	92,631
AL	2009	09	STORAGE & TRANSPORT	192	0	253	1,146	584	14	17,738
AL	2009	10	WASTE DISPOSAL & RECYCLING	87,225	11	3,634	14,504	13,485	590	11,207
AL	2009	11	HIGHWAY VEHICLES	915,647	6,364	101,831	3,171	2,032	810	76,990
AL	2009	12	OFF-HIGHWAY	454,686	36	56,862	4,027	3,776	3,471	50,249
AL	2009	14	MISCELLANEOUS	463,498	65,899	9,788	428,698	82,679	2,681	22,657
	2009			2,167,216	75,209	346,238	505,457	134,201	534,489	347,312
	Total			2,107,210	75,209	340,236			554,469	347,312
AL	2018	01	FUEL COMB. ELEC. UTIL.	24,342	1,072	64,358	7,822	4,768	135,851	2,952
AL	2018	02	FUEL COMB. INDUSTRIAL	69,068	275	38,424	6,427	3,599	40,126	2,293
AL	2018	03	FUEL COMB. OTHER	43,744	164	20,185	5,641	4,818	37,162	21,215
AL	2018	04	CHEMICAL & ALLIED PRODUCT MFG	7,384	46	2,804	1,523	1,106	16,509	8,040
AL	2018	05	METALS PROCESSING	49,770	674	7,519	11,036	9,423	21,824	4,234
AL	2018	06	PETROLEUM & RELATED INDUSTRIES	13,002	0	848	258	207	15,364	3,421
AL	2018	07	OTHER INDUSTRIAL PROCESSES	60,452	1,732	30,831	27,727	11,812	21,843	30,267
AL	2018	08	SOLVENT UTILIZATION	301	0	317	200	169	4	112,412
AL	2018	09	STORAGE & TRANSPORT	234	0	307	1,366	699	17	18,900
AL	2018	10	WASTE DISPOSAL & RECYCLING	88,758	13	3,867	15,343	14.143	718	11,938
AL	2018	11	HIGHWAY VEHICLES	676,210	7,298	47.298	2,410	1,192	720	49,175
AL	2018	12	OFF-HIGHWAY	488,924	42	43,799	3,041	2,835	2,818	40,407
AL	2018	14	MISCELLANEOUS	464,235	73.529	9.803	458,551	85,538	2,686	22,686
	2018				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	Total			1,986,424	84,845	270,362	541,346	140,310	295,642	327,940

State Tier 1 Emission Totals

State	Year	TIER1	TIER 1 NAME	со	NH3	NOX	PM10	PM2.5	SO2	VOC
FL	2002	01	FUEL COMB. ELEC. UTIL.	57,113	234	257,677	21,387	15,643	453,631	2,524
FL	2002	02	FUEL COMB. INDUSTRIAL	64,798	131	45,157	20,442	18,547	42,524	4,219
FL	2002	03	FUEL COMB. OTHER	49,230	99	11,597	8,464	8,074	20,031	16,123
FL	2002	04	CHEMICAL & ALLIED PRODUCT MFG	745	1,101	2,221	1,868	1,488	34,462	3,542
FL	2002	05	METALS PROCESSING	1,404	1	194	449	334	882	82
FL	2002	06	PETROLEUM & RELATED INDUSTRIES	1,070	0	560	259	129	470	724
FL	2002	07	OTHER INDUSTRIAL PROCESSES	18,586	19	12,325	23,419	11,844	6,515	27,024
FL	2002	08	SOLVENT UTILIZATION	0	0	1	128	110	0	304,582
FL	2002	09	STORAGE & TRANSPORT	161	0	561	1,645	720	38	79,281
FL	2002	10	WASTE DISPOSAL & RECYCLING	54,721	351	2,535	9,943	9,405	659	9,125
FL	2002	11	HIGHWAY VEHICLES	4,550,447	18,114	465,640	11,275	7,868	20,915	527,209
FL	2002	12	OFF-HIGHWAY	1,920,729	134	180,627	18,281	17,415	20,614	272,072
FL	2002	14	MISCELLANEOUS	752,915	40,269	14,821	497,846	114,447	4,057	40,795
	2002 Total			7,471,920	60,454	993,915	615,407	206,025	604,797	1,287,301
FL	2009	01	FUEL COMB. ELEC. UTIL.	35,928	1,631	86,165	9,007	5,910	186,055	1,910
FL	2009	02	FUEL COMB. INDUSTRIAL	69,972	146	44,480	16,265	14,827	38,225	4,473
FL	2009	03	FUEL COMB. OTHER	33,014	100	10,800	7,555	7,174	19,882	10,907
FL	2009	04	CHEMICAL & ALLIED PRODUCT MFG	901	1,231	2,461	1,908	1,526	34,961	3,821
FL	2009	05	METALS PROCESSING	1,545	1	176	361	251	993	82
FL	2009	06	PETROLEUM & RELATED INDUSTRIES	1,190	0	612	304	156	519	748
FL	2009	07	OTHER INDUSTRIAL PROCESSES	18,593	26	13,521	33,084	19,357	6,881	26,413
FL	2009	08	SOLVENT UTILIZATION	0	0	1	132	113	0	319,723
FL	2009	09	STORAGE & TRANSPORT	187	0	621	1,661	727	50	83,880
FL	2009	10	WASTE DISPOSAL & RECYCLING	177,953	342	6,251	22,971	22,364	698	17,241
FL	2009	11	HIGHWAY VEHICLES	3,308,863	21,549	312,321	9,801	6,104	2,584	336,707
FL	2009	12	OFF-HIGHWAY	2,104,920	148	163,794	15,613	14,866	8,967	209,543
FL	2009	14	MISCELLANEOUS	764,004	41,471	15,075	557,331	120,796	4,129	41,290
	2009 Total			6,596,484	66,874	707,273	687,353	223,192	406,888	1,061,801
FL	2018	01	FUEL COMB. ELEC. UTIL.	85,495	2,976	87,645	12,791	9,417	194,028	3,047
FL	2018	02	FUEL COMB. INDUSTRIAL	77,465	156	48,879	17,876	16,324	37,205	4,894
FL	2018	03	FUEL COMB. OTHER	27,094	110	12,356	7,255	6,853	20,975	8,879
FL	2018	04	CHEMICAL & ALLIED PRODUCT MFG	1,200	1,448	3,119	2,367	1,907	41,395	4,739
FL	2018	05	METALS PROCESSING	1,973	2	225	466	323	1,325	106
FL	2018	06	PETROLEUM & RELATED INDUSTRIES	1,513	0	778	387	198	659	918
FL	2018	07	OTHER INDUSTRIAL PROCESSES	20,748	35	15,855	39,842	23,289	7,741	29,716
FL	2018	08	SOLVENT UTILIZATION	0	0	1	158	135	0	387,657
FL	2018	09	STORAGE & TRANSPORT	226	0	690	2,004	877	58	87,732
FL	2018	10	WASTE DISPOSAL & RECYCLING	180,730	418	6,486	24,140	23,427	769	18,335
FL	2018	11	HIGHWAY VEHICLES	2,554,160	26,163	150,180	8,268	4,038	2,533	222,303
FL	2018	12	OFF-HIGHWAY	2,323,327	171	127,885	12,497	11,868	7,536	183,452
FL	2018	14	MISCELLANEOUS	763,701	43,251	15,068	628,984	127,364	4,129	41,338
	2018 Total			6,037,633	74,728	469,168	757,033	226,019	318,353	993,116

State Tier 1 Emission Totals

State	Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	VOC
GA	2002	01	FUEL COMB. ELEC. UTIL.	9,712	83	147,517	11,224	4,939	514,952	1,244
GA	2002	02	FUEL COMB. INDUSTRIAL	59,492	27	53,039	12,037	7,886	88,791	3,956
GA	2002	03	FUEL COMB. OTHER	63,314	17	14,465	10,142	10,057	10,740	27,226
GA	2002	04	CHEMICAL & ALLIED PRODUCT MFG	5,387	920	2,277	391	305	2,721	2,668
GA	2002	05	METALS PROCESSING	330	0	60	147	94	0	70
GA	2002	06	PETROLEUM & RELATED INDUSTRIES	41	0	3	69	44	68	175
GA	2002	07	OTHER INDUSTRIAL PROCESSES	27,960	2,666	12,215	39,630	13,073	8,701	26,999
GA	2002	08	SOLVENT UTILIZATION	4	0	22	13	13	0	234,744
GA	2002	09	STORAGE & TRANSPORT	39	0	6	583	360	0	26,334
GA	2002	10	WASTE DISPOSAL & RECYCLING	146,183	16	5,164	23,422	22,506	312	15,003
GA	2002	11	HIGHWAY VEHICLES	2,735,968	10,546	307,732	7,246	5,168	12,184	283,421
GA	2002	12	OFF-HIGHWAY	791,158	60	97,961	8,618	8,226	9,005	85,965
GA	2002	14	MISCELLANEOUS	590,400	83,458	12,308	695,723	124,142	3,372	29,640
	2002 Total			4,429,989	97,795	652,769	809,244	196,815	650,846	737,444
GA	2009	01	FUEL COMB. ELEC. UTIL.	23,721	686	98,497	17,891	10,907	408,679	2,314
GA	2009	02	FUEL COMB. INDUSTRIAL	63,067	28	53,726	11,206	7,390	89,850	4,163
GA	2009	03	FUEL COMB. OTHER	45,184	17	15,347	8,496	8,400	10,981	15,683
GA	2009	04	CHEMICAL & ALLIED PRODUCT MFG	6,044	1,032	2,531	436	341	2,743	2,814
GA	2009	05	METALS PROCESSING	363	0	61	159	100	0	47
GA	2009	06	PETROLEUM & RELATED INDUSTRIES	50	0	4	83	54	82	154
GA	2009	07	OTHER INDUSTRIAL PROCESSES	29,976	2,902	12,528	45,339	14,758	7,662	28,441
GA	2009	08	SOLVENT UTILIZATION	4	0	25	14	14	0	216,248
GA	2009	09	STORAGE & TRANSPORT	45	0	7	649	401	0	27,821
GA	2009	10	WASTE DISPOSAL & RECYCLING	218,460	18	7,419	31,955	30,900	360	18,711
GA	2009	11	HIGHWAY VEHICLES	1,983,803	12,687	209,349	6,072	3,840	1,585	195,125
GA	2009	12	OFF-HIGHWAY	882,970	68	85,733	7,521	7,175	2,725	67,686
GA	2009	14	MISCELLANEOUS	515,329	91,406	10,637	765,043	125,665	2,914	26,388
	2009 Total			3,769,016	108,844	495,864	894,865	209,944	527,582	605,595
GA	2018	01	FUEL COMB. ELEC. UTIL.	44,269	1,677	69,856	20,732	13,881	68,515	2,816
GA	2018	02	FUEL COMB. INDUSTRIAL	67,067	30	57,232	11,755	7,769	94,403	4,424
GA	2018	03	FUEL COMB. OTHER	39,440	17	17,801	7,722	7,622	11,958	11,482
GA	2018	04	CHEMICAL & ALLIED PRODUCT MFG	7,076	1,208	2,982	517	405	3,436	3,524
GA	2018	05	METALS PROCESSING	421	0	76	185	118	0	55
GA	2018	06	PETROLEUM & RELATED INDUSTRIES	63	0	5	105	68	104	191
GA	2018	07	OTHER INDUSTRIAL PROCESSES	33,611	3,559	14,460	55,130	17,899	8,748	33,333
GA	2018	08	SOLVENT UTILIZATION	5	0	30	22	22	0	264,326
GA	2018	09	STORAGE & TRANSPORT	54	0	9	764	470	0	29,409
GA	2018	10	WASTE DISPOSAL & RECYCLING	235,690	22	8,120	35,280	34,038	423	20,411
GA	2018	11	HIGHWAY VEHICLES	1,476,981	14,873	102,179	4,844	2,380	1,457	109,763
GA	2018	12	OFF-HIGHWAY	973,872	79	64,579	6,015	5,730	1,709	56,761
GA	2018	14	MISCELLANEOUS	515,220	102,075	10,635	859,835	134,730	2,914	26,368
	2018 Total			3,393,769	123,540	347,964	1,002,907	225,133	193,668	562,862

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
KY	2002	01	FUEL COMB. ELEC. UTIL.	12,619	326	198,817	4,701	2,802	484,057	1,487
KY	2002	02	FUEL COMB. INDUSTRIAL	14,110	182	60,674	2,155	1,463	41,825	1,565
KY	2002	03	FUEL COMB. OTHER	40,806	55	4,997	7,679	7,352	9,647	12,711
KY	2002	04	CHEMICAL & ALLIED PRODUCT MFG	176	214	296	774	581	2,345	3,462
KY	2002	05	METALS PROCESSING	89,197	6	1,082	3,396	2,720	12,328	1,508
KY	2002	06	PETROLEUM & RELATED INDUSTRIES	4,304	335	2,519	308	205	5,747	2,895
KY	2002	07	OTHER INDUSTRIAL PROCESSES	6,493	78	6,518	31,429	10,394	3,333	25,388
KY	2002	08	SOLVENT UTILIZATION	0	10	9	317	241	1	61,834
KY	2002	09	STORAGE & TRANSPORT	33	8	15	1,920	1,177	3	18,853
KY	2002	10	WASTE DISPOSAL & RECYCLING	20,622	8	1,768	7,229	6,476	606	7,927
KY	2002	11	HIGHWAY VEHICLES	1,230,148	5,055	156,417	3,723	2,697	6,308	103,503
KY	2002	12	OFF-HIGHWAY	325,993	31	104,571	6,425	6,046	14,043	44,805
KY	2002	14	MISCELLANEOUS	9,651	50,953	209	195,827	26,941	51	4,476
	2002 Total			1,754,151	57,261	537,890	265,880	69,094	580,293	290,414
KY	2009	01	FUEL COMB. ELEC. UTIL.	15,812	400	97,263	6,463	4,279	271,669	1,369
KY	2009	02	FUEL COMB. INDUSTRIAL	14,986	195	61,683	2,105	1,456	42,433	1,476
KY	2009	03	FUEL COMB. OTHER	30,045	54	5,178	7,035	6,725	10,123	9,148
KY	2009	04	CHEMICAL & ALLIED PRODUCT MFG	179	249	300	851	633	2,384	3,635
KY	2009	05	METALS PROCESSING	99,428	7	1,156	3,246	2,550	13,735	1,772
KY	2009	06	PETROLEUM & RELATED INDUSTRIES	4,818	377	2,828	344	230	6,460	3,052
KY	2009	07	OTHER INDUSTRIAL PROCESSES	7,212	84	6,674	32,194	10,912	3,634	27,548
KY	2009	08	SOLVENT UTILIZATION	0	10	11	371	283	1	62,595
KY	2009	09	STORAGE & TRANSPORT	38	9	18	2,064	1,268	3	20,038
KY	2009	10	WASTE DISPOSAL & RECYCLING	22,388	9	1,979	7,770	6,925	733	7,725
KY	2009	11	HIGHWAY VEHICLES	963,762	5,796	101,182	2,976	1,920	759	73,942
KY	2009	12	OFF-HIGHWAY	357,800	34	94,752	5,544	5,203	9,180	38,558
KY	2009	14	MISCELLANEOUS	32,627	52,915	702	206,463	29,601	187	6,335
	2009 Total			1,549,096	60,139	373,725	277,427	71,984	361,300	257,193
KY	2018	01	FUEL COMB. ELEC. UTIL.	17,144	476	64,378	6,694	4,434	222,102	1,426
KY	2018	02	FUEL COMB. INDUSTRIAL	15,692	205	64,533	2,203	1,528	43,772	1,555
KY	2018	03	FUEL COMB. OTHER	24,764	53	5,550	6,469	6,169	9,947	7,479
KY	2018	04	CHEMICAL & ALLIED PRODUCT MFG	219	317	367	1,054	781	2,884	4,384
KY	2018	05	METALS PROCESSING	114,470	9	1,508	3,898	3,065	15,800	2,343
KY	2018	06	PETROLEUM & RELATED INDUSTRIES	5,495	434	3,244	392	262	7,426	3,394
KY	2018	07	OTHER INDUSTRIAL PROCESSES	8,303	93	7,872	35,349	12,377	4,141	31,394
KY	2018	08	SOLVENT UTILIZATION	0	12	14	464	352	1	73,525
KY	2018	09	STORAGE & TRANSPORT	44	10	21	2,408	1,481	4	21,196
KY	2018	10	WASTE DISPOSAL & RECYCLING	24,677	11	2,256	8,481	7,518	894	8,392
KY	2018	11	HIGHWAY VEHICLES	807,536	7,811	52,263	2,580	1,272	763	47,066
KY	2018	12	OFF-HIGHWAY	381,215	40	79,392	4,556	4,256	8,592	30,920
KY	2018	14	MISCELLANEOUS	33,931	55,118	729	218,725	30,626	196	7,254
	2018 Total			1,433,491	64,588	282,127	293,273	74,122	316,520	240,329

State	Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	VOC
MS	2002	01	FUEL COMB. ELEC. UTIL.	5,303	190	43,135	1,633	1,138	67,429	648
MS	2002	02	FUEL COMB. INDUSTRIAL	22,711	28	48,699	5,011	3,638	9,746	8,024
MS	2002	03	FUEL COMB. OTHER	36,752	34	4,502	5,445	5,414	789	22,923
MS	2002	04	CHEMICAL & ALLIED PRODUCT MFG	15,410	361	1,725	849	440	1,663	2,375
MS	2002	05	METALS PROCESSING	1,031	0	115	122	58	36	371
MS	2002	06	PETROLEUM & RELATED INDUSTRIES	975	20	1,187	790	335	15,560	20,788
MS	2002	07	OTHER INDUSTRIAL PROCESSES	13,884	747	9,219	27,617	8,051	8,866	15,525
MS	2002	08	SOLVENT UTILIZATION	45	7	105	219	178	1	80,760
MS	2002	09	STORAGE & TRANSPORT	74	0	80	124	38	40	23,327
MS	2002	10	WASTE DISPOSAL & RECYCLING	1,414	9	89	447	324	31	886
MS	2002	11	HIGHWAY VEHICLES	864,290	3,585	111,914	2,859	2,112	4,614	87,672
MS	2002	12	OFF-HIGHWAY	236,752	23	88,787	5,010	4,690	11,315	41,081
MS	2002	14	MISCELLANEOUS	13,386	58,741	288	323,511	42,932	78	654
	2002 Total			1,212,028	63,748	309,845	373,637	69,348	120,166	305,035
MS	2009	01	FUEL COMB. ELEC. UTIL.	7,116	334	47,276	5,182	4,996	76,646	564
MS	2009	02	FUEL COMB. INDUSTRIAL	24,607	30	44,095	3,728	2,787	7,388	8,007
MS	2009	03	FUEL COMB. OTHER	26,024	33	4,514	5,278	5,245	751	17,445
MS	2009	04	CHEMICAL & ALLIED PRODUCT MFG	16,141	405	1,955	941	488	1,880	2,614
MS	2009	05	METALS PROCESSING	1,098	0	128	129	62	37	402
MS	2009	06	PETROLEUM & RELATED INDUSTRIES	1,101	23	1,262	894	379	7,926	13,317
MS	2009	07	OTHER INDUSTRIAL PROCESSES	14,181	197	8,376	31,380	8,628	8,254	16,282
MS	2009	08	SOLVENT UTILIZATION	50	8	118	239	194	1	80,393
MS	2009	09	STORAGE & TRANSPORT	92	0	100	172	59	49	23,494
MS	2009	10	WASTE DISPOSAL & RECYCLING	1,486	10	95	473	339	32	743
MS	2009	11	HIGHWAY VEHICLES	609,972	4,035	70,743	2,275	1,508	537	52,107
MS	2009	12	OFF-HIGHWAY	257,453	25	80,567	4,270	3,985	7,191	36,197
MS	2009	14	MISCELLANEOUS	48,314	63,886	1,037	337,018	46,695	283	2,295
	2009 Total			1,007,634	68,987	260,266	391,978	75,365	110,975	253,858
MS	2018	01	FUEL COMB. ELEC. UTIL.	17,348	827	21,535	7,412	7,252	15,213	1,274
MS	2018	02	FUEL COMB. INDUSTRIAL	26,082	33	46,792	4,073	3,039	5,167	8,556
MS	2018	03	FUEL COMB. OTHER	20,900	32	4,768	4,964	4,928	726	14,670
MS	2018	04	CHEMICAL & ALLIED PRODUCT MFG	20,175	475	2,337	1,132	588	2,242	3,290
MS	2018	05	METALS PROCESSING	1,357	0	167	160	79	48	461
MS	2018	06	PETROLEUM & RELATED INDUSTRIES	1,267	26	1,294	1,010	430	8,484	14,407
MS	2018	07	OTHER INDUSTRIAL PROCESSES	16,267	216	9,996	38,492	10,492	9,657	20,301
MS	2018	08	SOLVENT UTILIZATION	60	9	141	301	244	1	98,354
MS	2018	09	STORAGE & TRANSPORT	115	0	124	210	73	62	24,537
MS	2018	10	WASTE DISPOSAL & RECYCLING	1,638	12	114	533	372	34	870
MS	2018	11	HIGHWAY VEHICLES	445,493	4,566	30,619	1,624	819	440	31,616
MS	2018	12	OFF-HIGHWAY	270,726	29	68,252	3,452	3,203	6,638	28,842
MS	2018	14	MISCELLANEOUS	50,160	70,096	1,076	352,321	47,869	294	2,377
	2018 Total			871,587	76,321	187,215	415,685	79,388	49,006	249,556

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
NC	2002	01	FUEL COMB. ELEC. UTIL.	13,885	54	151,850	22,754	16,498	477,990	988
NC	2002	02	FUEL COMB. INDUSTRIAL	23,578	301	48,590	5,596	4,334	33,395	2,540
NC	2002	03	FUEL COMB. OTHER	217,008	2,318	16,460	31,777	26,746	3,971	87,985
NC	2002	04	CHEMICAL & ALLIED PRODUCT MFG	13,952	535	859	866	538	5,736	4,313
NC	2002	05	METALS PROCESSING	5,876	60	201	564	467	1,010	2,512
NC	2002	06	PETROLEUM & RELATED INDUSTRIES	461	0	174	104	52	283	140
NC	2002	07	OTHER INDUSTRIAL PROCESSES	8,552	480	7,380	25,328	8,924	3,426	18,025
NC	2002	08	SOLVENT UTILIZATION	130	307	229	524	484	26	151,383
NC	2002	09	STORAGE & TRANSPORT	66	46	53	639	354	1	16,120
NC	2002	10	WASTE DISPOSAL & RECYCLING	125,528	247	7,482	2,239	2,218	1,666	15,568
NC	2002	11	HIGHWAY VEHICLES	2,873,992	9,702	327,329	6,579	4,623	12,420	263,766
NC	2002	12	OFF-HIGHWAY	808,231	65	84,284	7,348	7,005	7,693	94,480
NC	2002	14	MISCELLANEOUS	35,218	158,900	757	229,909	33,291	203	1,765
	2002 Total			4,126,478	173,014	645,648	334,226	105,533	547,821	659,585
NC	2009	01	FUEL COMB. ELEC. UTIL.	14,942	445	66,516	22,152	15,949	242,286	954
NC	2009	02	FUEL COMB. INDUSTRIAL	24,871	312	38,161	5,159	3,871	30,788	2,510
NC	2009	03	FUEL COMB. OTHER	158,837	2,723	18,441	25,334	19,467	4,060	49,819
NC	2009	04	CHEMICAL & ALLIED PRODUCT MFG	14,732	599	933	981	607	6,286	4,925
NC	2009	05	METALS PROCESSING	6,358	67	207	627	528	1,130	2,790
NC	2009	06	PETROLEUM & RELATED INDUSTRIES	556	0	212	127	64	349	162
NC	2009	07	OTHER INDUSTRIAL PROCESSES	9,211	507	8,061	28,524	9,788	3,712	18,144
NC	2009	08	SOLVENT UTILIZATION	142	335	246	549	506	28	136,114
NC	2009	09	STORAGE & TRANSPORT	75	51	55	696	380	1	17,367
NC	2009	10	WASTE DISPOSAL & RECYCLING	139,518	307	8,354	2,774	2,750	1,913	17,331
NC	2009	11	HIGHWAY VEHICLES	1,991,708	11,825	201,609	5,572	3,493	1,503	168,676
NC	2009	12	OFF-HIGHWAY	887,605	72	70,997	6,055	5,760	1,892	74,056
NC	2009	14	MISCELLANEOUS	96,825	167,131	2,080	250,912	49,956	566	4,648
	2009 Total			3,345,380	184,373	415,874	349,461	113,118	294,514	497,496
NC	2018	01	FUEL COMB. ELEC. UTIL.	19,870	663	61,103	35,275	28,137	120,165	1,302
NC	2018	02	FUEL COMB. INDUSTRIAL	26,873	341	40,898	5,594	4,222	32,507	2,702
NC	2018	03	FUEL COMB. OTHER	131,365	2,857	20,027	21,847	16,231	4,050	34,104
NC	2018	04	CHEMICAL & ALLIED PRODUCT MFG	18,463	702	1,105	1,175	726	7,414	6,113
NC	2018	05	METALS PROCESSING	7,576	76	255	771	657	1,335	3,516
NC	2018	06	PETROLEUM & RELATED INDUSTRIES	712	0	272	162	82	448	207
NC	2018	07	OTHER INDUSTRIAL PROCESSES	10,675	559	9,259	34,339	11,601	4,357	20,978
NC	2018	08	SOLVENT UTILIZATION	169	375	277	588	540	31	152,979
NC	2018	09	STORAGE & TRANSPORT	91	59	67	808	430	2	19,511
NC	2018	10	WASTE DISPOSAL & RECYCLING	156,599	387	9,456	3,502	3,474	2,234	19,789
NC	2018	11	HIGHWAY VEHICLES	1,362,214	14,065	87,791	4,392	2,123	1,481	101,099
NC	2018	12	OFF-HIGHWAY	960,709	83	49,046	4,298	4,069	905	61,327
NC	2018	14	MISCELLANEOUS	111,705	177,474	2,399	273,030	54,376	655	5,333
	2018 Total			2,807,022	197,643	281,955	385,780	126,667	175,583	428,960

State	Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	voc
SC	2002	01	FUEL COMB. ELEC. UTIL.	6,990	142	88,241	21,400	17,154	206,399	470
SC	2002	02	FUEL COMB. INDUSTRIAL	31,771	97	38,081	5,308	3,641	44,958	1,338
SC	2002	03	FUEL COMB. OTHER	75,800	65	4,367	6,261	6,166	4,318	49,171
SC	2002	04	CHEMICAL & ALLIED PRODUCT MFG	2,526	173	25	501	318	59	8,784
SC	2002	05	METALS PROCESSING	13,833	0	450	639	408	4,160	660
SC	2002	06	PETROLEUM & RELATED INDUSTRIES	248	0	283	120	71	170	114
SC	2002	07	OTHER INDUSTRIAL PROCESSES	9,502	1,237	15,145	15,224	6,981	12,128	16,342
SC	2002	08	SOLVENT UTILIZATION	0	1	1	78	60	0	88,878
SC	2002	09	STORAGE & TRANSPORT	10	0	4	1,025	626	0	21,009
SC	2002	10	WASTE DISPOSAL & RECYCLING	44,844	10	3,380	6,852	6,321	625	13,708
SC	2002	11	HIGHWAY VEHICLES	1,241,359	4,694	140,489	3,452	2,501	5,972	116,163
SC	2002	12	OFF-HIGHWAY	413,964	33	50,249	4,152	3,945	4,866	55,016
SC	2002	14	MISCELLANEOUS	239,836	28,975	4,678	264,959	48,898	1,281	13,655
	2002 Total			2,080,683	35,426	345,395	329,971	97,090	284,936	385,308
SC	2009	01	FUEL COMB. ELEC. UTIL.	11,643	370	48,668	20,041	16,548	129,122	723
SC	2009	02	FUEL COMB. INDUSTRIAL	32,661	105	35,011	2,978	2,087	36,660	1,374
SC	2009	03	FUEL COMB. OTHER	49,914	63	4,551	5,264	5,183	4,359	25,073
SC	2009	04	CHEMICAL & ALLIED PRODUCT MFG	2,798	173	26	543	345	60	7,409
SC	2009	05	METALS PROCESSING	15,632	0	448	631	378	4,856	663
SC	2009	06	PETROLEUM & RELATED INDUSTRIES	302	0	340	145	86	200	131
SC	2009	07	OTHER INDUSTRIAL PROCESSES	10,241	1,403	15,069	18,201	7,997	13,443	15,425
SC	2009	08	SOLVENT UTILIZATION	1	1	1	75	58	0	94,590
SC	2009	09	STORAGE & TRANSPORT	13	0	5	569	352	0	21,987
SC	2009	10	WASTE DISPOSAL & RECYCLING	70,379	11	4,215	9,526	8,977	666	15,998
SC	2009	11	HIGHWAY VEHICLES	889,957	5,523	92,499	2,862	1,855	721	72,603
SC	2009	12	OFF-HIGHWAY	448,625	36	43,235	3,471	3,294	1,701	43,061
SC	2009	14	MISCELLANEOUS	250,690	31,416	4,962	282,480	51,151	1,359	13,906
	2009 Total			1,782,856	39,101	249,028	346,786	98,312	193,147	312,943
SC	2018	01	FUEL COMB. ELEC. UTIL.	14,975	625	51,751	27,640	23,794	95,377	931
SC	2018	02	FUEL COMB. INDUSTRIAL	35,532	113	36,645	3,683	2,548	38,548	1,482
SC	2018	03	FUEL COMB. OTHER	39,627	65	5,135	4,791	4,711	4,469	16,391
SC	2018	04	CHEMICAL & ALLIED PRODUCT MFG	3,296	212	32	664	423	74	9,107
SC	2018	05	METALS PROCESSING	18,853	0	585	773	476	5,920	867
SC	2018	06	PETROLEUM & RELATED INDUSTRIES	389	0	438	186	110	258	166
SC	2018	07	OTHER INDUSTRIAL PROCESSES	12,136	1,566	17,507	20,128	8,981	15,863	18,290
SC	2018	08	SOLVENT UTILIZATION	1	1	1	93	72	0	119,154
SC	2018	09	STORAGE & TRANSPORT	16	0	6	1,380	842	0	22,739
SC	2018	10	WASTE DISPOSAL & RECYCLING	73,403	13	4,512	10,038	9,443	735	17,167
SC	2018	11	HIGHWAY VEHICLES	663,493	6,473	43,490	2,184	1,087	643	46,301
SC	2018	12	OFF-HIGHWAY	481,332	41	31,758	2,617	2,474	1,198	36,131
SC	2018	14	MISCELLANEOUS	250,637	34,345	4,961	306,342	53,367	1,359	13,896
	2018 Total			1,593,690	43,455	196,820	380,519	108,327	164,444	302,623

State	Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	voc
TN	2002	01	FUEL COMB. ELEC. UTIL.	7,084	204	157,307	14,640	12,166	334,151	926
TN	2002	02	FUEL COMB. INDUSTRIAL	15,257	6	44,510	8,015	6,649	74,146	2,021
TN	2002	03	FUEL COMB. OTHER	77,857	25	15,568	7,967	7,549	16,253	18,346
TN	2002	04	CHEMICAL & ALLIED PRODUCT MFG	36,920	1,518	1,772	3,246	2,201	6,516	24,047
TN	2002	05	METALS PROCESSING	41,371	14	1,182	7,620	7,030	5,818	6,898
TN	2002	06	PETROLEUM & RELATED INDUSTRIES	543	0	331	314	243	383	1,850
TN	2002	07	OTHER INDUSTRIAL PROCESSES	9,420	44	11,794	30,484	12,867	5,845	27,336
TN	2002	08	SOLVENT UTILIZATION	275	1	5,066	2,103	1,818	58	110,872
TN	2002	09	STORAGE & TRANSPORT	22	24	105	1,249	736	134	21,962
TN	2002	10	WASTE DISPOSAL & RECYCLING	22,143	31	1,839	7,068	6,469	349	15,505
TN	2002	11	HIGHWAY VEHICLES	1,917,842	6,625	238,577	5,371	3,949	9,226	179,807
TN	2002	12	OFF-HIGHWAY	505,163	43	96,827	6,819	6,458	10,441	66,450
TN	2002	14	MISCELLANEOUS	5,003	34,292	100	179,440	24,708	25	1,978
	2002 Total			2,638,901	42,825	574,980	274,337	92,841	463,345	477,997
TN	2009	01	FUEL COMB. ELEC. UTIL.	7,214	227	66,405	15,608	13,092	255,410	932
TN	2009	02	FUEL COMB. INDUSTRIAL	15,536	6	37,046	7,157	5,973	63,076	1,773
TN	2009	03	FUEL COMB. OTHER	61,442	27	14,792	7,134	6,786	16,955	12,781
TN	2009	04	CHEMICAL & ALLIED PRODUCT MFG	35,440	1,719	1,958	3,369	2,271	1,949	15,492
TN	2009	05	METALS PROCESSING	45,183	15	1,245	7,337	6,823	6,537	7,671
TN	2009	06	PETROLEUM & RELATED INDUSTRIES	572	0	328	355	276	263	1,401
TN	2009	07	OTHER INDUSTRIAL PROCESSES	9,911	62	12,635	32,599	13,687	6,240	28,338
TN	2009	08	SOLVENT UTILIZATION	309	1	5,983	2,431	2,095	65	112,264
TN	2009	09	STORAGE & TRANSPORT	26	31	12	1,218	733	42	23,686
TN	2009	10	WASTE DISPOSAL & RECYCLING	23,810	35	1,993	7,618	6,968	393	14,922
TN	2009	11	HIGHWAY VEHICLES	1,338,016	7,782	151,912	4,206	2,751	1,076	115,181
TN	2009	12	OFF-HIGHWAY	554,121	48	86,641	5,877	5,557	5,651	55,358
TN	2009	14	MISCELLANEOUS	17,921	35,200	379	192,464	26,830	102	2,814
	2009 Total			2,109,500	45,152	381,331	287,371	93,842	357,760	392,612
TN	2018	01	FUEL COMB. ELEC. UTIL.	7,723	241	31,715	15,941	13,387	112,672	976
TN	2018	02	FUEL COMB. INDUSTRIAL	16,702	7	38,028	7,648	6,408	47,982	1,905
TN	2018	03	FUEL COMB. OTHER	54,486	30	15,502	6,757	6,412	18,091	10,269
TN	2018	04	CHEMICAL & ALLIED PRODUCT MFG	45,455	2,053	2,424	4,263	2,888	6,563	19,950
TN	2018	05	METALS PROCESSING	52,834	17	1,589	9,579	8,953	7,790	9,950
TN	2018	06	PETROLEUM & RELATED INDUSTRIES	665	0	378	414	324	309	1,598
TN	2018	07	OTHER INDUSTRIAL PROCESSES	10,946	88	14,157	38,196	16,242	7,286	35,126
TN	2018	08	SOLVENT UTILIZATION	380	1	7,675	3,154	2,717	79	140,760
TN	2018	09	STORAGE & TRANSPORT	33	41	14	1,571	939	49	25,491
TN	2018	10	WASTE DISPOSAL & RECYCLING	26,712	42	2,326	8,562	7,828	468	17,530
TN	2018	11	HIGHWAY VEHICLES	976,634	9,021	69,385	3,092	1,544	948	67,324
TN	2018	12	OFF-HIGHWAY	593,100	55	70,226	4,672	4,403	5,207	45,084
TN	2018	14	MISCELLANEOUS	19,210	36,213	408	209,058	28,209	111	3,293
	2018 Total			1,804,879	47,809	253,828	312,906	100,255	207,555	379,257

State	Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	VOC
VA	2002	01	FUEL COMB. ELEC. UTIL.	6,892	127	86,886	3,960	2,606	241,204	754
VA	2002	02	FUEL COMB. INDUSTRIAL	64,398	100	75,831	18,480	8,453	137,451	5,332
VA	2002	03	FUEL COMB. OTHER	98,788	13	15,648	11,572	11,236	5,508	54,496
VA	2002	04	CHEMICAL & ALLIED PRODUCT MFG	321	2,158	8,062	449	393	2,126	1,530
VA	2002	05	METALS PROCESSING	3,580	0	937	1,575	1,349	5,251	513
VA	2002	06	PETROLEUM & RELATED INDUSTRIES	23,384	0	182	255	153	170	501
VA	2002	07	OTHER INDUSTRIAL PROCESSES	12,002	726	9,279	33,409	9,795	17,702	13,086
VA	2002	08	SOLVENT UTILIZATION	0	4	0	225	210	2	111,511
VA	2002	09	STORAGE & TRANSPORT	16	7	11	745	505	0	26,121
VA	2002	10	WASTE DISPOSAL & RECYCLING	16,566	109	1,866	3,152	1,277	1,581	4,065
VA	2002	11	HIGHWAY VEHICLES	2,163,259	7,852	222,374	4,549	3,102	8,294	159,790
VA	2002	12	OFF-HIGHWAY	660,105	48	63,219	8,728	8,288	8,663	74,866
VA	2002	14	MISCELLANEOUS	16,238	43,961	350	182,486	22,086	92	848
	2002 Total			3,065,551	55,105	484,646	269,585	69,453	428,046	453,413
VA	2009	01	FUEL COMB. ELEC. UTIL.	12,535	694	64,358	5,606	4,165	174,777	788
VA	2009	02	FUEL COMB. INDUSTRIAL	67,422	105	67,263	18,346	8,345	131,459	5,483
VA	2009	03	FUEL COMB. OTHER	66,016	10	15,920	10,059	9,741	5,118	28,062
VA	2009	04	CHEMICAL & ALLIED PRODUCT MFG	286	2,082	7,790	477	413	1,996	1,419
VA	2009	05	METALS PROCESSING	3,397	0	827	1,563	1,332	4,813	390
VA	2009	06	PETROLEUM & RELATED INDUSTRIES	26,288	0	197	275	169	187	557
VA	2009	07	OTHER INDUSTRIAL PROCESSES	12,471	733	9,425	33,961	9,984	18,643	13,394
VA	2009	08	SOLVENT UTILIZATION	0	5	0	248	231	3	110,127
VA	2009	09	STORAGE & TRANSPORT	17	7	12	797	544	0	26,456
VA	2009	10	WASTE DISPOSAL & RECYCLING	20,109	119	2,174	3,823	1,515	1,805	4,789
VA	2009	11	HIGHWAY VEHICLES	1,453,946	9,086	134,232	3,747	2,241	1,079	96,770
VA	2009	12	OFF-HIGHWAY	726,815	53	54,993	7,510	7,136	1,707	57,009
VA	2009	14	MISCELLANEOUS	21,582	46,719	464	198,040	23,990	124	1,077
	2009 Total			2,410,884	59,612	357,655	284,451	69,806	341,710	346,321
VA	2018	01	FUEL COMB. ELEC. UTIL.	18,850	606	64,344	12,551	10,773	98,988	980
VA	2018	02	FUEL COMB. INDUSTRIAL	72,065	114	70,132	19,247	8,904	134,790	5,861
VA	2018	03	FUEL COMB. OTHER	53,171	14	17,852	9,427	9,086	5,230	18,603
VA	2018	04	CHEMICAL & ALLIED PRODUCT MFG	338	2,462	9,211	579	502	1,297	1,708
VA	2018	05	METALS PROCESSING	4,034	0	1,017	1,861	1,592	5,374	469
VA	2018	06	PETROLEUM & RELATED INDUSTRIES	30,284	0	228	315	194	217	642
VA	2018	07	OTHER INDUSTRIAL PROCESSES	14,029	877	10,836	37,553	11,276	18,088	15,636
VA	2018	08	SOLVENT UTILIZATION	0	6	0	314	293	3	127,953
VA	2018	09	STORAGE & TRANSPORT	21	8	15	949	648	0	27,357
VA	2018	10	WASTE DISPOSAL & RECYCLING	24,293	141	2,595	4,694	1,828	2,170	5,821
VA	2018	11	HIGHWAY VEHICLES	1,075,104	10,624	63,342	3,212	1,543	1,043	61,964
VA	2018	12	OFF-HIGHWAY	797,683	61	40,393	6,208	5,891	507	49,052
VA	2018	14	MISCELLANEOUS	27,223	50,279	584	218,141	26,225	158	1,322
	2018 Total			2,117,096	65,192	280,549	315,051	78,754	267,867	317,368

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
wv	2002	01	FUEL COMB. ELEC. UTIL.	10,341	121	230,977	4,573	2,210	516,084	1,180
wv	2002	02	FUEL COMB. INDUSTRIAL	8,685	97	33,825	1,583	1,332	37,111	1,097
WV	2002	03	FUEL COMB. OTHER	29,480	13	15,220	3,814	3,683	3,990	9,275
WV	2002	04	CHEMICAL & ALLIED PRODUCT MFG	50,835	80	1,627	950	831	9,052	5,755
WV	2002	05	METALS PROCESSING	28,837	143	1,570	8,749	7,515	5,619	1,393
WV	2002	06	PETROLEUM & RELATED INDUSTRIES	1	0	1,086	475	475	7,550	2,163
WV	2002	07	OTHER INDUSTRIAL PROCESSES	2,003	56	5,347	18,751	5,567	2,316	1,803
wv	2002	08	SOLVENT UTILIZATION	15	0	18	49	44	0	35,989
WV	2002	09	STORAGE & TRANSPORT	15	0	3	1,952	947	0	12,432
WV	2002	10	WASTE DISPOSAL & RECYCLING	9,395	8	599	4,153	3,731	100	5,098
wv	2002	11	HIGHWAY VEHICLES	533,471	1,908	58,999	1,381	995	2,464	42,174
wv	2002	12	OFF-HIGHWAY	133,113	9	33,239	1,850	1,728	2,112	18,566
WV	2002	14	MISCELLANEOUS	6,897	9,928	149	93,030	10,799	40	349
İ	2002 Total			813,089	12,364	382,659	141,310	39,857	586,436	137,275
WV	2009	01	FUEL COMB. ELEC. UTIL.	11,493	330	85,476	5,657	2,940	268,952	1,361
wv	2009	02	FUEL COMB. INDUSTRIAL	9,529	104	27,109	1,432	1,243	36,964	979
wv	2009	03	FUEL COMB. OTHER	21,558	13	14,229	3,351	3,216	4,047	6,824
wv	2009	04	CHEMICAL & ALLIED PRODUCT MFG	58,271	82	1,804	981	858	10,102	5,426
wv	2009	05	METALS PROCESSING	24,501	116	1,494	2,016	1,507	5,608	831
wv	2009	06	PETROLEUM & RELATED INDUSTRIES	1	0	1,221	535	535	8,495	2,172
WV	2009	07	OTHER INDUSTRIAL PROCESSES	2,288	59	4,995	19,240	5,910	2,570	2,064
WV	2009	08	SOLVENT UTILIZATION	17	0	20	52	47	0	32,199
wv	2009	09	STORAGE & TRANSPORT	17	0	3	1,756	695	0	12,997
wv	2009	10	WASTE DISPOSAL & RECYCLING	9,131	8	583	4,036	3,618	97	4,806
wv	2009	11	HIGHWAY VEHICLES	365,549	2,148	35,635	1,068	684	279	24,843
WV	2009	12	OFF-HIGHWAY	152,862	11	30,133	1,640	1,528	359	18,069
wv	2009	14	MISCELLANEOUS	4,116	10,574	89	93,957	11,002	23	219
	2009 Total			659,332	13,446	202,791	135,720	33,782	337,495	112,790
WV	2018	01	FUEL COMB. ELEC. UTIL.	12,397	143	51,474	5,784	3,116	106,199	1,387
WV	2018	02	FUEL COMB. INDUSTRIAL	10,174	111	28,764	1,505	1,308	38,571	1,048
WV	2018	03	FUEL COMB. OTHER	18,891	16	17,254	3,160	3,024	4,065	6,270
WV	2018	04	CHEMICAL & ALLIED PRODUCT MFG	70,252	99	2,183	1,181	1,034	12,196	6,560
WV	2018	05	METALS PROCESSING	28,563	148	1,929	2,491	1,887	6,735	1,087
WV	2018	06	PETROLEUM & RELATED INDUSTRIES	1	0	1,407	616	616	9,786	2,338
WV	2018	07	OTHER INDUSTRIAL PROCESSES	2,756	68	5,949	21,363	6,809	3,101	2,561
WV	2018	08	SOLVENT UTILIZATION	20	0	24	61	55	0	37,886
WV	2018	09	STORAGE & TRANSPORT	19	0	4	2,080	824	0	13,394
WV	2018	10	WASTE DISPOSAL & RECYCLING	9,237	10	592	4,116	3,674	98	5,153
WV	2018	11	HIGHWAY VEHICLES	274,804	2,497	17,247	819	405	253	16,121
WV	2018	12	OFF-HIGHWAY	167,424	13	25,710	1,292	1,198	56	14,086
WV	2018	14	MISCELLANEOUS	5,175	11,453	112	99,667	11,803	29	268
	2018 Total			599,712	14,557	152,647	144,134	35,752	181,088	108,159

	СО	NH3	NOX	PM10	PM2.5	SO2	VOC
VISTAS 2002 Total	30,073,168	665,818	5,429,845	3,895,998	1,075,343	4,879,941	5,178,836
VISTAS 2009 Total	25,397,398	721,736	3,790,044	4,160,870	1,123,548	3,465,859	4,187,921
VISTAS 2018 Total	22,645,302	792,678	2,722,636	4,548,634	1,194,728	2,169,725	3,910,170

APPENDIX D:

VISTAS TIER 1 EMISSION TOTALS

VISTAS Tier 1 Emission Totals

Year	TIER1	TIER1NAME	со	NH3	NOX	PM10- PRI	PM25- PRI	SO2	VOC
2002	01	FUEL COMB. ELEC. UTIL.	141,217	1,799	1,523,445	113,917	79,269	3,743,723	12,515
2002	02	FUEL COMB. INDUSTRIAL	371,932	1,204	499,943	85,357	59,735	550,866	32,333
2002	03	FUEL COMB. OTHER	759,534	2,810	122,062	99,532	91,805	114,852	354,375
2002	04	CHEMICAL & ALLIED PRODUCT MFG	131,993	7,093	20,896	11,114	7,982	77,450	63,748
2002	05	METALS PROCESSING	223,705	601	11,801	32,367	27,778	49,143	17,306
2002	06	PETROLEUM & RELATED INDUSTRIES	44,633	355	7,204	2,887	1,863	53,392	33,374
2002	07	OTHER INDUSTRIAL PROCESSES	156,077	7,520	114,474	267,980	97,013	86,736	196,831
2002	08	SOLVENT UTILIZATION	687	331	5,677	3,805	3,284	90	1,288,990
2002	09	STORAGE & TRANSPORT	610	85	1,069	10,968	6,100	230	261,959
2002	10	WASTE DISPOSAL & RECYCLING	546,331	801	28,738	80,336	73,673	6,418	99,497
2002	11	HIGHWAY VEHICLES	19,432,305	73,670	2,187,683	50,338	35,813	89,296	1,890,798
2002	12	OFF-HIGHWAY	6,209,596	477	865,130	72,019	68,302	96,336	813,788
2002	14	MISCELLANEOUS	2,054,548	569,073	41,724	3,065,377	522,726	11,407	113,321
2002			20.072.179	((5.010	5 420 945	2 905 009	1 075 242	4 970 041	5 170 027
Total 2009	01	ELIEL COMP. ELEC LITH	30,073,168 190,535	665,818	5,429,845 789,299	3,895,998	1,075,343	4,879,941	5,178,836
	-	FUEL COMB. ELEC. UTIL.	,	5,474	,	125,750	91,587	2,497,423	14,208
2009	02	FUEL COMB. OTHER	391,422	1,305	445,967	74,588	51,491	514,636	32,431
2009	03	FUEL COMB. OTHER	544,289	3,198 7,611	123,297	85,410	77,042 8,394	112,323	207,146
	-	CHEMICAL & ALLIED PRODUCT MFG	140,910	7,611	22,031	11,742		76,021	54,168
2009	05	METALS PROCESSING	236,473		11,763	25,130	21,288	54,337	17,954
2009	06	PETROLEUM & RELATED INDUSTRIES	48,118	399	7,863	3,282	2,124	46,975	25,028
2009	08	OTHER INDUSTRIAL PROCESSES	166,088	7,545	117,625	298,719	111,218	90,420	202,567
2009	09	SOLVENT UTILIZATION STORAGE & TRANSPORT	771	360 98	6,662 1,087	4,274 10,729	3,679 5,743	100	1,256,884
2009	10	WASTE DISPOSAL & RECYCLING	770,459	869	36,697	10,729	97,841	7,287	275,462 113,473
2009	11	HIGHWAY VEHICLES	13,864,869	87,027	1,414,834	41,861	26,498	10,962	1,217,185
2009	12	OFF-HIGHWAY	6,827,857	530	767,707	61,528	58,279	42,845	649,786
2009	14	MISCELLANEOUS	2,214,906	606,617	45,212	3,312,407	568,364	12,370	121,629
2009	14	MISCELLANEOUS	2,214,900	000,017	43,212	3,312,407	300,304	12,370	121,029
Total			25,397,398	721,736	3,790,044	4,160,870	1,123,548	3,465,859	4,187,921
2018	01	FUEL COMB. ELEC. UTIL.	262,414	9,306	568,158	152,642	118,959	1,169,110	17,090
2018	02	FUEL COMB. INDUSTRIAL	416,721	1,383	470,326	80,011	55,648	513,072	34,720
2018	03	FUEL COMB. OTHER	453,482	3,358	136,431	78,032	69,854	116,672	149,363
2018	04	CHEMICAL & ALLIED PRODUCT MFG	173,857	9,023	26,564	14,454	10,360	94,010	67,414
2018	05	METALS PROCESSING	279,850	926	14,871	31,221	26,572	66,150	23,089
2018	06	PETROLEUM & RELATED INDUSTRIES	53,392	460	8,891	3,845	2,490	43,055	27,283
2018	07	OTHER INDUSTRIAL PROCESSES	189,922	8,793	136,722	348,119	130,778	100,824	237,601
2018	08	SOLVENT UTILIZATION	936	404	8,480	5,354	4,601	119	1,515,005
2018	09	STORAGE & TRANSPORT	855	119	1,258	13,540	7,283	192	290,267
2018	10	WASTE DISPOSAL & RECYCLING	821,737	1,068	40,324	114,690	105,745	8,544	125,406
2018	11	HIGHWAY VEHICLES	10,312,627	103,394	663,796	33,426	16,403	10,281	752,732
2018	12	OFF-HIGHWAY	7,438,312	612	601,040	48,648	45,927	35,166	546,062
2018	14	MISCELLANEOUS	2,241,196	653,831	45,776	3,624,653	600,107	12,532	124,137
2018 Total			22,645,302	792,678	2,722,636	4,548,634	1,194,728	2,169,725	3,910,170

APPENDIX E:

AIRCRAFT PM EXCERPT FROM 2001 TUCSON REPORT

Final Report

EMISSIONS INVENTORIES FOR THE TUCSON AIR PLANNING AREA

VOLUME I. STUDY DESCRIPTION AND RESULTS

Prepared for

Pima Association of Governments 177 N. Church Avenue, Suite 405 Tucson, AZ 85701

Prepared by

Marianne Causley Rumla, Inc. 3243 Gloria Terrace Lafayette, CA 94549

Daniel Meszler
Energy and Environmental Analysis, Inc.
1655 North Fort Myer Drive
Arlington, VA 22209

Russell Jones Stratus Consulting, Inc. P.O. Box 4059 Boulder, CO 80306-4059

Steven Reynolds Envair 12 Palm Avenue San Rafael, CA 94901

November 2001

ACKNOWLEDGEMENTS

The authors extend their appreciation to the many individuals that contributed to this study. Particular thanks go to the staff of the Pima Association of Governments. Darcy Anderson was instrumental in providing definition at the outset of the study. Lee Comrie and Natalie Barnes provided considerable assistance with the emissions surveys, made many thoughtful suggestions and contributions throughout the study, and provided helpful comments on the draft final report. Kwame Agyare, Wayne Byrd and Bill Maxwell of the Pima County Department of Environmental Quality offered valuable assistance in providing socioeconomic and PDEQ permit data and in sharing their knowledge of emissions sources in the Tucson Air Planning Area. Dan Catlin of the Arizona Department of Environmental Quality provided insightful comments during the course of the study and reviewed the draft final report.

Many individuals in the Tucson area participated in the annual and day-specific emissions surveys conducted as part of this study. The information they provided is sincerely appreciated.

We also wish to acknowledge Patricia El-Gasseir and Helen Fugate of Rumla, Inc. for their dedicated efforts in building the facilities database.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
LIST OF TABLES	viii
LIST OF FIGURES	xiii
ABBREVIATIONS AND ACRONYMS	xiv
EXECUTIVE SUMMARY	ES-1
1 BACKGROUND	1-1
1.1 Current Air Quality Status of the Tucson Area	1-1
1.1.1 Ozone	1-1
1.1.2 Carbon Monoxide	1-3
1.1.3 Particulate Matter	1-3
1.2 Overview of the Emissions Inventories	1-4
1.3 Emissions Support for Photochemical Modeling in Tucson	1-6
1.4 Organization of This Report	1-7
2 POINT SOURCES	2-1
2.1 Identification of Sources	2-1
2.2 Data Collection	2-2
2.3 Data Entry	2-4
2.4 Calculation Methodologies	2-5
2.4.1 Emissions Based on 2000 Actual Data	2-6
2.4.2 Emissions Based on Adjustment of 1999 Data	2-7
2.4.3 Emissions Based on General Activity Data	2-7
2.4.4 Emissions Based on Evaporative Processes	2-8
2.5 Data Quality and Completeness	2-9
2.6 Future Year Estimations	2-11
2.7 Point Source Emissions Summary	2-12
2.8 Temporal Activity Data	2-13
2.8.1 Point Source TAF Comparison	2-15
2.8.2 Point and Area TAF Comparison	2-16
3 STATIONARY AREA SOURCES	3-1
3.1 Architectural Coating	3-4
3.1.1 Methodology	3-4
3.1.2 Calculations	3-5
3.2 Asphalt Paving	3-6
3.2.1 Methodology	3-6
3.2.2 Calculations	3-7

TABLE OF CONTENTS (Continued)

3.3	Au	tomobile Refinishing	3-7
3.	.3.1	Methodology	3-7
3.	.3.2	Calculations	3-8
3.4	Co	mmercial Bakeries	3-9
3.	4.1	Methodology	3-9
3.	.4.2	Calculations	3-9
3.5	Co	nsumer Solvent Usage	3-10
3.	.5.1	Methodology	3-10
3.	.5.2	Calculations	3-10
3.6	Dr	y Cleaning	3-11
3.	.6.1	Methodology	3-11
3.	.6.2	Calculations	3-12
3.7	For	rest Fires and Prescribed Burnings	3-13
3.	7.1	Methodology	3-13
3.	7.2	Calculations	3-13
3.8	Ga	soline Distribution	3-15
3.	8.1	Methodology	3-15
3.	8.2	Calculations	3-17
3.9	Gra	aphic Arts	3-18
3.	9.1	Methodology	3-18
3.	9.2	Calculations	3-18
3.10	Ind	lustrial Surface Coating	3-18
3.	10.1	Methodology	3-19
3.	10.2	Calculations	3-19
		sc. Residential/Commercial Fuel Combustion	3-20
3.	.11.1	Methodology	3-20
3.	11.2	Calculations	3-21
3.12		sticide Application	3-23
3.		Methodology	3-24
		Calculations	3-25
3.13		sidential Wood Combustion	3-25
3.	.13.1	Methodology	3-26
		Calculations	3-26

TABLE OF CONTENTS (Continued)

	3.14	4 Solv	vent Cleaning
		3.14.1	Methodology
		3.14.2	Calculations
	3.15		acture and Vehicle Fires
			Methodology
			Calculations
	3.16		ffic Markings
		3.16.1	Methodology
		3.16.2	Calculations
	3.17	7 Are	a Source Annual Emissions Summaries
	3.18	B Day	y-specific Area Source Emissions Summaries
4	NON	NROAL	MOBILE SOURCES
	4.1	Int	roduction
	4.2	Ge	neral Use Nonroad Equipment
		4.2.1	Basic Inventory Methodology
		4.2.2	NONROAD Model Inputs
		4.2.3	Emission Estimates for Calendar Year 2000
		4.2.4	Emissions Estimates for Tuesday August 22, 2000
		4.2.5	Emissions Estimates for Sunday September 10, 2000
		4.2.6	Emissions Estimates for Saturday April 14, 2001
		4.2.7	Emissions Estimates for Tuesday April 24, 2001
		4.2.8	Emissions Estimates for Calendar Year 2005
		4.2.9	Emissions Estimates for Calendar Year 2010
	12		Temporal Allocation Factors for General Use Nonroad Equipment. ft Operations
	4.5	4.3.1	Commercial Air Carrier Emission Estimates for Calendar Year 2000
		4 3 2	Commercial Air Carrier APU Emission Estimates for
		1.3.2	Calendar Year 2000.
		4.3.3	Other Aircraft Emissions for Calendar Year 2000
		4.3.4	Other Potential Aircraft Emissions Sources Not Currently Considered
		4.3.5	Aircraft Emissions Estimates for Tuesday August 22, 2000
		4.3.6	Aircraft Emissions Estimates for Sunday September 10, 2000
		4.3.7	Aircraft Emissions Estimates for Saturday April 14, 2001
		4.3.8	Aircraft Emissions Estimates for Tuesday April 24, 2001
		4.3.9	Aircraft Emissions Estimates for Calendar Year 2005
			Aircraft Emissions Estimates for Calendar Year 2010
			Day-Specific and Forecast Aircraft Emission Estimates for TIA
		4 3 12	Temporal Allocation Factors for Aircraft Emissions

TABLE OF CONTENTS (Continued)

4.	4	Aircra	ft Ground Support Equipment 4-88	
		4.4.1	GSE Emissions Estimates for Calendar Year 2000	4-94
		4.4.2	GSE Emissions Estimates for Tuesday August 22, 2000	4-102
		4.4.3	GSE Emissions Estimates for Sunday September 10, 2000	4-104
		4.4.4	GSE Emissions Estimates for Saturday April 14, 2001	4-104
		4.4.5	GSE Emissions Estimates for Tuesday April 24, 2001	4-108
		4.4.6	GSE Emissions Estimates for Calendar Year 2005	4-108
		4.4.7	GSE Emissions Estimates for Calendar Year 2010	4-108
		4.4.8	Temporal Allocation Factors for GSE Emissions	4-108
	4.5		nercial Marine Operations	4-113
			notive Operations	4-113
		4.6.1		4-114
		4.6.2		
			Calendar Year 2000.	4-124
		4.6.3	Day-Specific Locomotive Emission Estimates for	
		1.0.5	Calendar Year 2001	4-125
		4.6.4		. 120
			Calendar Years 2005 and 2010	4-125
		4.6.5	Temporal Allocation Factors for Locomotive Emissions	4-125
5	MC	DEL I	NVENTORY PREPARATION	5-1
_			iew	5-1
	0.1	5.1.1		5-2
		5.1.2	_	5-2
		5.1.3	Chemical Resolution of Emissions	5-3
	5.2		ory Preparation	5-3
	3.2	5.2.1	Emission Data	5-6
		5.2.2	Spatial Allocation	5-6
		5.2.3	Temporal Allocation	5-11
		5.2.4	Chemical Speciation.	5-11
	5 3		ion Processing System	5-12
	0.5		Output Formats	5-12
	5.4		pary of Modeling Inventories	5-14
6	DA	TA OU	JALITY REVIEW	6-1
			Sources	6-1
			Sources	6-3
			ad Mobile Sources	6-4
			chemical Air Quality Model Input Files	6-5
			nal Review	6-6
			Il Comments on the Inventories	6-9
7	RE	FEREN	ICES	7-1

TABLE OF CONTENTS (Concluded)

APPENDIX 2A. LIST OF PAG MAJOR AND MINOR FACILITIES	
CONTACTED DURING SURVEY ACTIVITIES	2A-1
APPENDIX 2B. REVISED ANNUAL SURVEY FORM FOR MAJOR FACILITIES	2B-1
APPENDIX 2C. REVISED ANNUAL SURVEY FORMS FOR MINOR FACILITIES	2C-1
APPENDIX 2D. PAG 2000 TOTAL EMISSIONS BY FACILITY	2D-1
APPENDIX 3A. ASC SPATIAL ALLOCATION SURROGATE ASSIGNMENT	3A-1
APPENDIX 4A. NONROAD MOBILE SOURCE EMISSIONS BY SCC	4A-1
APPENDIX 4B. NONROAD MOBILE SOURCE TEMPORAL ALLOCATION FACTORS	4B-1
APPENDIX 5A. NATIONAL EMISSION INVENTORY (NEI) RECORD FORMATS	5A-1
APPENDIX 5B. SPATIAL ALLOCATION OF EMISSIONS USING GIS	5B-1
APPENDIX 5C. EDBsys EMISSION OUTPUT FORMATS	5C-1

LIST OF TABLES

Table 1-1.	Inventories for the Tucson Air Planning Area	1-2
Table 2-1.	PDEQ Permitted Facilities Flagged as a Major Point Source	2-2
	PAG Survey Response Rates	2-4
	NEI Record Elements for the PAG Inventory	2-5
	2000 Emission Estimates Adjustments from Surveys	2-7
	Resolution of Survey Data Issues and Possible Inventory Effect	2-9
	Ranges of EGAS Growth Factors from 2000 Baseline	2-12
	Annual Emissions Estimates for Major and Minor Point Sources	2-12
	Day-specific Criteria Pollutant Totals (tons per day)	2-13
	Survey Responses for Temporal Activity Profile Information	2-14
Table 3-1.	TAPA Inventory Area Source Categories	3-1
Table 3-2.	Socioeconomic Parameters Applied to 2000 and Projected Year Emission Estimations	3-3
Table 3-3	Projection Factors for the 2005 and 2010 Emission Estimates	3-3
	Allocation Adjustment Factors	3-3
	Architectural Coatings Gallons Per Capita Calculations	3-5
	TAPA Annual Architectural Coating VOC Emission Estimates	3-6
	Growth Factors for the Automobile Refinishing Employment	5 0
14010 5 7.	in the Tucson Area	3-8
Table 3-8.	TAPA Annual Automobile Refinishing VOC Emissions	3-8
	Commercial Bakery Process Emission Factors	3-10
	O. TAPA Bakeries VOC Emission Estimates	3-10
	. TAPA Consumer Product Per Capita Factors and	
	Emission Estimates (tons)	3-11
Table 3-12	2. Dry Cleaning Telephone Survey Responses	3-12
	5. Pima County Acres Burned During 2000	3-13
	Emission Factors for Estimation of Forest Fire and Prescribed Burnings	3-14
	5. TAPA 2000 Emissions from Forest Fires and Prescribed Burnings (tons)	3-14
	5. TAPA 2005 and 2010 Emissions from Forest Fires and Prescribed	
	Burnings (tons/year)	3-15
Table 3-17	Y. Year 2000 Gasoline Tax Sales (gallons)	3-16
	3. TAPA VOC Emissions from Gasoline Marketing Activities (tons)	3-17
	P. TAPA VOC Emissions from Graphic Arts (tons)	3-18
	2. ZIP Codes Included for Dun & Bradstreet Extraction	3-19
	. TAPA VOC Emission Estimates for Industrial Surface Coating (tons) .	3-20
	2. Natural Gas and LPG Emission Factors	3-21
Table 3-23	3. 2000 Natural Gas and LPG Sales for the Tucson Area	3-22
Table 3-24	TAPA 2000 Emissions from Miscellaneous Combustion (tons/year)	3-22
	5. TAPA 2005 Emissions from Miscellaneous Combustion (tons/year)	3-23
	5. TAPA 2010 Emissions from Miscellaneous Combustion (tons/year)	3-23

LIST OF TABLES (Continued)

Table 3-27. Identified Survey Contacts and Responses for the Source
Category Pesticide Application
Table 3-28. Growth Factors for the Dwelling Units in the Tucson Area
Table 3-29. Tons of Wood Burned by Type
Table 3-30. Residential Wood Burning Emission Factors (lbs/ton burned)
Table 3-31. Annual Emissions from Residential Wood Burning by Device (tons)
Table 3-32. TAPA Annual VOC Emission Estimates from Solvent Cleaning (tons)
Table 3-33. 2000 Fire Incident Counts for Structural and Vehicle Fires
Table 3-34. Emission Factors for Structural and Vehicular Fires
Table 3-35. Annual TAPA Emissions from Structure and Vehicle Fires (tons)
Table 3-36. TAPA Emissions from Traffic Markings
Table 3-37. TAPA Inventory Area Source Categories Estimation Methods
Table 3-38. TAPA 2000 Annual Area Source Emissions by Source Category (tons)
Table 3-39. TAPA 2005 Annual Area Source Emissions by Source Category (tons)
Table 3-40. TAPA 2010 Annual Area Source Emissions by Source Category (tons)
Table 3-41. TAPA August 22, 2000 Area Source Emissions by Source Category
Table 3-42. TAPA September 10, 2000 Area Source Emissions by Source Category
Table 3-43. TAPA April 24, 2001 Area Source Emissions by Source Category
Table 4-1. Nonroad Mobile Source Equipment Categories
Table 4-2. NONROAD Model Equipment Allocation Parameters
Table 4-3. Retail Fuel Test Data for 2000.
Table 4-4. NONROAD Model Fuel Input Parameters
Table 4-5. NONROAD Model Temperature Input Parameters
Table 4-6. TAPA General Use Nonroad Equipment Emission Inventory
for 2000 (tons per year)
Table 4-7. Allocation Factors used to Convert County to TAPA Emission Estimates
Table 4-8. NONROAD Model Input Parameters for Day-Specific Inventories
Table 4-9. TAPA General Use Nonroad Equipment Emission Inventory for
Tuesday August 22, 2000 (tons per day)
Table 4-10. NONROAD Model Monthly Activity Allocation Factors
Table 4-11. NONROAD Model Day-of-Week Activity Allocation Factors
Table 4-12. TAPA General Use Nonroad Equipment Emission Inventory for
Sunday September 10, 2000 (tons per day)
Table 4-13. TAPA General Use Nonroad Equipment Emission Inventory for
Saturday April 14, 2001 (tons per day)
Table 4-14. TAPA General Use Nonroad Equipment Emission Inventory for
Tuesday April 24, 2001 (tons per day)
Table 4-15. NONROAD Model Fuel Input Parameters for 2005 and 2010
Table 4-16. TAPA General Use Nonroad Equipment Emission Inventory for
2005 (tons per year)

LIST OF TABLES (Continued)

Table 4-17.	TAPA General Use Nonroad Equipment Emission Inventory for
	2010 (tons per year)
Table 4-18.	1999 FAA Commercial Air Carrier Data for TIA
	1999 Aircraft Operations Data Reported by TIA
Table 4-20.	2000 Aircraft Operations Data for TIA
Table 4-21.	TIA Taxi Time Data as Reported by U.S. DOT (minutes)
Table 4-22.	TIA Mixing Height Data
Table 4-23.	Statistics for Aircraft and APU PM Relations
Table 4-24.	TIA Emission Inventory for 2000 (tons per year)
Table 4-25.	APU Usage Rates at TIA
Table 4-26.	Aircraft Activity Other Than Commercial Air Carriers in 2000
	National Distribution of General Aviation and Air Taxi Aircraft
Table 4-28.	Comparison of LTO-Specific Emission Rates for General Aviation
	and Air Taxi Aircraft (pounds per LTO)
Table 4-29.	Local Distribution of General Aviation and Air Taxi Aircraft
Table 4-30.	EPA Default TIM Data for General Aviation and Air Taxi Aircraft
	(minutes per LTO)
Table 4-31.	Methodology Used to Develop Taxi/Idle Times for Local General
	Aviation and Air Taxi Aircraft
Table 4-32.	Local Taxi/Idle TIM Data for General Aviation and Air Taxi Aircraft
	(minutes per LTO)
Table 4-33.	Local TIM Data for General Aviation and Air Taxi Aircraft
	(minutes per LTO)
Table 4-34.	Based General Aviation and Air Taxi Aircraft in 2000
Table 4-35.	Local Taxi/Idle TIM Data for General Aviation and Air Taxi Aircraft
	(minutes per LTO)
Table 4-36.	Military Aircraft Distributions for 2000
Table 4-37.	EPA Default TIM Data for Military Aircraft (minutes per LTO)
Table 4-38.	Local and TIM Data for Military Aircraft (minutes per LTO)
Table 4-39.	Aircraft Emissions for Operations other than Commercial Air
	Carriers in 2000 (tons per year)
Table 4-40.	Total Aircraft and APU Emissions in 2000 by Airport (tons per year)
Table 4-41.	Total Aircraft and APU Emissions in 2000 by Aircraft Type
	(tons per year)
Table 4-42.	Other Potential Aircraft Activity Locations
Table 4-43.	Day-of-Week Allocation Factors for Aircraft
Table 4-44.	Aircraft Emissions for Operations other than Commercial Air Carriers
	On Tuesday August 22, 2000 (tons per day)
Table 4-45.	Total Aircraft and APU Emissions on Tuesday August 22, 2000 by
	Airport (tons per day)
Table 4-46.	Total Aircraft and APU Emissions on Tuesday August 22, 2000 by
	Aircraft Type (tons per day)

LIST OF TABLES (Continued)

Table 4-47.	Aircraft Emissions for Operations other than Commercial Air Carriers On Sunday September 10, 2000 (tons per day)
Table 4-48	Total Aircraft and APU Emissions on Sunday September 10, 2000
14016 + 40.	By Airport (tons per day)
Table 4-49	Total Aircraft and APU Emissions on Sunday September 10, 2000
14010 1 17.	By Aircraft Type (tons per day)
Table 4-50	Aircraft Emissions for Operations other than Commercial Air Carriers
14010 1 50.	On Saturday April 14, 2001 (tons per day)
Table 4-51	Total Aircraft and APU Emissions on Saturday April 14, 2001 by
14010 1 51.	Airport (tons per day)
Table 4-52	Total Aircraft and APU Emissions on Saturday April 14, 2001 by
14010 + 32.	Aircraft Type (tons per day)
Table 4-53	Aircraft Emissions for Operations other than Commercial Air Carriers
14010 1 55.	On Tuesday April 24, 2001 (tons per day)
Table 4-54	Total Aircraft and APU Emissions on Tuesday April 24, 2001 by
14010 1 5 1.	Airport (tons per day)
Table 4-55	Total Aircraft and APU Emissions on Tuesday April 24, 2001 by
14010 1 33.	Aircraft Type (tons per day)
Table 4-56	Aircraft Operational Growth Ratios (Forecast Year/2000 Activity)
	Aircraft Operations Summary
	Based Aircraft Summary
	Aircraft Emissions for Operations other than Commercial Air Carriers
14010 1 37.	in 2005 (tons per year)
Table 4-60	Total Aircraft and APU Emissions in 2005 by Airport (tons per year)
	Total Aircraft and APU Emissions in 2005 by Aircraft Type
14010 + 01.	(tons per year)
Table 4-62	Aircraft Emissions for Operations other than Commercial Air Carriers
14010 1 02.	in 2010 (tons per year)
Table 4-63	Total Aircraft and APU Emissions in 2010 by Airport (tons per year)
	Total Aircraft and APU Emissions in 2010 by Aircraft Type
14010 1 0 1.	(tons per year)
Table 4-65	TIA Emission Inventory for Tuesday August 22, 2000 (tons per day)
	TIA Emission Inventory for Sunday September 10, 2000
14010 1 00.	(tons per day)
Table 4-67	TIA Emission Inventory for Saturday April 14, 2001 (tons per day)
	TIA Emission Inventory for Tuesday April 24, 2001 (tons per day)
	TIA Emission Inventory for 2005 (tons per year)
	TIA Emission Inventory for 2010 (tons per year)
	Aircraft Ground Support Equipment Reported by TIA
	Aircraft Ground Support Equipment Reported by DM
	Summary of Reported and Additional GSE Types
	Summary (Average) GSE Statistics for TIA
	J \

LIST OF TABLES (Concluded)

Table 4-75.	Summary (Average) GSE Statistics for DM	4-101
Table 4-76.	GSE Model LTO, Fuel, Temperature, and Humidity Input Parameters.	4-102
Table 4-77.	GSE Emission Inventories for Calendar Year 2000 (tons per year)	4-103
Table 4-78.	GSE Emission Inventories for Tuesday August 22, 2000	
	(tons per day)	4-105
Table 4-79.	GSE Emission Inventories for Sunday September 10, 2000	
	(tons per day)	4-106
Table 4-80.	GSE Emission Inventories for Saturday April 14, 2001 (tons per day)	4-109
Table 4-81.	GSE Emission Inventories for Tuesday April 24, 2001 (tons per day)	4-110
Table 4-82.	GSE Emission Inventories for Calendar Year 2005 (tons per year)	4-111
Table 4-83.	GSE Emission Inventories for Calendar Year 2010 (tons per year)	4-112
Table 4-84.	Fuel Consumption Indices for Union Pacific Railroad	4-115
Table 4-85.	Union Pacific Railroad Gross Ton Miles for Pima County Track	
	Segments	4-117
Table 4-86.	Union Pacific Railroad Fuel Consumption in the TAPA	4-118
Table 4-87.	Forecasted Union Pacific Railroad Fuel Consumption in the TAPA	4-121
Table 4-88.	Locomotive Emission Control Impacts on Fleetwide Emission Rates	
	For Union Pacific Railroad	4-121
Table 4-89.	Locomotive Emission Factors for Union Pacific Railroad	
	(pounds per gallon of fuel consumed)	4-123
Table 4-90.	Annual Locomotive Emission Estimates for the TAPA (tons per year).	4-124
Table 4-91.	Day-Specific Locomotive Emission Estimates for the TAPA	
	(tons per year)	4-126

LIST OF FIGURES

Figure 2-1.	Total Hours of Operation by Day of Week	2-14
Figure 2-2.	PAG 190 Hourly Activity Profiles	2-16
Figure 2-3.	PAG 095 Hourly Activity Profiles	2-17
	PAG 095 Day-of-Week Activity Profiles	2-17
	PAG 095 Monthly Activity Profiles	2-18
Figure 3-1.	TAPA 2000 VOC Emissions	3-34
Figure 3-2.	TAPA 2000 NOx Emissions	3-34
Figure 3-3.	TAPA August 22, 2000 Area Source VOC Emissions	3-49
Figure 3-4.	TAPA August 22, 2000 Area Source NOx Emissions	3-49
Figure 3-5.	TAPA September 10, 2000 Area Source VOC Emissions	3-50
	TAPA September 10, 2000 Area Source NOx Emissions	3-50
Figure 3-7.	TAPA April 24, 2001 Area Source VOC Emissions	3-51
	TAPA April 24, 2001 Area Source NOx Emissions	3-51
Figure 4-1.	Relationship Used to Estimate Aircraft PM Emission Rates	4-42
Figure 4-2.	Class I Railroad Freight Movement Since 1970	4-119
Figure 4-3.	Class I Railroad Energy Intensity Since 1970	4-120
Figure 4-4.	Fleetwide Locomotive Emission Reductions	4-122
Figure 5-1.	Episodic Day Inventories for the Tucson Air Planning Area	5-4
Figure 5-2.	Modeling Inventory Processing Input Data	5-5
Figure 5-3.	Spatial Allocation Factor Surrogate Definition for the TAPA	5-7
Figure 5-4.	Carbon-bond Mechanism Species Gram Molecular Weights	
	for Reporting	5-15
Figure 5-5.	Modeling Input Emissions Totals for the August 22 nd	
	Typical Summer Day (tons/day)	5-15
Figure 5-6.	Day-specific Modeling Input Emissions Totals (tons)	5-16
Figure 6-1.	Diurnal Variation of Stationary Area Source NO Emissions	
	(g-mole/hour) in Grid Cell (105,120) from the Typical	
	Summer Day 2000 UAM Input File	6-7
Figure 6-2.	Gridded Stationary Area Source Paraffin Emissions (g-mole/hour)	
	at 1 PM from the Typical Summer Day 2000 UAM Input File	6-8

ABBREVIATIONS AND ACRONYMS

ADEQ Arizona Department of Environmental Quality

ADWM Arizona Department of Weights and Measures

ALD2 High Molecular Weight Aldehydes (RCHO, R≠H)

AML Arc Macro Language

AQM Air Quality Model

APU Aircraft Power Unit

ARB California Air Resources Board

ASC Area Source Category Code

AT Air Taxi

CNG Compressed Natural Gas

CO Carbon Monoxide

CSF Chemical Speciation Factor

DM Davis-Monthan Air Force Base

DOT Department of Transportation

EDMS Emissions Dispersion Modeling System

EEA Energy & Environmental Analysis, Inc.

EIPP Emission Inventory Preparation Plan

EPA The U.S. Environmental Protection Agency

ETH Ethene $(CH_2=CH_2)$

FAA Federal Aviation Administration

FAEED FAA Aircraft Engine Emission Database

FIPS Federal Information Processing System

FIRE EPA's Factor Information REtrieval Data System

FORM Formaldehyde (CH₂=O)

GA General Aviation

GIS Geographical Information System

GSE Ground Support Equipment

ICAO International Civil Aviation Organization

ABBREVIATIONS AND ACRONYMS

ISOP Isoprene

LPG Liquid Petroleum Gas
LTO Landing and TakeOff

NAD27 North American Datum - 1927 NCDC National Climatic Data Center

NEI US EPA National Emission Inventory

NEVES Nonroad Engine and Vehicle Emission Study

NG Natural Gas NO Nitric Oxide

NO₂ Nitrogen Dioxide NO_X Oxides of Nitrogen

OLE Olefinic Carbon Bond (C=C)

ORNL Oak Ridge National Laboratory

PAG Pima Association of Governments

PAR Paraffinic Carbon Bond (C—C)

PDEQ Pima County Department of Environmental Quality

PM Particulate Matter

PM_{2.5} Particulate Matter less than 2.5 microns

PM₁₀ Particulate Matter less than 10 microns

RASP Regional Aviation System Plan

RVP Reid Vapor Pressure

SAF Spatial Allocation Factor

SCC Source Category Code

SCF Standard Cubic Foot

SIC Standard Industrial Classification

SIP State Implementation Plan

SO₂ Sulfur Dioxide

SO_X Oxides of Sulfur

TAF Temporal Allocation Factor

ABBREVIATIONS AND ACRONYMS

TAPA Tucson Air Planning Area

TAZ Transportation Analysis Zone

THC Total Hydrocarbon

TIA Tucson International Airport

TIM Time-In-Mode

TOL Tolulene (C₆H₅—CH₃)

TTN EPA Technology Transfer Network

UAM Urban Airshed Model

UP Union Pacific Railroad

VOC Volatile Organic Compounds as defined by the 1990 Clean Air

Act Amendments

XYL Xylene $(C_6H_6-(CH_3)_2)$

(Prior material unrelated to VISTAS modeling is intentionally omitted)

While emission rates for HC, CO, and NO_x are routinely measured from (new) commercial air carrier engines under the emissions certification component of International Civil Aviation Organization (ICAO) regulations, measurement of PM emissions is not required. As a result, almost all aircraft engine PM emission rate data have been collected under special studies. Currently, such data exists for only about 20 aircraft engines, with a considerable portion of these data collected by the U.S. Air Force for military aircraft engines. While emission factors for these engines are included in the AP-42 database upon which the FAEED and EDMS emission inventory models were developed, they have not been included in either model due to their limited applicability. To date, it has been standard EPA practice not to estimate PM emissions for aircraft engines. However, since the emissions models maintain a placekeeper for PM emission rates and include PM emission estimates for GSE, it can appear to the uninformed user that aircraft PM emission rates are zero. As a result, aircraft are often incorrectly considered to be insignificant PM sources even though those engines tested for PM have demonstrated significant emission rates. This policy of exclusion by omission is not appropriate in developing an accurate modeling inventory, even in the absence of a large emissions database. While a precise emissions estimate cannot be made with available data, it is clear that a zero emission rate is far from accurate.

As an alternative for this study, measured emissions data for aircraft engines that have been tested for PM were statistically analyzed to determine whether or not a relationship to other measured emissions parameters could be established. Intuitively, it was hoped that an inverse relationship with NO_x might be demonstrated, as such a relationship is theoretically attractive. While the level of sophistication of the statistical analysis is constrained by the quantity of data available, simple direct and indirect linear relationships can be examined. Because data are not available for each test engine in each of the four LTO cycle modes and because relationships might be expected to vary by operating mode (due to significant changes in engine and combustion efficiency), all statistical analysis was performed for each operating mode individually.

Statistically significant relationships were found for the direct linear analysis for three of the four LTO cycle modes. Significant in this context means that coefficient t-statistics for one or more of the other measured pollutants (HC, CO, or NO_x) indicated a direct relationship with measured PM (at a confidence level exceeding 95 percent). In all cases, correlation coefficients were poor (as expected), suggesting a high level of variability and poor predictability of PM emissions for any given engine. Nevertheless, statistics were unbiased and should provide an accurate mechanism to initially assess PM emissions on a aggregate basis (i.e., over a range of aircraft engine models such as those associated with an analysis for an entire set of airport operations). Only at idle was no significant relation found, which is not surprising given relative engine inefficiency in this mode.

The indirect linear analysis revealed a consistent and significant inverse relationship between PM and NO_x based on calculated t-statistics. Correlation coefficients continue to be poor, but t-statistics are generally improved over those of the direct linear analysis (all developed inverse relations, including idle, were significant at the 99 percent confidence level). In selecting the most appropriate relationship for estimation of PM emission rates for non-tested aircraft engines, the statistical analysis that produced the best combination of a significant t-statistic, a relatively low root mean square error, and an intuitive engineering basis was identified. This was the inverse NO_x relationship for the takeoff (i.e., full throttle) mode of operation. Figure 4-1 illustrates the selected statistical relationship.

With this relationship established, PM emission rate data for the other aircraft operating modes (i.e., the approach, taxi, and climbout modes) was statistically analyzed against observed PM emission rate data for the takeoff mode. Statistically significant relations were developed for all three modes. Table 4-23 presents the coefficients developed for these PM-to-PM regressions as well as the statistics for the PM-to-NO_x regression developed for the takeoff mode. These four relations were used to develop a set of fleetwide PM emission factors based on measured takeoff NO_x emission rates. These emission factors were then input into the EEA aircraft emissions model and used to generate PM emission estimates for TIA aircraft operations.

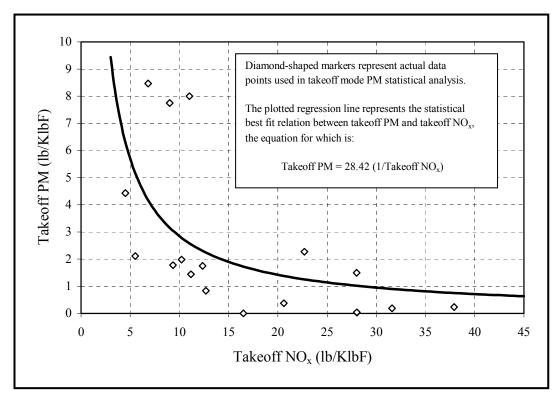
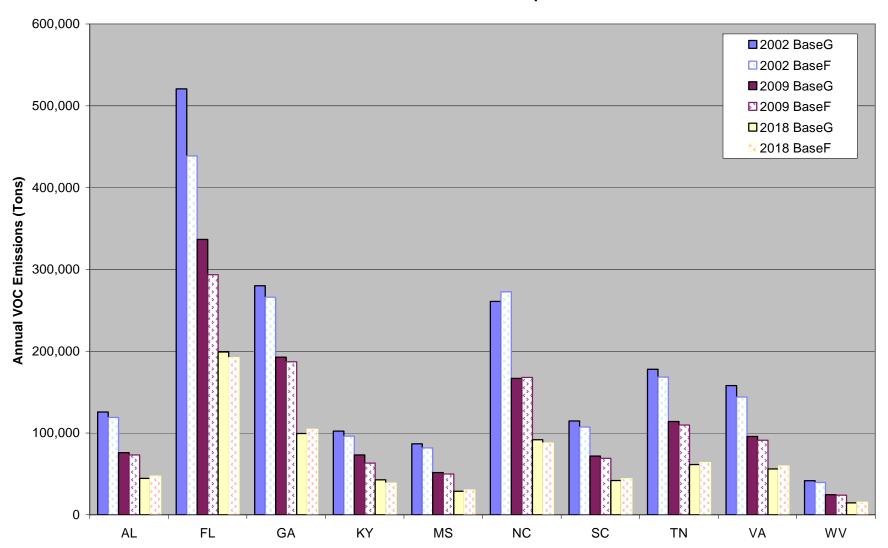
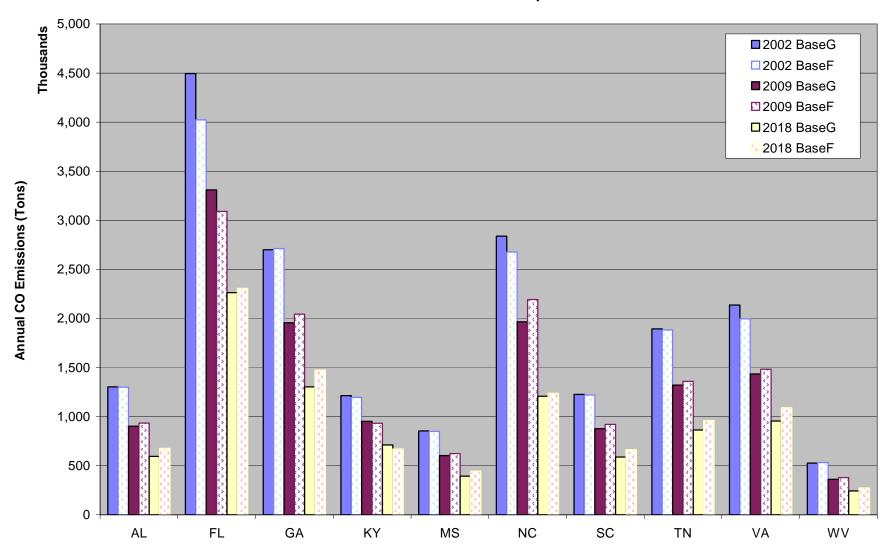


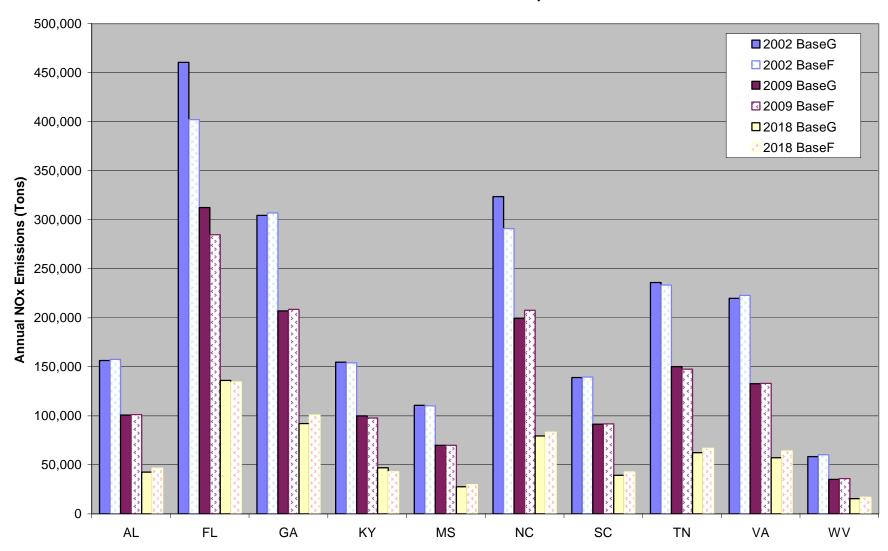
FIGURE 4-1. Relationship Used to Estimate Aircraft PM Emission Rates

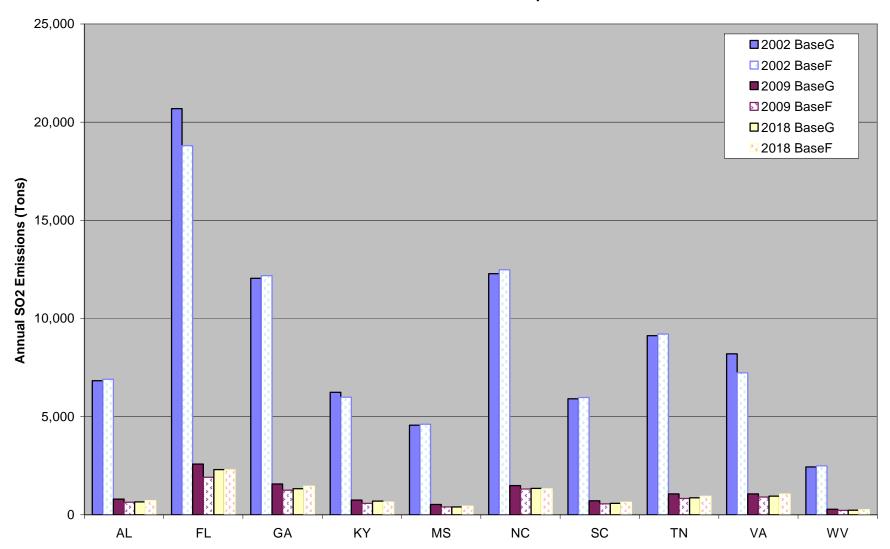
TABLE 4-23. Statistics for Aircraft and APU PM Relations

Statistical Parameter	Takeoff PM	Climbout PM	Approach PM	Taxi PM
Predictive Parameter	1/Takeoff NO _x	Takeoff PM	Takeoff PM	Takeoff PM
Coefficient	28.42	1.42	1.53	3.10
Coefficient t-statistic	5.1	11.8	14.9	5.7
Correlation Coefficient	0.30	0.84	0.91	0.56
F-statistic	7.4	86.1	135.7	21.9
Number of Observations	18	17	15	18

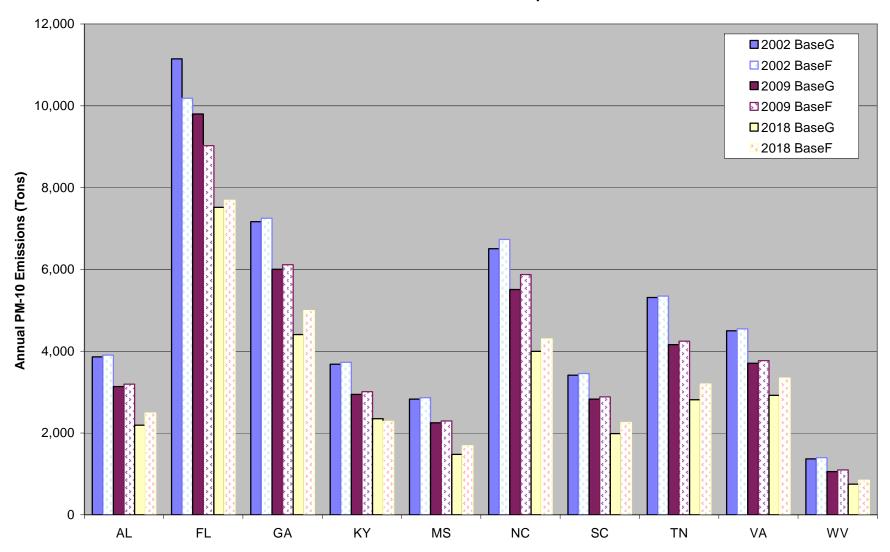

(Subsequent material unrelated to VISTAS modeling is intentionally omitted)

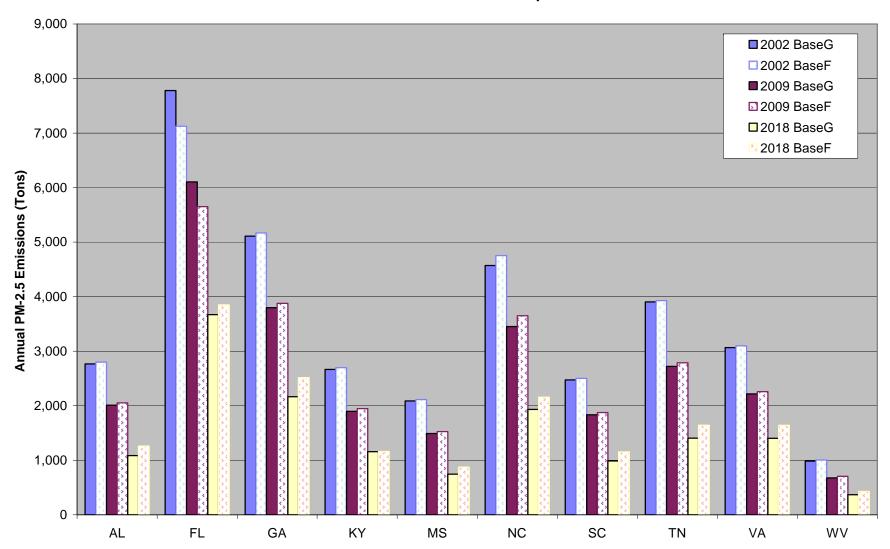

APPENDIX F:

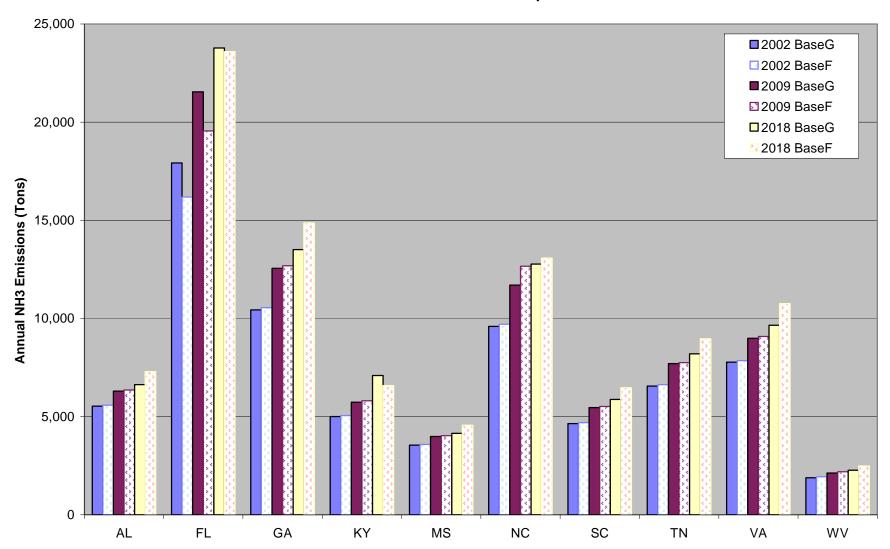

COMPARISON OF BASE F AND BASE G ON-ROAD MOBILE EMISSIONS


				\											1						
Base G C	nroad Mot	oile Emissi	ons (Annu	ial Tons)	Non			СО			SO2			PM-10			PM-2.5			NH3	
FIPSST	2002	VOC 2009	2018	2002	NOx 2009	2018	2002		2018	2002	2009	2018	2002	2009	2018	2002	2009	2018	2002	2009	2018
AL	125,768	76,065	44,503	156,460	100,693	42,622	1,303,508	902,469	594,725	6,827	802	654	3,861	3,136	2,193	2,768	2,010	1,085	5,530	6,298	6,630
FL	520,757	336,707	199,050	460,503	312,321	136,040	4,493,820	3,308,863	2,263,190	20,687	2,584	2,302	11,148	9,801	7,516	7,779	6,104	3,671	17,922	21,549	23,778
GA	279,975	192,773	99,464	304,309	207,024	92,113	2,699,650	1,956,263	1,303,529	12,043	1,568	1,325	7,165	6,005	4,406	5,110	3,797	2,166	10,436	12,554	13,511
KY	102,362	73,142	42,810	154,634	100,025	46,993	1,214,191	950,912	711,211	6,238	751	694	3,682	2,944	2,348	2,667	1,899	1,158	5,003	5,737	7,095
MS	86,811	51,600	28,699	110,672	69,952	27,620	853,774	602,257	394,247	4,566	532	401	2,828	2,250	1,479	2,089	1,491	746	3,549	3,995	4,147
NC	260,895	166,844	91,720	323,606	199,281	79,433	2,839,283	1,966,195	1,207,391	12,286	1,487	1,346	6,505	5,510	3,994	4,571	3,453	1,931	9,601	11,702	12,776
SC TN	114,861 177,943	71,781 114,032	41,866 61,339	138,940 235,869	91,471 150,179	39,348 62,446	1,226,555 1,893,704	878,825 1,320,562	588,536 863,682	5,909 9,127	713 1,065	584 862	3,414 5,312	2,831 4,160	1,986 2,813	2,473 3,904	1,834 2,720	988 1,405	4,646 6,556	5,466 7,702	5,878 8,196
VA	157,943	95,694	55.992	219,835	132,699	57,192	2,136,288	1,435,359	954.463	8,196	1,065	949	4,499	3,706	2,922	3,904	2,720	1,405	7,770	8.990	9,653
WV	41,703	24,570	14,652	58,340	35,234	15,530	526,841	360,865	243,683	2,438	276	231	1,366	1,057	747	984	676	369	1,889	2,126	2,268
						·															
VISTAS	1,869,063	1,203,208	680,096	2,163,168	1,398,879	599,336	19,187,613	13,682,570	9,124,656	88,316	10,844	9,348	49,780	41,400	30,403	35,411	26,200	14,922	72,902	86,118	93,932
Base F O	nroad Mob	ile (Annua	Tons)																		
		voc			NOx			со			SO2			PM-10			PM-2.5			NH3	
FIPSST	2002	2009	2018	2002		2018	2002	2009	2018	2002	2009	2018	2002	2009	2018	2002	2009	2018	2002	2009	2018
AL	118,978	73,137	47,151	157,626		46,598	1,300,754	934,442	675,902	6,898	637	720	3,905	3,195	2,488	2,799	2,053	1,262	5,586	6,362	7,296
FL	438,761	293,423	192,096	402,099	284,737	134,465	4,022,000	3,090,443	2,306,759	18,802	1,911	2,289	10,185	9,027	7,691	7,126	5,653	3,848	16,183	19,553	23,595
GA KY	265,972 96,202	187,102 63,210	104,678 38,814	306,998 154,093	208,568 97,731	100,707 43,014	2,712,473 1,195,656	2,044,169 932,296	1,474,029 669,891	12,182 5,988	1,256 587	1,458 651	7,252 3,728	6,116 3,008	4,995 2,283	5,169 2,699	3,877 1,946	2,517 1,160	10,545 5,055	12,685 5,807	14,870 6,584
MS	81,701	49,986	30,337	110,242	69,949	29,829	849.049	624,575	445,150	4,614	398	441	2,863	2,296	1,688	2,699	1,525	876	3,585	4.035	4,565
NC	272,594	167,894	87,718	290,873	207,670	83,399	2,677,118	2,192,253	1,238,802	12,482	1,314	1,323	6,733	5,874	4,299	4,754	3,651	2,158	9,711	12,663	13,077
SC	107,236	69,026	44,121	139,403	91,832	42,641	1,220,825	921,308	663,597	5,972	558	643	3,454	2,884	2,258	2,502	1,874	1,154	4,694	5,522	6,472
TN	168,389	109,716	63,916	233,324	147,591	66,879	1,881,893	1,359,880	961,929	9,202	833	944	5,349	4,247	3,199	3,927	2,788	1,643	6,629	7,753	8,962
VA	143,969	91,230	59,737	222,830	133,039	64,079	1,996,287	1,483,125	1,091,546	7,234	902	1,059	4,546	3,768	3,343	3,097	2,258	1,641	7,852	9,084	10,757
WV	39,581	23,914	15,375	60,335	36,000	16,940	533,258	379,272	273,900	2,495	228	255	1,399	1,099	844	1,005	705	428	1,938	2,188	2,484
VISTAS	1,733,382	1,128,638	683,942	2,077,822	1,378,416	628,551	18,389,312	13,961,764	9,801,505	85,868	8,622	9,783	49,414	41,513	33,086	35,191	26,330	16,687	71,778	85,652	98,664
		/D 0 -																			
Emission	s Change		Base F, An	nual Tons		e Value Ind	icates Incr	ease from Ba	ise F		502			DM 40			DM 2.5			NIU2	
		voc			NOx			СО		2002	SO2 2009	2018	2002	PM-10 2009	2018	2002	PM-2.5	2018	2002	NH3	2018
Emission FIPSST AL	2002 6,789		Base F, An 2018 -2,647	nual Tons 2002 -1,166		e Value Ind 2018 -3,977	2002 2,754		2018 -81,178	2002	SO2 2009	2018 -66	2002 -45	PM-10 2009 -58	2018 -295	2002 -31	PM-2.5 2009 -43	2018 -178	2002 -56	NH3 2009 -63	2018 -666
FIPSST	2002	VOC 2009	2018	2002	NOx 2009	2018	2002	CO 2009	2018		2009			2009			2009			2009	
FIPSST AL FL GA	2002 6,789 81,997 14,003	VOC 2009 2,928 43,284 5,671	2018 -2,647 6,955 -5,214	2002 -1,166 58,404 -2,689	NOx 2009 -606 27,584 -1,544	2018 -3,977 1,575 -8,594	2002 2,754 471,820 -12,823	2009 -31,973 218,420 -87,906	2018 -81,178 -43,569 -170,500	-71 1,885 -139	2009 165 672 312	-66 14 -133	-45 963 -86	2009 -58 774 -111	-295 -175 -589	-31 653 -59	2009 -43 451 -80	-178 -177 -352	-56 1,738 -109	2009 -63 1,996 -131	-666 183 -1,359
FIPSST AL FL GA KY	2002 6,789 81,997 14,003 6,160	VOC 2009 2,928 43,284 5,671 9,933	2018 -2,647 6,955 -5,214 3,996	2002 -1,166 58,404 -2,689 541	NOx 2009 -606 27,584 -1,544 2,294	2018 -3,977 1,575 -8,594 3,979	2002 2,754 471,820 -12,823 18,534	2009 -31,973 218,420 -87,906 18,615	2018 -81,178 -43,569 -170,500 41,319	-71 1,885 -139 250	2009 165 672 312 164	-66 14 -133 43	-45 963 -86 -46	2009 -58 774 -111 -65	-295 -175 -589 65	-31 653 -59 -32	2009 -43 451 -80 -47	-178 -177 -352 -2	-56 1,738 -109 -52	2009 -63 1,996 -131 -70	-666 183 -1,359 512
FIPSST AL FL GA KY MS	2002 6,789 81,997 14,003 6,160 5,110	VOC 2009 2,928 43,284 5,671 9,933 1,613	2018 -2,647 6,955 -5,214 3,996 -1,638	2002 -1,166 58,404 -2,689 541 430	NOx 2009 -606 27,584 -1,544 2,294	2018 -3,977 1,575 -8,594 3,979 -2,209	2002 2,754 471,820 -12,823 18,534 4,724	2009 -31,973 218,420 -87,906 18,615 -22,319	2018 -81,178 -43,569 -170,500 41,319 -50,903	-71 1,885 -139 250 -48	2009 165 672 312 164 134	-66 14 -133 43 -41	-45 963 -86 -46 -35	2009 -58 774 -111 -65 -46	-295 -175 -589 65 -209	-31 653 -59 -32 -25	-43 451 -80 -47 -34	-178 -177 -352 -2 -130	-56 1,738 -109 -52 -35	2009 -63 1,996 -131 -70 -40	-666 183 -1,359 512 -419
FIPSST AL FL GA KY MS NC	2002 6,789 81,997 14,003 6,160 5,110 -11,699	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001	2002 -1,166 58,404 -2,689 541 430 32,734	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966	2002 2,754 471,820 -12,823 18,534 4,724 162,165	2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411	-71 1,885 -139 250 -48 -196	2009 165 672 312 164 134 174	-66 14 -133 43 -41 23	-45 963 -86 -46 -35 -228	2009 -58 774 -111 -65 -46 -364	-295 -175 -589 65 -209 -304	-31 653 -59 -32 -25 -183	2009 -43 451 -80 -47 -34 -198	-178 -177 -352 -2 -130 -226	-56 1,738 -109 -52 -35 -111	2009 -63 1,996 -131 -70 -40 -961	-666 183 -1,359 512 -419
FIPSST AL FL GA KY MS NC SC	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255	2002 -1,166 58,404 -2,689 541 430	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731	2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061	-71 1,885 -139 250 -48	2009 165 672 312 164 134 174 156	-66 14 -133 43 -41	-45 963 -86 -46 -35 -228	2009 -58 774 -111 -65 -46 -364	-295 -175 -589 65 -209 -304 -272	-31 653 -59 -32 -25 -183	2009 -43 451 -80 -47 -34 -198 -40	-178 -177 -352 -2 -130 -226 -166	-56 1,738 -109 -52 -35 -111 -48	2009 -63 1,996 -131 -70 -40 -961 -56	-666 183 -1,359 512 -419 -302 -594
FIPSST AL FL GA KY MS NC	2002 6,789 81,997 14,003 6,160 5,110 -11,699	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001	2002 -1,166 58,404 -2,689 541 430 32,734 -462	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966	2002 2,754 471,820 -12,823 18,534 4,724 162,165	2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411	-71 1,885 -139 250 -48 -196 -63	2009 165 672 312 164 134 174	-66 14 -133 43 -41 23 -59	-45 963 -86 -46 -35 -228	2009 -58 774 -111 -65 -46 -364 -53 -87	-295 -175 -589 65 -209 -304	-31 653 -59 -32 -25 -183	2009 -43 451 -80 -47 -34 -198	-178 -177 -352 -2 -130 -226	-56 1,738 -109 -52 -35 -111	2009 -63 1,996 -131 -70 -40 -961	-666 183 -1,359 512 -419
FIPSST AL FL GA KY MS NC SC TN	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811	2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246	-71 1,885 -139 250 -48 -196 -63 -75	2009 165 672 312 164 134 174 156 232	-66 14 -133 43 -41 23 -59	-45 963 -86 -46 -35 -228 -40	2009 -58 774 -111 -65 -46 -364 -53 -87	-295 -175 -589 65 -209 -304 -272 -385	-31 653 -59 -32 -25 -183 -29	2009 -43 451 -80 -47 -34 -198 -40 -68	-178 -177 -352 -2 -130 -226 -166 -238	-56 1,738 -109 -52 -35 -111 -48 -73	2009 -63 1,996 -131 -70 -40 -961 -56 -52	-666 183 -1,359 512 -419 -302 -594
FIPSST AL FL GA KY MS NC SC TN VA	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416	CO 2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217	-71 1,885 -139 250 -48 -196 -63 -75 962 -57	2009 165 672 312 164 134 174 156 232 165 49	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37 -47 -32	2009 -58 7774 -1111 -65 -46 -364 -53 -87 -62 -42	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217
FIPSST AL FL GA KY MS NC SC TN VA	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811	CO 2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084	-71 1,885 -139 250 -48 -196 -63 -75	2009 165 672 312 164 134 174 156 232	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37	2009 -58 7774 -1111 -65 -46 -364 -53 -87 -62 -42	-295 -175 -589 65 -209 -304 -272 -385 -420	-31 653 -59 -32 -25 -183 -29 -22 -30	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29	-178 -177 -352 -2 -130 -226 -166 -238 -237	-56 1,738 -109 -52 -35 -111 -48 -73 -83	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217
FIPSST AL FL GA KY MS NC SC TN VA WV	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416	2009 -31,973 -218,420 -87,906 -18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850	-71 1,885 -139 250 -48 -196 -63 -75 962 -57	2009 165 672 312 164 134 174 156 232 165 49	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37 -47 -32	2009 -58 7774 -1111 -65 -46 -364 -53 -87 -62 -42	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217
FIPSST AL FL GA KY MS NC SC TN VA WV	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416	2009 -31,973 218,420 -87,906 -87,906 -18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850	-71 1,885 -139 250 -48 -196 -63 -75 962 -57	2009 165 672 312 164 134 174 156 232 165 49	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37 -47 -32	2009 -58 774 -111 -65 -46 -364 -53 -87 -62 -42	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62	-666 183 -1,359 512 -419 -302 -594 -766 -1,104
FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E	2018 2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346	NOx 2009 -606 27,584 -1,544 -2,294 3 -8,389 -362 2,589 -340 -766 20,462	2018 -3,977 1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301	CO 2009 31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 Increase froi	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F	-71 1,885 -139 250 -48 -196 -63 -75 962 -57	2009 165 672 312 164 134 1756 232 165 49 2,222	-66 14 -133 43 -41 23 -59 -82 -110 -24	-45 963 -86 -46 -35 -228 -40 -37 -47 -32	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -344 -198 -40 -68 -42 -29 -130	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732
FIPSST AL FL GA KY MS NC SC TN VA WV	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 s Change	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E	2018 2,647 6,955 -5,214 3,996 -1,638 4,001 2,255 -2,577 -3,744 -723 -3,846	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346	Nox 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 all %) Po Nox 2009	2018 -3,977 -1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301	2009 2019 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 Increase fro CO 2009	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F	-71 1,885 -139 250 -48 -196 -63 -75 -962 -57 -2,448	2009 165 672 312 164 134 174 156 232 165 49 2,222	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435	-45 963 -86 -46 -35 -228 -37 -47 -47 -32 -32 -367	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 -730 -730 -730 -730	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764	-56 1,738 -109 -52 -35 -111 -73 -83 -49 1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 -466	-6666 183 -1,359 5121 -419 -302 -594 -766 -1,104 -217 -4,732
FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 S Change	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E	2018 2,647 6,955 -5,214 3,638 4,001 -2,255 -3,744 -723 -3,846 3ase F/Bas 2018	2002 -1,166 58,404 -2,689 5411 4330 32,734 -462 -2,995 -1,995 85,346	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462	2018 -3,977 1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2 Indicates 2002 0%	2009 218,420 -31,973 218,420 -87,906 -87,906 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448	2009 165 672 312 164 134 174 156 232 165 49 2,222	-66 144 -133 43 -41 23 -59 -82 -110 -24 -435	-45 963 -866 -46 -46 -35 -228 -40 -37 -47 -32 -32 -367 -32 -367	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114	-295 -175 -589 -689 -209 -304 -272 -385 -420 -97 -2,683	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 -130	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -49 -1,123 -1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 -62 -72 -73 -74 -75 -75 -75 -75 -75 -75 -75 -75 -75 -75	-666 183 -1,359 512 -419 -302 -594 -1,104 -217 -4,732
FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 s Change	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E	2018 2,647 6,955 -5,214 3,996 -1,638 4,001 2,255 -2,577 -3,744 -723 -3,846	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346	Nox 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 all %) Po Nox 2009	2018 -3,977 -1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301	2009 2019 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 Increase fro CO 2009	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F	-71 1,885 -139 250 -48 -196 -63 -75 -962 -57 -2,448	2009 165 672 312 164 134 174 156 232 165 49 2,222	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435	-45 963 -86 -46 -35 -228 -37 -47 -47 -32 -32 -367	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219 -219	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 -730 -730 -730 -730	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764	-56 1,738 -109 -52 -35 -111 -73 -83 -49 1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 -466	-666 183 -1,358 512 -418 -302 -594 -766 -1,104 -217 -4,732
FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL FL GA KY	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 8 Change 2002 6% 19% 5% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E VOC 2009 4% 15% 3% 16%	2018 2018 2.647 6.955 -5.214 3.926 -1,638 4.001 -2,255 -2,577 -3,744 -723 -3,846 2018 -6% -4% -5% -5% -10%	2002 -1,166 58,404 -2,689 5411 430 32,734 -462 -2,995 -1,995 85,346 2002 -1% 15% -15% -1%	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 all %) Po NOx 2009 -1% 10% -1% 2%	2018 -3,977 1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% 1% -9% 9%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2 Indicates 2002 0% 12% 0%	2009 218,420 -87,906 -87,906 -88,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -12% -6%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 2002 -1% 10% -1% 4%	2009 165 672 312 164 134 174 156 232 165 49 2,222 SO2 2009 26% 35% 25%	-66 144 -133 43 -41 23 -59 -82 -110 -24 -435 -9% 1% -9% -9%	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -367 -39% -19% -19%	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114 -114 -114 -200 -209 -9% -2% -2%	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -228 -12% -22% -12% -383	311 653 559 -32 -25 -183 -29 -22 -22 219 219 2002 -11% -9% -11%	2009 -43 451 -80 -47 -344 -198 -40 -68 -42 -29 -130 -130	-178 -177 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -14%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 1,123 2002 11% -11% -11% -11%	2009 -63 1.996 -131 -70 -40 -961 -56 -52 2-94 -62 -466 	-666 18: -1,355 512 -419 -302 -599 -766 -1,104 -217 -4,732 -4,732 -9% -9% -9% -9% -9% -9% -9% -9% -9% -9%
FIPSST AL Emissior FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emissior FIPSST AL FL GA KY MS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 S Change 2002 6% 19% 5% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E VOC 2009 4% 3% 16% 3%	2018 20,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 -6% 4,96 -6% -6% -5% -5%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -1,995 -1,995 -1,995 85,346 85,346 -1,96 85,346 -1,96 -1	NOx 2009 -606 27,584 -1,544 -2,294 3 -362 2,589 -362 2,589 -340 -766 20,462 Lal %) Po NOx 2009 -1% -1% -1% -1% -2% -0%	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% -9% -9% -9% -9% -7%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2 Indicates 2002 0% 0% 0% 0% 0%	CO 2009 31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 Increase froi CO 2009 -3% -4% -4% -4%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -12% -6% -11%	-71 1,885 -139 250 -48 -63 -75 962 -57 2,448 2002 -1% 10% -1%	2009 165 672 312 164 1344 174 156 232 165 49 2,222 2009 26% 35% 25% 25% 25%	-66 144 -133 43 -41 23 -59 -82 -110 -24 -435 -9% 1% -9% -9% -9%	-45 963 -36 -46 -46 -35 -228 -40 -37 -47 -47 -32 -32 -2002 -1% -9% -19% -19% -19%	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114 -114 -114 -114 -209 -2% -2% -2%	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -218 -12% -2% -12% -385 -2,683	311 653 559 -32 -25 -183 -29 -22 -22 219 2002 -1% -1% -1%	2009 -43 451 -80 -47 -344 -198 -40 -68 -42 -29 -130 -130	-178 -177 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -14% -6% -15% -15%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123 -2002 -1% -1% -1% -1% -1% -1%	2009 -63 1.996 -131 -70 -40 -961 -56 -52 -94 -62 -466 -81 -909 -100 -100 -100 -100 -100 -100 -10	-666 183 -1,355 512 -415 -300 -599 -766 -1,100 -217 -4,732 -4,732 -9% -9% -9% -9% -9%
FIPSST AL Emissior FL GA KY MS NC SC TN VA WV VISTAS FIPSST AL FL GA KY MS NC	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 s Change 2002 6% 19% 6% 6% 6% 6% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E VOC 2009 4% 15% 3% 16% 3% 16%	2018 2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 -6% 4% -6% 10% -5% 5%	2002 -1,166 -58,404 -2,689 -541 -402 -2,545 -2,995 -1,995 -1,995 -1,19	Nox 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 20,462 2099 -1% -1% -2% -0% -4%	2018 -3,977 -1,575 -8,594 -3,996 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% -9% -9% -9% -9% -5%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0% 12% 0% 12% 6%	2009 -31,973 -218,420 -87,906 -88,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 -279,194 -2009 -3% -7% -4% -2% -4% -2% -4%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -6% -11% -6% -11% -3%	-71 1,885 -139 250 -48 -196 -63 -75 -962 -57 -2,448 -196 -196 -196 -196 -196 -196 -196 -196	2009 165 672 312 164 134 174 156 49 2,222 SO2 2009 26% 35% 28% 28% 34% 34%	-66 144 -133 43 -41 23 -59 -82 -110 -24 -435 -9% 1% -9% -9% -9% -9% -9% -9% -9% -9% -9% -9	-45 963 -866 -46 -35 -228 -40 -37 -47 -47 -47 -47 -47 -47 -47 -47 -47 -4	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114 -114 -114 -2009 -2% -2% -2% -2%	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -12% -23 -33 -12% -12% -12% -12% -12% -12% -12% -12%	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219 -19% -19% -19% -19% -19% -19% -19% -1	2009 -43 451 -80 -47 -344 -198 -40 -42 -29 -130 -130	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -5% -5% -1% -1% -1% -1%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123 -2002 -1% -1% -1% -1% -1% -1% -1% -1% -1% -1%	2009 -633 1,996 -1311 -70 -400 -9611 -56 -52 -94 -62 -466 	-666 183 183 183 183 183 183 183 183 183 183
FIPSST AL GA KY MS NC SC TN VA WV VISTAS Emissior FIPSST AL FL GA KY MS NC SC	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 8 Change 2002 6% 19% 6% 6% 6% 6% -4% 7%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E VOC 2009 4% 15% 3% -1% 3% -1% 4%	2018 2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 -6% 4% -5% 10% -5% 5% 5%	2002 -1,166 -58,404 -2,689 -541 -430 -32,734 -462 -2,545 -1,995 -	NOx 2009 -606 27,584 -1,544 -2,294 -3 -362 -2,589 -362 -340 -766 20,462 201 -1% -1% -1% -1% -1% -2% -0% -4% -4% -606	2018 -3,977 -1,575 -8,594 -3,979 -2,209 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% -1% -9% -9% -7% -5% -5%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0% 12% 0% 12% 6% 6%	CO 2009 31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 Increase froi CO 2009 -3% -7% -4% -10% -5%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -12% -6% -11%	-71 1,885 -139 250 -48 -63 -75 962 -57 2,448 2002 -1% 10% -1% -1% -1%	2009 165 672 312 164 134 174 156 232 165 49 2,222 2009 26% 35% 25% 25% 28% 34% 34%	-66 144 -133 43 -41 23 -59 -82 -110 -24 -435 -9% -9% -9% -9% -9% -9% -9%	-45 963 -86 -46 -35 -228 -40 -37 -47 -47 -32 -19% -19% -19% -19% -19% -19% -19% -19%	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114 -114 -114 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	-295 -175 -589 -65 -209 -304 -420 -97 -2,683 -12% -22% -12% -12% -12% -12% -12% -12%	311 6533 -599 -322 -25 -1833 -299 -222 -222 -219 -219 -219 -219 -219	2009 -43 451 -80 -47 -344 -198 -40 -68 -42 -29 -130 -130	-178 -177 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 -1,764 -2018 -14% -5% -14% -5% -15% -15% -10% -10% -14%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123	2009 -63 1.996 -131 -70 -40 -961 -56 -52 2-94 -62 -466 	-666 18: -1,355 51: -41! -30: -766 -1,100 -21: -4,73: -4,73: -9% -9% -9% -9% -9% -9% -9% -9% -9% -9%
FIPSST AL Emissior FL GA KY MS NC SC TN VA WV VISTAS Emissior FIPSST AL FL GA KY MS NC SC TN AL FL GA KY MS NC SC TN NC SC TN TN NC SC TN NC TN NC SC TN	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 2022 6% 6% 6% 6% 6% 6% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E VOC 2009 4% 3% 16% 3% 16% 3% -1% 4%	2018 20,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 -6% 44% -5% 10% -5% 5% -5%	2002 -1,166 58,404 -2,689 541 -402 2,545 -2,995 -1,	NOx 2009 -606 27,584 -1,544 -1,544 -2,294 -3 -362 -2,589 -362 -766	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 2018 -9% -9% -9% -9% -9% -9% -7% -5% -5% -7%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 2002 0% 122% 09% 122% 09% 09% 69% 69%	CO 2009 -31,973 -218,420 -87,906 -18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 -279,194 -279,194 -279,194 -4% -4% -4% -4% -10% -5% -3%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -6% -11% -6% -3% -11% -3% -11% -3% -11% -10%	-71 1,885 -139 250 -48 -63 -75 962 -57 2,448 2002 -1% 10% -1% -1% -1% -1%	2009 165 672 312 164 1344 174 156 2322 165 49 2,222 2009 26% 25% 25% 28% 34% 34% 13% 28%	-66 144 -133 43 -41 23 -59 -82 -110 -24 -435 -9% 1% -9% 7% 29% -9% -9% -9% -9% -9% -9% -9% -9% -9% -	-45 963 -36 -46 -46 -40 -37 -47 -47 -32 -367 -367 -38 -19% -19% -19% -19% -19% -19% -19% -19%	2009 -58 774 -1111 -65 -46 -364 -53 -62 -42 -114 -114 -114 -114 -209 -2% -2% -2% -6% -2% -6% -2% -6% -2%	-295 -175 -175 -209 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -2018 -12% -12% -12% -7% -12% -12% -12% -12% -12% -12% -12% -12	311 653 559 -32 -25 -183 -29 -22 -22 219 2002 -1% -1% -1% -1% -1%	2009 -43 451 -80 -47 -344 -198 -40 -42 -29 -130 PM-2.5 2009 -2% -2% -5% -5% -5% -2% -2%	-178 -177 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 -2018 -14% -5% -14% -6% -15% -10% -14% -14%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123 -2002 -1% -1% -1% -1% -1% -1% -1% -1% -1% -1%	2009 -63 1.996 -131 -70 -40 -961 -56 -52 -94 -62 -466 -81 -909 -11% -11% -11% -11% -11% -11% -11% -11	-666 183 -1,355 512 -415 -300 -599 -766 -1,100 -217 -4,732 -4,732 -9% -9% -9% -9% -9% -9% -9%
FIPSST AL FL GA WV VISTAS Emissior FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 S Change 2002 6% 19% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E VOC 2009 4% 15% 3% 16% 3% 16% 3% 16% 4% 4% 4%	2018 20,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 -6% 4% -5% 10% -5% -5% -5% -5% -5% -6%	2002 -1,166 -58,404 -2,689 -541 -402 -2,545 -2,995 -1,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 20,462 2009 -1% -1% -2% -0% -4% -4% -6% -6% -6% -6% -6% -6% -6% -6% -6% -6	2018 -3,977 -1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% -9% -9% -9% -9% -7% -5% -8% -7% -11%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2 Indicates 2002 0% 12% 0% 12% 0% 6% 6% 6% 6% 6%	2009 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -118,407 -279,194 Increase fro CO 2009 -3% -7% -4% -2% -4% -10% -5% -3%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -6% -11% -11% -11% -11%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 2002 -1% 10% -1% -4% -1% -1% -1% -1% -1% -1% -1% -1% -1% -1	2009 165 672 312 164 134 174 156 49 2,222 SO2 2009 26% 35% 28% 28% 28% 28%	-66 144 -133 43 -41 23 -59 -82 -110 -24 -435 -435 -9% -9% -9% -9% -9% -9% -9% -9% -9% -9%	-45 963 -86 -46 -42 -40 -47 -32 -47 -32 -47 -32 -19% -19% -19% -19% -19% -19% -19% -19%	2009 -58 774 -1111 -65 -46 -364 -53 -87 -62 -42 -114 -114 -114 -2009 -2% -9% -2% -2% -2% -2% -2% -2% -2% -2% -2% -2	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -12% -3% -12% -12% -12% -12% -12% -12% -12% -12	311 653 -599 -32 -25 -183 -29 -22 -30 -22 -19 -9% -11% -11% -11% -11% -11%	2009 -43 451 -80 -47 -344 -198 -40 -42 -29 -130 -130 -2% -8% -2% -5% -5% -5% -2% -2% -2% -2% -2% -2% -2% -2% -2% -2	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 -2018 -14% -5% -15% -14% -14% -14% -14% -14% -14% -14% -14	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123	2009 -633 1,996 -1311 -70 -400 -9611 -56 -52 -94 -62 -62 -466 -70 -70 -70 -70 -70 -70 -70 -70 -70 -70	-666 18: -1,355 51: -41: -41: -30: -59: -766 -1,100 -21: -4,73: -4,73: -9% -9% -9% -9% -9% -9% -9% -9% -9% -9%
FIPSST AL FL GA WV VISTAS Emissior FIPSST AL FL GA KY MS C TN VA WV VISTAS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 2022 6% 6% 6% 6% 6% 6% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - E VOC 2009 4% 3% 16% 3% 16% 3% -1% 4%	2018 20,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 -6% 44% -5% 10% -5% 5% -5%	2002 -1,166 58,404 -2,689 541 -402 2,545 -2,995 -1,	NOx 2009 -606 27,584 -1,544 -1,544 -2,294 -3 -362 -2,589 -362 -766	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 2018 -9% -9% -9% -9% -9% -9% -7% -5% -5% -7%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 2002 0% 122% 09% 122% 09% 09% 69% 69%	CO 2009 -31,973 -218,420 -87,906 -18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 -279,194 -279,194 -279,194 -4% -4% -4% -4% -10% -5% -3%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -6% -11% -6% -3% -11% -3% -11% -3% -11% -10%	-71 1,885 -139 250 -48 -63 -75 962 -57 2,448 2002 -1% 10% -1% -1% -1% -1%	2009 165 672 312 164 1344 174 156 2322 165 49 2,222 2009 26% 25% 25% 28% 34% 34% 13% 28%	-66 144 -133 43 -41 23 -59 -82 -110 -24 -435 -9% 1% -9% 7% 29% -9% -9% -9% -9% -9% -9% -9% -9% -9% -	-45 963 -36 -46 -46 -40 -37 -47 -47 -32 -367 -367 -38 -19% -19% -19% -19% -19% -19% -19% -19%	2009 -58 774 -1111 -65 -46 -364 -53 -62 -42 -114 -114 -114 -114 -209 -2% -2% -2% -6% -2% -6% -2% -6% -2%	-295 -175 -175 -209 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -2018 -12% -12% -12% -7% -12% -12% -12% -12% -12% -12% -12% -12	311 653 559 -32 -25 -183 -29 -22 -22 219 2002 -1% -1% -1% -1% -1%	2009 -43 451 -80 -47 -344 -198 -40 -42 -29 -130 PM-2.5 2009 -2% -2% -5% -5% -5% -2% -2%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -14% -16% -16% -10% -14%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123 -2002 -1% -1% -1% -1% -1% -1% -1% -1% -1% -1%	2009 -63 1.996 -131 -70 -40 -961 -56 -52 -94 -62 -466 -81 -909 -11% -11% -11% -11% -11% -11% -11% -11	-666 18: 1-1.355 51: -411 -300 -590 -766 -1.1.00 -211 -4.73: -4.73: -201: -99 -99 -99 -99 -99 -99 -99 -99 -99 -9

Note: Base G is equivalent to the Best and Final inventory for onroad mobile sources.






Annual Onroad Emissions Comparison

Annual Onroad Emissions Comparison

Annual Onroad Emissions Comparison

APPENDIX G:

CONVERSION OF MRPO BaseM POINT SOURCE DATA TO SMOKE INPUT FORMAT

Appendix G 241

Atmospheric Sciences Group

MEMORANDUM

To: Pat Brewer, VISTAS

From: Gregory Stella, Alpine Geophysics, LLC

Re: Conversion of MRPO BaseM Point Source Data to SMOKE Input Format

Date: 13 February 2008

The Midwest Regional Planning Organization (MRPO) periodically produces a five State emission inventory for Illinois, Indiana, Michigan, Wisconsin, and Ohio. These data are used as the basis for various MRPO modeling and regulatory analyses. These data are prepared with the help of each State's emission inventory divisions and are felt to be the most representative account for emissions activities for those States at any one time.

The most recent version prepared and distributed by MRPO is currently called BaseM. Associated with this 2005 base year inventory release is a set of growth and control factors that are used to additionally simulate future year conditions under "On-The-Books" (base case or known control programs requirements to be implemented in future years) or incremental control situations to test sensitivity or strategies which would be implemented in whole or in part during the same future years.

The purpose of this document is to detail the technical steps that were made as part of the conversion of the MRPO BaseM point sources files (electric generating unit [EGU] and non-EGU) into IDA format for ASIP PM-2.5 CAMx modeling of the future year 2009. Because of the timing and complications relative to converting multiple and various emission files for all source types, it was determined that only point source emissions would be converted for processing at this time.

Data Sources and Description

A series of data files and associated documentation was obtained from MRPO staff in 2007. These files were the input data sets for base year 2005 and growth and control factors related to MRPO's BaseM and Round 5 inventories⁶. Because of the emission processing tools that MRPO currently executes for its analyses, these files are in formats that are not read by the SMOKE emissions processor currently in use by VISTAS/ASIP modelers (contract teams and participating states). Alpine Geophysics, under the Emissions Inventory Technical Advisor contract, was asked to obtain and convert these data into the formats that could be used by these modeling agencies.

Through additional contact with MRPO staff, the base year 2005 non-EGU point source files and associated growth and control factors necessary to forecast the data to 2009 base case conditions were identified and extracted from the originally provided data. EGU sources were identified to be already prepared for the future year (2010 substituted for 2009) and were based on recent IPM 3.0 model runs with incremental adjustment made by MRPO states to best reflect expected emission controls and operating conditions. The "will do" simulation series for EGUs was identified as "egu5b_2010."

The main purpose of the SMOKE conversion task was to prepare five state emission inventories provided in National Input Format (NIF) format into the IDA format required by the SMOKE model for the criteria pollutants VOC, NOx, CO, SO2, PM-10, PM-2.5, and NH3. Annual emissions were taken directly from the NIF structured inventories with no alternate temporal calculations performed (e.g., estimate seasonal emissions from annual or annual from seasonal). The temporal allocation module of the SMOKE emissions processor was intended to be used to further define temporal distribution of these emissions.

⁶ http://www.ladco.org/tech/emis/r5/round5 reports.htm

Atmospheric Sciences Group

No quality assurance (QA) related to the reported values in the MRPO was conducted (e.g., it was assumed that reported emission levels were correct) and therefore the QA focus of these tasks was to maintain the integrity of the mass files in the conversion to IDA.

Each set of NIF structured data had a unique set of relational tables necessary to maintain the information required in each source sector based on its reporting requirements. Alpine had previously developed scripts to read the information from each of these relational data sets and convert them to the IDA structures required by this task. Prior to and after each major source sector was converted from NIF to IDA, we developed a list of emission summary reports to check that the emissions input into the conversion process were the same as output into the IDA formatted files.

Non-EGU Point Source Conversion

Non-EGU point source emissions from 2005 BaseM were converted to future year 2009 IDA format using the annual emission records directly from the NIF structured data sets and associated SCC growth factors and unit, facility, county, state, or nationally applied controls⁷. These controls were applied in a hierarchical fashion starting with the most defined (unit-segment-pollutant level) through least defined (national-SCC-pollutant) and when a match was found during the implementation, no additional controls were sought or applied to that emission record. In other words, if a match were found at the unit-segment level of control, no additional controls were applied to that segment/pollutant combination again in the forecast process. This prevented multiple control programs from being implemented when the intent of the originally provided control files were to assign a single applicable reduction.

The Round 5 factors for point sources provided by MRPO were in the RPO Data Exchange Format (RPODx) and had growth and control factors available at the State, county, plant, unit, segment, stack, and SCC level of detail. In order to apply these factors in a fashion consistent with that of the MRPO utilized processing system and duplicative of how MRPO would have generated its BaseM forecasts, a hierarchical approach was utilized to match and assign growth and control values.

Growth Factor Application

Using the 2005 EM table from the BaseM inventory files in NIF format, we first selected each emissions record for forecasting. In this conversion case, these EM records were limited to those emissions identified as annual using the NIF coding convention. As noted in the limitations section below, there oftentimes were emissions provided by MRPO in a summer season convention.

We next selected the base year for application as the RPODx for growth rates allows for the flexibility of input growth factors for multiple base year inventories. In this assignment, the base year was always 2005, as that was the base year provided by MRPO and the future year was 2009, as selected by ASIP.

The next step was to determine the growth basis for each individual emission record of the file. This "growth basis" is the key with which the growth factor is associated. For point sources, this key is based on a combination of FIPS, SCC, and pollutant codes. Multiple keys are calculated for each individual emission record and that key with the highest resolution of matching to the growth factor file using the hierarchy identified in Table 1 below is the one chosen to assign a growth rate to the base year emissions.

⁷

Table 1. Point Source Growth Factor Application Hierarchy.

Order	Key or "Growth/Control Basis"
1	state/county code, 10-digit SCC, pollutant
2	state/county code, 10-digit SCC
3	state code, 10-digit SCC, pollutant
4	state code, 10-digit SCC
5	state/county code, pollutant
6	state/county code
7	state code, pollutant
8	state code
9	10-digit SCC, pollutant
10	10-digit SCC
11	Pollutant

Using the hierarchical application, growth basis, and dates (base year and alternate year), we matched each emission record to the growth table to obtain a growth factor. The factors are defined in the growth table as a multiplier for the base year period that calculates the alternate year of interest. In other words, multiplying the base year emissions value by the growth factor provides you with the emissions for the alternate year of interest.

When no match from any of the hierarchical keys was identified, a growth rate of 1.00 (no growth) was assigned. This maintained the 2005 emission level in the future year inventory.

Control Factor Application

Similar to the process identified above for the assignment and application of growth factors, the control factor assignment was based on a hierarchical key, this time, however, using FIPS, plantid, pointid, stackid, segment, SCC, and pollutant codes applied in a parallel process to the growth factor assignment.

Using the 2005 EM table from the BaseM inventory files in NIF format, we selected each annual emissions record for forecasting. We next selected the base year for application, and again, the base year was always 2005, as that was the base year provided by MRPO.

Once the base year was identified, we determined the alternate year for our forecast. Depending on the specific year used in each conversion, growth rates were limited to those with a base year of 2005 and a future year *less than or equal to* that of our forecast. This variation in method is intended to allow us to identify all controls implemented prior to or during the year of interest and will consider them as viable options at the latest provided level of control.

In other words, since we selected 2009 as the future year of choice, we limit the control factor table to control strategies implemented during or prior to 2009. If in our matching to the control factor table we find that for a certain control basis key there is no match because a program may have been fully implemented in a prior year (say 2007), then we do not want to exclude this reduction from our forecast. Additionally, if we find that there are multiple entries in the control factor table because of incremental implementation of a rule, we select the closest year to that of our intended forecast. So if a particular rule was incrementally implemented from 2005 through 2009 and there were control records available for each year in between, we would select the record with the latest year to apply in our forecast.

The next step was to determine the control basis for each individual emission record of the file. This "control basis" is the key with which the control strategy or technology is associated. Although we developed code to support the hierarchical application of control factors for the BaseM emissions, all control factors provided by MRPO in the Round 5 files were segment-SCC-pollutant specific. This eliminated the need for a search on the key that has the greatest resolution as all matches were at the segment-SCC-pollutant level.

Using the control basis and dates (base year and alternate year), we matched each emission record to the control table to obtain a control factor. The factors are defined in the control table as a group of values (control efficiency, rule effectiveness, and rule penetration) for the future year period that gets assigned to an uncontrolled future year emission value. In other words, we first "backed out" existing base year controls from our future year emissions estimate and then multiplied this uncontrolled value by the control factors for the alternate year of interest. These calculations are defined in Equations 1 and 2 below.

Equation 1. Uncontrolled emissions calculation.

```
Emiss _{\text{Unc}}= Emiss _{\text{Base}} / (1-((CE _{\text{Base}} /100)*(RE _{\text{Base}} /100)*(RP _{\text{Base}} /100)))
```

Where,

Emiss $_{Unc}$ = Uncontrolled emissions

Emiss $_{\text{Base}}$ = Base year emissions

 CE_{Base} = Base year control efficiency RE_{Base} = Base year rule effectiveness

RP_{Base} = Base year rule penetration

Equation 2. Application of new control calculation.

Emiss
$$_{\text{New}}$$
 = Emiss $_{\text{Unc}}$ *(1-((CE $_{\text{New}}$ /100)*(RE $_{\text{New}}$ /100)*(RP $_{\text{New}}$ /100)))

Where,

Emiss $_{New}$ = Future year emissions Emiss $_{Unc}$ = Uncontrolled emissions

 CE_{New} = Future year control efficiency RE_{New} = Future year rule effectiveness RP_{New} = Future year rule penetration

When no match from any of the hierarchical keys was identified, the same control efficiency, rule efficiency, and rule penetration values from the base year inventory were used in the calculation and the only change in emissions would have been the result of growth factor application. In instances where PM-10 annual emissions were found to be less than PM-2.5 annual emission values, the PM-2.5 emission values were changed to equal that of PM-10.

EGU Point Source Conversion

EGU point source emissions from the egu5b_2010 scenario (2010 IPM 3.0 run with modifications) were converted to year 2009 IDA format using the annual emission records directly from the NIF structured data sets. Since these emissions already accounted for growth and control application, no additional modifications were required.

One ASIP requested modification for its PM-2.5 CAMx modeling was to adjust the 2009 file to match W. H. Sammis facility's planned response to the control requirements from the consent decree USA vs. Ohio Edison; Civil Action No: 2:99-CV-1181; March 18, 2005. These changes were not implemented in the ASIP 2009 CMAQ runs. These adjustments for SO2 are noted in Table 2 below.

Atmospheric Sciences Group

Table 2. SO2 Control Requirements from USA vs. Ohio Edison Consent Decree

Units 1-4 Induct Scrubbing

50% removal (1.1 lbs/MMBtu) At least one unit by Sept. 30, 2008 Second unit by Dec. 31, 2008 Other two units by Dec. 31, 2009

Unit 5 Flash Dryer Absorber or Electro-Catalytic Oxidation no later than Dec. 31, 2008

50% removal (1.1 lbs/MMBtu)

Units 6/7 Scrubber no later than December 31, 2010

95% removal (0.13 lbs/MMBtu)

Plantwide Emission cap of 101,500 by end of 2009

Emission cap of 101,500 by end of 2010 Emission cap of 29,900 by end of 2011

Conversion Limitations

As noted above, Alpine limited our conversion to all records in the MRPO point source files that were identified as annual. In some cases the MRPO NIF files had additional non-annual summer season emission records configured as a higher percentage than the annual average that was used in our emissions comparison.

In other words, the MRPO file sometimes had two emission record types that it uses for its modeling; one for the summer period and one for the rest of the year. Since SMOKE uses temporal allocation factors to make this summer/winter split, our converted values do not match MRPO's summertime reports. We see a high percentage difference in the Alpine converted data compared to the MRPO output reports in these two States for the July 12 example for this reason.

Since we confirmed this difference and reason for this difference in the 2005 data sets with MRPO, our objective for QA on the projections also included delta emissions from the projection year to the base year. Although the absolute daily emission values (in tpd) were found to be different as noted above, in all cases, the difference between 2005 and the projection year calculations as made by Alpine was within confidence ranges of the ratio of future year to base year as posted by MRPO. See Table 3 below. For this reason, we were convinced that our projection methodology is capturing the growth and control factors that MRPO applied in its emissions modeling.

 Table 3. Emissions Comparison of ASIP Converted and MRPO Non-EGU Emissions.

Comparison of ASIP Converted and MRPO Non-EGU Emissions

		A SIP 2009 Annual Emissions (Tons/Year)												
FIPSST	State	VOC	NOX	CO	SO2	PM-10	PM-2.5	NH3						
17	Illinois	61,760	85,142	71,725	150,506	20,315	6,256	1,059						
18	Indiana	48,287	65,132	339,642	82,040	22,118	12,774	782						
26	Michigan	36,753	85,014	67,564	55,435	13,235	6,567	788						
39	Ohio	31,530	67,275	212,626	116,942	15,930	10,443	3,239						
55	Wisconsin	31,377	36,827	43,014	60,955	456	43	346						
	MRPO	209,707	339,390	734,570	465,878	72,054	36,082	6,214						

	_		ASIP 2009 July 12 Summer Daily Emissions (Tons/Day)												
FIPSST	State	voc	NOX	CO	SO2	PM-10	PM-2.5	NH3							
17	Illinois	222.3	315.1	250.9	412.3	55.6	17.1	2.9							
18	Indiana	132.3	178.4	930.5	224.8	60.6	35.0	2.1							
26	Michigan	115.8	232.4	193.6	144.9	40.8	19.3	2.4							
39	Ohio	86.4	184.3	582.5	320.4	43.6	28.6	8.9							
55	Wisconsin	86.0	100.9	117.8	167.0	1.3	0.1	0.9							
	MRPO	642.7	1,011.1	2,075.4	1,269.4	202.0	100.2	17.2							

		A.	SIP 2009 July	12 Summer	Daily Emission	ons (% of MF	RPO Total)	
FIPSST	State	VOC	NOX	CO	SO2	PM-10	PM-2.5	NH3
17	Illinois	29.5%	25.1%	9.8%	32.3%	28.2%	17.3%	17.0%
18	Indiana	23.0%	19.2%	46.2%	17.6%	30.7%	35.4%	12.6%
26	Michigan	17.5%	25.0%	9.2%	11.9%	18.4%	18.2%	12.7%
39	Ohio	15.0%	19.8%	28.9%	25.1%	22.1%	28.9%	52.1%
55	Wisconsin	15.0%	10.9%	5.9%	13.1%	0.6%	0.1%	5.6%
	MRPO	100%	100%	100%	100%	100%	100%	100%

		2009 July 12 Summer Daily Emissions (Tons/Day)												
FIPSST	State	VOC	NOX	co	SO2	PM-10	PM-2.5	NH3						
17	Illinois	218.1	217.8	255.7	335.0	56.0	16.8	2.8						
18	Indiana	137.2	175.2	888.8	216.2	60.7	36.5	2.3						
26	Michigan	119.1	242.0	206.5	148.6	43.6	20.3	2.4						
39	Ohio	87.1	166.3	540.7	288.0	43.0	27.6	8.3						
55	Wisconsin	87.7	92.9	120.0	152.1	23.2	0.1	1.0						
	MRPO	649.2	894.2	2,011.7	1,139.9	226.5	101.3	16.8						

	_		2009 July 1	2 Summer Da	ily Emissions	(% of MRPC) Total)	
FIPSST	State	VOC	NOX	CO	SO2	PM-10	PM-2.5	NH3
17	Illinois	33.6%	24.4%	12.7%	29.4%	24.7%	16.6%	16.7%
18	Indiana	21.1%	19.6%	44.2%	19.0%	26.8%	36.0%	13.7%
26	Michigan	18.3%	27.1%	10.3%	13.0%	19.2%	20.0%	14.3%
39	Ohio	13.4%	18.6%	26.9%	25.3%	19.0%	27.2%	49.4%
55	Wisconsin	13.5%	10.4%	6.0%	13.3%	10.2%	0.1%	6.0%
	MRPO	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

APPENDIX H:

COMPARISON OF EGU CONTROLS FOR COAL AND OIL/GAS UNITS BASED ON IPM MODELING AND STATE-PROVIDED INFORMATION FOR THE BASE G/G2 INVENTORY

Appendix H 248

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
01033	TVA COLBERT	47	1	0010	010	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01033	TVA COLBERT	47	2	0010	011	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01033	TVA COLBERT	47	3	0010	012	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01033	TVA COLBERT	47	4	0010	013	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01033	TVA COLBERT	47	5	0010	014	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
01055	ALABAMA POWER COMPANY GADSDEN	7	1	0002	002	Coal Steam	None	None	None	None	None	None	None	None
01055	ALABAMA POWER COMPANY GADSDEN	7	2	0002	003	Coal Steam	None	None	None	None	None	None	None	None
01063	ALABAMA POWER COMPANY GREENE COUNTY	10	1	0001	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
01063	ALABAMA POWER COMPANY GREENE COUNTY	10	2	0001	003	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
01071	TVA - WIDOWS CREEK	50	1	0008	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	2	0008	003	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	3	0008	004	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	4	0008	005	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	5	0008	006	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	6	0008	007	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	7	0008	008	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
01071	TVA - WIDOWS CREEK	50	8	0008	009	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
01073	ALABAMA POWER COMPANY (MILLER POWER PLANT)	6002	4	010730011	001	Coal Steam	SCR All Year	SCR Summer	SCR All Year	SCR Summer	None	None	Scrubber	None
01073	ALABAMA POWER COMPANY (MILLER POWER PLANT)	6002	3	010730011	002	Coal Steam	SCR All Year	SCR Summer	SCR All Year	SCR Summer	None	None	Scrubber	None
01073	ALABAMA POWER COMPANY (MILLER POWER PLANT)	6002	2	010730011	004	Coal Steam	SCR All Year	SCR Summer	SCR All Year	SCR Summer	None	None	Scrubber	None
01073	ALABAMA POWER COMPANY (MILLER POWER PLANT)	6002	1	010730011	005	Coal Steam	SCR All Year	SCR Summer	SCR All Year	SCR Summer	None	None	Scrubber	None
01097	ALABAMA POWER COMPANY BARRY	3	1	1001	002	Coal Steam	SNCR	None	SNCR	SCR	None	None	None	None
01097	ALABAMA POWER COMPANY BARRY	3	2	1001	003	Coal Steam	SNCR	None	SNCR	SCR	None	None	None	None
01097	ALABAMA POWER COMPANY BARRY	3	3	1001	004	Coal Steam	SNCR	None	SNCR	SCR	None	None	None	None
01097	ALABAMA POWER COMPANY BARRY	3	4	1001	005	Coal Steam	SNCR	None	SNCR	SCR	None	None	Scrubber	Scrubber
01097	ALABAMA POWER COMPANY BARRY	3	5	1001	006	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	1	0005	002	Coal Steam	None	SCR	None	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	2	0005	003	Coal Steam	None	SCR	None	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	3	0005	004	Coal Steam	None	SCR	None	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	4	0005	005	Coal Steam	None	SCR	None	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	5	0005	006	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
01127	ALABAMA POWER COMPANY GORGAS	8	6	0001	004	Coal Steam	None	None	None	None	None	None	None	None
01127	ALABAMA POWER COMPANY GORGAS	8	7	0001	005	Coal Steam	None	None	None	None	None	None	None	None
01127	ALABAMA POWER COMPANY GORGAS	8	8	0001	006	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None

										Post-Combus	stion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
01127	ALABAMA POWER COMPANY GORGAS	8	9	0001	007	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
01127	ALABAMA POWER COMPANY GORGAS	8	10	0001	008	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber
01129	ALABAMA ELECTRIC COOP CHARLES R LOWMAN	56	1	0001	002	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
01129	ALABAMA ELECTRIC COOP CHARLES R LOWMAN	56	2	0001	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
01129	ALABAMA ELECTRIC COOP CHARLES R LOWMAN	56	3	0001	004	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12001	GAINESVILLE REGIONAL UTILITIES JOHN R KELLY	664	JRK6			O/G Steam	O/G Early Retirement	O/G Early Retirement						
12001	GAINESVILLE REGIONAL UTILITIES JOHN R KELLY	664	JRK7			O/G Steam	O/G Early Retirement	O/G Early Retirement						
12001	GAINESVILLE REGIONAL UTILITIES JOHN R KELLY	664	JRK8	0010005	7		O/G Early Retirement	O/G Early Retirement						
12001	CITY OF GAINESVILLE, GRU DEERHAVEN	663	B1	0010006	3	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12001	CITY OF GAINESVILLE, GRU DEERHAVEN	663	B2	0010006	5	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
12005	GULF POWER COMPANY LANSING SMITH PLANT	643	1	0050014	1	Coal Steam	None	None	SCR	SCR	None	None	None	Scrubber
12005	GULF POWER COMPANY LANSING SMITH PLANT	643	2	0050014	2	Coal Steam	None	None	SCR	SCR	None	None	None	Scrubber
12009	FLORIDA POWER & LIGHT (PCC) CAPE CANAVERAL	609	PCC1	0090006	1	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12009	FLORIDA POWER & LIGHT (PCC) CAPE CANAVERAL	609	PCC2	0090006	2	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12011	FLORIDA POWER & LIGHT (PPE) PORT EVERGLADES	617	PPE1	0110036	1	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12011	FLORIDA POWER & LIGHT (PPE) PORT EVERGLADES	617	PPE2	0110036	2	O/G Steam	None	None	None	None	None	None	None	None
12011	FLORIDA POWER & LIGHT (PPE) PORT EVERGLADES	617	PPE3	0110036	3	O/G Steam	None	None	None	None	None	None	None	None

										Post-Combus	stion Controls	1		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12011	FLORIDA POWER & LIGHT (PPE) PORT EVERGLADES	617	PPE4	0110036	4	O/G Steam	None	None	None	None	None	None	None	None
12017	PROGRESS ENERGY FLORIDA CRYSTAL RIVER	628	1	0170004	1	Coal Steam	None	None	None	None	None	None	None	None
12017	PROGRESS ENERGY FLORIDA CRYSTAL RIVER	628	2	0170004	2	Coal Steam	None	None	None	None	None	None	None	None
12017	PROGRESS ENERGY FLORIDA CRYSTAL RIVER	628	5	0170004	3	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
12017	PROGRESS ENERGY FLORIDA CRYSTAL RIVER	628	4	0170004	4	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12031	SAINT JOHNS RIVER	207	1	0310045-A	16		SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12031	SAINT JOHNS RIVER	207	2	0310045-A	17		SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12031	NORTHSIDE	667	2A	0310045-B	26	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	None	No Operation
12031	NORTHSIDE	667	1A	0310045-B	27	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	None	No Operation
12031	NORTHSIDE	667	3	0310045-B	3	O/G Steam	None	None	None	No Operation	None	None	None	None
12031	CEDAR BAY COGENERATION INC.	10672	GEN1	0310337	1	Coal Steam	None	SNCR	None	SNCR	Scrubber	Scrubber	Scrubber	Scrubber
12031	CEDAR BAY COGENERATION INC.			0310337	2									
12031	CEDAR BAY COGENERATION INC.			0310337	3									
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	1	0330045	1									
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	2	0330045	2	O/G Steam	O/G Early Retirement	O/G Early Retirement						
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	3	0330045	3	O/G Steam	O/G Early Retirement	O/G Early Retirement						
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	4	0330045	4	Coal Steam	None	None	None	None	None	None	Scrubber	None

										Post-Combus	stion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	5	0330045	5	Coal Steam	None	None	None	None	None	None	Scrubber	None
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	6	0330045	6	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	None
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	7	0330045	7	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
12053	Central Power and Lime Incorporated	10333	GEN1	0530021	18	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY BIG BEND STATION	645	BB01	0570039	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY BIG BEND STATION	645	BB02	0570039	2	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY BIG BEND STATION	645	BB03	0570039	3	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY BIG BEND STATION	645	BB04	0570039	4	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB01	0570040	1		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB02	0570040	2		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB03	0570040	3		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB04	0570040	4		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB05	0570040	5		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB06	0570040	6		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12061	CITY OF VERO BEACH	693		0610029	1	O/G Steam	O/G Early Retirement	O/G Early Retirement						
12061	CITY OF VERO BEACH	693	3	0610029	3	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12061	CITY OF VERO BEACH	693	4	0610029	4	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation

FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12063	GULF POWER COMPANY SCHOLZ	642	1	0630014	1	Coal Steam	None	None	None	None	None	None	None	None
12063	GULF POWER COMPANY SCHOLZ	642	2	0630014	2	Coal Steam	None	None	None	None	None	None	None	None
12073	CITY OF TALLAHASSEE ARVAH B.HOPKINS	688	1	0730003	1	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12073	CITY OF TALLAHASSEE ARVAH B.HOPKINS	688	2	0730003	4	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12081	FLORIDA POWER & LIGHT (PMT) MANATEE POWER	6042	PMT1	0810010	1	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12081	FLORIDA POWER & LIGHT (PMT) MANATEE POWER	6042	PMT2	0810010	2	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12085	FLORIDA POWER & LIGHT (PMR) FPL / MARTIN	6043	PMR1	0850001	1	O/G Steam	None	None	No Operation	No Operation	None	None	No Operation	No Operation
12085	FLORIDA POWER & LIGHT (PMR) FPL / MARTIN	6043	PMR2	0850001	2	O/G Steam	None	None	No Operation	No Operation	None	None	No Operation	No Operation
12085	INDIANTOWN COGENERATION, L.P.	50976	GEN1	0850102	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12086	FLORIDA POWER & LIGHT (PCU) CUTLER POWER	610	PCU5	0250001	3	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12086	FLORIDA POWER & LIGHT (PCU) CUTLER POWER	610	PCU6	0250001	4	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12086	FLORIDA POWER & LIGHT (PTF) TURKEY POINT	621	PTP1	0250003	1	O/G Steam	None	None	No Operation	No Operation	None	None	No Operation	No Operation
12086	FLORIDA POWER & LIGHT (PTF) TURKEY POINT	621	PTP2	0250003	2	O/G Steam	None	None	No Operation	No Operation	None	None	No Operation	No Operation
12095	ORLANDO UTILITIES COMMISSION STANTON ENERGY	564	1	0950137	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12095	ORLANDO UTILITIES COMMISSION STANTON ENERGY	564	2	0950137	2	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12099	FLORIDA POWER & LIGHT (PRV) RIVIERA POWE	619	PRV3	0990042	3	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12099	FLORIDA POWER & LIGHT (PRV) RIVIERA POWE	619	PRV4	0990042	4	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12099	CITY OF LAKE WORTH UTILITIES TOM G. SMITH	673	S-1	0990045	7	O/G Steam	O/G Early Retirement	O/G Early Retirement						
12099	CITY OF LAKE WORTH UTILITIES TOM G. SMITH	673	S-3	0990045	9	O/G Steam	O/G Early Retirement	O/G Early Retirement						
12101	PROGRESS ENERGY FLORIDA ANCLOTE	8048	1	1010017	1	O/G Steam	None	None	No Operation	No Operation	None	None	No Operation	No Operation
12101	PROGRESS ENERGY FLORIDA ANCLOTE	8048	2	1010017	2	O/G Steam	None	None	No Operation	No Operation	None	None	No Operation	No Operation
12103	PROGRESS ENERGY FLORIDA BARTOW	634	1	1030011	1	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	No Operation	No Operation
12103	PROGRESS ENERGY FLORIDA BARTOW	634	2	1030011	2	O/G Steam	O/G Early Retirement	O/G Early Retirement	None	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement
12103	PROGRESS ENERGY FLORIDA BARTOW	634	3	1030011	3	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	No Operation	No Operation
12105	LAKELAND ELECTRIC CHARLES LARSEN	675	7	1050003	4	O/G Steam	O/G Early Retirement	O/G Early Retirement						
12105	LAKELAND ELECTRIC C.D. MCINTOSH, JR.	676	3	1050004	6	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12107	SEMINOLE ELECTRIC COOPERATIVE, INC.	136	1	1070025	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12107	SEMINOLE ELECTRIC COOPERATIVE, INC.	136	2	1070025	2	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12111	FT PIERCE UTILITIES AUTHORITY FT PIERCE	658	7	1110003	7	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12111	FT PIERCE UTILITIES AUTHORITY FT PIERCE	658	8	1110003	8	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12121	PROGRESS ENERGY FLORIDA SUWANNEE RIVER	638	1	1210003	1	O/G Steam	O/G Early Retirement	O/G Early Retirement	None	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement
12121	PROGRESS ENERGY FLORIDA SUWANNEE RIVER	638	2	1210003	2	O/G Steam	O/G Early Retirement	O/G Early Retirement	None	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement	O/G Early Retirement
12121	PROGRESS ENERGY FLORIDA SUWANNEE RIVER	638	3	1210003	3	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	No Operation	No Operation
12127	FLORIDA POWER & LIGHT (PSN) SANFORD POWER	620	PSN3	1270009	1	O/G Steam	O/G Early Retirement	O/G Early Retirement						

										Post-Combus	stion Controls	i		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12127	FLORIDA POWER & LIGHT (PSN) SANFORD POWER	620	PSN4	1270009	2		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12129	TALLAHASSEE CITY PURDOM GENERATING STATION	689	7	1290001	7	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13015	GEORGIA POWER COMPANY, BOWEN STEAM-ELECT	703	1BLR	01500011	SG01	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
13015	GEORGIA POWER COMPANY, BOWEN STEAM-ELECT	703	2BLR	01500011	SG02	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
13015	GEORGIA POWER COMPANY, BOWEN STEAM-ELECT	703	3BLR	01500011	SG03	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
13015	GEORGIA POWER COMPANY, BOWEN STEAM-ELECT	703	4BLR	01500011	SG04	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
13021	ARKWRIGHT	699	1	0002	1		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13021	ARKWRIGHT	699	2	0002	2		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13021	ARKWRIGHT	699	3	0002	3		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13021	ARKWRIGHT	699	4	0002	4		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13051	SAVANNAH ELECTRIC: KRAFT STEAM	733	1	05100006	SG01	Coal Steam	None	None	None	None	None	None	None	None
13051	SAVANNAH ELECTRIC: KRAFT STEAM	733	2	05100006	SG02	Coal Steam	None	None	None	None	None	None	None	None
13051	SAVANNAH ELECTRIC: KRAFT STEAM	733	3	05100006	SG03	Coal Steam	None	None	None	SCR	None	None	None	None
13051	SAVANNAH ELECTRIC: KRAFT STEAM	733	4	05100006	SG04	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13051	RIVERSIDE	734	11	05100018	11	O/G Steam	None	No Operation	No Operation	No Operation	None	No Operation	No Operation	No Operation
13051	RIVERSIDE	734	12	05100018	12	O/G Steam	None	No Operation	No Operation	No Operation	None	No Operation	No Operation	No Operation
13051	RIVERSIDE	734	4	05100018	4	O/G Steam	None	None	None	None	None	None	None	None

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
13051	RIVERSIDE	734	5	05100018	5	O/G Steam	None	No Operation	No Operation	No Operation	None	No Operation	No Operation	No Operation
13051	RIVERSIDE	734	6	05100018	6	O/G Steam	None	No Operation	No Operation	No Operation	None	No Operation	No Operation	No Operation
13067	GEORGIA POWER COMPANY, MCDONOUGH STEAM	710	MB1	06700003	SGM1	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13067	GEORGIA POWER COMPANY, MCDONOUGH STEAM	710	MB2	06700003	SGM2	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y1BR	07700001	SG01	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y2BR	07700001	SG02	Coal Steam	None	None	None	None	None	None	None	None
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y3BR	07700001	SG03	Coal Steam	None	None	None	None	None	None	None	None
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y4BR	07700001	SG04	Coal Steam	None	None	SCR	SCR	None	None	None	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y5BR	07700001	SG05	Coal Steam	None	None	SCR	SCR	None	None	None	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y6BR	07700001	SG06	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y7BR	07700001	SG07	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13095	GEORGIA POWER COMPANY, MITCHELL STEAM-ELECTRIC	727		09500002	SG01		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13095	GEORGIA POWER COMPANY, MITCHELL STEAM-ELECTRIC	727		09500002	SG02		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13095	GEORGIA POWER COMPANY, MITCHELL STEAM-ELECTRIC	727	3	09500002	SG03	Coal Steam	None	None	None	None	None	None	None	None
13103	SAVANNAH ELECTRIC: MCINTOSH STEAM - ELECTRIC	6124	1	10300003	SG01	Coal Steam	None	None	None	SCR	None	None	None	None
13115	GEORGIA POWER COMPANY, HAMMOND STEAM-ELECTRIC	708	1	11500003	SG01	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
13115	GEORGIA POWER COMPANY, HAMMOND STEAM-ELECTRIC	708	2	11500003	SG02	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
13115	GEORGIA POWER COMPANY, HAMMOND STEAM-ELECTRIC	708	3	11500003	SG03	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
13115	GEORGIA POWER COMPANY, HAMMOND STEAM-ELECTRIC	708	4	11500003	SG04	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
13127	GEORGIA POWER COMPANY, MCMANUS STEAM-ELECTRIC	715	1	12700004	SG01	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13127	GEORGIA POWER COMPANY, MCMANUS STEAM-ELECTRIC	715	2	12700004	SG02	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13149	GEORGIA POWER COMPANY, WANSLEY STEAM-ELECTRIC	6052	1	14900001	SG01	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
13149	GEORGIA POWER COMPANY, WANSLEY STEAM-ELECTRIC	6052	2	14900001	SG02	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
13207	GEORGIA POWER COMPANY, SCHERER STEAM-ELECTRIC	6257	1	20700008	SG01	Coal Steam	None	None	None	None	None	None	Scrubber	None
13207	GEORGIA POWER COMPANY, SCHERER STEAM-ELECTRIC	6257	2	20700008	SG02	Coal Steam	None	None	None	None	None	None	Scrubber	None
13207	GEORGIA POWER COMPANY, SCHERER STEAM-ELECTRIC	6257	3	20700008	SG03	Coal Steam	None	None	None	None	None	None	Scrubber	None
13207	GEORGIA POWER COMPANY, SCHERER STEAM-ELECTRIC	6257	4	20700008	SG04	Coal Steam	None	None	None	None	None	None	Scrubber	None
13237	GEORGIA POWER COMPANY, HARLLEE BRANCH	709	1	23700008	SG01	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13237	GEORGIA POWER COMPANY, HARLLEE BRANCH	709	2	23700008	SG02	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13237	GEORGIA POWER COMPANY, HARLLEE BRANCH	709	3	23700008	SG03	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13237	GEORGIA POWER COMPANY, HARLLEE BRANCH	709	4	23700008	SG04	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
21015	CINCINNATI GAS & ELECTRIC EAST BEND STAT	6018	2	2101500029	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21041	KENTUCKY UTILITIES CO GHENT GENERATING STATION	1356	1	2104100010	001	Coal Steam	SCR	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21041	KENTUCKY UTILITIES CO GHENT GENERATING STATION	1356	2	2104100010	002	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber

										Post-Combus	stion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
21041	KENTUCKY UTILITIES CO GHENT GENERATING STATION	1356	3	2104100010	003	Coal Steam	SCR	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21041	KENTUCKY UTILITIES CO GHENT GENERATING STATION	1356	4	2104100010	004	Coal Steam	SCR	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21049	EAST KY POWER COOP WILLIAM C DALE PLANT	1385	1	2104900003	001	Coal Steam	None	None	None	None	None	None	None	None
21049	EAST KY POWER COOP WILLIAM C DALE PLANT	1385	2	2104900003	002	Coal Steam	None	None	None	None	None	None	None	None
21049	EAST KY POWER COOP WILLIAM C DALE PLANT	1385	3	2104900003	003	Coal Steam	None	None	None	None	None	None	None	None
21049	EAST KY POWER COOP WILLIAM C DALE PLANT	1385	4	2104900003	004	Coal Steam	None	None	None	None	None	None	None	None
21059	OWENSBORO MUNICIPAL UTIL ELMER SMITH STATION	1374	1	2105900027	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21059	OWENSBORO MUNICIPAL UTIL ELMER SMITH STATION	1374	2	2105900027	002	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21091	WESTERN KY ENERGY CORP COLEMAN STATION	1381	C1	2109100003	001	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21091	WESTERN KY ENERGY CORP COLEMAN STATION	1381	C2	2109100003	002	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21091	WESTERN KY ENERGY CORP COLEMAN STATION	1381	СЗ	2109100003	003	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21101	HENDERSON MUN POW & LIGHT	1372	6	2110100012	002	Coal Steam	None	None	None	None	None	None	None	None
21101	HENDERSON MUN POW & LIGHT	1372	5	2110100012	5	Coal Steam	None	None	None	None	None	None	None	None
21111	LOU GAS & ELEC, CANE RUN	1363	4	0126	04	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, CANE RUN	1363	5	0126	05	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, CANE RUN	1363	6	0126	06	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, MILL CREEK	1364	1	0127	01	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	stion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
21111	LOU GAS & ELEC, MILL CREEK	1364	2	0127	02	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, MILL CREEK	1364	3	0127	03	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, MILL CREEK	1364	4	0127	04	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21127	KENTUCKY POWER CO BIG SANDY PLANT	1353	BSU1	2112700003	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21127	KENTUCKY POWER CO BIG SANDY PLANT	1353	BSU2	2112700003	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	1	2114500006	001	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	2	2114500006	002	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	3	2114500006	003	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	4	2114500006	004	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	5	2114500006	005	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	6	2114500006	006	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	7	2114500006	007	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	8	2114500006	008	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	9	2114500006	009	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	10	2114500006	016	Coal Steam	None	None	None	None	None	None	None	None
21161	EAST KY POWER COOP SPURLOCK ST. MAYSVILLE	6041	1	2116100009	001	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber

										Post-Combus	stion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
21161	EAST KY POWER COOP SPURLOCK ST. MAYSVILLE	6041	2	2116100009	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
21167	KENTUCKY UTILITIES CO BROWN FACILITY	1355	1	2116700001	001	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
21167	KENTUCKY UTILITIES CO BROWN FACILITY	1355	2	2116700001	002	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21167	KENTUCKY UTILITIES CO BROWN FACILITY	1355	3	2116700001	003	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21177	KENTUCKY UTILITIES CO GREEN RIVER STATION	1357	4	2117700001	003	Coal Steam	None	None	None	None	None	None	None	None
21177	KENTUCKY UTILITIES CO GREEN RIVER STATION	1357	5	2117700001	004	Coal Steam	None	None	None	None	None	None	None	None
21177	TVA PARADISE STEAM PLANT	1378	1	2117700006	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21177	TVA PARADISE STEAM PLANT	1378	2	2117700006	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21177	TVA PARADISE STEAM PLANT	1378	3	2117700006	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21183	WESTERN KY ENERGY CORP WILSON STATION	6823	W1	2118300069	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21199	EAST KY POWER COOP JOHN SHERMAN COOPER	1384	1	2119900005	001	Coal Steam	None	None	None	None	None	None	None	None
21199	EAST KY POWER COOP JOHN SHERMAN COOPER	1384	2	2119900005	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
21223	LOUISVILLE GAS & ELECTRIC TRIMBLE CO GEN	6071	1	2122300002	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21233	HENDERSON STATION 2	1382	H1	2123300001- A	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21233	HENDERSON STATION 2	1382	Н2	2123300001- A	003	Coal Steam	SCR	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21233	WESTERN KY ENERGY CORP REID	1383	R1	2123300001- B	001	Coal Steam	None	None	None	None	None	None	None	None
21233	WESTERN KY ENERGY CORP GREEN STATION	6639	G1	2123300052	001	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
21233	WESTERN KY ENERGY CORP GREEN STATION	6639	G2	2123300052	002	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21239	KENTUCKY UTILITIES TYRONE FACILITY	1361	5	2123900001	005	Coal Steam	None	None	None	None	None	None	None	None
28011	ENTERGY MISSISSIPPI INC, DELTA PLANT	2051	1	2801100031	001	O/G Steam	O/G Early Retirement	O/G Early Retirement						
28011	ENTERGY MISSISSIPPI INC, DELTA PLANT	2051		2801100031	002		O/G Early Retirement	O/G Early Retirement						
28011	ENTERGY MISSISSIPPI INC, DELTA PLANT	2051	2	2801100031	003	O/G Steam	O/G Early Retirement	O/G Early Retirement						
28011	ENTERGY MISSISSIPPI INC, DELTA PLANT	2051		2801100031	004		O/G Early Retirement	O/G Early Retirement						
28019	CHOCTAW GENERATION LLP, RED HILLS GENERATING	55076	AA001	2801900011	001A	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
28019	CHOCTAW GENERATION LLP, RED HILLS GENERATING	55076	AA002	2801900011	001B		None	None	None	None	None	None	None	None
28035	MISSISSIPPI POWER COMPANY, PLANT EATON	2046		2803500038	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28035	MISSISSIPPI POWER COMPANY, PLANT EATON	2046		2803500038	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28035	MISSISSIPPI POWER COMPANY, PLANT EATON	2046		2803500038	003	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	1	2804700055	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	2	2804700055	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	3	2804700055	003	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	4	2804700055	004	Coal Steam	None	SCR	SCR	SCR	None	None	None	Scrubber
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	5	2804700055	005	Coal Steam	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
28049	ENTERGY MISSISSIPPI INC, REX BROWN PLANT	2053	4	2804900112	001	O/G Steam	O/G Early Retirement	O/G Early Retirement						
28049	ENTERGY MISSISSIPPI INC, REX BROWN PLANT	2053	3	2804900112	002	O/G Steam	O/G Early Retirement	O/G Early Retirement						
28059	MISSISSIPPI POWER COMPANY, PLANT DANIEL	6073	1	2805900090	001	Coal Steam	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber
28059	MISSISSIPPI POWER COMPANY, PLANT DANIEL	6073	2	2805900090	002	Coal Steam	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber
28067	MOSELLE SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	2070	1	2806700035	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28067	MOSELLE SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	2070	2	2806700035	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28067	MOSELLE SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	2070	3	2806700035	003	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28073	RD MORROW SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	6061	1	2807300021	001	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
28073	RD MORROW SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	6061	2	2807300021	002	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
28075	MISSISSIPPI POWER COMPANY, PLANT SWEATT	2048	1	2807500032	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28075	MISSISSIPPI POWER COMPANY, PLANT SWEATT	2048	2	2807500032	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28083	GREENWOOD UTILITIES, HENDERSON STATION	2062	H1	2808300048	001	O/G Steam	None	None	None	None	No Operation	No Operation	No Operation	No Operation
28083	GREENWOOD UTILITIES, HENDERSON STATION	2062	НЗ	2808300048	003	O/G Steam	None	None	None	None	No Operation	No Operation	No Operation	No Operation
28149	ENTERGY MISSISSIPPI INC, BAXTER WILSON	2050	1	2814900027	001	O/G Steam	O/G Early Retirement	O/G Early Retirement						
28149	ENTERGY MISSISSIPPI INC, BAXTER WILSON	2050	2	2814900027	002	O/G Steam	O/G Early Retirement	O/G Early Retirement						
28151	ENTERGY MISSISSIPPI INC, GERALD ANDRUS	8054	1	2815100048	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
28163	YAZOO CITY PUBLIC SERVICE COMMISSION	2067	3	2816300005	001	O/G Steam	O/G Early Retirement	O/G Early Retirement						
37017	ELIZABETHTOWN POWER, LLC	10380	UNIT1	3701700043	G- 17A	Coal Steam	None	None	None	None	None	None	None	None
37017	ELIZABETHTOWN POWER, LLC	10380	UNIT2	3701700043	G- 17B		None	None	None	None	None	None	None	None
37019	COGENTRIX OF NORTH CAROLINA INC - SOUTHPORT	10378	GEN1	3701900067	G-29	Coal Steam	None	None	None	None	None	None	None	None
37019	COGENTRIX OF NORTH CAROLINA INC - SOUTHPORT	10378	GEN2	3701900067	G-30	Coal Steam	None	None	None	None	None	None	None	None
37021	CAROLINA POWER & LIGHT ASHEVILLE STEAM	2706	1	628	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37021	CAROLINA POWER & LIGHT ASHEVILLE STEAM	2706	2	628	2	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37025	KANNAPOLIS ENERGY PARTNERS LLC			3702500113	G-2	Coal Steam	None	None	None	None	None	None	None	None
37025	KANNAPOLIS ENERGY PARTNERS LLC			3702500113	G-3	Coal Steam	None	None	None	None	None	None	None	None
37035	DUKE ENERGY CORPORATION MARSHALL STEAM	2727	3	3703500073	G-1	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37035	DUKE ENERGY CORPORATION MARSHALL STEAM	2727	4	3703500073	G-2	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37035	DUKE ENERGY CORPORATION MARSHALL STEAM	2727	1	3703500073	G-4	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37035	DUKE ENERGY CORPORATION MARSHALL STEAM	2727	2	3703500073	G-5	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37037	PROGRESS ENERGY CAROLINAS CAPE FEAR	2708	5	3703700063	G-1	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	Scrubber
37037	PROGRESS ENERGY CAROLINAS CAPE FEAR	2708	6	3703700063	G-2	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	1	3707100039	G-14	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	2	3707100039	G-15	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	3	3707100039	G-16	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	4	3707100039	G-17	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	5	3707100039	G-18	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION RIVERBEND STEAM	2732	7	3707100040	G-17	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37071	DUKE ENERGY CORPORATION RIVERBEND STEAM	2732	8	3707100040	G-18	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37071	DUKE ENERGY CORPORATION RIVERBEND STEAM	2732	9	3707100040	G-19	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37071	DUKE ENERGY CORPORATION RIVERBEND STEAM	2732	10	3707100040	G-20	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37083	ROANOKE VALLEY ENERGY FACILITY			3708300174	G-27	Coal Steam	None	None	None	None	None	None	None	None
37083	ROANOKE VALLEY ENERGY FACILITY			3708300174	G-7	Coal Steam	None	None	None	None	None	None	None	None
37129	L V SUTTON STEAM ELECTRIC PLANT	2713	1	3712900036	G-187	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37129	L V SUTTON STEAM ELECTRIC PLANT	2713	2	3712900036	G-188	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
37129	L V SUTTON STEAM ELECTRIC PLANT	2713	3	3712900036	G-189	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	1	3714500029	G-29	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	2	3714500029	G-30	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	3A	3714500029	G- 35A	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	3B	3714500029	G- 35B	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	4A	3714500029	G- 36A	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	4B	3714500029	G- 36B	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - MAYO FACILITY	6250	1A	3714500045	G- 46A	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - MAYO FACILITY	6250	1B	3714500045	G- 46B	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37155	PROGRESS ENERGY CAROLINAS, INC., W.H. WEATHERSPOON	2716	1	3715500147	G-24	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37155	PROGRESS ENERGY CAROLINAS, INC., W.H. WEATHERSPOON	2716	2	3715500147	G-25	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37155	PROGRESS ENERGY CAROLINAS, INC., W.H. WEATHERSPOON	2716	3	3715500147	G-26	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37155	LUMBERTON POWER, LLC	10382	UNIT1	3715500166	G- 17A	Coal Steam	None	None	None	None	None	None	None	None
37155	LUMBERTON POWER, LLC	10382	UNIT2	3715500166	G- 17B		None	None	None	None	None	None	None	None
37157	DUKE ENERGY CORP DAN RIVER STEAM	2723	3	3715700015	G-21	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37157	DUKE ENERGY CORP DAN RIVER STEAM	2723	1	3715700015	G-22	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37157	DUKE ENERGY CORP DAN RIVER STEAM	2723	2	3715700015	G-23	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	5	3715900004	G-1	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	6	3715900004	G-2	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	7	3715900004	G-3	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	8	3715900004	G-4	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	9	3715900004	G-5	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None

							Post-Combustion Controls							
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	1	3716100028	G-82	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	2	3716100028	G-83	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	3	3716100028	G-84	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	4	3716100028	G-85	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	5	3716100028	G-86	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	6	3716100028	G-87		No Operation	Not in IPM	SCR	Not in IPM	No Operation	Not in IPM	Scrubber	Not in IPM
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	7	3716100028	G-88		No Operation	Not in IPM	SCR	Not in IPM	No Operation	Not in IPM	Scrubber	Not in IPM
37169	DUKE ENERGY CORP BELEWS CREEK STEAM	8042	1	3716900004	G-17	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37169	DUKE ENERGY CORP BELEWS CREEK STEAM	8042	2	3716900004	G-18	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37191	PROGRESS ENERGY F LEE PLANT	2709	1	3719100017	G-2	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37191	PROGRESS ENERGY F LEE PLANT	2709	2	3719100017	G-3	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37191	PROGRESS ENERGY F LEE PLANT	2709	3	3719100017	G-4	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	None	Scrubber
45003	SCE&G:URQUHART	3295	URQ3	0080-0011	003	Coal Steam	None	None	None	None	None	None	None	None
45003	SCE&G:SRS AREA D			0080-0044	001	Coal Steam	None	None	None	None	None	None	None	None
45003	SCE&G:SRS AREA D			0080-0044	002		None	None	None	None	None	None	None	None
45003	SCE&G:SRS AREA D			0080-0044	003		None	None	None	None	None	None	None	None
45003	SCE&G:SRS AREA D			0080-0044	004		None	None	None	None	None	None	None	None

							Post-Combustion Controls									
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls		
45007	DUKE ENERGY:LEE	3264	1	0200-0004	001	Coal Steam	None	None	None	None	None	None	None	None		
45007	DUKE ENERGY:LEE	3264	2	0200-0004	002	Coal Steam	None	None	None	None	None	None	None	None		
45007	DUKE ENERGY:LEE	3264	3	0200-0004	003	Coal Steam	None	None	None	None	None	None	None	None		
45015	SANTEE COOPER JEFFERIES	3319	1	0420-0003	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation		
45015	SANTEE COOPER JEFFERIES	3319	2	0420-0003	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation		
45015	SANTEE COOPER JEFFERIES	3319	3	0420-0003	003	Coal Steam	None	SCR	None	SCR	None	None	None	None		
45015	SANTEE COOPER JEFFERIES	3319	4	0420-0003	004	Coal Steam	None	None	None	None	None	None	None	None		
45015	SCE&G:WILLIAMS	3298	WIL1	0420-0006	001	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber		
45015	SANTEE COOPER CROSS	130	1	0420-0030	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber		
45015	SANTEE COOPER CROSS	130	2	0420-0030	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber		
45015	SANTEE COOPER CROSS	130	3	0420-0030	3	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber		
45015	SANTEE COOPER CROSS	130	4	0420-0030	4		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation		
45029	SCE&G:CANADYS	3280	CAN1	0740-0002	001	Coal Steam	None	None	None	None	None	None	None	None		
45029	SCE&G:CANADYS	3280	CAN2	0740-0002	002	Coal Steam	None	None	None	None	None	None	None	None		
45029	SCE&G:CANADYS	3280	CAN3	0740-0002	003	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None		
45031	PROGRESS ENERGY ROBINSON STATION	3251	1	0820-0002	001	Coal Steam	None	None	None	None	None	None	None	None		
45043	SANTEE COOPER WINYAH	6249	1	1140-0005	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber		

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
45043	SANTEE COOPER WINYAH	6249	2	1140-0005	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
45043	SANTEE COOPER WINYAH	6249	3	1140-0005	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber
45043	SANTEE COOPER WINYAH	6249	4	1140-0005	004	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber
45051	SANTEE COOPER GRAINGER	3317	1	1340-0003	001	Coal Steam	None	None	None	None	None	None	None	None
45051	SANTEE COOPER GRAINGER	3317	2	1340-0003	002	Coal Steam	None	None	None	None	None	None	None	None
45063	SCE&G:MCMEEKIN	3287	MCM1	1560-0003	001	Coal Steam	None	None	None	None	None	None	None	None
45063	SCE&G:MCMEEKIN	3287	MCM2	1560-0003	002	Coal Steam	None	None	None	None	None	None	None	None
45075	SCE&G:COPE	7210	COP1	1860-0044	001	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
45079	SCE&G:WATEREE	3297	WAT1	1900-0013	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	None
45079	SCE&G:WATEREE	3297	WAT2	1900-0013	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber
47001	TVA BULL RUN FOSSIL PLANT	3396	1	0009	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
47073	TVA JOHN SEVIER FOSSIL PLANT	3405	1	0007	001	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
47073	TVA JOHN SEVIER FOSSIL PLANT	3405	2	0007	002	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
47073	TVA JOHN SEVIER FOSSIL PLANT	3405	3	0007	003	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
47073	TVA JOHN SEVIER FOSSIL PLANT	3405	4	0007	004	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	1	0011	001	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	2	0011	002	Coal Steam	None	SCR	SCR	SCR	None	None	None	None

							Post-Combustion Controls							
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	3	0011	003	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	4	0011	004	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	5	0011	005	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	6	0011	006	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	7	0011	007	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	8	0011	008	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	9	0011	009	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	10	0011	010	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
47145	TVA KINGSTON FOSSIL PLANT	3407	1	0013	001	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
47145	TVA KINGSTON FOSSIL PLANT	3407	2	0013	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
47145	TVA KINGSTON FOSSIL PLANT	3407	3	0013	003	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
47145	TVA KINGSTON FOSSIL PLANT	3407	4	0013	004	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
47145	TVA KINGSTON FOSSIL PLANT	3407	5	0013	005	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
47145	TVA KINGSTON FOSSIL PLANT	3407	6	0013	006	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
47145	TVA KINGSTON FOSSIL PLANT	3407	7	0013	007	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
47145	TVA KINGSTON FOSSIL PLANT	3407	8	0013	008	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
47145	TVA KINGSTON FOSSIL PLANT	3407	9	0013	009	Coal Steam	SCR	None	SCR	SCR	None	None	Scrubber	Scrubber

							Post-Combustion Controls							
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
47157	ALLEN FOSSIL PLANT	3393	1	00528	Boilr1	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
47157	ALLEN FOSSIL PLANT	3393	2	00528	Boilr2	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
47157	ALLEN FOSSIL PLANT	3393	3	00528	Boilr3	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
47161	TVA CUMBERLAND FOSSIL PLANT	3399	1	0011	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
47161	TVA CUMBERLAND FOSSIL PLANT	3399	2	0011	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
47165	TVA GALLATIN FOSSIL PLANT	3403	1	0025	001	Coal Steam	None	None	None	None	None	None	Scrubber	Scrubber
47165	TVA GALLATIN FOSSIL PLANT	3403	2	0025	002	Coal Steam	None	None	None	None	None	None	Scrubber	Scrubber
47165	TVA GALLATIN FOSSIL PLANT	3403	3	0025	003	Coal Steam	None	None	None	None	None	None	Scrubber	Scrubber
47165	TVA GALLATIN FOSSIL PLANT	3403	4	0025	004	Coal Steam	None	None	None	None	None	None	Scrubber	Scrubber
51031	DOMINION - ALTAVISTA POWER STATION	10773	1	00156	1	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber
51031	DOMINION - ALTAVISTA POWER STATION	10773	2	00156	2		None	None	None	None	None	None	None	None
51041	DOMINION - CHESTERFIELD POWER STATION	3797	3	00002	3	Coal Steam	None	None	None	None	None	None	Scrubber	None
51041	DOMINION - CHESTERFIELD POWER STATION	3797	4	00002	4	Coal Steam	SCR	None	SCR	SCR	None	None	Scrubber	Scrubber
51041	DOMINION - CHESTERFIELD POWER STATION	3797	5	00002	6	Coal Steam	SCR	None	SCR	SCR	None	None	Scrubber	Scrubber
51041	DOMINION - CHESTERFIELD POWER STATION	3797	6	00002	8	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
51065	DOMINION - BREMO POWER STATION	3796	3	00001	1	Coal Steam	None	None	None	None	None	None	None	None
51065	DOMINION - BREMO POWER STATION	3796	4	00001	2	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None

							Post-Combustion Controls							
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
51071	AMERICAN ELECTRIC POWER GLEN LYN	3776	51	00002	1	Coal Steam	None	None	None	None	None	None	None	None
51071	AMERICAN ELECTRIC POWER GLEN LYN	3776	52	00002	2	Coal Steam	None	None	None	None	None	None	None	None
51071	AMERICAN ELECTRIC POWER GLEN LYN	3776	6	00002	3	Coal Steam	None	None	None	None	None	None	None	Scrubber
51083	DOMINION - CLOVER POWER STATION	7213	1	00046	1	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber
51083	DOMINION - CLOVER POWER STATION	7213	2	00046	2	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber
51099	BIRCHWOOD POWER PARTNERS, L.P.	54304	1	00012	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
51117	Mecklenburg Cogeneration Facility	52007	GEN1	00051	1	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
51117	Mecklenburg Cogeneration Facility	52007	GEN2	00051	2	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
51153	DOMINION - POSSUM POINT	3804	3	00002	3	Coal Steam	None	Combined Cycle	None	Combined Cycle	None	Combined Cycle	None	Combined Cycle
51153	DOMINION - POSSUM POINT	3804	4	00002	4	Coal Steam	None	Combined Cycle	None	Combined Cycle	None	Combined Cycle	None	Combined Cycle
51153	DOMINION - POSSUM POINT	3804	5	00002	5	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
51153	DOMINION - POSSUM POINT	3804	6	00002		Combined Cycle	Combined Cycle	Combined Cycle	Combined Cycle	Combined Cycle	Combined Cycle	Combined Cycle	Combined Cycle	Combined Cycle
51167	AMERICAN ELECTRIC POWER CLINCH RIVER PLANT	3775	1	00003	1	Coal Steam	None	None	None	SCR	None	None	None	Scrubber
51167	AMERICAN ELECTRIC POWER CLINCH RIVER PLANT	3775	2	00003	2	Coal Steam	None	None	None	SCR	None	None	None	Scrubber
51167	AMERICAN ELECTRIC POWER CLINCH RIVER PLANT	3775	3	00003	3	Coal Steam	None	None	None	SCR	None	None	None	Scrubber
51175	LG&E Westmoreland Southampton	10774	GEN1	00051	1	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
51175	LG&E Westmoreland Southampton			00051	2		None	None	None	None	None	None	None	None

							Post-Combustion Controls								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
51175	LG&E Westmoreland Southampton			00051	4		None	None	None	None	None	None	None	None	
51199	DOMINION - YORKTOWN POWER STATION	3809	3	00001	3	O/G Steam	SNCR	No Operation	SNCR	No Operation	None	No Operation	Scrubber	No Operation	
51199	DOMINION - YORKTOWN POWER STATION	3809	2	00001	5	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	None	
51199	DOMINION - YORKTOWN POWER STATION	3809	1	00001	6	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	None	
51510	POTOMAC RIVER GENERATING STATION	3788	1	00003	1	Coal Steam	SNCR	Coal Early Retirement	SNCR	Coal Early Retirement	None	Coal Early Retirement	None	Coal Early Retirement	
51510	POTOMAC RIVER GENERATING STATION	3788	2	00003	2	Coal Steam	SNCR	Coal Early Retirement	SNCR	Coal Early Retirement	None	Coal Early Retirement	None	Coal Early Retirement	
51510	POTOMAC RIVER GENERATING STATION	3788	3	00003	3	Coal Steam	SNCR	None	SNCR	None	None	None	None	None	
51510	POTOMAC RIVER GENERATING STATION	3788	4	00003	4	Coal Steam	SNCR	None	SNCR	None	None	None	None	None	
51510	POTOMAC RIVER GENERATING STATION	3788	5	00003	5	Coal Steam	SNCR	None	SNCR	None	None	None	None	None	
51550	DOMINION - CHESAPEAKE	3803	1	00026	1	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	None	
51550	DOMINION - CHESAPEAKE	3803	2	00026	2	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	None	
51550	DOMINION - CHESAPEAKE	3803	3	00026	3	Coal Steam	SCR	None	SCR	SCR	None	None	Scrubber	Scrubber	
51550	DOMINION - CHESAPEAKE	3803	4	00026	4	Coal Steam	SCR	None	SCR	SCR	None	None	Scrubber	Scrubber	
54023	MOUNT STORM POWER PLANT	3954	1	0003	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54023	MOUNT STORM POWER PLANT	3954	2	0003	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54023	MOUNT STORM POWER PLANT	3954	3	0003	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54023	NORTH BRANCH POWER STATION	7537	1A	0014	001	Coal Steam	None	None	None	None	None	None	None	None	

										Post-Combus	tion Controls	i		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
54023	NORTH BRANCH POWER STATION	7537	1B	0014	002	Coal Steam	None	None	None	None	None	None	None	None
54033	MONONGAHELA POWER CO HARRISON	3944	1	0015	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
54033	MONONGAHELA POWER CO HARRISON	3944	2	0015	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
54033	MONONGAHELA POWER CO HARRISON	3944	3	0015	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
54039	APPALACHIAN POWER KANAWHA RIVER PLANT	3936	1	0006	001	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
54039	APPALACHIAN POWER KANAWHA RIVER PLANT	3936	2	0006	002	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
54049	MONONGAHELA POWER CO. RIVESVILLE POWER	3945	7	0009	001	Coal Steam	None	Coal Early Retirement	None	Coal Early Retirement	None	Coal Early Retirement	Coal Early Retirement	Coal Early Retirement
54049	MONONGAHELA POWER CO. RIVESVILLE POWER	3945	8	0009	002	Coal Steam	None	Coal Early Retirement	None	Coal Early Retirement	None	Coal Early Retirement	Coal Early Retirement	Coal Early Retirement
54049	AMERICAN BITUMINOUS POWER GRANT TOWN PLT	10151		0026	001		None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
54049	GRANT TOWN POWER PLANT	10151	GEN1	ORIS10151	GEN1	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
54051	OHIO POWER MITCHELL PLANT	3948	1	0005	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
54051	OHIO POWER MITCHELL PLANT	3948	2	0005	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
54051	OHIO POWER KAMMER PLANT	3947	1	0006	001	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
54051	OHIO POWER KAMMER PLANT	3947	2	0006	002	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
54051	OHIO POWER KAMMER PLANT	3947	3	0006	003	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	11	0001	001	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	21	0001	002	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber

										Post-Combus	tion Controls	1		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	31	0001	003	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	41	0001	004	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	51	0001	005	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
54053	APPALACHIAN POWER MOUNTAINEER PLANT	6264	1	0009		Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
54061	MONONGAHELA POWER CO. FORT MARTIN POWER	3943	1	0001	001	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	Scrubber
54061	MONONGAHELA POWER CO. FORT MARTIN POWER	3943	2	0001	002	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	Scrubber
54061	MORGANTOWN ENERGY ASSOCIATES			0027	043		None	None	None	None	None	None	None	None
54061	MORGANTOWN ENERGY FACILITY	10743	GEN1	ORIS10743	GEN1	Coal Steam	None	None	None	None	None	None	None	None
54073	MONONGAHELA POWER CO. WILLOW ISLAND	3946	1	0004	001	Coal Steam	None	Coal Early Retirement	None	Coal Early Retirement	None	Coal Early Retirement	Coal Early Retirement	Coal Early Retirement
54073	MONONGAHELA POWER CO. WILLOW ISLAND	3946	2	0004	002	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
54073	MONONGAHELA POWER CO PLEASANTS POWER STATION	6004	1	0005	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
54073	MONONGAHELA POWER CO PLEASANTS POWER STATION	6004	2	0005	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber Upgrade	Scrubber
54077	MONONGAHELA POWER CO ALBRIGHT	3942	1	0001	001	Coal Steam	None	Coal Early Retirement	Coal Early Retirement	Coal Early Retirement	None	Coal Early Retirement	Coal Early Retirement	Coal Early Retirement
54077	MONONGAHELA POWER CO ALBRIGHT	3942	2	0001	002	Coal Steam	None	Coal Early Retirement	Coal Early Retirement	Coal Early Retirement	None	Coal Early Retirement	Coal Early Retirement	Coal Early Retirement
54077	MONONGAHELA POWER CO ALBRIGHT	3942	3	0001	003	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
54079	APPALACHIAN POWER JOHN E AMOS PLANT	3935	1	0006	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
54079	APPALACHIAN POWER JOHN E AMOS PLANT	3935	2	0006	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	tion Controls			
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type								SO2 2018
54079	APPALACHIAN POWER JOHN E AMOS PLANT	3935	3	0006	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

APPENDIX I:

COMPARISON OF EGU CONTROLS FOR COAL AND OIL/GAS UNITS BASED ON IPM MODELING AND STATE-PROVIDED INFORMATION FOR THE B&F INVENTORY

Appendix I 277

										Post-Combus	stion Controls	5		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
01033	TVA COLBERT	47	1	0010	010	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01033	TVA COLBERT	47	2	0010	011	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01033	TVA COLBERT	47	3	0010	012	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01033	TVA COLBERT	47	4	0010	013	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01033	TVA COLBERT	47	5	0010	014	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
01055	ALABAMA POWER COMPANY GADSDEN	7	1	0002	002	Coal Steam	None	None	None	None	None	None	None	None
01055	ALABAMA POWER COMPANY GADSDEN	7	2	0002	003	Coal Steam	None	None	None	None	None	None	None	None
01063	ALABAMA POWER COMPANY GREENE COUNTY	10	1	0001	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
01063	ALABAMA POWER COMPANY GREENE COUNTY	10	2	0001	003	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
01071	TVA - WIDOWS CREEK	50	1	0008	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	2	0008	003	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	3	0008	004	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	4	0008	005	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	5	0008	006	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	6	0008	007	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None
01071	TVA - WIDOWS CREEK	50	7	0008	008	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	stion Controls	3		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
01071	TVA - WIDOWS CREEK	50	8	0008	009	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
01073	ALABAMA POWER COMPANY (MILLER POWER PLANT)	6002	4	010730011	001	Coal Steam	SCR All Year	SCR Summer	SCR All Year	SCR Summer	None	None	Scrubber	None
01073	ALABAMA POWER COMPANY (MILLER POWER PLANT)	6002	3	010730011	002	Coal Steam	SCR All Year	SCR Summer	SCR All Year	SCR Summer	None	None	Scrubber	None
01073	ALABAMA POWER COMPANY (MILLER POWER PLANT)	6002	2	010730011	004	Coal Steam	SCR All Year	SCR Summer	SCR All Year	SCR Summer	None	None	Scrubber	None
01073	ALABAMA POWER COMPANY (MILLER POWER PLANT)	6002	1	010730011	005	Coal Steam	SCR All Year	SCR Summer	SCR All Year	SCR Summer	None	None	Scrubber	None
01097	ALABAMA POWER COMPANY BARRY	3	1	1001	002	Coal Steam	SNCR	None	SNCR	SCR	None	None	None	None
01097	ALABAMA POWER COMPANY BARRY	3	2	1001	003	Coal Steam	SNCR	None	SNCR	SCR	None	None	None	None
01097	ALABAMA POWER COMPANY BARRY	3	3	1001	004	Coal Steam	SNCR	None	SNCR	SCR	None	None	None	None
01097	ALABAMA POWER COMPANY BARRY	3	4	1001	005	Coal Steam	SNCR	None	SNCR	SCR	None	None	Scrubber	Scrubber
01097	ALABAMA POWER COMPANY BARRY	3	5	1001	006	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	1	0005	002	Coal Steam	None	SCR	None	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	2	0005	003	Coal Steam	None	SCR	None	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	3	0005	004	Coal Steam	None	SCR	None	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	4	0005	005	Coal Steam	None	SCR	None	SCR	None	None	Scrubber	Scrubber
01117	ALABAMA POWER COMPANY E C GASTON	26	5	0005	006	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber

										Post-Combus	tion Controls	S		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
01127	ALABAMA POWER COMPANY GORGAS	8	6	0001	004	Coal Steam	None	None	None	None	None	None	None	None
01127	ALABAMA POWER COMPANY GORGAS	8	7	0001	005	Coal Steam	None	None	None	None	None	None	None	None
01127	ALABAMA POWER COMPANY GORGAS	8	8	0001	006	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
01127	ALABAMA POWER COMPANY GORGAS	8	9	0001	007	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
01127	ALABAMA POWER COMPANY GORGAS	8	10	0001	008	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber
01129	ALABAMA ELECTRIC COOP CHARLES R LOWMAN	56	1	0001	002	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
01129	ALABAMA ELECTRIC COOP CHARLES R LOWMAN	56	2	0001	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
01129	ALABAMA ELECTRIC COOP CHARLES R LOWMAN	56	3	0001	004	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12001	GAINESVILLE REGIONAL UTILITIES JOHN R KELLY	664	JRK6			O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12001	GAINESVILLE REGIONAL UTILITIES JOHN R KELLY	664	JRK7			O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12001	GAINESVILLE REGIONAL UTILITIES JOHN R KELLY	664	JRK8	0010005	7		O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12001	CITY OF GAINESVILLE, GRU DEERHAVEN	663	B1	0010006	3	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12001	CITY OF GAINESVILLE, GRU DEERHAVEN	663	B2	0010006	5	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
12005	GULF POWER COMPANY LANSING SMITH PLANT	643	1	0050014	1	Coal Steam	None	None	SCR	SCR	None	None	None	Scrubber
12005	GULF POWER COMPANY LANSING SMITH PLANT	643	2	0050014	2	Coal Steam	None	None	SCR	SCR	None	None	None	Scrubber
12009	FLORIDA POWER & LIGHT (PCC) CAPE CANAVERAL	609	PCC1	0090006	1	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation

										Post-Combus	tion Controls	3		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12009	FLORIDA POWER & LIGHT (PCC) CAPE CANAVERAL	609	PCC2	0090006	2	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12011	FLORIDA POWER & LIGHT (PPE) PORT EVERGLADES	617	PPE1	0110036	1	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12011	FLORIDA POWER & LIGHT (PPE) PORT EVERGLADES	617	PPE2	0110036	2	O/G Steam	None	None	None	None	None	None	None	None
12011	FLORIDA POWER & LIGHT (PPE) PORT EVERGLADES	617	PPE3	0110036	3	O/G Steam	None	None	None	None	None	None	None	None
12011	FLORIDA POWER & LIGHT (PPE) PORT EVERGLADES	617	PPE4	0110036	4	O/G Steam	None	None	None	None	None	None	None	None
12017	PROGRESS ENERGY FLORIDA CRYSTAL RIVER	628	1	0170004	1	Coal Steam	None	None	None	None	None	None	None	None
12017	PROGRESS ENERGY FLORIDA CRYSTAL RIVER	628	2	0170004	2	Coal Steam	None	None	None	None	None	None	None	None
12017	PROGRESS ENERGY FLORIDA CRYSTAL RIVER	628	5	0170004	3	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
12017	PROGRESS ENERGY FLORIDA CRYSTAL RIVER	628	4	0170004	4	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12031	SAINT JOHNS RIVER	207	1	0310045-A	16		SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12031	SAINT JOHNS RIVER	207	2	0310045-A	17		SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12031	NORTHSIDE	667	2A	0310045-В	26	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12031	NORTHSIDE	667	1A	0310045-В	27	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12031	NORTHSIDE	667	3	0310045-В	3	O/G Steam	None	None	None	No Operation	None	None	None	None
12031	CEDAR BAY COGENERATION INC.	10672	GEN1	0310337	1	Coal Steam	None	SNCR	None	SNCR	Scrubber	Scrubber	Scrubber	Scrubber
12031	CEDAR BAY COGENERATION INC.			0310337	2		None		None					

										Post-Combus	stion Controls	3		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12031	CEDAR BAY COGENERATION INC.			0310337	3		None		None					
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	1	0330045	1									
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	2	0330045	2	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	3	0330045	3	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	4	0330045	4	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	5	0330045	5	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	6	0330045	6	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	None	Scrubber	None
12033	GULF POWER COMPANY CRIST ELECTRIC GENERATION	641	7	0330045	7	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber
12053	Central Power and Lime Incorporated	10333	GEN1	0530021	18	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY BIG BEND STATION	645	BB01	0570039	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY BIG BEND STATION	645	BB02	0570039	2	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY BIG BEND STATION	645	BB03	0570039	3	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY BIG BEND STATION	645	BB04	0570039	4	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB01	0570040	1		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB02	0570040	2		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB03	0570040	3		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation

										Post-Combus	tion Controls	}		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB04	0570040	4		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB05	0570040	5		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12057	TAMPA ELECTRIC COMPANY F.J. GANNON STATION	646	GB06	0570040	6		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12061	CITY OF VERO BEACH	693		0610029	1	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12061	CITY OF VERO BEACH	693	3	0610029	3	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12061	CITY OF VERO BEACH	693	4	0610029	4	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12063	GULF POWER COMPANY SCHOLZ	642	1	0630014	1	Coal Steam	None	None	Shut Down	None	None	None	Shut Down	None
12063	GULF POWER COMPANY SCHOLZ	642	2	0630014	2	Coal Steam	None	None	Shut Down	None	None	None	Shut Down	None
12073	CITY OF TALLAHASSEE ARVAH B.HOPKINS	688	1	0730003	1	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12073	CITY OF TALLAHASSEE ARVAH B.HOPKINS	688	2	0730003	4	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12081	FLORIDA POWER & LIGHT (PMT) MANATEE POWER	6042	PMT1	0810010	1	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12081	FLORIDA POWER & LIGHT (PMT) MANATEE POWER	6042	PMT2	0810010	2	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12085	FLORIDA POWER & LIGHT (PMR) FPL / MARTIN	6043	PMR1	0850001	1	O/G Steam	None	None	None	No Operation	None	None	None	No Operation
12085	FLORIDA POWER & LIGHT (PMR) FPL / MARTIN	6043	PMR2	0850001	2	O/G Steam	None	None	None	No Operation	None	None	None	No Operation
12085	INDIANTOWN COGENERATION, L.P.	50976	GEN1	0850102	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12086	FLORIDA POWER & LIGHT (PCU) CUTLER POWER	610	PCU5	0250001	3	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation

										Post-Combus	tion Controls	.		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12086	FLORIDA POWER & LIGHT (PCU) CUTLER POWER	610	PCU6	0250001	4	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12086	FLORIDA POWER & LIGHT (PTF) TURKEY POINT	621	PTP1	0250003	1	O/G Steam	None	None	None	No Operation	None	None	None	No Operation
12086	FLORIDA POWER & LIGHT (PTF) TURKEY POINT	621	PTP2	0250003	2	O/G Steam	None	None	None	No Operation	None	None	None	No Operation
12095	ORLANDO UTILITIES COMMISSION STANTON ENERGY	564	1	0950137	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12095	ORLANDO UTILITIES COMMISSION STANTON ENERGY	564	2	0950137	2	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12099	FLORIDA POWER & LIGHT (PRV) RIVIERA POWE	619	PRV3	0990042	3	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12099	FLORIDA POWER & LIGHT (PRV) RIVIERA POWE	619	PRV4	0990042	4	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12099	CITY OF LAKE WORTH UTILITIES TOM G. SMITH	673	S-1	0990045	7	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12099	CITY OF LAKE WORTH UTILITIES TOM G. SMITH	673	S-3	0990045	9	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12101	PROGRESS ENERGY FLORIDA ANCLOTE	8048	1	1010017	1	O/G Steam	None	None	None	No Operation	None	None	None	No Operation
12101	PROGRESS ENERGY FLORIDA ANCLOTE	8048	2	1010017	2	O/G Steam	None	None	None	No Operation	None	None	None	No Operation
12103	PROGRESS ENERGY FLORIDA BARTOW	634	1	1030011	1	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	No Operation	No Operation
12103	PROGRESS ENERGY FLORIDA BARTOW	634	2	1030011	2	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	None	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12103	PROGRESS ENERGY FLORIDA BARTOW	634	3	1030011	3	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	No Operation	No Operation
12105	LAKELAND ELECTRIC CHARLES LARSEN	675	7	1050003	4	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12105	LAKELAND ELECTRIC C.D. MCINTOSH, JR.	676	3	1050004	1	Coal Steam	None	Combine d Cycle	None	Combine d Cycle	None	Combine d Cycle	None	Combine d Cycle

										Post-Combus	tion Controls	3		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
12105	LAKELAND ELECTRIC C.D. MCINTOSH, JR.	676	3	1050004	5	Coal Steam	None	Combine d Cycle	None	Combine d Cycle	None	Combine d Cycle	None	Combine d Cycle
12105	LAKELAND ELECTRIC C.D. MCINTOSH, JR.	676	3	1050004	6	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12107	SEMINOLE ELECTRIC COOPERATIVE, INC.	136	1	1070025	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12107	SEMINOLE ELECTRIC COOPERATIVE, INC.	136	2	1070025	2	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
12111	FT PIERCE UTILITIES AUTHORITY FT PIERCE	658	7	1110003	7	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12111	FT PIERCE UTILITIES AUTHORITY FT PIERCE	658	8	1110003	8	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12121	PROGRESS ENERGY FLORIDA SUWANNEE RIVER	638	1	1210003	1	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	None	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	None	O/G Early Retireme nt
12121	PROGRESS ENERGY FLORIDA SUWANNEE RIVER	638	2	1210003	2	O/G Steam	O/G Early Retireme	O/G Early Retireme	None	O/G Early Retireme	O/G Early Retireme nt	O/G Early Retireme	None	O/G Early Retireme nt
12121	PROGRESS ENERGY FLORIDA SUWANNEE RIVER	638	3	1210003	3	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
12127	FLORIDA POWER & LIGHT (PSN) SANFORD POWER	620	PSN3	1270009	1	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
12127	FLORIDA POWER & LIGHT (PSN) SANFORD POWER	620	PSN4	1270009	2		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
12129	TALLAHASSEE CITY PURDOM GENERATING STATION	689	7	1290001	7	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13015	GEORGIA POWER COMPANY, BOWEN STEAM-ELECT	703	1BLR	01500011	SG01	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
13015	GEORGIA POWER COMPANY, BOWEN STEAM-ELECT	703	2BLR	01500011	SG02	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
13015	GEORGIA POWER COMPANY, BOWEN STEAM-ELECT	703	3BLR	01500011	SG03	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
13015	GEORGIA POWER COMPANY, BOWEN STEAM-ELECT	703	4BLR	01500011	SG04	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	tion Controls	5		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
13021	ARKWRIGHT	699	1	0002	1		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13021	ARKWRIGHT	699	2	0002	2		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13021	ARKWRIGHT	699	3	0002	3		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13021	ARKWRIGHT	699	4	0002	4		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13051	SAVANNAH ELECTRIC: KRAFT STEAM	733	1	05100006	SG01	Coal Steam	None	None	None	None	None	None	None	None
13051	SAVANNAH ELECTRIC: KRAFT STEAM	733	2	05100006	SG02	Coal Steam	None	None	None	None	None	None	None	None
13051	SAVANNAH ELECTRIC: KRAFT STEAM	733	3	05100006	SG03	Coal Steam	None	None	None	SCR	None	None	None	None
13051	SAVANNAH ELECTRIC: KRAFT STEAM	733	4	05100006	SG04	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13051	RIVERSIDE	734	11	05100018	11	O/G Steam	None	No Operation	No Operation	No Operation	None	No Operation	No Operation	No Operation
13051	RIVERSIDE	734	12	05100018	12	O/G Steam	None	No Operation	No Operation	No Operation	None	No Operation	No Operation	No Operation
13051	RIVERSIDE	734	4	05100018	4	O/G Steam	None	None	None	None	None	None	None	None
13051	RIVERSIDE	734	5	05100018	5	O/G Steam	None	No Operation	No Operation	No Operation	None	No Operation	No Operation	No Operation
13051	RIVERSIDE	734	6	05100018	6	O/G Steam	None	No Operation	No Operation	No Operation	None	No Operation	No Operation	No Operation
13067	GEORGIA POWER COMPANY, MCDONOUGH STEAM	710	MB1	06700003	SGM1	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13067	GEORGIA POWER COMPANY, MCDONOUGH STEAM	710	MB2	06700003	SGM2	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y1BR	07700001	SG01	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y2BR	07700001	SG02	Coal Steam	None	None	None	None	None	None	None	None

										Post-Combus	tion Controls	S		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y3BR	07700001	SG03	Coal Steam	None	None	None	None	None	None	None	None
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y4BR	07700001	SG04	Coal Steam	None	None	SCR	SCR	None	None	None	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y5BR	07700001	SG05	Coal Steam	None	None	SCR	SCR	None	None	None	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y6BR	07700001	SG06	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13077	GEORGIA POWER COMPANY, YATES STEAM-ELECTRIC	728	Y7BR	07700001	SG07	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13095	GEORGIA POWER COMPANY, MITCHELL STEAM-ELECTRIC	727		09500002	SG01		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13095	GEORGIA POWER COMPANY, MITCHELL STEAM-ELECTRIC	727		09500002	SG02		No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13095	GEORGIA POWER COMPANY, MITCHELL STEAM-ELECTRIC	727	3	09500002	SG03	Coal Steam	None	None	None	None	None	None	None	None
13103	SAVANNAH ELECTRIC: MCINTOSH STEAM - ELECTRIC	6124	1	10300003	SG01	Coal Steam	None	None	None	SCR	None	None	None	None
13115	GEORGIA POWER COMPANY, HAMMOND STEAM- ELECTRIC	708	1	11500003	SG01	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
13115	GEORGIA POWER COMPANY, HAMMOND STEAM- ELECTRIC	708	2	11500003	SG02	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
13115	GEORGIA POWER COMPANY, HAMMOND STEAM- ELECTRIC	708	3	11500003	SG03	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
13115	GEORGIA POWER COMPANY, HAMMOND STEAM- ELECTRIC	708	4	11500003	SG04	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
13127	GEORGIA POWER COMPANY, MCMANUS STEAM- ELECTRIC	715	1	12700004	SG01	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13127	GEORGIA POWER COMPANY, MCMANUS STEAM- ELECTRIC	715	2	12700004	SG02	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
13149	GEORGIA POWER COMPANY, WANSLEY STEAM-ELECTRIC	6052	1	14900001	SG01	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	stion Controls	3		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
13149	GEORGIA POWER COMPANY, WANSLEY STEAM-ELECTRIC	6052	2	14900001	SG02	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
13207	GEORGIA POWER COMPANY, SCHERER STEAM-ELECTRIC	6257	1	20700008	SG01	Coal Steam	None	None	None	None	None	None	Scrubber	None
13207	GEORGIA POWER COMPANY, SCHERER STEAM-ELECTRIC	6257	2	20700008	SG02	Coal Steam	None	None	None	None	None	None	Scrubber	None
13207	GEORGIA POWER COMPANY, SCHERER STEAM-ELECTRIC	6257	3	20700008	SG03	Coal Steam	None	None	None	None	None	None	Scrubber	None
13207	GEORGIA POWER COMPANY, SCHERER STEAM-ELECTRIC	6257	4	20700008	SG04	Coal Steam	None	None	None	None	None	None	Scrubber	None
13237	GEORGIA POWER COMPANY, HARLLEE BRANCH	709	1	23700008	SG01	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13237	GEORGIA POWER COMPANY, HARLLEE BRANCH	709	2	23700008	SG02	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13237	GEORGIA POWER COMPANY, HARLLEE BRANCH	709	3	23700008	SG03	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13237	GEORGIA POWER COMPANY, HARLLEE BRANCH	709	4	23700008	SG04	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber
13297	GENERIC UNIT	9001 13	GSC1	ORIS900 113	GSC13	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber
21015	CINCINNATI GAS & ELECTRIC EAST BEND STAT	6018	2	2101500029	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21041	KENTUCKY UTILITIES CO GHENT GENERATING STATION	1356	1	2104100010	001	Coal Steam	SCR	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21041	KENTUCKY UTILITIES CO GHENT GENERATING STATION	1356	2	2104100010	002	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21041	KENTUCKY UTILITIES CO GHENT GENERATING STATION	1356	3	2104100010	003	Coal Steam	SCR	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21041	KENTUCKY UTILITIES CO GHENT GENERATING STATION	1356	4	2104100010	004	Coal Steam	SCR	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21049	EAST KY POWER COOP WILLIAM C DALE PLANT	1385	1	2104900003	001	Coal Steam	None	None	None	None	None	None	None	None

										Post-Combus	tion Controls	j .		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
21049	EAST KY POWER COOP WILLIAM C DALE PLANT	1385	2	2104900003	002	Coal Steam	None	None	None	None	None	None	None	None
21049	EAST KY POWER COOP WILLIAM C DALE PLANT	1385	3	2104900003	003	Coal Steam	None	None	None	None	None	None	None	None
21049	EAST KY POWER COOP WILLIAM C DALE PLANT	1385	4	2104900003	004	Coal Steam	None	None	None	None	None	None	None	None
21059	OWENSBORO MUNICIPAL UTIL ELMER SMITH STATION	1374	1	2105900027	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21059	OWENSBORO MUNICIPAL UTIL ELMER SMITH STATION	1374	2	2105900027	002	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21091	WESTERN KY ENERGY CORP COLEMAN STATION	1381	C1	2109100003	001	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21091	WESTERN KY ENERGY CORP COLEMAN STATION	1381	C2	2109100003	002	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21091	WESTERN KY ENERGY CORP COLEMAN STATION	1381	C3	2109100003	003	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21091	GENERIC UNIT	9001 21	GSC2 1	ORIS900 121	GSC21	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21101	HENDERSON MUN POW & LIGHT	1372	6	2110100012	002	Coal Steam	None	None	None	None	None	None	None	None
21101	HENDERSON MUN POW & LIGHT	1372	5	2110100012	5	Coal Steam	None	None	None	None	None	None	None	None
21111	LOU GAS & ELEC, CANE RUN	1363	4	0126	04	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, CANE RUN	1363	5	0126	05	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, CANE RUN	1363	6	0126	06	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, MILL CREEK	1364	1	0127	01	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, MILL CREEK	1364	2	0127	02	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	stion Controls	5		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
21111	LOU GAS & ELEC, MILL CREEK	1364	3	0127	03	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21111	LOU GAS & ELEC, MILL CREEK	1364	4	0127	04	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21127	KENTUCKY POWER CO BIG SANDY PLANT	1353	BSU1	2112700003	001	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
21127	KENTUCKY POWER CO BIG SANDY PLANT	1353	BSU2	2112700003	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	1	2114500006	001	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	2	2114500006	002	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	3	2114500006	003	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	4	2114500006	004	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	5	2114500006	005	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	6	2114500006	006	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	7	2114500006	007	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	8	2114500006	008	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	9	2114500006	009	Coal Steam	None	None	None	None	None	None	None	None
21145	TVA-ENVIRONMENTAL AFFAIRS SHAWNEE PLANT	1379	10	2114500006	016	Coal Steam	None	None	None	None	None	None	None	None
21161	EAST KY POWER COOP SPURLOCK ST. MAYSVILLE	6041	1	2116100009	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21161	EAST KY POWER COOP SPURLOCK ST. MAYSVILLE	6041	2	2116100009	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber

										Post-Combus	tion Controls	5		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
21167	KENTUCKY UTILITIES CO BROWN FACILITY	1355	1	2116700001	001	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None
21167	KENTUCKY UTILITIES CO BROWN FACILITY	1355	2	2116700001	002	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21167	KENTUCKY UTILITIES CO BROWN FACILITY	1355	3	2116700001	003	Coal Steam	None	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber
21177	KENTUCKY UTILITIES CO GREEN RIVER STATION	1357	4	2117700001	003	Coal Steam	None	None	None	None	None	None	None	None
21177	KENTUCKY UTILITIES CO GREEN RIVER STATION	1357	5	2117700001	004	Coal Steam	None	None	None	None	None	None	None	None
21177	TVA PARADISE STEAM PLANT	1378	1	2117700006	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21177	TVA PARADISE STEAM PLANT	1378	2	2117700006	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21177	TVA PARADISE STEAM PLANT	1378	3	2117700006	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21183	WESTERN KY ENERGY CORP WILSON STATION	6823	W1	2118300069	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21199	EAST KY POWER COOP JOHN SHERMAN COOPER	1384	1	2119900005	001	Coal Steam	None	None	None	None	None	None	Scrubber	None
21199	EAST KY POWER COOP JOHN SHERMAN COOPER	1384	2	2119900005	002	Coal Steam	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber
21223	LOUISVILLE GAS & ELECTRIC TRIMBLE CO GEN	6071	1	2122300002	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21233	HENDERSON STATION 2	1382	Н1	2123300001 -A	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21233	HENDERSON STATION 2	1382	H2	2123300001 -A	003	Coal Steam	SCR	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21233	WESTERN KY ENERGY CORP REID	1383	R1	2123300001 -B	001	Coal Steam	None	None	None	None	None	None	None	None
21233	WESTERN KY ENERGY CORP GREEN STATION	6639	G1	2123300052	001	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

										Post-Combus	tion Controls	3		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
21233	WESTERN KY ENERGY CORP GREEN STATION	6639	G2	2123300052	002	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
21239	KENTUCKY UTILITIES TYRONE FACILITY	1361	5	2123900001	005	Coal Steam	None	None	None	None	None	None	None	None
28011	ENTERGY MISSISSIPPI INC, DELTA PLANT	2051	1	2801100031	001	O/G Steam	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt
28011	ENTERGY MISSISSIPPI INC, DELTA PLANT	2051		2801100031	002		None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt
28011	ENTERGY MISSISSIPPI INC, DELTA PLANT	2051	2	2801100031	003	O/G Steam	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt
28011	ENTERGY MISSISSIPPI INC, DELTA PLANT	2051		2801100031	004		None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt
28019	CHOCTAW GENERATION LLP, RED HILLS GENERATING	55076	AA001	2801900011	001A	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
28019	CHOCTAW GENERATION LLP, RED HILLS GENERATING	55076	AA002	2801900011	001B									
28035	MISSISSIPPI POWER COMPANY, PLANT EATON	2046		2803500038	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28035	MISSISSIPPI POWER COMPANY, PLANT EATON	2046		2803500038	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28035	MISSISSIPPI POWER COMPANY, PLANT EATON	2046		2803500038	003	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	1	2804700055	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	2	2804700055	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	3	2804700055	003	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	4	2804700055	004	Coal Steam	None	SCR	SCR	SCR	None	None	None	Scrubber

										Post-Combus	tion Controls	3		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
28047	MISSISSIPPI POWER COMPANY, PLANT JACK WATSON	2049	5	2804700055	005	Coal Steam	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber
28049	ENTERGY MISSISSIPPI INC, REX BROWN PLANT	2053	4	2804900112	001	O/G Steam	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt
28049	ENTERGY MISSISSIPPI INC, REX BROWN PLANT	2053	3	2804900112	002	O/G Steam	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt
28059	MISSISSIPPI POWER COMPANY, PLANT DANIEL	6073	1	2805900090	001	Coal Steam	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber
28059	MISSISSIPPI POWER COMPANY, PLANT DANIEL	6073	2	2805900090	002	Coal Steam	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber
28067	MOSELLE SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	2070	1	2806700035	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28067	MOSELLE SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	2070	2	2806700035	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28067	MOSELLE SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	2070	3	2806700035	003	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28073	RD MORROW SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	6061	1	2807300021	001	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
28073	RD MORROW SOUTH MISSISSIPPI ELECTRIC POWER ASSOCIATION	6061	2	2807300021	002	Coal Steam	None	None	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
28075	MISSISSIPPI POWER COMPANY, PLANT SWEATT	2048	1	2807500032	001	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28075	MISSISSIPPI POWER COMPANY, PLANT SWEATT	2048	2	2807500032	002	O/G Steam	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation	No Operation
28083	GREENWOOD UTILITIES, HENDERSON STATION	2062	H1	2808300048	001	O/G Steam	None	None	None	None	No Operation	No Operation	No Operation	No Operation
28083	GREENWOOD UTILITIES, HENDERSON STATION	2062	Н3	2808300048	003	O/G Steam	None	None	None	None	No Operation	No Operation	No Operation	No Operation
28149	ENTERGY MISSISSIPPI INC, BAXTER WILSON	2050	1	2814900027	001	O/G Steam	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt

										Post-Combus	tion Controls	3		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
28149	ENTERGY MISSISSIPPI INC, BAXTER WILSON	2050	2	2814900027	002	O/G Steam	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt	None	O/G Early Retireme nt
28151	ENTERGY MISSISSIPPI INC, GERALD ANDRUS	8054	1	2815100048	001	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation
28163	YAZOO CITY PUBLIC SERVICE COMMISSION	2067	3	2816300005	001	O/G Steam	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt	O/G Early Retireme nt
37017	ELIZABETHTOWN POWER, LLC	10380	UNIT1	3701700043	G-17A	Coal Steam	None	None	None	None	None	None	None	None
37017	ELIZABETHTOWN POWER, LLC	10380	UNIT2	3701700043	G-17B		None	None	None	None	None	None	None	None
37019	COGENTRIX OF NORTH CAROLINA INC - SOUTHPORT	10378	GEN1	3701900067	G-29	Coal Steam	None	None	None	None	None	None	None	None
37019	COGENTRIX OF NORTH CAROLINA INC - SOUTHPORT	10378	GEN2	3701900067	G-30	Coal Steam	None	None	None	None	None	None	None	None
37021	CAROLINA POWER & LIGHT ASHEVILLE STEAM	2706	1	628	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37021	CAROLINA POWER & LIGHT ASHEVILLE STEAM	2706	2	628	2	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37025	KANNAPOLIS ENERGY PARTNERS LLC			3702500113	G-2	Coal Steam	None	None	None	None	None	None	None	None
37025	KANNAPOLIS ENERGY PARTNERS LLC			3702500113	G-3	Coal Steam	None	None	None	None	None	None	None	None
37035	DUKE ENERGY CORPORATION MARSHALL STEAM	2727	3	3703500073	G-1	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37035	DUKE ENERGY CORPORATION MARSHALL STEAM	2727	4	3703500073	G-2	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37035	DUKE ENERGY CORPORATION MARSHALL STEAM	2727	1	3703500073	G-4	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37035	DUKE ENERGY CORPORATION MARSHALL STEAM	2727	2	3703500073	G-5	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37037	PROGRESS ENERGY CAROLINAS CAPE FEAR	2708	5	3703700063	G-1	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Furnace Sorbent Injection	Scrubber

										Post-Combus	stion Controls	8		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
37037	PROGRESS ENERGY CAROLINAS CAPE FEAR	2708	6	3703700063	G-2	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Furnace Sorbent Injection	Scrubber
37045	GENERIC UNIT	9001 37	GSC3 7	ORIS900 137	GSC37	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber
37055	GENERIC UNIT	9002 37	GSC3 7	ORIS900 237	GSC37	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber
37055	GENERIC UNIT	9003 37	GSC3 7	ORIS900 337	GSC37	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber
37061	GENERIC UNIT	9004 37	GSC3 7	ORIS900 437	GSC37	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber
37083	GENERIC UNIT	9005 37	GSC3 7	ORIS900 537	GSC37	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber
37083	GENERIC UNIT	9006 37	GSC3 7	ORIS900 637	GSC37	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	1	3707100039	G-14	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	2	3707100039	G-15	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	3	3707100039	G-16	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	4	3707100039	G-17	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION ALLEN STEAM	2718	5	3707100039	G-18	Coal Steam	SNCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37071	DUKE ENERGY CORPORATION RIVERBEND STEAM	2732	7	3707100040	G-17	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37071	DUKE ENERGY CORPORATION RIVERBEND STEAM	2732	8	3707100040	G-18	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37071	DUKE ENERGY CORPORATION RIVERBEND STEAM	2732	9	3707100040	G-19	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37071	DUKE ENERGY CORPORATION RIVERBEND STEAM	2732	10	3707100040	G-20	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None

										Post-Combus	stion Controls	5		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
37083	ROANOKE VALLEY ENERGY FACILITY			3708300174	G-27	Coal Steam	None	None	None	None	None	None	None	None
37083	ROANOKE VALLEY ENERGY FACILITY			3708300174	G-7	Coal Steam	None	None	None	None	None	None	None	None
37129	L V SUTTON STEAM ELECTRIC PLANT	2713	1	3712900036	G-187	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37129	L V SUTTON STEAM ELECTRIC PLANT	2713	2	3712900036	G-188	Coal Steam	None	SCR	SCR	SCR	None	None	None	None
37129	L V SUTTON STEAM ELECTRIC PLANT	2713	3	3712900036	G-189	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	1	3714500029	G-29	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	2	3714500029	G-30	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	3A	3714500029	G-35A	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	3В	3714500029	G-35B	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	4A	3714500029	G-36A	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - ROXBORO STEAM ELECTRIC PLANT	2712	4B	3714500029	G-36B	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - MAYO FACILITY	6250	1A	3714500045	G-46A	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37145	CP&L - MAYO FACILITY	6250	1B	3714500045	G-46B	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37155	PROGRESS ENERGY CAROLINAS, INC., W.H. WEATHERSPOON	2716	1	3715500147	G-24	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37155	PROGRESS ENERGY CAROLINAS, INC., W.H. WEATHERSPOON	2716	2	3715500147	G-25	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37155	PROGRESS ENERGY CAROLINAS, INC., W.H. WEATHERSPOON	2716	3	3715500147	G-26	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None

										Post-Combus	stion Controls	S		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
37155	LUMBERTON POWER, LLC	10382	UNIT1	3715500166	G-17A	Coal Steam	None	None	None	None	None	None	None	None
37155	LUMBERTON POWER, LLC	10382	UNIT2	3715500166	G-17B		None	None	None	None	None	None	None	None
37157	DUKE ENERGY CORP DAN RIVER STEAM	2723	3	3715700015	G-21	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37157	DUKE ENERGY CORP DAN RIVER STEAM	2723	1	3715700015	G-22	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37157	DUKE ENERGY CORP DAN RIVER STEAM	2723	2	3715700015	G-23	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	5	3715900004	G-1	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	6	3715900004	G-2	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	7	3715900004	G-3	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	8	3715900004	G-4	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37159	DUKE ENERGY CORPORATION BUCK STEAM	2720	9	3715900004	G-5	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	1	3716100028	G-82	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	2	3716100028	G-83	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	3	3716100028	G-84	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	4	3716100028	G-85	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	5	3716100028	G-86	Coal Steam	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
37161	DUKE ENERGY CORPORATION	2721	6	3716100028	G-87	Coal Steam	No Operation	Not in IPM	SCR	Not in IPM	No Operation	Not in IPM	Scrubber	Not in IPM

										Post-Combus	stion Controls	5		
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls
	CLIFFSIDE STEAM													
37161	DUKE ENERGY CORPORATION CLIFFSIDE STEAM	2721	7	3716100028	G-88		No Operation	Not in IPM	No Operation	Not in IPM	No Operation	Not in IPM	No Operation	Not in IPM
37169	DUKE ENERGY CORP BELEWS CREEK STEAM	8042	1	3716900004	G-17	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37169	DUKE ENERGY CORP BELEWS CREEK STEAM	8042	2	3716900004	G-18	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
37191	PROGRESS ENERGY F LEE PLANT	2709	1	3719100017	G-2	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37191	PROGRESS ENERGY F LEE PLANT	2709	2	3719100017	G-3	Coal Steam	None	SNCR	SNCR	SNCR	None	None	None	None
37191	PROGRESS ENERGY F LEE PLANT	2709	3	3719100017	G-4	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	None	Scrubber
45003	SCE&G:URQUHART	3295	URQ3	0080-0011	003	Coal Steam	None	None	None	None	None	None	None	None
45003	SCE&G:SRS AREA D			0080-0044	001	Coal Steam	None	None	None	None	None	None	None	None
45003	SCE&G:SRS AREA D			0080-0044	002		None	None	None	None				
45003	SCE&G:SRS AREA D			0080-0044	003		None	None	None	None				
45003	SCE&G:SRS AREA D			0080-0044	004		None	None	None	None				
45007	DUKE ENERGY:LEE	3264	1	0200-0004	001	Coal Steam	None	None	None	None	None	None	None	None
45007	DUKE ENERGY:LEE	3264	2	0200-0004	002	Coal Steam	None	None	None	None	None	None	None	None
45007	DUKE ENERGY:LEE	3264	3	0200-0004	003	Coal Steam	None	None	None	None	None	None	None	None
45015	SANTEE COOPER JEFFERIES	3319	1	0420-0003	001	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	None	No Operation

						_	VISTAS IPM VISTAS IPM VISTAS IPM VISTAS IPM VISTAS IPM								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
45015	SANTEE COOPER JEFFERIES	3319	2	0420-0003	002	O/G Steam	No Operation	No Operation	None	No Operation	No Operation	No Operation	None	No Operation	
45015	SANTEE COOPER JEFFERIES	3319	3	0420-0003	003	Coal Steam	None	SCR	None	SCR	None	None	None	None	
45015	SANTEE COOPER JEFFERIES	3319	4	0420-0003	004	Coal Steam	None	None	None	None	None	None	None	None	
45015	SCE&G:WILLIAMS	3298	WIL1	0420-0006	001	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
45015	SANTEE COOPER CROSS	130	1	0420-0030	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber	
45015	SANTEE COOPER CROSS	130	2	0420-0030	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber	
45015	SANTEE COOPER CROSS	130	3	0420-0030	3	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
45015	SANTEE COOPER CROSS	130	4	0420-0030	4	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
45029	SCE&G:CANADYS	3280	CAN1	0740-0002	001	Coal Steam	None	None	None	None	None	None	None	None	
45029	SCE&G:CANADYS	3280	CAN2	0740-0002	002	Coal Steam	None	None	None	None	None	None	None	None	
45029	SCE&G:CANADYS	3280	CAN3	0740-0002	003	Coal Steam	None	None	None	None	Scrubber	None	Scrubber	None	
45031	PROGRESS ENERGY ROBINSON STATION	3251	1	0820-0002	001	Coal Steam	None	None	None	None	None	None	None	None	
45043	SANTEE COOPER WINYAH	6249	1	1140-0005	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
45043	SANTEE COOPER WINYAH	6249	2	1140-0005	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
45043	SANTEE COOPER WINYAH	6249	3	1140-0005	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber	
45043	SANTEE COOPER WINYAH	6249	4	1140-0005	004	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber	
45051	SANTEE COOPER GRAINGER	3317	1	1340-0003	001	Coal Steam	None	None	None	None	None	None	None	None	

		<u> </u>					Post-Combustion Controls VISTAS IPM VISTAS								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
45051	SANTEE COOPER GRAINGER	3317	2	1340-0003	002	Coal Steam	None	None	None	None	None	None	None	None	
45063	SCE&G:MCMEEKIN	3287	MCM1	1560-0003	001	Coal Steam	None	None	None	None	None	None	None	None	
45063	SCE&G:MCMEEKIN	3287	MCM2	1560-0003	002	Coal Steam	None	None	None	None	None	None	None	None	
45075	SCE&G:COPE	7210	COP1	1860-0044	001	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber	
45079	SCE&G:WATEREE	3297	WAT1	1900-0013	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	None	
45079	SCE&G:WATEREE	3297	WAT2	1900-0013	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber	
45029	GENERIC UNIT	9001 45	GSC4 5	ORIS900 145	GSC45	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
45031	GENERIC UNIT	9002 45	GSC4 5	ORIS900 245	GSC45	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
45031	GENERIC UNIT	9003 45	GSC4 5	ORIS900 345	GSC45	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
45039	GENERIC UNIT	9004 45	GSC4 5	ORIS900 445	GSC45	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
45043	GENERIC UNIT	9005 45	GSC4 5	ORIS900 545	GSC45	Coal Steam	No Operation	No Operation	Cross Unit 4	SCR	No Operation	No Operation	Cross Unit 4	Scrubber	
47001	TVA BULL RUN FOSSIL PLANT	3396	1	0009	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
47073	TVA JOHN SEVIER FOSSIL PLANT	3405	1	0007	001	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
47073	TVA JOHN SEVIER FOSSIL PLANT	3405	2	0007	002	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
47073	TVA JOHN SEVIER FOSSIL PLANT	3405	3	0007	003	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
47073	TVA JOHN SEVIER FOSSIL PLANT	3405	4	0007	004	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	1	0011	001	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	

							VISTAS IPM VISTAS IPM VISTAS IPM VISTAS IPM VISTAS IPM								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	2	0011	002	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	3	0011	003	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	4	0011	004	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	5	0011	005	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	6	0011	006	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	7	0011	007	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	8	0011	008	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	9	0011	009	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47085	TVA JOHNSONVILLE FOSSIL PLANT	3406	10	0011	010	Coal Steam	None	SCR	SCR	SCR	None	None	None	None	
47145	TVA KINGSTON FOSSIL PLANT	3407	1	0013	001	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
47145	TVA KINGSTON FOSSIL PLANT	3407	2	0013	002	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
47145	TVA KINGSTON FOSSIL PLANT	3407	3	0013	003	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
47145	TVA KINGSTON FOSSIL PLANT	3407	4	0013	004	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
47145	TVA KINGSTON FOSSIL PLANT	3407	5	0013	005	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
47145	TVA KINGSTON FOSSIL PLANT	3407	6	0013	006	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
47145	TVA KINGSTON FOSSIL PLANT	3407	7	0013	007	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
47145	TVA KINGSTON FOSSIL PLANT	3407	8	0013	008	Coal Steam	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	

							VISTAS IPM VISTAS IPM VISTAS IPM VISTAS IPM VISTAS IPM								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
47145	TVA KINGSTON FOSSIL PLANT	3407	9	0013	009	Coal Steam	SCR	None	SCR	SCR	None	None	Scrubber	Scrubber	
47157	ALLEN FOSSIL PLANT	3393	1	00528	Boilr1	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None	
47157	ALLEN FOSSIL PLANT	3393	2	00528	Boilr2	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None	
47157	ALLEN FOSSIL PLANT	3393	3	00528	Boilr3	Coal Steam	SCR	SCR	SCR	SCR	None	None	None	None	
47161	TVA CUMBERLAND FOSSIL PLANT	3399	1	0011	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
47161	TVA CUMBERLAND FOSSIL PLANT	3399	2	0011	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
47165	TVA GALLATIN FOSSIL PLANT	3403	1	0025	001	Coal Steam	None	None	None	None	None	None	Scrubber	Scrubber	
47165	TVA GALLATIN FOSSIL PLANT	3403	2	0025	002	Coal Steam	None	None	None	None	None	None	Scrubber	Scrubber	
47165	TVA GALLATIN FOSSIL PLANT	3403	3	0025	003	Coal Steam	None	None	None	None	None	None	Scrubber	Scrubber	
47165	TVA GALLATIN FOSSIL PLANT	3403	4	0025	004	Coal Steam	None	None	None	None	None	None	Scrubber	Scrubber	
51031	DOMINION - ALTAVISTA POWER STATION	10773	1	00156	1	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber	
51031	DOMINION - ALTAVISTA POWER STATION	10773	2	00156	2		0	0	0	0	0	0	0	0	
51041	DOMINION - CHESTERFIELD POWER STATION	3797	3	00002	3	Coal Steam	None	None	None	None	None	None	Scrubber	None	
51041	DOMINION - CHESTERFIELD POWER STATION	3797	4	00002	4	Coal Steam	SCR	None	SCR	SCR	None	None	Scrubber	Scrubber	
51041	DOMINION - CHESTERFIELD POWER STATION	3797	5	00002	6	Coal Steam	SCR	None	SCR	SCR	None	None	Scrubber	Scrubber	
51041	DOMINION - CHESTERFIELD POWER STATION	3797	6	00002	8	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
51065	DOMINION - BREMO POWER STATION	3796	3	00001	1	Coal Steam	None	None	None	None	None	None	None	None	

							Post-Combustion Controls VISTAS IPM VISTAS IPM VISTAS IPM VISTAS IPM VISTAS IPM								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
51065	DOMINION - BREMO POWER STATION	3796	4	00001	2	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	None	None	
51071	AMERICAN ELECTRIC POWER GLEN LYN	3776	51	00002	1	Coal Steam	None	None	None	None	None	None	None	None	
51071	AMERICAN ELECTRIC POWER GLEN LYN	3776	52	00002	2	Coal Steam	None	None	None	None	None	None	None	None	
51071	AMERICAN ELECTRIC POWER GLEN LYN	3776	6	00002	3	Coal Steam	None	None	None	None	None	None	None	Scrubber	
51083	DOMINION - CLOVER POWER STATION	7213	1	00046	1	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber	
51083	DOMINION - CLOVER POWER STATION	7213	2	00046	2	Coal Steam	SNCR	SNCR	SNCR	SNCR	Scrubber	Scrubber	Scrubber	Scrubber	
51099	BIRCHWOOD POWER PARTNERS, L.P.	54304	1	00012	1	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
51117	Mecklenburg Cogeneration Facility	52007	GEN1	00051	1	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber	
51117	Mecklenburg Cogeneration Facility	52007	GEN2	00051	2	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber	
51153	DOMINION - POSSUM POINT	3804	3	00002	3	Coal Steam	None	Combine d Cycle	None	Combine d Cycle	None	Combine d Cycle	None	Combine d Cycle	
51153	DOMINION - POSSUM POINT	3804	4	00002	4	Coal Steam	None	Combine d Cycle	None	Combine d Cycle	None	Combine d Cycle	None	Combine d Cycle	
51153	DOMINION - POSSUM POINT	3804	5	00002	5	O/G Steam	None	No Operation	None	No Operation	None	No Operation	None	No Operation	
51153	DOMINION - POSSUM POINT	3804	6	00002		Combined Cycle	Combine d Cycle	Combine d Cycle	Combine d Cycle	Combine d Cycle	Combine d Cycle	Combine d Cycle	Combine d Cycle	Combine d Cycle	
51167	AMERICAN ELECTRIC POWER CLINCH RIVER PLANT	3775	1	00003	1	Coal Steam	None	None	SNCR	SCR	None	None	Emission Cap	Scrubber	
51167	AMERICAN ELECTRIC POWER CLINCH RIVER PLANT	3775	2	00003	2	Coal Steam	None	None	SNCR	SCR	None	None	Emission Cap	Scrubber	
51167	AMERICAN ELECTRIC POWER CLINCH RIVER PLANT	3775	3	00003	3	Coal Steam	None	None	SNCR	SCR	None	None	Emission Cap	Scrubber	

							VISTAS IPM								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
51175	LG&E Westmoreland Southampton	10774	GEN1	00051	1	Coal Steam	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber	
51175	LG&E Westmoreland Southampton			00051	2		None	None	None	None	0	0	0	0	
51175	LG&E Westmoreland Southampton			00051	4		None	None	None	None	0	0	0	0	
51199	DOMINION - YORKTOWN POWER STATION	3809	3	00001	3	O/G Steam	SNCR	No Operation	SNCR	No Operation	None	No Operation	Scrubber	No Operation	
51199	DOMINION - YORKTOWN POWER STATION	3809	2	00001	5	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	None	
51199	DOMINION - YORKTOWN POWER STATION	3809	1	00001	6	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	None	
51510	POTOMAC RIVER GENERATING STATION	3788	1	00003	1	Coal Steam	SNCR	Coal Early Retireme nt	SNCR	Coal Early Retireme nt	None	Coal Early Retireme nt	None	Coal Early Retireme nt	
51510	POTOMAC RIVER GENERATING STATION	3788	2	00003	2	Coal Steam	SNCR	Coal Early Retireme nt	SNCR	Coal Early Retireme nt	None	Coal Early Retireme nt	None	Coal Early Retireme nt	
51510	POTOMAC RIVER GENERATING STATION	3788	3	00003	3	Coal Steam	SNCR	None	SNCR	None	None	None	None	None	
51510	POTOMAC RIVER GENERATING STATION	3788	4	00003	4	Coal Steam	SNCR	None	SNCR	None	None	None	None	None	
51510	POTOMAC RIVER GENERATING STATION	3788	5	00003	5	Coal Steam	SNCR	None	SNCR	None	None	None	None	None	
51550	DOMINION - CHESAPEAKE	3803	1	00026	1	Coal Steam	SNCR	SNCR	SNCR	SNCR	Low S Coal	None	Scrubber	None	
51550	DOMINION - CHESAPEAKE	3803	2	00026	2	Coal Steam	SNCR	SNCR	SNCR	SNCR	Low S Coal	None	Scrubber	None	
51550	DOMINION - CHESAPEAKE	3803	3	00026	3	Coal Steam	SCR	None	SCR	SCR	Low S Coal	None	Scrubber	Scrubber	
51550	DOMINION - CHESAPEAKE	3803	4	00026	4	Coal Steam	SCR	None	SCR	SCR	Low S Coal	None	Scrubber	Scrubber	
51159	GENERIC UNIT	9001 51	GSC5	ORIS900 151	GSC51	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	

							Post-Combustion Controls VISTAS IPM VISTAS								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
51167	GENERIC UNIT	9002 51	GSC5	ORIS900 251	GSC51	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
51195	GENERIC UNIT	9002 51	GSC5	ORIS900 251	GSC51	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
51175	GENERIC UNIT	9003 51	GSC5	ORIS900 351	GSC51	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
51175	GENERIC UNIT	9004 51	GSC5	ORIS900 451	GSC51	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
51181	GENERIC UNIT	9005 51	GSC5	ORIS900 551	GSC51	Coal Steam	No Operation	No Operation	SCR	SCR	No Operation	No Operation	Scrubber	Scrubber	
54023	MOUNT STORM POWER PLANT	3954	1	0003	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54023	MOUNT STORM POWER PLANT	3954	2	0003	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54023	MOUNT STORM POWER PLANT	3954	3	0003	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54023	NORTH BRANCH POWER STATION	7537	1A	0014	001	Coal Steam	None	None	None	None	None	None	None	None	
54023	NORTH BRANCH POWER STATION	7537	1B	0014	002	Coal Steam	None	None	None	None	None	None	None	None	
54025	WESTERN GREENBRIER			00066	GEN1	Coal Steam	No Operation	No Operation	SCR	No Operation	No Operation	No Operation	SCR	No Operation	
54033	MONONGAHELA POWER CO HARRISON	3944	1	0015	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54033	MONONGAHELA POWER CO HARRISON	3944	2	0015	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54033	MONONGAHELA POWER CO HARRISON	3944	3	0015	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54039	APPALACHIAN POWER KANAWHA RIVER PLANT	3936	1	0006	001	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
54039	APPALACHIAN POWER KANAWHA RIVER PLANT	3936	2	0006	002	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
54049	MONONGAHELA POWER CO. RIVESVILLE POWER	3945	7	0009	001	Coal Steam	None	Coal Early	None	Coal Early	None	Coal Early	Coal Early	Coal Early	

							VISTAS IPM								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
FHS	Pacinty Name	ш	Ш	IID	ID	Турс	Controls	Retireme	Controls	Retireme	Controls	Retireme	Retireme	Retireme	
54049	MONONGAHELA POWER CO. RIVESVILLE POWER	3945	8	0009	002	Coal Steam	None	Coal Early Retireme nt	None	Coal Early Retireme nt	None	Coal Early Retireme nt	Coal Early Retireme nt	Coal Early Retireme nt	
54049	AMERICAN BITUMINOUS POWER GRANT TOWN PLT	10151		0026	001		None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber	
54049	GRANT TOWN POWER PLANT	10151	GEN1	ORIS10151	GEN1	Coal Steam	SNCR	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber	
54051	OHIO POWER MITCHELL PLANT	3948	1	0005	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54051	OHIO POWER MITCHELL PLANT	3948	2	0005	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54051	OHIO POWER KAMMER PLANT	3947	1	0006	001	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber	
54051	OHIO POWER KAMMER PLANT	3947	2	0006	002	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber	
54051	OHIO POWER KAMMER PLANT	3947	3	0006	003	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber	
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	11	0001	001	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	21	0001	002	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	31	0001	003	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	41	0001	004	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
54053	APPALACHIAN POWER CO. PHILIP SPORN PLANT	3938	51	0001	005	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
54053	APPALACHIAN POWER MOUNTAINEER PLANT	6264	1	0009		Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54061	MONONGAHELA POWER CO. FORT MARTIN POWER	3943	1	0001	001	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	Scrubber	

							Post-Combustion Controls VISTAS IPM VISTAS IPM NOV NOV NOV NOV VISTAS IPM VISTAS IPM								
FIPS	Facility Name	ORIS ID	BLR ID	SITE ID	UNIT ID	Plant Type	VISTAS NOx 2009 Controls	IPM NOx 2009 Controls	VISTAS NOx 2018 Controls	IPM NOx 2018 Controls	VISTAS SO2 2009 Controls	IPM SO2 2009 Controls	VISTAS SO2 2018 Controls	IPM SO2 2018 Controls	
54061	MONONGAHELA POWER CO. FORT MARTIN POWER	3943	2	0001	002	Coal Steam	SNCR	SNCR	SNCR	SNCR	None	None	Scrubber	Scrubber	
54061	MORGANTOWN ENERGY ASSOCIATES			0027	043		None	None	None	None	None	None	None	None	
54061	MORGANTOWN ENERGY FACILITY	10743	GEN1	ORIS10743	GEN1	Coal Steam	None	None	None	None	None	None	None	None	
54061	LONGVIEW			00134	GEN1	Coal Steam	No Operation	No Operation	SCR	No Operation	No Operation	No Operation	Scrubber	No Operation	
54061	GENERIC UNIT	9001 54	GSC5 4	ORIS900 154	GSC54	Coal Steam	No Operation	No Operation	No Operation	SCR	No Operation	No Operation	No Operation	Scrubber	
54073	MONONGAHELA POWER CO. WILLOW ISLAND	3946	1	0004	001	Coal Steam	None	Coal Early Retireme nt	None	Coal Early Retireme nt	None	Coal Early Retireme nt	Coal Early Retireme nt	Coal Early Retireme nt	
54073	MONONGAHELA POWER CO. WILLOW ISLAND	3946	2	0004	002	Coal Steam	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber	
54073	MONONGAHELA POWER CO PLEASANTS POWER STATION	6004	1	0005	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber	
54073	MONONGAHELA POWER CO PLEASANTS POWER STATION	6004	2	0005	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber Upgrade	Scrubber	Scrubber Upgrade	Scrubber	
54077	MONONGAHELA POWER CO ALBRIGHT	3942	1	0001	001	Coal Steam	None	Coal Early Retireme nt	Coal Early Retireme nt	Coal Early Retireme nt	None	Coal Early Retireme nt	Coal Early Retireme nt	Coal Early Retireme nt	
54077	MONONGAHELA POWER CO ALBRIGHT	3942	2	0001	002	Coal Steam	None	Coal Early Retireme nt	Coal Early Retireme nt	Coal Early Retireme nt	None	Coal Early Retireme nt	Coal Early Retireme nt	Coal Early Retireme nt	
54077	MONONGAHELA POWER CO ALBRIGHT	3942	3	0001	003	Coal Steam	None	None	SCR	SCR	None	None	Scrubber	Scrubber	
54079	APPALACHIAN POWER JOHN E AMOS PLANT	3935	1	0006	001	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54079	APPALACHIAN POWER JOHN E AMOS PLANT	3935	2	0006	002	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	
54079	APPALACHIAN POWER JOHN E AMOS PLANT	3935	3	0006	003	Coal Steam	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber	

Appendix E

Kentucky's 2008 PM_{2.5} Attainment Demonstration

Appendix F

Public Participation Documentation

STATEMENT OF CONSIDERATION

RELATING TO SIP REVISION FOR THE LOUISVILLE KENTUCKY COUNTIES OF BULLITT AND JEFFERSON REDESIGNATION TO ATTAINMENT FOR THE ANNUAL 1997 PM_{2.5} STANDARD Amended After Comments

Energy and Environment Cabinet

Department for Environmental Protection

Division for Air Quality

A public hearing on the State Implementation Plan (SIP) revision for redesignation of Bullitt and Jefferson Counties to attainment for the annual 1997 PM_{2.5} standard was held on February 3, 2012, at 10:00 am. The hearing was held in the Conference Room of the Louisville Metro Air Pollution Control District, 850 Barret Avenue, Louisville, Kentucky. Written and verbal comments were received during the public comment period.

The following individuals from the Kentucky Energy and Environment Cabinet attended the public hearing and drafted responses to comments received during the public review period.

John Gowins, Environmental Control Supervisor* Division for Air Quality

Leslie Eggen, Environmental Technologist III Division for Air Quality

Response to Comments for the proposed revision to the State Implementation Plan (SIP) to redesignate Bullitt and Jefferson Counties as attainment for the National Ambient Air Quality Standard (NAAQS) for annual $PM_{2.5}$.

1. Comment: The EPA suggests a more detailed discussion in the SIP Narrative on how the 2025 inventory was developed including extrapolation. For completeness, we recommend that the calculations used in the extrapolation procedure be included in the SIP revision. (*R. Scott Davis, U.S. EPA*)

Response: The Cabinet acknowledges this comment. The descriptions of calculations developing the inventory numbers has been added to the narratives of Chapter 4, Base Year Emission Inventory and Emission Projections, and are included in the spreadsheets of Appendix B regarding pollutant by type and county. Interpolation and extrapolation was used for nonroad and area sources, and spreadsheets have been added to Appendix B of this submittal.

^{*} Agency moderator

2. Comment: All 2008 attainment emissions inventory source categories for the PM_{2.5} precursor pollutants do not appear to be presented in specific detail in Appendix B and the VISTAS report. Emissions inventory specifics for the area, non-road and on-road sources specific to the Kentucky nonattainment counties are recommended. (*R. Scott Davis, U.S. EPA*)

Response: The Cabinet acknowledges this comment. The Cabinet has included specific details for all nonroad and area inventories in Appendix B. There are also summary tables for nonroad and area regarding by pollutant type and county.

3. Comment: A discussion of the quality assurance procedures used in the development of the 2008 and other future year inventories is not presented. Please provide this information in the final SIP revision.

(R. Scott Davis, U.S. EPA)

Response: The Cabinet acknowledges this comment. The Cabinet added a clarifying statement which explains that this agency has developed and submitted a point source emissions inventory quality assurance project plan (QAPP) which was approved in a letter from EPA dated August 18, 2010 from the Chief of Air Quality Modeling and Transportation Section, R. Scott Davis. This reference was added to Chapter 4, Base Year Emission Inventory Background and to Appendix B.

4. Comment: Chapter 2 indicates there is a modeling component required to address the Clean Air Act (CAA) section 107(d)(3)(E)(i) provisions, and that this is discussed in Chapter 3. However, such discussion does not appear to be included in Chapter 3. Please provide this information in the final SIP revision. (*R. Scott Davis, U.S. EPA*)

Response: The Cabinet acknowledges this comment. The Cabinet modified the reference in Chapter 2 (i) to reflect that no modeling was required and not considered in the redesignation request.

5. Comment: Each requirement listed throughout the narrative is delineated as being one out of a number of requirements for a particular aspect of the submittal (e.g., 1 of 4, 2 of 4, 3 of 4, 4 of 4). Please clarify the requirement numbering system. (*R. Scott Davis, U.S. EPA*)

Response: The Cabinet acknowledges this comment. The overall requirements are taken from the U.S. EPA *Procedures for Processing Requests to Redesignate Areas to Attainment*, John Calcagni, September 4, 1992, as stated in Chapter 2.

- **6. Comment:** Below the titles of Chapters 3, 4, 5 and 6 are references to sections for the CAA. These references appear to be intended to indicate which section of the CAA the discussion in the chapter addresses. Please review to ensure the references shown are the ones intended. For example:
- a. Chapter 4 lists 107(d)(3)(E)(iii), which is the requirement to show permanent and enforceable improvement in air quality. It seems 107(d)(3)(E)(iv) should also be indicated here since

- Chapter 4 also addresses elements of that section, such as the attainment inventory, maintenance demonstration, and verification of continued attainment (i.e., parts of the maintenance plan).
- b. Listed below the title of Chapter 5 are references to the CAA sections 107(d)(3)(E)(ii), (iv) and (v). However, it appears this chapter only addresses requirements from CAA section 107(d)(3)(E)(v).
- c. Listed below the title of Chapter 6 is a reference to the CAA section 107(d)(3)(E)(v). However, the contingency plan is a requirement of section 107(d)(3)(E)(iv) (i.e., it is part of the maintenance plan).

(R. Scott Davis, U.S. EPA)

Response: The Cabinet acknowledges this comment. The narrative has been corrected for each chapter.

7. Comment: CART argues that its members will suffer significant air pollution health effects by an erroneous determination of attainment of the PM 2.5 fine particulate standard by use of FRM gravimetric analysis that ignores 'mode shifting' of mobile source emissions to ultra fine particulate mode not detected by the FRM method. The public health risk is underestimated and the data demonstrating attainment is flawed, biased and unreliable. (Clarence Hixson, Attorney for Coalition for the Advancement of Regional Transportation (CART))

Response: Cabinet acknowledges this comment. The $PM_{2.5}$ monitors used to demonstrate attainment of the standard are Federal Reference Method monitors and comply with U.S. EPA's monitoring requirements.

8. Comment: CART argues that its members will suffer significant air pollution health effects because of erroneous adoption and approval of the SIP. The SIP uses erroneous factors based on FRM gravimetric data that ignores PM 2.5 mode shifting to UFP and uses outdated socio-economic data and 2000 vehicle registrations in the travel demand model to generate erroneous emissions predictions in tons per year of PM 2.5. Approval of the SIP would harm CART's interests by approving a plan that ignores rising public health risk from UFP emissions of mobile sources. These sources would actually be lowered by control measures using mass transit projects instead of ineffective emissions control based on FRM gravimetric analysis.

(Clarence Hixson, Attorney for CART)

Response: The Cabinet acknowledges this comment. KIPDA maintains the most complete set of current and available socio-economic data for mobile emissions modeling. APCD, which runs the mobile source emissions model (MOVES) utilizing inputs from KIPDA, maintains fleet data current within 5 years in accordance with EPA requirements. As required, Louisville MSA ambient air monitors are sited, operated, and quality-assured in accordance with 40CFR Part 58, *Ambient Air Quality Surveillance*.

9. Comment: CART argues that what has caused a transient dip in LMA PM 2.5 emissions is the economic slowdown or recession which has not yet ended. Trends charted from 2008

to 1010 are unreliable indicators of PM 2.5 declines achievable by the SIP and other measures. (*Clarence Hixson, Attorney for CART*)

Response: The Cabinet acknowledges this comment. The Clean Air Act specifies the required time frame utilized to demonstrate attainment. This SIP revision meets that requirement.

10. Comment: It is noted that EPA is in the early stages of the process of rulemaking to reduce further the NAAQS for PM 2.5 and could adopt a new standard in five years as low as 10μg/m3 in recognition of the growing understanding of health impacts and public exposure to fine particulate. (*Clarence Hixson, Attorney for CART*)

Response: The Cabinet acknowledges this comment, however it is outside the scope of this SIP revision.

11. Comment: Enforceable reductions that ignore the principal mode of mobile source combustion emissions – UFP do not result in improved air quality. Such enforcement measures mask actual public health impacts and exposure. (Clarence Hixson, Attorney for CART)

Response: The Cabinet acknowledges this comment, however it is outside the scope of this SIP revision.

12. Comment: Recently the EPA has promulgated a requirement for near road monitoring evidencing a recognition of the highest concentrations of pollutants at the near roadway areas. Data based on this modeling will require revision of the PM 2.5 NAAQS and redeployment of the LMA PM_{2.5} network to more accurately reflect actual public exposure. (Clarence Hixson, Attorney for CART)

Response: The Cabinet acknowledges this comment. EPA finalized a rule in 2010 for NO_2 near road monitoring. EPA has developed a phased-in approach to monitor placement and the Louisville area is expected to complete this by 2014. However this near road monitoring does not require $PM_{2.5}$ sampling. Future potential modifications to the $PM_{2.5}$ NAAQS and the $PM_{2.5}$ monitoring network are outside of the scope of this submittal.

13. Comment: Population growth, employment, commuting, and VMT information from the 2010 Census and related sources is not available at a sufficiently small level of geography to be able to quantify the impacts of socioeconomic changes. County-level information does indicate that although the region has suffered from the recent economic downturn, there is still growth in socioeconomic attributes and VMT. Regional planning cannot be based on short-term events like the economic downturn. Therefore, growth in travel must be expected once the economy improves. When it does, MVEBs must be large enough to account for future growth in VMT.

(Clarence Hixson, Attorney for CART)

Response: The Cabinet acknowledges this comment. See response to comment 8 above, and comment 14 below.

14. Comment: There is sufficient uncertainty associated with several variables used in the analysis of regional air quality that establishing motor vehicle emission budgets (MVEBs) for PM_{2.5} and NOx based on 15% margins of safety will be too low. Establishing MVEBs that are too low (i.e. too stringent) will increase the probability that a conformity failure will occur. If this occurs, the metropolitan transportation plan (MTP) and transportation improvement plan (TIP) cannot be updated or amended. This would hinder the progress in implementing transportation projects some of which have the potential to reduce pollutant emissions and presumably improve local air quality. (*Clarence Hixson, Attorney for CART*)

Response: The Cabinet acknowledges this comment. Input data development for the MOVES 2010 (EPA/FHWA mobile emissions) model are reviewed and approved by local and regional agencies, known as the Interagency Consultation Group. Once established, the MVEB's are unlikely to be exceeded because vehicle engine technology, emission controls, and fuel formulations have historically reduced vehicle emissions, despite increases in vehicle miles traveled (VMT). If input variables for MOVES 2010 require significant updating that might affect conformity with the SIP MVEB's, there is a process for SIP MVEB revision to properly account for these updates.

15. Comment: The underdeveloped transit system remains underdeveloped and abandoned as a pollution control method.

(Clarence Hixson, Attorney for CART)

Response: The Cabinet acknowledges this comment, however it is outside the scope of this SIP revision.

16. Comment: An increasing number of published, peer reviewed studies demonstrate ultrafine particles are more toxic and particulate numbers must be controlled by standards. (*Clarence Hixson, Attorney for CART*)

Response: The Cabinet acknowledges this comment, however it is outside the scope of this SIP revision.

17. Comment: Ultra fine particulate is highly concentrated in main traffic arteries and corridors and people driving down these main roadways are being exposed to very high concentrations of ultra fine particulate. And this particulate is not monitored or measured by the current network and, thus, approving a redesignation with that background would be unreliable and unprotected.

(Clarence Hixson, Attorney for CART)

Response: The Cabinet acknowledges this comment. The Louisville MSA ambient air monitors are sited, operated, and quality-assured in accordance with 40 CFR Part 58, *Ambient Air Quality Surveillance* and monitor pollutants to demonstrate compliance with the National Ambient Air Quality Standards (NAAQS) established by U.S. EPA for criteria pollutants. To date, U.S. EPA has established NAAQS for six criteria pollutants, including carbon monoxide, lead, nitrogen dioxide, ozone, sulfur dioxide and particle pollution as PM₁₀ and PM_{2.5}. U.S. EPA has not established a NAAQS for ultra fine particulate matter; therefore, it

is not required to be monitored as part of the Louisville MSA ambient air monitoring network. Additional details about APCD's ambient air monitoring network are included in the *Indiana Ambient Air Monitoring Network Plan* and the *Kentucky Ambient Air Monitoring Network Plan*, which may be found at www.epa.gov/ttnamti1/files/networkplans/INPlan2010.pdf and https://air.ky.gov/Division%20Reports/2011%20Air%20Quality%20Surveillance%20Network%20Report.pdf.

18. Comment: The Wyandotte Park site, the 21-111-0044 site appears to have no co-location monitor for PM2.5 to validate the results. We understand that the Wyandotte Park 2.5 monitor has been subjected to repeated vandalism and that the air pollution control district has applied to EPA to allow it to close the station because of vandalism. And we argue that that data set should not be allowed in the application. (*Clarence Hixson, Attorney for CART*)

Response: The Cabinet acknowledges this comment. The collocated PM_{2.5} monitor is located at the Southwick Community Center (21-111-0043). This monitor meets the siting, operation and quality assured requirements specified in 40 CFR Part 58, *Ambient Air Quality Surveillance* as described in the the relevant portions of the *Indiana Ambient Air Monitoring Network Plan* and the *Kentucky Ambient Air Monitoring Network Plan*, which may be found at www.epa.gov/ttnamti1/files/networkplans/INPlan2010.pdf and

 $\frac{http://air.ky.gov/Division\%20Reports/2011\%20Air\%20Quality\%20Surveillance\%20Network\%20Report.pdf.$

These plans, which are submitted annually to U.S. EPA following a thirty day public review and public comment period, provide the framework for establishing and maintaining the network of ambient air quality monitors, including a discussion of any proposed network changes.

19. Comment: The Watson Lane data site, the 21-111-0051 site is very close to the existing NAAQS limit. It had a annual average of means of 14.83 micrograms per meter, which was close to the limit, that was in the 2010 year. (*Clarence Hixson, Attorney for CART*)

Response: The Cabinet acknowledges this comment. We agree that the monitored annual average for 2010 is close to the annual design value of less than or equal to 15.0 $\mu g/m^3$. However, the annual standard is designed to provide an appropriate level of protection from *long-term* exposure to PM_{2.5}. This means that the standard is met when the annual design value is less than or equal to 15.0 $\mu g/m^3$, when calculated by averaging the annual means of three consecutive complete years of air quality data (40 CFR Part 50, Appendix N).

20. Comment: The application listed Barret Avenue and Cannons Lane monitoring stations but those two stations did not each have three continuous years of monitoring, which was required by the reapplication statutes. If we are to use Barret Avenue and Cannons Lane it would require spacial <sic> variability averaging and we didn't think that the coefficient of variability, the difference in the average means readings would not permit spacial <sic> averaging for those two stations.

(Clarence Hixson, Attorney for CART)

Response: The Cabinet acknowledges this comment. A site's annual design value is calculated by averaging the weighted annual averages from a site over a three (3) year period. The highest site design value in an MSA is generally determined to be the design value for the area, which is then compared to the NAAQS to determine attainment/nonattainment for the area. For the Louisville area's monitoring network, the Walnut Street, Jeffersonville, IN monitoring site sets the current design value for particulate matter. With respect to APCD's Cannons Lane monitoring station, it received approval from U.S. EPA for SLAMS (State and Local Air Monitoring Stations) monitoring on December 22, 2008, and NCore monitoring on October 30, 2009. Data handling procedures are applied on an individual basis at each monitor in the area. APCD's Barret Ave. monitoring site was eliminated on December 31, 2008. The most recent date that U.S.EPA determined that the monitoring network was compliant was on October 20, 2011.

21. Comment: We tried to access data to show accurate particle readings for April 18th of 2011, Thunder Over Louisville day, we were unable to find any on-line accessible data for Jefferson County, Kentucky.

(Clarence Hixson, Attorney for CART)

Response: Continuous PM_{2.5} (year round) and ozone (from March to October) data is uploaded to U.S.EPA's AIR*NOW* (www.airnow.gov) hourly. You may review archived daily data at http://www.epa.gov/airdata/ad_data_daily.html for the Louisville MSA.

22. Comment: Three months in 2008, July, August, and September had monthly averages exceeding the 15 micrograms per cubic meter level. The July of 2008 was 18.1; August, 17.1; and September, 17.6. Four months in 2010, February, 16.3; July, 16; August 16.4; October 17.0. Three months in 2011, January, 15.2; July, 19.7, a very high reading only recently; and August, 16.2.

(Clarence Hixson, Attorney for CART)

Response: The annual standard is designed to provide an appropriate level of protection from long-term exposure to $PM_{2.5}$. The standard is met when the annual design value is less than or equal to $15.0~\mu g/m^3$ when calculated by averaging the annual means of three consecutive complete years of air quality data, rather than individual monthly averages, per 40~CFR~Part~50~Appendix~N.

23. Comment: Our observation about the economic recession was echoed by KIPDA in its comments to the Indiana request which said there is sufficient uncertainty associated with several variables used in the analysis of regional air quality that establishing motor vehicle emission budgets for PM2.5 and NOx based on 15 percent margins of safety will be too low. (*Clarence Hixson, Attorney for CART*)

Response: The Cabinet acknowledges this comment. Mobile emissions are one of four sectors analyzed for an emissions inventory. The mobile emissions were projected by the MOVES 2010 mobile emissions model to decrease significantly through the maintenance out year of 2025. The concerns expressed by KIPDA relate to emissions limitations that transportation projects will be held to as specified in this document. KIPDA points out that there are significant reductions in the mobile sector, and these tons of reduction could be

provided to the transportation emissions limitations while the area would still have total emissions levels below those that occurred in the attainment year.

24. Comment: If you place your monitor 300 meters away from the road, you're not getting an accurate reading of what the real pollutant load is for the users of that roadway be it the cyclist, drivers or pedestrians.

(David Coyte, CART)

Response: Cabinet acknowledges this comment. As required, Louisville MSA ambient air monitors are sited, operated, and quality-assured in accordance with 40 CFR Part 58, *Ambient Air Quality Surveillance*. Additional details about APCD's ambient air monitoring network are included in the *Indiana Ambient Air Monitoring Network Plan* and the *Kentucky Ambient Air Monitoring Network Plan*, which may be found at www.epa.gov/ttnamti1/files/networkplans/INPlan2010.pdf

http://air.ky.gov/Division%20Reports/2011%20Air%20Quality%20Surveillance%20Network%20Report.pdf.

These plans, which are submitted annually to U.S. EPA following a thirty day public review and public comment period, provide the framework for establishing and maintaining the network of ambient air quality monitors, including a discussion of any proposed network changes.

25. Comment: There seems to be a real bias in how these monitors have been placed within the metro area that are keeping the accurate data and the accurate health impacts from being seen, not just for the ultra fine, which is a coming issue, but for the 2.5, which is with us today.

(David Coyte, CART)

Response: As required, Louisville MSA ambient air monitors are sited, operated, and quality-assured in accordance with 40 CFR Part 58, *Ambient Air Quality Surveillance* and monitor pollutants for existing National Ambient Air Quality Standards (NAAQS). Additional details about APCD's ambient air monitoring network are included in the *Indiana Ambient Air Monitoring Network Plan* and the *Kentucky Ambient Air Monitoring Network Plan*, which may be found at www.epa.gov/ttnamti1/files/networkplans/INPlan2010.pdf and

http://air.ky.gov/Division%20Reports/2011%20Air%20Quality%20Surveillance%20Network%20Report.pdf.

These plans, which are submitted annually to U.S. EPA following a thirty day public review and public comment period, provide the framework for establishing and maintaining the network of ambient air quality monitors, including a discussion of any proposed network changes.

26. Comment: If redesignation is approved, if the EPA considers this now to be an attainment area, what would the impact be on stage 2 vapor recovery requirements at retail gasoline facilities?

(Jeff Gallic, Thorntons Inc.)

Response: The Cabinet acknowledges this comment. Stage II vapor recovery programs, which are required under Section 182(b)(3) of the Clean Air Act (CAA), 42 U.S.C.

7511a(b)(3), for "moderate" or worse ozone nonattainment areas, would have no impact on the Stage II vapor recovery requirement. However in July of 2011 U.S. EPA issued a notice of proposed rulemaking to address this and to determine widespread use of on board vapor recovery systems. Once this rulemaking is final, it will address the requirement for Stage II vapor recovery systems and the ability to remove them. Stage II is not a control measure for fine particulates.

27. Comment: What would the impact be on the current requirement for reformulated gasoline to be sold in this area? (*Jeff Gallic, Thorntons Inc.*)

Response: The Cabinet acknowledges this comment. The use of reformulated gasoline (RFG) was mandated by Congress in the 1990 Clean Air Act amendments. The first phase of the RFG program began in 1995 and the second (current) phase began in 2000. Due to 1-Hour Ozone nonattainment in the Northern Kentucky and Louisville area, Kentucky voluntarily opted into the federal RFG program on January 1, 1995, in accordance with Section 211(k)(6)(A) of the Federal Clean Air Act. This measure was the only way that improvement in the air quality in Northern Kentucky could be achieved without undue economic hardship to the business community. Measures that are in place when an area reaches attainment are required to remain in place afterwards. It may be possible to replace RFG with a different fuel, however past discussions with U.S. EPA headquarters have indicated that the Federal Energy Policy Act of 2005 (FEPA) makes the option of replacing RFG with a boutique fuel very improbable, specifically, the language in FEPA creates three hurdles:

- 1. U.S. EPA cannot approve the use of a fuel if it would increase the total number of boutique fuels approved in all State Implementation plans;
- 2. U.S. EPA and the Department of Energy (DOE) in consultation must determine the total number of fuels approved and publish the list including the states in which they are used; and
- 3. The only way a new fuel can be added to the list is if an existing approved fuel is removed from a State Implementation Plan and the list prepared by EPA and DOE is revised.

RFG is an ozone and air toxic pollutants control measure and not a control measure for fine particulates.

28. Comment: The folks who live in the Cane Run neighborhood are just across the street from that 14-story coal ash landfill. They regularly have dust, which has been shown to have come from the landfill, polluting their homes, their cars, gets inside their houses. Their children are suffering from asthma and other diseases. We just are very concerned about the fact that we feel like that pollution is not being monitored in the way it should be. (*Mary Love, Kentuckians for the Commonwealth*)

Response: When NAAQS are reviewed, a scientific assessment of all available peer-reviewed health and environmental effects information is compiled and assembled. It is then reviewed by the Clean Air Scientific Advisory Committee (CASAC) and made available for public review. Based on scientific assessments and taking into account CASAC's recommendations, the U.S.EPA subsequently determines the applicable standard, including whether or not it is appropriate to revise existing standards.

As required, Louisville MSA ambient air monitors are sited, operated, and quality-assured in accordance with 40 CFR Part 58, *Ambient Air Quality Surveillance*. Detailed information regarding specific monitoring sites is documented in the *Indiana Ambient Air Monitoring Network Plan* and the *Kentucky Ambient Air Monitoring Network Plan*, which may be found at www.epa.gov/ttnamti1/files/networkplans/INPlan2010.pdf and

 $\frac{http://air.ky.gov/Division\%20Reports/2011\%20Air\%20Quality\%20Surveillance\%20Network\%20Report.pdf.$

These plans, which are submitted annually to U.S. EPA following a thirty day public review and public comment period, provide the framework for establishing and maintaining the network of ambient air quality monitors, including a discussion of any proposed network changes.

29. Comment: The Mill Creek and Cane Run plants are on the southwest side of Louisville. Mill Creek also has a huge landfill there for coal ash. And the prevailing winds are from the southwest. And we are pretty certain that all that pollution coming from those coal ash landfills is coming all over Louisville and adding to the fact that Louisville has one of the highest asthma rates around.

(Mary Love, Kentuckians for the Commonwealth)

Response: As required, Louisville MSA ambient air monitors are sited, operated, and quality-assured in accordance with 40 CFR Part 58, *Ambient Air Quality Surveillance*. Detailed information regarding specific monitoring sites is documented in the *Indiana Ambient Air Monitoring Network Plan* and the *Kentucky Ambient Air Monitoring Network Plan*, which may be found at www.epa.gov/ttnamti1/files/networkplans/INPlan2010.pdf and https://air.ky.gov/Division%20Reports/2011%20Air%20Quality%20Surveillance%20Network%20Report.pdf

These plans, which are submitted annually to U.S. EPA following a thirty day public review and public comment period, provide the framework for establishing and maintaining the network of ambient air quality monitors, including a discussion of any proposed network changes.

30. Comment: We're not sure at all that there are monitoring stations that are close enough to that pollution to really measure what's coming out particularly for those neighborhoods. (*Mary Love, Kentuckians for the Commonwealth*)

Response: As required, Louisville MSA ambient air monitors are sited, operated, and quality-assured in accordance with 40 CFR Part 58, *Ambient Air Quality Surveillance*. Detailed information regarding specific monitoring sites is documented in the *Indiana Ambient Air Monitoring Network Plan* and the *Kentucky Ambient Air Monitoring Network Plan*, which may be found at www.epa.gov/ttnamti1/files/networkplans/INPlan2010.pdf and https://air.ky.gov/Division%20Reports/2011%20Air%20Quality%20Surveillance%20Network%20Report.pdf

These plans, which are submitted annually to U.S. EPA following a thirty day public review and public comment period, provide the framework for establishing and maintaining the network of ambient air quality monitors, including a discussion of any proposed network changes.

31. Comment: We would like to understand in depth thinking, your methodology behind the placements of the monitors, exactly what was the thought process, why each one of those areas of those spots were placed.

(Meme Sweets Runyun, River Fields, Inc.)

Response: As required, Louisville MSA ambient air monitors are sited, operated, and quality-assured in accordance with 40 CFR Part 58, *Ambient Air Quality Surveillance*. Detailed information regarding specific monitoring sites is documented in the *Indiana Ambient Air Monitoring Network Plan* and the *Kentucky Ambient Air Monitoring Network Plan*, which may be found at www.epa.gov/ttnamti1/files/networkplans/INPlan2010.pdf and https://air.ky.gov/Division%20Reports/2011%20Air%20Quality%20Surveillance%20Network%20Report.pdf.

These plans, which are submitted annually to U.S. EPA following a thirty day public review and public comment period, provide the framework for establishing and maintaining the network of ambient air quality monitors, including a discussion of any proposed network changes.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4
ATLANTA FEDERAL CENTER
61 FORSYTH STREET
ATLANTA, GEORGIA 30303-8960

FEB 0 2 2012

Leonard K. Peters, Secretary Energy and Environment Cabinet Office of Secretary 500 Metro Street 12th Floor, Capital Plaza Tower Frankfort, Kentucky 40601

Dear Mr. Peters:

Thank you for your letter dated December 20, 2011, transmitting a prehearing package regarding the redesignation request for the Kentucky portion of the Louisville-Indiana 1997 PM_{2.5} nonattainment area. This submittal is the subject of an extended public comment period with written comments due and a public hearing held on February 3, 2012. We have completed our review of the prehearing submittal and offer comments included in the enclosure for your review and consideration.

We look forward to continuing to work with you and your staff. If you have any questions, please contact Ms. Lynorae Benjamin, Chief, Regulatory Development Section at (404) 562-9040, or have your staff contact Ms. Twunjala Bradley at (404) 562-9352.

Sincerely,

R. Scott Davis

Chief

Air Planning Branch

Enclosure

The EPA Comments for Prehearing Submittal for Kentucky portion of the Louisville, KY-Indiana PM _{2.5} Redesignation Request and Maintenance Plan

January 31, 2012

I. Recommended Changes:

The following comments are recommended for inclusion in the final state implementation plan (SIP) revision to clearly provide the methodology and rationale for the analyses and conclusions presented.

- 1. The EPA suggests a more detailed discussion in the SIP Narrative on how the 2025 inventory was developed including extrapolation. For completeness, we recommend that the calculations used in the extrapolation procedure be included in the SIP revision.
- 2. All 2008 attainment emissions inventory source categories for the PM_{2.5} precursor pollutants do not appear to be presented in specific detail in Appendix B and the VISTAS report. Emissions inventory specifics for the area, non-road and on-road sources specific to the Kentucky nonattainment counties are recommended.
- 3. A discussion of the quality assurance procedures used in the development of the 2008 and other future year inventories is not presented. Please provide this information in the final SIP revision.
- 4. Chapter 2 indicates there is a modeling component required to address the Clean Air Act (CAA) section 107(d)(3)(E)(i) provisions, and that this is discussed in Chapter 3. However, such discussion does not appear to be included in Chapter 3. Please provide this information in the final SIP revision.

II. Suggested Clarifications:

The following comments are suggested clarifications that would be helpful to more clearly portray the information presented.

- 1. Each requirement listed throughout the narrative is delineated as being one out of a number of requirements for a particular aspect of the submittal (e.g., 1 of 4, 2 of 4, 3 of 4, 4 of 4). Please clarify the requirement numbering system.
- 2. Below the titles of Chapters 3, 4, 5 and 6 are references to sections for the CAA. These references appear to be intended to indicate which section of the CAA the discussion in the chapter addresses. Please review to ensure the references shown are the ones intended. For example:
 - a. Chapter 4 lists 107(d)(3)(E)(iii), which is the requirement to show permanent and enforceable improvement in air quality. It seems 107(d)(3)(E)(iv) should also be indicated here since Chapter 4 also addresses elements of that section, such as the attainment inventory, maintenance demonstration, and verification of continued attainment (i.e., parts of the maintenance plan).

- b. Listed below the title of Chapter 5 are references to the CAA sections 107(d)(3)(E)(ii), (iv) and (v). However, it appears this chapter only addresses requirements from CAA section 107(d)(3)(E)(v).
- c. Listed below the title of Chapter 6 is a reference to the CAA section 107(d)(3)(E)(v). However, the contingency plan is a requirement of section 107(d)(3)(E)(iv) (i.e., it is part of the maintenance plan).

Coalition for the Advancement of Regional Transportation

Comments to:

REDESIGNATION REQUEST
AND MAINTENANCE PLAN
FOR THE KENTUCKY PORTION OF
THE LOUISVILLE, KY-IN 1997
ANNUAL PM2.5 NONATTAINMENT AREA,

February 3, 2012

Energy and Environment Cabinet Kentucky Division of Air Quality 500 Mero Street 12th Floor Capital Plaza Twr. Frankfort, KY 40601

Ms. Gwendolyn Keyes Fleming Regional Administrator US EPA, Region 4 Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Atlanta, GA 30303

February 3, 2012

CART opposes the redesignation request:

REDESIGNATION REQUEST AND MAINTENANCE PLAN FOR THE KENTUCKY PORTION OF THE LOUISVILLE, KY-IN 1997 ANNUAL PM2.5 NONATTAINMENT AREA, Bullitt and Jefferson Counties, Kentucky Prepared by: Energy and Environment Cabinet, Division for Air Quality, December 2011. (hereinafter the Request).

SUMMARY

Today's comments support our conclusion that an EPA decision to redesignate Louisville as in attainment of the 1997 PM 2.5 NAAQS standards would be against the interest of public health protection.

Since 2007, the state has experienced an economic recession which produced a reduction in measured particulate emissions. The data shows a dip in 2008 as lost jobs, reduced construction and manufacturing, resulted in reduced particulate emissions. This produced a set of three year averaged particulate monitoring results that are offered as proof of attainment of the NAAQS standard of 15 µg/m³

The documents supporting the request for redesignation rely on outdated measurements of the MASS or WEIGHT of fine particulate air pollution. Emerging science since 2000 has shown that a standard for particle COUNTS of more toxic ultrafine particulate must be established by EPA to protect the public.

The continued use of Federal Reference Method gravimetric analysis measuring the weight of filter pads to yield grams per cubic meter of air volume is inadequate to document public health risk and its sources at the places where people are exposed.

It is unacceptable and misleading to ignore the very high levels of ultrafine toxic particulates in the community while claiming attainment of NAAQS PM 2.5 standards.

Ultrafine particulate has emerged in the peer reviewed scientific literature as a public health threat caused by mobile source emissions and present in great concentrations on highways, in urban areas and around airports, but the established gravimetric analysis for PM 2.5 based on the

weight of larger particulate, fails to detect it. Engine combustion of gasoline and diesel produces particulate that is 91 % composed of particles sized well below the 2.5 micro meter width of the NAAOS standard. (20-130nm

for diesel engines (Morawska et al., 1998a, b) and 20-60 nm for gasoline engines)

EPA revised the NAAQS particulate standards in 2006 with a significant body of peer reviewed studies demonstrating that the adopted standard did not go far enough to protect public health. Presently the Clean Air Scientific Advisory Committee (CASAC) Particulate Matter (PM) Review Panel that advises EPA on NAAQS standards is approaching a consensus that would lower the PM 2.5 standard to 10 μg/m³

Redesignation to attainment against this scientific controversy would be misleading.

EPA must move forward to adopt a public health protection standard based on particle numbers per cubic centimeter. Because the redesignation request is based on data and calculations using the FRM gravimetric analysis method, it produces misleading predictions of future maintenance of NAAQS standards in tons per year of emitted PM 2.5. These maintenance targets are similarly misleading and unprotective of public health.

Ultrafine particulate is measured in nanometers width and penetrates more deeply into the lungs and crosses the lung epithelium and gets into the blood stream where it causes tissue damage. Our comments cite to a substantial number of peer reviewed journal articles identifying the public health risk from ultrafine particulate.

The network of monitors in Jefferson County is located away from busy highway interchanges, the airport, and major sources of particulate pollution where people are exposed. The monitor network gives a low estimate of the actual average PM _{2.5} exposure of the public. It gives no information about particle counts of ultrafine particulate.

The monitoring network data was used in conjunction with old data from 2000 to create a travel demand model and emissions factors that were used in predicting future maintenance of the NAAQS standards. These predictions included a required 15 % safety margin. The model predictions are likely to be violated because they are not based on real world 2011 socioeconomic data and current vehicle registrations.

Here then are the comments of CART opposing the redesignation to attainment status for particulate pollution because the people of Louisville deserve better more accurate reporting and monitoring of the actual risk of particulate pollution than we are getting.

Furnished CD ROM disk with full comments, appendix to coments and additional peer reviewed journal articles.

Clarence Hixson Attorney for CART

Coalition for the Advancement of Regional Transportation

1336 Hepburn Avenue Louisville, KY 40204 Zhu, Y., Hinds, W., Kim, S., Shen, S., and Sioutas, C., Study of ultrafine particles near a major highway with heavy-duty diesel traffic, Atmospheric Environment, Vol. 36, 4323-4335 (2002).

Recent toxicological studies have concluded that ultrafine particles (diameter < 100 nm) are more toxic than larger particles with the same chemical composition and at the same mass concentration (Ferin et al., 1990; Oberdorster, 1996, 2001; Donaldson et al., 1998, 2001; Churg et al., 1999; Brown et al., 2000).

Currently, however, only the mass concentration of PM < 10 l-tm in aerodynamic diameter (PM10) and <2.5l-tm (PM2.s) are regulated. Information about ultrafine particles is usually not available. In fact, even though ultrafine particles represent over 80% of particles in terms of number concentration in an urban environment (Morawska et a!., 1998a, b), the less numerous but much heavier particles of the accumulation (0.1-2l-tm) and coarse (2.5-10 l-tm) modes dominate mass concentration measurements. Thus, number concentration, together with the size distribution of ultrafine particles, is needed to better assess ambient air quality and its potential health effects.

Emission inventories suggest that motor vehicles are the primary direct emission sources of fine and ultrafine particles to the atmosphere in urban areas (Schauer et a!., 1996; Shi et a!., 1999; Hitchins et a!., 2000).

Although traffic-related air pollution in urban environments has been of increasing concern, most studies have focused on gaseous pollutants, total mass concentration, or chemical composition of particulate pollutants (Kuhler et a!., 1994; Clairborn et al., 1995; Williams and McCrae, 1995; Janssen et a!., 1997; Roorda-Knape et a!., 1998a, b; Wrobel et a!., 2000). Booker (1997) found that particle number concentration was strongly correlated with vehicle traffic while PM10 was essentially uncorrelated with traffic. Since the majority of particle number from vehicle exhaust are in the size range 20-130nm for diesel engines (Morawska et a!., 1998a, b) and 20-60 nm for gasoline engines (Ristovski et al., 1998), it is **important and necessary to quantify ultrafine particle emission levels**, and to determine ultrafine particle behavior after emission as they are transported away from the emission source-busy roads and freeways.

Energy and Environment Cabinet Kentucky Division of Air Quality 500 Mero Street 12th Floor Capital Plaza Twr. Frankfort, KY 40601

Ms. Gwendolyn Keyes Fleming Regional Administrator US EPA, Region 4 Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Atlanta, GA 30303

February 2, 2012

Comments for the Public Hearing on February 3, 2012 of:

Clarence Hixson

Attorney for CART

Coalition for the Advancement of Regional Transportation

1336 Hepburn Avenue Louisville, KY 40204

CART opposes the redesignation request:

REDESIGNATION REQUEST AND MAINTENANCE PLAN FOR THE KENTUCKY PORTION OF THE LOUISVILLE, KY-IN 1997 ANNUAL PM2.5 NONATTAINMENT AREA, Bullitt and Jefferson Counties, Kentucky Prepared by: Energy and Environment Cabinet, Division for Air Quality, December 2011. (hereinafter the Request).

CART's comments principally address the following criteria for redesignation:

Section 107(d)(3)(E) of the CAA allows states to request nonattainment areas to be redesignated to attainment provided certain criteria are met. The following are the criteria that must be met in order for an area to be redesignated from nonattainment to attainment:

i) A determination that the area has attained the PM2.5 standard.

CART Comment:

CART argues that its members will suffer significant air pollution health effects by an erroneous determination of attainment of the PM 2.5 fine particulate standard by use of FRM gravimetric analysis that ignores 'mode shifting' of mobile source emissions to ultra fine particulate mode not detected by the FRM method. The public health risk is underestimated and the data demonstrating attainment is flawed, biased and unreliable.

ii) An approved State Implementation Plan (SIP) for the area under Section 110(k).

CART Comment:

CART argues that its members will suffer significant air pollution health effects because of erroneous adoption and approval of the SIP. The SIP uses erroneous emissions factors based on FRM gravimetric data that ignores PM 2.5 mode shifting to UFP and uses outdated socio-economic data and 2000 vehicle

registrations in the travel demand model to generate erroneous emissions predictions in tons per year of PM 2.5. Approval of the SIP would harm CART's interests by approving a plan that ignores rising public health risk from UFP emissions of mobile sources. These sources would actually be lowered by control measures using mass transit projects instead of ineffective emissions control based on FRM gravimetric analysis.

iii) A determination that the improvement in air quality is due to permanent and enforceable reductions in emissions resulting from implementation of the SIP and other federal requirements.

CART Comment:

CART argues that what has caused a transient dip in LMA PM 2.5 emissions is the economic slowdown or recession which has not yet ended. Trends charted from 2008 to 1010 are unreliable indicators of PM 2.5 declines achievable by the SIP and other measures. It is noted that EPA is in the early stages of the process of rulemaking to reduce further the NAAQS for PM2.5 and could adopt a new standard in five years as low as 10 µg/m³ in recognition of the growing understanding of health impacts and public exposure to fine particulate. Enforceable reductions that ignore the principal mode of mobile source combustion emissions –UFP do not result in improved air quality. Such enforcement measures mask actual public health impacts and exposure. Recently the EPA has promulgated a requirement for near road monitoring evidencing a recognition of the highest concentrations of pollutants at the near roadway areas. Data based on this modeling will require revision of the PM 2.5 NAAQS and re-deployment of the LMA PM 2.5 network to more accurately reflect actual public exposure.

I. Demonstration of Attainment of the NAAQS standard.

Metro Louisville Jefferson County Air Pollution Control District operates a PM 2.5 monitoring network and has submitted averaged air monitoring data for three years to support the Request. To the extent the monitoring data is accurate and acceptable to EPA, averaged PM 2.5 gravimetric analysis data gathered from FRM monitors located more than 100 meters from busy highways, is insensitive to spatial variability in mobile source particulate emissions. Since 2000, EPA funded research has indicated a need to monitor particle count and mode size to accurately identify public health risk from mobile source emissions.

FRM gravimetric data misrepresents actual public exposure to particulate pollution at places where people live work and play when low mass particle counts of UFP are in elevated levels such as near busy streets, at school driveways and major highway areas. At this juncture, the request for redesignation should be denied because the data in the Request is unreliable, underestimates public health risk, and EPA is in the process of reconsidering further reductions of PM 2.5 NAAQS based on the discovery that the present standards are insufficient to protect public health. Continued use and reliance on the FRM gravimetric method that ignores UFP counts, violates the Clean Air Act:

"[T]he Clean Air Act govern[s] the establishment and revision of the NAAQS (42 U.S.C. 7401 to 7671q, as amended). Section 108 (42 U.S.C. 7408) directs the Administrator to identify pollutants that "may reasonably be anticipated to endanger public health and welfare" and to issue air quality criteria for them. These air quality criteria are intended to "accurately reflect the latest scientific knowledge useful in indicating the kind and extent of identifiable effects on public health or welfare which may be expected from the presence of [a] pollutant in ambient air . . . "

Review of the National Ambient Air Quality Standards for Particulate Matter: Policy Assessment of Scientific and Technical Information OAQPS Staff Paper, June 2001 Preliminary Draft

In July 1997, EPA promulgated the National Ambient Air Quality Standards for Fine Particles (PM-2.5). The annual standard is a level of 15 micrograms per cubic meter, based on the 3-year average of annual mean PM_{2.5} concentrations. The 24-hour standard is a level of 65 micrograms per cubic meter, based on the 3-year average of the 98th percentile of 24-hour concentrations.

In September 2006, EPA issued revised national air quality standards for fine particle pollution. EPA significantly strengthened the previous daily fine particle standard from 65 micrograms of particles per cubic meter to 35 micrograms of particles per cubic meter of air. This standard increases protection of the public from short-term exposure to fine particles. The Clean Air Fine Particle Implementation Rule does not specifically address implementation of this recently revised standard.

The EPA is considering revision of the PM 2.5 standard in the next round of revisions: In order to facilitate a comprehensive and timely review of the newly available science, the Administrator has directed EPA staff to begin the next review of the PM NAAQS immediately.

40 CFR Part 50 National Ambient Air Quality Standards for Particulate Matter; Final Rule [71 FR 61224, 61149, Oct. 17, 2006]

"The Second Draft estimates risk reductions for different air quality scenarios involving specified values of 24-hr and annual standards. Five alternative sets of standards are considered, with the lowest scenario being an annual standard of $12 \mu g/m3$ combined with a 24-hour standard of $25 \mu g/m3$. Two additional scenarios were presented at the March 2010 CASAC meeting with pairings of 10/35 and $10/25 \mu g/m3$. The reduction of the annual standard to $10 \mu g/m3$ showed additional benefits beyond those estimated for the scenarios in the RA."

Letter to EPA, April 15, 2010, The Honorable Lisa P. Jackson, Administrator, Re: CASAC Review of *Quantitative Health Risk Assessment for Particulate Matter – Second External Review Draft* (February 2010), Dr. Jonathan M. Samet Chair, Clean Air Scientific Advisory Committee.

Further, EPA is issuing revised NO₂ monitoring requirements for near road monitoring that anticipate additional required monitoring for fine particulate in particle count (number/cm³). This is a recognition by the agency that distantly located monitoring, such as Louisville's MAPCD network, produces data that does not represent the significant exposure of the public to highway pollution, including fine particulate.

Near Road NO2 Monitoring, Technical Assistance Document, Draft, August 11, 2011. (75 FR 6474)

42 U.S.C. § 7409 (b) Protection of public health and welfare

(1) National primary ambient air quality standards, prescribed under subsection (a) of this section shall be ambient air quality standards the attainment and maintenance of which in the judgment of the Administrator, based on such criteria and allowing an adequate margin of safety, are requisite to protect the public health. Such primary standards may be revised in the same manner as promulgated.

Karner, A.A., Eisinger, D.S., and Niemeier, D.A., Near Roadway Air Quality: Sythesizing the Findings from Real World Data, Environmental Science & Technology, Vol. 44, 5334-5344 (2010).

5338

The curves indicate (ignoring ozone) that concentrations of certain pollutants are elevated near roadways and decrease as the distance increases, while other pollutants show no roadway influence. These background normalized results suggest that a range of approximately 160-400 m is sufficient to reach background concentrations for the majority of pollutants.

Figure 3 (above) shows CO, benzene, EC, NO, NOX, NO2, PM2.5, and UF1 particle number, UF2 particle number, and VOC1 all decreased as distance from road increased. PM10, fine particle number, and VOC2 showed ambiguous or little to no trend with distance.

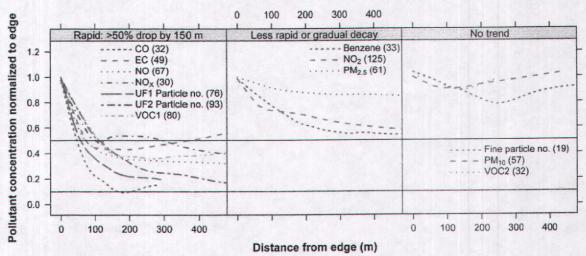


FIGURE 3. Local regression of edge normalized concentrations on distance. The horizontal black lines show a reduction from the edge-of-road concentration of 90% (at 0.1) and 50% (at 0.5). A loess smoother (alpha = 0.70, degree = 1) was fitted to pollutant data which was placed in one of three groups. The regression sample size, n, is given in parentheses after each pollutant. The n includes an estimated (not in the literature) edge-of-road value to facilitate normalization.

II. Reliability of the PM 2.5 Data

The application must demonstrate that the area has attained the PM2.5 standard. (CAA Section 107(d)(3)(E)(i))

There are two components involved in making this demonstration. The first component relies on ambient air quality data. The data that are used to demonstrate attainment should be the product of ambient monitoring that is **representative of the area of highest concentration**. The data should be collected and quality-assured in accordance with 40 CFR 58 and recorded in the Air Quality System (AQS) in order for it to be available to the public for review.

Submitted with this set of comments is an Appendix containing photos of the Louisville PM 2.5 monitoring sites.

"At least one monitoring station is to be sited in a population-oriented area of expected maximum concentration. 40 CFR 58 Appendix D Section 4.7 Fine Particulate Matter (PM_{2.5}) Design Criteria

"For areas with more than one required SLAMS, a monitoring station is to be sited in an area of poor air quality." 40 CFR 58 Appendix D Section 4.7 Fine Particulate Matter (PM_{2.5}) Design Criteria

Monitoring Data for the Louisville, KY-IN area for 2008 - 2010

				Annua	I Standa	rd
Site ID		County,		Average		
	Site Name	State	2008	2009	2010	2008-2010
21-029-0006	Shepherdsville	Shepherdsville Bullitt, KY 12.84				12.69
21-111-0043	Southern Avenue		13.17	12.21	13.47	12.95
21-111-0044	Wyandotte Park		13.41	12.45	13.74	13.20
21-111-0048	Barret Avenue	Jefferson, KY	13.44			13.44 ¹
21-111-0051	Watson Elementary		12.78	11.59	14.83	13.07
21-111-0067	Cannons Lane			11.67	13.27	12.47 ²
18-019-0006	Walnut Street	Clark IN	14.48	13.01	14.67	14.10
18-019-0008	Charlestown State Park	Clark, IN	13.44	10.84	12.45	12.20
18-043-1004	New Albany	Floyd, IN	12.70	11.91	13.80	12.80

¹ Based on One Year of Data

The Barrett Avenue monitor discontinued operation on December 31, 2008.

The Cannons Lane monitor began operation on January 1, 2009.

The Charlestown State Park Monitor began operation on July 2, 2008.

On March 9, 2011, EPA published a final rule which determined that Louisville has attained the 1997 annual average PM_{2.5} NAAQS [76 FR 12860].

Source: U.S. EPA Air Quality System (AQS); http://www.epa.gov/ttn/airs/airsaqs/index.htm

- 21-111-0044 Wyandotte site has no co-location monitor for PM 2.5 to validate the results. The Wyandotte Park PM 2.5 monitor has been subjected to repeated vandalism and MAPCD has applied to EPA allow it to close the station. That data set should be disallowed.
- 21-111-0043 Southwick at Southern Avenue, has a co-located FRM PM 2.5.
- 21-111-0051 Watson Lane has FRM PM 2.5 and a TEOM PM 2.5. The 2010 annual average for Watson Lane at 14.83 $\mu g/m^3$ is the highest annual average and very close to the present 15 $\mu g/m^3$ NAAQS limit.
- 21-111-0048 850 Barret Avenue. Station closed on December 31, 2008. It measured a different air mass from the Cannons Lane location that began operation January 1, 2009. The data is not complete for 2009 and 2010 and should be disallowed.
- 21-111-0067 2730 Cannons Lane, Bowman Field. To use the Barret and Cannons Lane stations to make up three continuous years of monitoring requires spatial variability averaging. The coefficient of variability calculated for the two stations exceeds the allowable 10%. Barret Avenue and Cannons Lane data should be disallowed from the Request.

[71 FR 61224, 61150, Oct. 17, 2006]

The spatial averaged annual mean of the LMA sites in the request is 13.001 $\mu g/m^3$ using just the 7 sites

² Based on Two Years of Data

with 3 years of monitoring data and excluding the one year from Barrett (13.44) and two years from Cannons (12.47). The difference in the highest and lowest values in the data set from all stations is 1.90 (14.10-12.20 = 1.90). The calculated coefficient of spatial variability is therefore 1.90/13.001 = .146 or 14.6 % and exceeds the allowable criteria for spatial averaging in the network. Appendix N, pursuant to 40 C.F.R. § 50.13 (b)

40 C.F.R. § 50.13 National primary and secondary ambient air quality standards for PM2.5. (b) The annual primary and secondary PM_{2.5}standards are met when the annual arithmetic mean concentration, as determined in accordance with appendix N of this part, is less than or equal to 15.0 $\mu g/m^3$.

The EPA is revising the form of the annual PM2.5 standard with regard to the criteria for spatial averaging, such that averaging across monitoring sites is allowed if the annual mean concentration at each monitoring site is within 10 percent of the spatially averaged annual mean, and the daily values for each monitoring site pair yield a correlation coefficient of at least 0.9 for each calendar quarter.

Appendix N of 40 CFR 50

(1) The 3-year average of annual means for a single monitoring site or a group of monitoring sites (referred to as the " annual standard design value"). If spatial averaging has been approved by EPA for a group of sites which meet the criteria specified in section 2(b) of this appendix and section 4.7.5 of appendix D of 40 CFR part 58, then 3 years of spatially averaged annual means will be averaged to derive the annual standard design value for that group of sites (further referred to as the " spatially averaged annual standard design value"). Otherwise, the annual standard design value will represent the 3-year average of annual means for a single site (further referred to as the " single site annual standard design value").

2.0 Monitoring Considerations.

- (a) Section 58.30 of this chapter specifies which monitoring locations are eligible for making comparisons with the PM_{2.5}standards.
- (b) To qualify for spatial averaging, monitoring sites must meet the criterion specified in section 4.7.5 of appendix D of 40 CFR part 58 as well as the following requirements:
- (1) The annual mean concentration at each site shall be within 10 percent of the spatially averaged annual mean.
- (2) The daily values for each site pair among the 3-year period shall yield a correlation coefficient of at least 0.9 for each calendar quarter.
- (3) All of the monitoring sites should principally be affected by the same major emission sources of $PM_{2.5}$. For example, this could be demonstrated by site-specific chemical speciation profiles confirming all major component concentration averages to be within 10 percent for each calendar quarter.
- (4) The requirements in paragraphs (b)(1) through (3) of this section shall be met for 3 consecutive years in order to produce a valid spatially averaged annual standard design value. Otherwise, the individual (single) site annual standard design values shall be compared directly to the level of the annual NAAOS.

Request, Page 9 Chapter 3

"three complete years of monitoring data are required to demonstrate attainment at a monitoring site."

Three years of data from Barret Avenue and Cannons Lane are required.

Thunder over Louisville

IDEM operates three monitors in the area. The data from the New Albany monitoring station is available

online for review. When the date of April 18 for 2011 is used, particulate readings show a large increase into the following day. On April 19, at 1:00 pm the PM 2.5 reading is $60.08 \,\mu\text{g/m}^3$ The other IDEM stations data are not available online. Attempts to determine PM readings for other Thunder Over Louisville dates in 2008 through 2010 yielded monitor not in service messages.

Louisville in 2011 detonated 60 tons of fireworks explosives containing perchlorate and metals over the Ohio River and proximate to the Jeffersonville, Walnut Street PM monitor. Indian PM monitors seem to have outages coincident with the Thunder event. The Charlestown PM data and Jeffersonville data are not online.

None of the Louisville daily readings was available online, only monthly averages. None of the colocated monitor information was available for comment and calculation of variability coefficients. The issue of PM data reliability is removed from public review and the failure of the MAPCD or IDEM to publicly report and specifically monitor the detonation of 60 tons of fireworks releasing huge clouds of particulate matter, raises a question of the reliability of the data and the monitoring network.

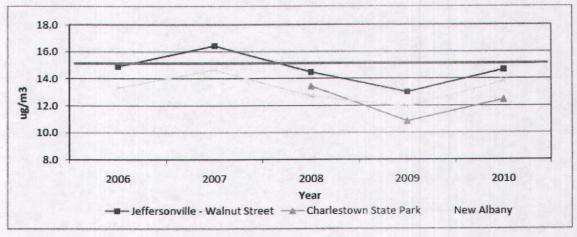
18-043-1004	New Albany, Indiana 2230 Green Valley Road/Green Valley Elementary School monitor appears manipulated during Thunder Over Louisville
18-043-1004	12500 St. Rd. 62, Charlestown State Park/ Indiana Armory data not complete for 2008, data not available for PM2.5
18-019-0006	Walnut Street Jeffersonville, Indiana data not available for PM2.5

The criteria for spatial variability is exceeded Appendix A to Part 58—Quality Assurance Requirements for SLAMS, SPMs and PSD Air Monitoring

- 2.3.1.1 Measurement Uncertainty for Automated and Manual PM_{2.5}Methods. The goal for acceptable measurement uncertainty is defined as 10 percent coefficient of variation (CV) for total precision and plus or minus 10 percent for total bias.
- 1.2 Measurement Uncertainty. Measurement uncertainty is a term used to describe deviations from a true concentration or estimate that are related to the measurement process and not to spatial or temporal population attributes of the air being measured

```
Multiple months in 2008 to 2010 exceeded the standard 15 \mug/m³ including: 3 months in 2008 - July, 18.1 \mug/m³, August, 17.1 \mug/m³, and September 17.6 \mug/m³ 4 months in 2010 - Feb 16.3 \mug/m³, July 16.0 \mug/m³, August 16.4 \mug/m³, October 17.0 \mug/m³ 3 months in 2011 - Jan 15.2 \mug/m³, July 19.7 \mug/m³, August 16.2 \mug/m³
```

In 2010, four of the monthly averages of all monitors exceeded the NAAQS standard. In 2011, three of the monthly averages of all monitors exceeded the NAAQS standard.

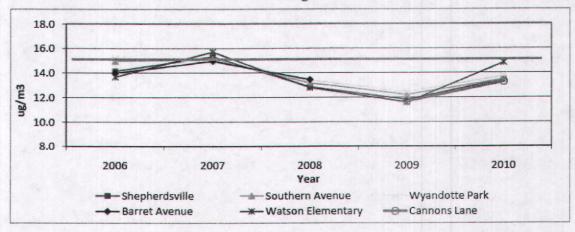

The highest average from all MAPCD monitors occurred in July 2011 with a reading of 19.7μg/m³ for the month.

Generally, the monitoring stations in the LMA network are located away from high traffic volume highways by at least 300 meters and generally located in large parks or grassy areas with surrounding foliage, trees or other local structures that may affect air pollution data. The Louisville International Airport and expanding Worldport UPS shipping hub are located at the intersection of I-65

and I-264, in the middle of Jefferson County, Kentucky, surely an area of poor air quality and expected maximum concentration, but the nearest PM 2.5 monitor is a mile and a half away. (Wynadotte Park) MAPCD has no monitors at the neighborhood level in this area.

III. Application for Redesignation uses lower emissions caused by temporary economic slowdown

Graph 3.3 Annual Fine Particle Trends for Indiana's Portion of the Louisville Area, 2006 through 2010



Red line represents the annual standard for fine particles of 15 $\mu g/m^3$.

The Charlestown State Park monitor began operation on July 2, 2008.

Graph 3.4

Annual Fine Particle Trends for Kentucky's Portion of the Louisville Area,
2006 through 2010

Red line represents the annual standard for fine particles of 15 μ g/m³.

Based on the MAPCD monthly averaged PM 2.5 data available online, a clear imprint of the economic recession is seen in the data. Motor vehicle usage tax and fuel tax experienced an 18.4 % and .2 % decline in the period 2008-2009 according to the Kentucky Transportation Cabinet. As all economic indicators

show, the nation experienced a recession from 2008 to 2011 that is only just beginning to turn around. Across the LMA, emissions fell as a product or reduced commercial activity, lost jobs, factories closing and fewer trucks on the road. This Request comes in the trough of low emissions caused by the economic slowdown and PM 2.5 ambient concentrations will begin to rise with the economic turnaround anticipated over the next two years. Two years from now would be a better time to review the request when measures to spark economic expansion have brought growth and improved monitoring can demonstrate attainment in highest concentration areas.

Comment: Population growth, employment, commuting, and VMT information from the 2010 Census and related sources is not available at a sufficiently small level of geography to be able to quantify the impacts of socioeconomic changes. County-level information does indicate that although the region has suffered from the recent economic downturn, there is still growth in socioeconomic attributes and VMT. Regional planning cannot be based on short-term events like the economic downturn. Therefore, growth in travel must be expected once the economy improves. When it does, MVEBs must be large enough to account for future growth in VMT. (LC)

Indiana Request Appendix K – Public Participation documents Larry D. Chaney, MPO Director KIPDA, May 26, 2011 Public Hearing

"Kentucky has lost more than 113,000 jobs since the recession began two years ago. The statewide jobless rate is at 10.6 percent, and some rural counties have unemployment rates that double that. By the last measurement, Magoffin County's rate was 21.1 percent."

Kentucky Governor Beshears state of the state address, January 6, 2010.

"In 2008, the Commonwealth of Kentucky consumed 51,934,110 barrels of gasoline (2,181,232,620 gallons), with almost 99% of this amount related to the transportation sector. Compared with 2007, total gasoline consumption in Kentucky fell by 4% in 2008."

MOTOR FUELS NORMAL USE AND SURTAX MOTOR VEHICLE USAGE TAX

Fiscal Year			Percent Fiscal Change Year		Receipts	Percent Change	
2009-10	\$	99.814.565		2.6	2009-10	\$ 304,033,388	-0.03
2008-09		97.288.275		-0.2	2008-09	304,135,002	-18.4
2007-08		97,501,444		8.0	2007-08	372,656,227	-1.0
2006-07		89,921,643	*	67.9	2006-07	377,321,335	1.91
2005-06		53.552.154	**	158.2	2005-06	363,976,577	-2.4
2004-05		20.741.625		14.2	2004-05	373,034,898	-4.6
2003-04		18.168,653		21.4	2003-04	390,976,367	0.5
2002-03		14,968,974		6.0	2002-03	388,959,153	2.0
2001-02		14,121,403		-8.7	2001-02	381,401,576	10.5
2000-01		15,473,908		-2.7	2000-01	345,120,799	-4.0

^{*}Effective July 1, 2006, Motor Fuel Taxes were increased 1.2 cent pursuant to KRS 138.220.

^{**}Effective July 1,2005, Motor Fuel Taxes were increased 1.1 cent pursuant to KRS 138.220.

"Topping the list, of course, is Ford Motor Co.'s decision to invest \$1.2 billion in its two assembly plants in Louisville. That project, in fact, was voted the top deal in the United States in 2011 by Business Facilities magazine. The now completed makeover of Louisville Assembly Plant into what Ford terms the most advanced and flexible vehicle manufacturing site in the world already has brought two new work shifts and 3,000-plus jobs. The renovators show up at Ford's Kentucky Truck Plant next." Kentucky Governor Beshears state of the state address, January 6, 2010.

Louisville will not maintain NAAQS standards after the recession ends, after current socio economic data is used in the modeling and after EPA requires near road monitoring under a lowered PM NAAQS standard.

IV. SIP revisions use eleven year old data and allow significant deterioration of air quality

Motor vehicle emissions budgets based on modeled emissions of PM 2.5 in grams per mile, and older traffic demand 2000 census data, render inaccurate and unreliable model predictions of tons per year emissions, that fails to report the increasing public health exposure to UFP on busy highways, at curbside in urban areas, at schools and airports and riding bicycles in traffic.

42 USC § 7505a Maintenance Plans

(a) Plan revision

Each State which submits a request under section 7407 (d) of this title for redesignation of a nonattainment area for any air pollutant as an area which has attained the national primary ambient air quality standard for that air pollutant shall also submit a revision of the applicable State implementation plan to provide for the maintenance of the national primary ambient air quality standard for such air pollutant in the area concerned for at least 10 years after the redesignation. The plan shall contain such additional measures, if any, as may be necessary to ensure such maintenance.

42 USC § 7410

Each State shall, after reasonable notice and public hearings, adopt and submit to the Administrator . . . a plan which provides for implementation, maintenance, and enforcement of such primary standard in each air quality control region (or portion thereof) within such State.

- (2) Each implementation plan submitted by a State under this chapter shall be adopted by the State after reasonable notice and public hearing. Each such plan shall—
- (A) include enforceable emission limitations and other control measures, means, or techniques (including economic incentives such as fees, marketable permits, and auctions of emissions rights), as well as schedules and timetables for compliance, as may be necessary or appropriate to meet the applicable requirements of this chapter;
- (B) provide for establishment and operation of appropriate devices, methods, systems, and procedures necessary to—
- (i) monitor, compile, and analyze data on ambient air quality, and
- (D) contain adequate provisions—
- (i) prohibiting, consistent with the provisions of this subchapter, any source or other type of emissions activity within the State from emitting any air pollutant in amounts which will—
- (I) contribute significantly to nonattainment in, or interfere with maintenance by, any other State with respect to any such national primary or secondary ambient air quality standard, or
- (II) interfere with measures required to be included in the applicable implementation plan for any other State under part C of this subchapter to **prevent significant deterioration of air quality** or to protect visibility,

From the Indiana Redesignation Request:

"5.0 TRANSPORTATION CONFORMITY BUDGETS

U.S. EPA requirements outlined in 40 CFR 93.118(e)(4) stipulate that motor vehicle emission budgets (MVEBs) for direct PM2.5 and NOx be established as part of a SIP. The MVEBs are necessary to demonstrate conformance of transportation plans and improvement programs with the SIP.

Broadly described, MOVES is used to generate "emission factors", which are the average emissions per mile (grams/mile) for fine particle precursors, including NOx, SO2, and direct PM2.5. There are numerous variables that can affect the emission factors. The vehicle fleet (vehicles on the road), age, and the vehicle types have a major effect on the emission factors.

The facility-type on which vehicles are traveling (MOVES facility types are Freeway, Arterial, Local, and Ramp) and the vehicle speeds also affect the emission factor values. Meteorological factors such as air temperature and humidity affect emission factors, as does fuel type, such as low Reid Vapor Pressure gasoline. These data are estimated using the *best available data* to create emission factors for NOx, SO2, and direct PM2.5. After emission factors are generated, they must be multiplied by the VMT to determine the quantity [tons/year] of vehicle-related emissions. This information is derived from the travel demand model (TDM)."

SIP MVEB development was initiated in January, 2010. As of that date, the KIPDA regional travel demand model had been last updated and calibrated during 2005. This update established 2000 as the new base year for the model. The model update utilized the information incorporated into the travel model during previous updates, in particular, information from the 2000 Census and the 2000 KIPDA Household Travel Survey.

Page 16 Louisville Request

The result of the update was a travel model that replicated travel in the Louisville area for 2000. The subsequent 2011 update and calibration of the TDFM (setting 2007 as a base year) was initiated after work for the PM2.5 redesignation SIP had begun and, therefore, could not be incorporated into the MOVES model runs.

Comment: There is sufficient uncertainty associated with several variables used in the analysis of regional air quality that establishing motor vehicle emission budgets (MVEBs) for PM_{2.5} and NO_x based on 15% margins of safety will be too low. Establishing MVEBs that are too low (i.e. too stringent) will increase the probability that a conformity failure will occur. If this occurs, the metropolitan transportation plan (MTP) and transportation improvement plan (TIP) cannot be updated or amended. This would hinder the progress in implementing transportation projects some of which have the potential to reduce pollutant emissions and presumably improve local air quality. (LC)

Indiana Request Appendix K – Public Participation documents Larry D. Chaney, MPO Director KIPDA, May 26, 2011 Public Hearing

KIPDA worried in its comments to the Indiana request, that a 15 % safety margin was not sufficient to avoid a conformity violation when 2011 auto registration data was plugged into the MOVES data. KIPDA as much as admits the MVEB are not reliable and cannot achieve maintenance of the NAAQS

standard for PM 2.5, under the Horizon 2030 Plan and when updated 2011 vehicle registration and household travel changes are introduced.

Since 2000, billions of dollars of economic expansion has occurred including the expansion of Worldport, the UPS Hub and the Westport Road Ford plant. With the additional emissions caused by the Two Bridges project and a recovering economy, the PM attainment will not be maintained. The SIP revisions are based on old inaccurate data that gives a false prediction of maintenance.

V. The underdeveloped transit system remains underdeveloped and abandoned as a pollution control method:

For transit data the results of the 2004 TARC on-board survey was used to supplement the previous information. This was deemed acceptable for several reasons. The primary reason was that the transit network envisioned by Horizon 2030 is essentially the same as the existing one. In addition, the number of total trips from the two models was similar. Therefore, the use of the transit trip information from previous travel models did not change significantly the proportion of trips allocated to transit. Finally, the proportion of trips utilizing transit is less than 2% of the total trips. So small differences in the number of transit trips should provide a negligible effect on overall travel.

VI. An increasing number of published, peer reviewed studies demonstrate ultrafine particles are more toxic and particulate numbers must be controlled by standards.

The following is exerpted from:

Aggarwal, Jain, Marshal, <u>Real-time prediction of size-resolved ultrafine PM on freeways</u>, Environmental Science & Technology, just accepted manuscript, January 31, 2012.

While there are no US regulations for PM 0.1 ("ultrafine particles", UFP; diameter less than 0.1 μ m), recent research raises the concern that these particles may be especially toxic (1,2)

- 1. Oberdörster, G. <u>Pulmonary effects of inhaled ultrafine particles</u>. *Int. Arch. Occup. Environ. Health* 2000, 74, 1-8.
- 2. Ibald-Mulli, A.; Wichmann, H.E.; Kreyling, W.; Peters, A. <u>Epidemiological evidence on health</u> effects of ultrafine particles. *J. Aersol Med.* 2002, *15*, 189-201.

UFP can penetrate deeply into the lung and can cross the lung lining (3,4), which is ~ 0.1 -20 μm thick (5).

- 3. Geiser, M.; Rothen-Rutishauser, B.; Kapp, N.; Schurch, S.; Kreyling, W.; Schulz, H.; Semmler, M.; Im Hof, V.; Heyder, J.; Gehr, P. <u>Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells</u>. *Environ*. *Health Perspect*. 2005, *113*, 1555-60.
- 4. Choi, H.S.; Ashitate, Y.; Lee, J.H.; Kim, S.H.; Matsui, A.; Insin, N.; Bawendi, M.G.; Semmler-Behnke, M.; Frangioni, J.V.; Tsuda, A. <u>Rapid translocation of nanoparticles from the lung airspaces to the body</u>. *Nat. Biotechnol.* 2010, doi:10.1038/nbt.1696.
- 5. Crapo, J.D.; Barry, B.E.; Gehr, P.; Bachofen, M.; Weibel, E.R. <u>Cell number and cell characteristics of the normal human lung</u>. *Am. Rev. Respir. Dis.* 1982, *126*, 332-337.

The European Union has proposed to regulate tailpipe number concentrations as part of Euro 5 and Euro 6 standards for light passenger and commercial vehicles. In typical ambient and on-roadway

conditions, UFPs have high number concentrations but low mass concentrations, relative to other particles (6).

6. Tuch, T.; Brand, P.; Wichmann, H.E.; Heyder, J. <u>Variation of particle number and mass concentration in various size ranges of ambient aerosols in Eastern Germany</u>. *Atmos. Environ.* 1997, *31*, 4193-4197.

Vehicles and other combustion sources are important contributors to urban UFP. UFP concentrations (particle number per volume of air) can be an order of magnitude higher on freeways than in background urban air (7-9).

- 7. Hu, S.; Fruin, S.; Kozawa, K.; Mara, S.; Paulson, S.E.; Winer, A.M. A wide area of air pollutant impact downwind of a freeway during pre-sunrise hours. Atmos. Environ. 2009, 43, 2541-2549.
- 8. Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M.; Sioutas, C. <u>Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles</u>. *Atmos. Environ.* 2005, *39*, 3597-3610.
- 9. Zhu, Y.; Hinds, W.C.; Kim, S.; Shen, S.; Sioutas, C. <u>Study of ultrafine particles near a major highway with heavy-duty diesel traffic</u>. *Atmos. Environ*. 2002, *36*, 4323-4335.

Variations in vehicle speed and density, type and age of vehicles, roadway topography, meteorology, and particle dynamics create spatially and temporally heterogeneous distributions of UFPs. Real-time estimation of UFP concentration on freeways is important for understanding UFP exposures and for identifying UFP hotspots.

Murray A. Mittleman, Annette Peters, David Siscovick, Sidney C. Smith, Jr, Laurie Bhatnagar, Ana V. Diez-Roux, Fernando Holguin, Yuling Hong, Russell V. Luepker, Robert D. Brook, Sanjay Rajagopalan, C. Arden Pope III, Jeffrey R. Brook, Aruni

Particulate Matter Air Pollution and Cardiovascular Disease : An Update to the Scientific Statement From the American Heart Association

promoting CVDs (cardiovascular diseases).

free full text at: http://circ.ahajournals.org/content/121/21/2331.full Several new studies have also demonstrated that residing in locations with higher long-term average PM levels elevates the risk for cardiovascular morbidity and mortality. Some recent evidence also implicates other size fractions, such as ultrafine particles (UFPs) < 0.1 μ m, gaseous co-pollutants (eg, ozone and nitrogen oxides [NO_x]), and specific sources of pollution (eg, traffic). In addition, there have been many insights into the mechanisms whereby PM could prove capable of

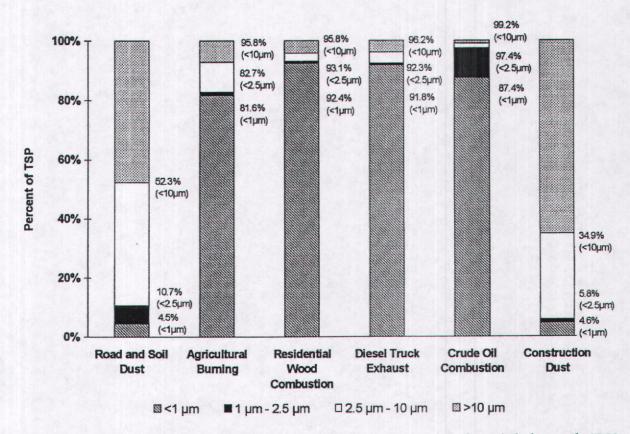
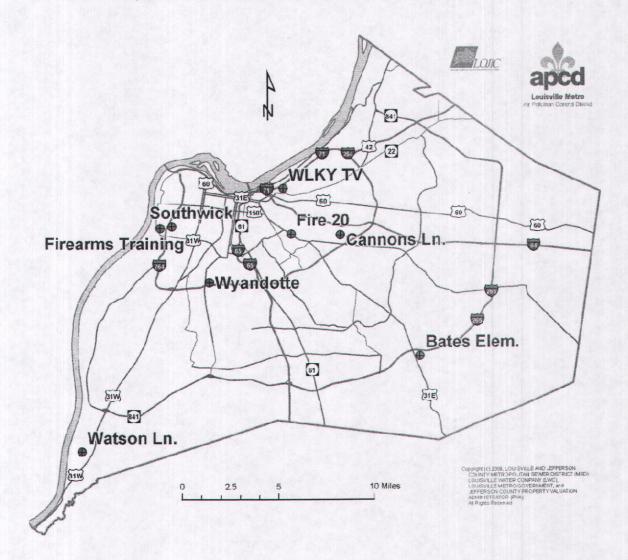


Figure 2.1.3. Size distributions of several particulate source emissions (Ahuja *et al.* 1989; Houck *et al.*, 1989, 1990).

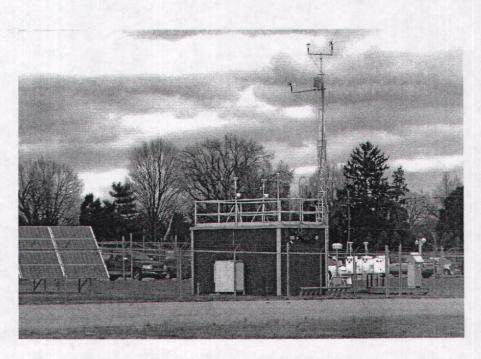

This graphic shows that 91 % of mobile source combustion emission particles are sized less than 1 micro meter and mass gravimetric Federal Reference Method measurements do not provide an adequate measure of high counts of low mass ultrafine particulate.

"Particulate matter (PM) in ambient air is an important risk factor for acute and long-term adverse effects related to pulmonary and cardiovascular diseases, cancer, and mortality (Pope and Dockery 2006). Traffic-related PM may be particularly relevant to these health effects, as indicated by studies on both acute and long-term effects (Hoek et al. 2002; Peters et al. 2004). The ultrafine particle (UFP) fraction of PM with a diameter of < 100 nm typically consists of "fresh" combustion emissions of which vehicle engines are the primary source in urban areas (Sioutas et al. 2005). For UFPs, the size, surface area, chemical composition, and ability to translocate through the epithelium of terminal bronchioles and alveoli are thought to be important in relation to adverse health effects (Delfino et al. 2005; Oberdörster et al. 2005). The mechanisms of action of PM are thought to involve inflammation and oxidative stress, with small particles being more potent than larger particles because of their higher surface area and reactivity (Borm et al. 2004; Knaapen et al. 2004)."

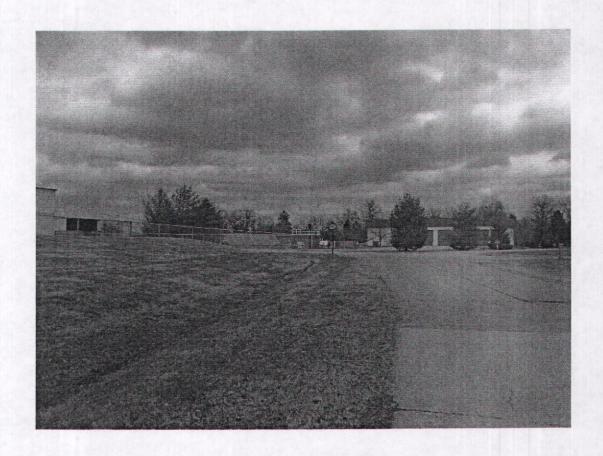
<u>Brauner</u>, Forchhammer, Møller, Simonsen, Glasius, Wåhlin, Raaschou-Nielsen, and Loft, <u>Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress–Induced DNA Damage</u>, Environmental Health Perspectives, p. 1177, Volume 115, Number 8, August 2007 Valavanidis A, Fiotakis K, Vlachogianni T., <u>Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms</u>. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008 Oct-Dec;26(4):339-62.

In this review, the results of the most recent epidemiological and toxicological studies are summarized. In general, the evaluation of most of these studies shows that the smaller the size of PM the higher the toxicity through mechanisms of oxidative stress and inflammation.

These Comments prepared by Clarence Hixson Attorney at Law for CART Appendix: Photos of PM 2.5 Monitoring network
Attachment to Comments of CART
REDESIGNATION REQUEST AND MAINTENANCE PLAN FOR THE KENTUCKY PORTION OF
THE LOUISVILLE, KY-IN 1997 ANNUAL PM2.5 NONATTAINMENT AREA



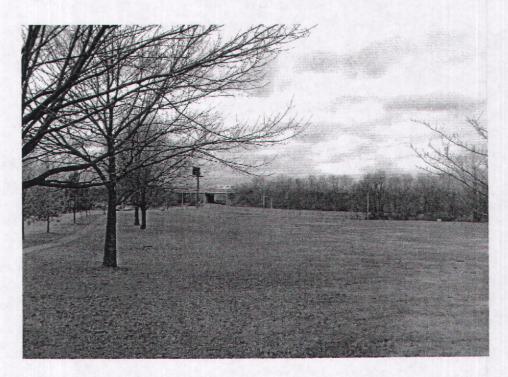
http://www.louisvilleky.gov/APCD/Monitoring/MonitoringSites.htm


Site Name	Location	Objective(s)	Year Estab.	Parameters Monitored Ozone, PM _{2.5} Ozone, PM _{2.5} , PM ₁₀ , SO ₂ , NOx, CO, Lead, Meteorological data, PM _{2.5} speciation, Radiation, NOy, PM _{coarse}	
Bates Elementary	7601 Bardstown Rd	Population exposure	1973		
Cannons Lane	2730 Cannons Ln	National Core Monitoring Station (NCore), urban scale, population exposure	2009		
Fire Station 20	1735 Bardstown Rd	Maximum concentration	1973	со	
Firearms Training	4201 Algonquin Pkwy	Population exposure	1978	SO ₂	
Southwick Community Center	3621 Southern Ave	Population exposure	1983	PM _{2.5} , PM ₁₀ , Meteorological data	
Watson Lane Elementary	7201 Watson Ln	Population exposure	1992	Ozone, PM _{2.5} , SO ₂ , Meteorological data	
Wyandotte Park	1104 Beecher Ave	Population exposure	1983	PM _{2.5} , PM ₁₀	


PM_{2.5} Monthly Averages Tracking Table for 1999-2011

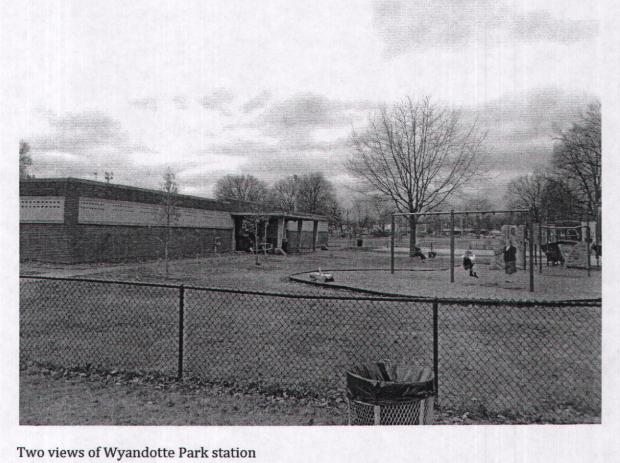
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Months >15.0 μg/m³
1999	14.7	13.8	12.4	12.7	18.1	23.4	26.6	19.5	15.6	17.4	16.1	12.6	7
2000	15.8	16.4	13.4	13.6	17.1	17.7	23.5	21.2	13.3	19.7	15.6	17.1	9
2001	21.9	13.9	15.2	13.3	17.7	20.5	24,6	27.4	16.1	13.8	15.8	12.4	8
2002	13.1	10.0	12.3	11.4	15.9	22.3	30.4	23.8	21.7	13.2	11.8	15.6	6
2003	12.2	16.3	15.0	14.6	13.1	18.6	21.7	23.0	17.3	12.5	12.0	10.6	5
2004	10.5	15.7	10.1	11.3	13.4	15.9	17.1	18.4	17.6	13.8	11.1	11.1	5
2005	11.7	17.1	14.3	13.1	14.9	19.6	20.2	19.8	24.1	16.1	12.6	15.5	7
2006	10.3	13.0	12.5	12.6	11.9	18.1	23.9	22.5	13.6	10.1	13.6	11.1	3
2007	9.3	12.2	14.9	11.2	18.4	19.9	18.3	22.8	16.9	11.1	12.5	14.1	5
2008	11.8	12.0	11.9	11.6	12.1	11.8	18.1	17.1	17.6	10.6	14.3	9.4	3
2009	14.6	11.1	11.3	9.3	10.3	13.9	13.1	12.6	12.1	8.9	13.8	12.9	0
2010	13.3	16.3	12.2	12.2	11.0	14.1	16.0	16.4	11.0	17.0	12.6	13.7	4
2011	15.2	10.6	9.7	8.6	12.1	14.1	19.7	16.2	11.5	9.0	7.6	9.9	3
Average	13.4	13.7	12.7	12.0	14.3	17.7	21.0	20.1	16.0	13.3	13.0	12.8	0

Cannons Lane NCore station at Bowman Field



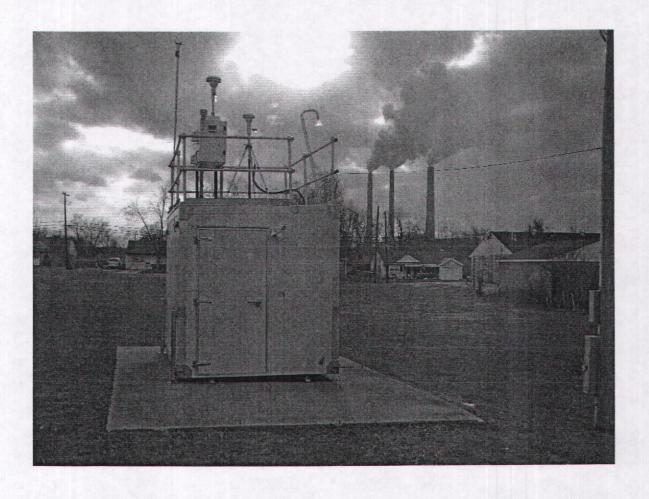
Southwick Community Center

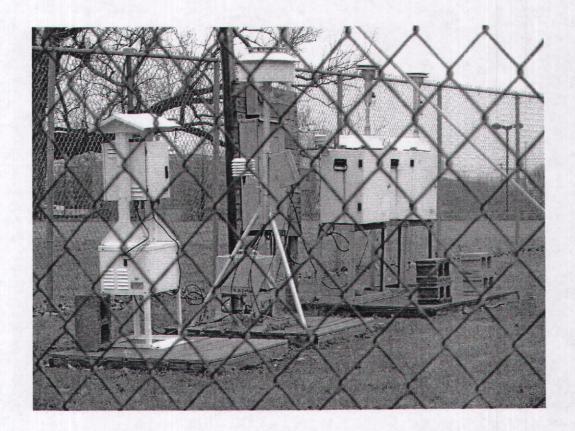
Southwick looking west to I-264

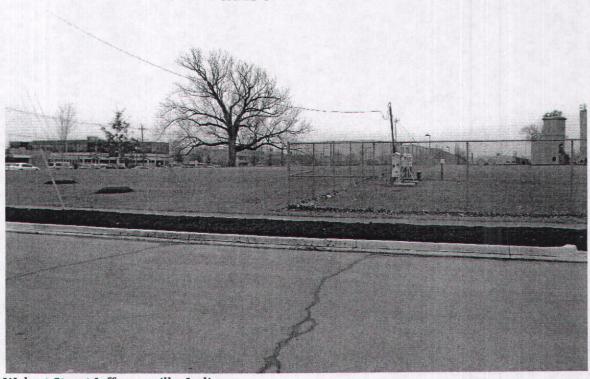


looking west from Southwick

Wyandotte Park




Bates Elementary


Watson Lane Elementary School station

Walnut Street Jeffersonville, Indiana

Walnut Street Jeffersonville, Indiana

Title 40: Protection of Environment

PART 58—AMBIENT AIR QUALITY SURVEILLANCE

Subpart G-Federal Monitoring

Browse Previous | Browse Next

Appendix D to Part 58—Network Design Criteria for Ambient Air Quality Monitoring

- 1.1.1 In order to support the air quality management work indicated in the three basic air monitoring objectives, a network must be designed with a variety of types of monitoring sites. Monitoring sites must be capable of informing managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, and air pollution levels near specific sources. To summarize some of these sites, here is a listing of six general site types:
- (a) Sites located to determine the highest concentrations expected to occur in the area covered by the network.
- (b) Sites located to measure typical concentrations in areas of high population density.
- (c) Sites located to determine the impact of significant sources or source categories on air quality.

- (d) In some cases, the physical location of a site is determined from joint consideration of both the basic monitoring objective and the type of monitoring site desired, or required by this appendix. For example, to determine PM_{2.5}concentrations which are typical over a geographic area having relatively high PM_{2.5}concentrations, a neighborhood scale site is more appropriate. Such a site would likely be located in a residential or commercial area having a high overall PM_{2.5}emission density but not in the immediate vicinity of any single dominant source. Note that in this example, the desired scale of representativeness was an important factor in determining the physical location of the monitoring site.
 - (1) Neighborhood scale Measurements in this category represent conditions throughout some reasonably homogeneous urban sub-region, with dimensions of a few kilometers. Homogeneity refers to pollutant concentrations. Neighborhood scale data will provide valuable information for developing, testing, and revising concepts and models that describe urban/regional concentration patterns. These data will be useful to the understanding and definition of processes that take periods of hours to occur and hence involve considerable mixing and transport. Under stagnation conditions, a site located in the neighborhood scale may also experience peak concentration levels within a metropolitan area.
- (3) Neighborhood scale Measurements in this category would represent conditions throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, as well as the land use and land surface characteristics. Much of the PM₂₅exposures are expected to be associated with this scale of measurement. In some cases, a location carefully chosen to provide neighborhood scale data would represent the immediate neighborhood as well as neighborhoods of the same type in other parts of the city. PM₂₅sites of this kind provide good information about trends and compliance with standards because they often represent conditions in areas where people commonly live and work for periods comparable to those specified in the NAAQS. In general, most PM₂₅monitoring in urban areas should have this scale.
- (4) $Urban\ scale\$ —This class of measurement would be used to characterize the particulate matter concentration over an entire metropolitan or rural area ranging in size from 4 to 50 kilometers. Such measurements would be useful for assessing trends in area-wide air quality, and hence, the effectiveness of large scale air pollution control strategies. Community-oriented $PM_{2.5}$ sites may have this scale.

Thunder Over Louisville 2011 60 tons of fireworks New Albany monitor

Month: Day:		ime Format:			
April \$ 18	\$ 2011 \$	12 Hour (AM/PM) 🛟 Generate Re	port)		
Ozone Highlights:	✓ Moderate	Unhealthy for Sensitives	☑ Unhealthy	✓ Very Unhealthy	
PM-2.5 Highlights Hazardous	: Moderate	Unhealthy for Sensitives	☑Unhealthy	✓ Very Unhealthy	₹
Highlight validate	ed data				

The table below contains hourly averages for all the pollutants and meteorological conditions measured at New Albany for **Monday, April 18, 2011**. All times shown are in EST.

Parameter	Morning												Afternoon	
Measured	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00
Sulfur Dioxide	3.1	3.0	4.2	2.9	1.8	3.4	2.7	2.7	4.0	1.9	2.2	2.8	2.9	2.3
Ozone	34	28	30	34	36	19	33	32	35	46	52	56	59	60
PM-2.5 (Local Conditions)	12.68	12.02	13.09	10.37	11.12	13.08	11.47	10.57	10.08	9.13	12.28	11.21	14.00	PMA
Parameter	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00
<u>Measured</u>	Morning												Afternoon	
	x.xx	Indica	tes the	data h	nas bee	en valid	lated.							
	Maxim	um va	lues fo	r each	param	eter ar	e <u>bold</u>	within	the ta	ble. M	inimum	values	are bo	ıld ita
	Maximum values for each parameter are bold within the table. Minimum values are bold it R - Data from this instrument meets EPA quality assurance criteria for regulatory purposes.													oses.

Month: Day	: Year: 1	ime Format:			
April 💠 18	\$ 2011 \$	12 Hour (AM/PM) 💠 Generate Re	port		
Ozone Highlights	: ☑ Moderate	Unhealthy for Sensitives	☑ Unhealthy	✓ Very Unhealthy	
PM-2.5 Highlight Hazardous	s: Moderate	Unhealthy for Sensitives	☑Unhealthy	✓ Very Unhealthy	₫

The table below contains hourly averages for all the pollutants and meteorological conditions measured at New Albany for **Monday, April 18, 2011**. All times shown are in EST.

SHOOTS IN	Aftern	noon											<u>Parameter</u>	POC
11:00	Noon	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Measured	
2.8	2.9	2.3	3.9	4.8	2.9	2.3	7.1	10.0	3.3	7.8	11.8	4.7	Sulfur Dioxide	1 R
56	59	60	63	64	<u>65</u>	61	52	41	39	41	39	35	Ozone	1 R
11.21	14.00	PMA	<u>PMA</u>	PMA	20.51	19.52	17.16	18.55	16.20	16.55	18.87	19.09	PM-2.5 (Local Conditions)	3
11:00	Noon	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00		POC
	After	noon											Measured	

CAMS 3 New	Albany	HERBOOK CONTROL OF STREET OF STREET	Select a diff	erent site	
Month: Day:		me Format: 2 Hour (AM/PM) (Generate Re	port		
Ozone Highlights:	✓Moderate	☑ Unhealthy for Sensitives	☑ Unhealthy	☑ Very Unhealthy	
Hazardous		☑ Unhealthy for Sensitives	Unhealthy	✓ Very Unhealthy	₹
☑ Highlight validated	d data				

The table below contains hourly averages for all the pollutants and meteorological conditions measured at New Albany for **Tuesday, April 19, 2011**. All times shown are in EST.

ured ur ide	1
	1
10	1
	3
	PO
sured	
	al ditions) meter sured

CAMS 3	New	Albany	tanan namatan mentengan kenalah salah salah salah s	Select a diff	erent site	
Month:	Day:		Time Format: 12 Hour (AM/PM) (Generate Re	port		
Ozone Highli	ights:	✓Moderate	☑ Unhealthy for Sensitives	☑ Unhealthy	✓ Very Unhealthy	
PM-2.5 High Hazardous ☑ Highlight v			e ☑ Unhealthy for Sensitives	☑Unhealthy	Very Unhealthy	₹

The table below contains hourly averages for all the pollutants and meteorological conditions measured at New Albany for **Tuesday, April 19, 2011**. All times shown are in EST.

Morning													Afternoon	
Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00	
6.7	12.2	6.1	8.7	5.4	2.2	9.9	3.3	1.5	1.4	0.9	4.2	8.1	13.0	
32	33	33	28	31	30	22	29	30	30	31	27	21	26	
21.80	19.38	26.57	31.69	39.20	MAL	MAL	42.64	48.95	47.35	51.45	53.18	58.73	60.0	
Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00	
Morning													Afternoon	
x.xx	Indicat	es the	data h	as bee	n valid	dated.								
Maxim	ium val	ues for	each	parame	eter ar	e bol e	within	n the ta	able. M	linimum	values	are bo	ıld ita	
R - Di	ata fron	n this i	nstrum	ent me	ets El	PA qua	lity as	surano	e criter	ia for r	egulator	ry purp	oses.	
	Mid 6.7 32 21.80 Mid Morni x.xx Maxim	Mid 1:00 6.7 12.2 32 33 21.80 19.38 Mid 1:00 Morning x.xx Indicat Maximum val	Mid 1:00 2:00 6.7 12.2 6.1 32 33 33 21.80 19.38 26.57 Mid 1:00 2:00 Morning x.xx Indicates the Maximum values for	Mid 1:00 2:00 3:00 6.7 12.2 6.1 8.7 32 33 33 28 21.80 19.38 26.57 31.69 Mid 1:00 2:00 3:00 Morning x.xx Indicates the data h Maximum values for each	Mid 1:00 2:00 3:00 4:00 6.7 12.2 6.1 8.7 5.4 32 33 33 28 31 21.80 19.38 26.57 31.69 39.20 Mid 1:00 2:00 3:00 4:00 Morning x.xx Indicates the data has bee Maximum values for each parameter	Mid 1:00 2:00 3:00 4:00 5:00 6.7 12.2 6.1 8.7 5.4 2.2 32 33 33 28 31 30 21.80 19.38 26.57 31.69 39.20 MAL Mid 1:00 2:00 3:00 4:00 5:00 Morning x.xx Indicates the data has been valid Maximum values for each parameter and	Mid 1:00 2:00 3:00 4:00 5:00 6:00 6.7 12.2 6.1 8.7 5.4 2.2 9.9 32 33 33 28 31 30 22 21.80 19.38 26.57 31.69 39.20 MAL MAL Mid 1:00 2:00 3:00 4:00 5:00 6:00 Morning x.xx Indicates the data has been validated. Maximum values for each parameter are bold	Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 6.7 12.2 6.1 8.7 5.4 2.2 9.9 3.3 32 33 33 28 31 30 22 29 21.80 19.38 26.57 31.69 39.20 MAL MAL 42.64 Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 Morning x.xx Indicates the data has been validated. Maximum values for each parameter are bold withing	Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 6.7 12.2 6.1 8.7 5.4 2.2 9.9 3.3 1.5 32 33 33 28 31 30 22 29 30 21.80 19.38 26.57 31.69 39.20 MAL MAL 42.64 48.95 Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 Morning x.xx Indicates the data has been validated. Maximum values for each parameter are bold within the tax	Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 6.7 12.2 6.1 8.7 5.4 2.2 9.9 3.3 1.5 1.4 32 33 33 28 31 30 22 29 30 30 21.80 19.38 26.57 31.69 39.20 MAL MAL 42.64 48.95 47.35 Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 Morning x.xx Indicates the data has been validated. Maximum values for each parameter are bold within the table.	Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 6.7 12.2 6.1 8.7 5.4 2.2 9.9 3.3 1.5 1.4 0.9 32 33 33 28 31 30 22 29 30 30 31 21.80 19.38 26.57 31.69 39.20 MAL MAL 42.64 48.95 47.35 51.45 Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 Morning x.xx Indicates the data has been validated. Maximum values for each parameter are bold within the table. Minimum	Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 6.7 12.2 6.1 8.7 5.4 2.2 9.9 3.3 1.5 1.4 0.9 4.2 32 33 33 28 31 30 22 29 30 30 31 27 21.80 19.38 26.57 31.69 39.20 MAL MAL 42.64 48.95 47.35 51.45 53.18 Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 Morning x.xx Indicates the data has been validated. Maximum values for each parameter are bold within the table. Minimum values	Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 Noon 6.7 12.2 6.1 8.7 5.4 2.2 9.9 3.3 1.5 1.4 0.9 4.2 8.1 32 33 33 28 31 30 22 29 30 30 31 27 21 21.80 19.38 26.57 31.69 39.20 MAL MAL 42.64 48.95 47.35 51.45 53.18 58.73 Mid 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 Noon Morning Aftern	

Suite 200 · 222 South First Street · Louisville KY 40202 · 502 589 2278

Coalition for the Advancement of Regional Transportation POBox 6115 Louisville, KY 40206 502-632-2545

Feb. 3, 2012.

Comments on the Louisville Metro AQ Redesignation Request

Please enter these comments into the official Record of this Hearing.

My name is David Coyte. I am a resident of Louisville and President of the Coalition for the Advancement of Regional Transportation, CART. CART has been actively promoting improved AQ through transit, biking and walking and sustainable transportation development since it's founding in 1993. Our membership includes retirees, construction workers, students, teachers, housewives, disabled citizens and lawyers from across the metro area. We are drivers, bus riders, bikers and walkers. As a construction worker I personally experience the poor air quality that has earned our metro area notoriety for high asthma rates and chronic pulmonary and cardiac diseases associated with such conditions.

We welcome the EPA today and look to you for protection for our members and fellow citizens.

Early in the 1990's CART embraced the concept of "LUTRAQ" that describes the relationship between Land Use, Transportation, and Air Quality. Much of our work since then has revolved around those relationships as we have sought that balance between growth, health, and mobility. EPA has been a leader in promoting the understanding of this relationship.

However, neither Kentucky nor Louisville have grasped this concept. Efforts here focus on avoiding AQ regulations rather than embracing them. Our governor's message to the EPA in his last State of the State address was "Get off our backs." This attitude permeates government in Kentucky and the health of our citizens reflects that.

We all know that there are tremendous health benefits to children and elderly in simple walking or riding bicycles. Kentucky leads the nation in childhood obesity, so

OF REGIONAL TRANSPORTATION

COALITION FOR THE ADVANCEMENT OF REGIONAL TRANSPORTATION

Suite 200 • 222 South First Street • Louisville KY 40202 • 502 589 2278

encouraging these simple acts seems a no-brainer. However, as Mr. Hixson will show, the air quality around our major thoroughfares is not being adequately tested. Recent studies demonstrate that major transportation corridors show significantly elevated levels fine particulates – some of the most dangerous pollution. Do we want to encourage our children to exercise in that?

The Jefferson County APCD may protest that they are adequately testing and enforcing regulations, but history disputes this. Citizens in the industrial west end of Louisville fought for years for protection against seriously toxic air quality. Only when they began collecting and testing samples independently of APCD, proving the seriousness of the conditions, did any action take place.

Louisville like many of our nation's cities is under financial duress. Transit services have been cut at a time when more people are dependent on them. Meanwhile highway projects are being promoted that will admittedly increase sprawl and increase traffic. Funding requirements for the Ohio River Bridges Project forced the removal of all major transit initiatives from the MPO's planning documents in 2005. This re-designation effort, if successful, will kill any consideration of "LUTRAQ" as these projects move forward.

CART wants you on our backs. Citizens of metro Louisville need you on our backs. We need the regulations in both form and spirit to be enforced.

I will leave the discussion of monitoring science and monitoring failures to our Attorney, Mr. Hixson.

Thank you.

David Coyte, President

CART

1	KENTUCKY DIVISION FOR AIR QUALITY PUBLIC HEARING
2	I ODDIC HEARING
3	
4	
5	
6	
7	RE: TO REVISE KENTUCKY'S STATE IMPLEMENTATION PLAN
8	
9	
10	*** *** ***
11	
12	PUBLIC HEARING
13	
14	*** *** ***
15	
16	
17	
18	
19	COURT REPORTER: LINDA A. FOX, CCR
20	(502)593-4940 DATE: FEBRUARY 3, 2012
21	TIME: 10:00 A.M.
22	
23	
24	
25	

The public hearing of The Kentucky Energy and 1 2 Environment Cabinet was taken before Linda A. Fox, Certified 3 Court Reporter and Notary Public for the State of Kentucky 4 at Large at 850 Barret Avenue, Louisville, Kentucky on 5 February 3, 2012 at approximately 10:00 A.M. 6 7 APPEARANCES 8 9 JOHN GOWINS EVALUATION SECTION SUPERVISOR 10 DIVISION FOR AIR QUALITY 200 FAIR OAKS LANE 11 FRANKFORT, KENTUCKY 40601 12 13 MS. LESLIE EGGEN MR. DAVID COYTE 14 MR. CLARENCE HIXSON, ESQUIRE 15 16 I N D E X 17 18 PAGE 19 MR. COYTE'S COMMENTS 4 MR. HIXSON'S COMMENTS 7 20 21 MR. GALLIC'S COMMENTS MS. LOVE'S COMMENTS 22 21 MS. RUNYON'S COMMENTS 24 22 23 24 25

MR. GOWINS: Let's go on record. Good morning, it's February 3rd, 2012 at 10 A.M. My name's John Gowins with the Kentucky Division for Air Quality Evaluation Section. As your moderator, I declare this public hearing in session.

The division asks that everyone attending today's hearing provide all of the information requested on the attendance roster located at the entrance to the conference room.

Today's hearing announcement was mailed to everyone on the division's current mailing list, to the regional offices, the Louisville Metro Air Pollution Control District and local — and located at specified county clerk's offices. In addition, the notice was published in a newspaper wide circulation within the Commonwealth.

This is a non-adversarial hearing so the division will not respond to comments or questions regarding the proposed actions, and individuals who present testimony will not be questioned by anyone attending this hearing. A division representative may, however, ask questions in order to clarify the meaning or intent of a comment.

All comments received in an appropriate format by the close of the comment period will receive equal consideration and every individual who submits comments will receive a copy of the statement of consideration.

Ms. Linda Fox, to my right, is recording today's 1 2 hearing. Anyone interested in obtaining a copy of the 3 transcript should contact Ms. Fox. Are there any questions? 4 This hearing is being held to receive comments on a proposed redesignation request and maintenance plan for 5 the Kentucky portion of the Louisville, Kentucky-Indiana 6 1997 PM 2.5 non-attainment area. 7 8 There are indications to present testimony. Please come forward or make sure Ms. Fox can hear you when 9 10 your name is called and, if you can, provide a written 11 comment of your -- written copy of your comments to me if 12 possible. 13 The first name is Clarence Hixson. 14 MR. HIXSON: Like a -- my name's Clarence 15 I'm the attorney for the Coalition for the 16 Advancement of Regional Transportation. 17 At this time I'd like to defer to Dave Coyte, the 18 president of CART for some brief introductory comments and 19 then I will pick up after that. MR. GOWINS: Okay. Mr. Coyte. 20 MR. COYTE: Thank you. My name is David 21 22

MR. COYTE: Thank you. My name is David

Coyte. I'm a resident of Louisville and the president of

the Coalition for the Advancement of Regional Transporation

known as CART.

23

24

25

CART has been actively promoting improved air

quality through transit, biking, walking, and sustainable transportation development since its founding in 1993. Our membership includes retirees, construction workers, students, teachers, housewives, disabled citizens, and lawyers from cross the metro area. We are drivers, bus riders, bikers, and walkers.

As a construction worker, I can personally experience the poor air quality that has earned our metro area notoriety for high asthma rates and chronic pulmonary and cardiac diseases associated with such conditions.

We welcome the EPA today and look to you for protection for our members and fellow citizens.

Early in 1990s CART embraced the concept of LUTRAQ, which describe relationship between land use, transportation and air quality. Much of our work since then has revolved around those relationships as we have sought the balance between growth, health and mobility.

The EPA has been a leader in promoting the understanding of this relationship. However, neither Kentucky nor Louisville has grasped this concept. Efforts here focus on avoiding air quality regulations rather than embracing them. Our governor's message to the EPA in his last state of the State of the State address was, "Get off our backs." This attitude permeates government in Kentucky and the health of our citizens reflects that.

We all know that there are tremendous health benefits to children and elderly in simple walking or riding bicycles. Kentucky leads the nation in childhood obesity so encouraging these simple acts seems a no-brainer.

However, as Mr. Hixson will show, the air quality around our major thoroughfares is not being adequately tested. Recent studies demonstrate that major transportation corridors show significantly elevated levels of fine particulates, some of the most dangerous pollution. Do we want to encourage our children to exercise in that.

The Jefferson County APCD may protest that they are adequately testing and enforcing regulations but history disputes this. Citizens in the industrial west end of Louisville fought for years, decades for protection against seriously toxic air quality. Only when they begin collecting and testing samples independently of APCD, proving the seriousness of those conditions did any action take place.

Louisville, like many of our nation's cities, is under financial duress. Transit services have been cut at a time when more people are dependent on them. Meanwhile, highway projects are being promoted that will admittedly increase brawl and increase traffic — funding requirements for the Ohio River Bridges project forced the removal of all major transit initiatives from the MPO's planning documents

in 2005. This redesignation effort, if successful, will kill any consideration of LUTRAQ as these projects move forward and leave us without a thorough analysis of the air quality effects of those projects.

CART wants you on our backs. Citizens of Metro
Louisville need you on our backs. We need the regulations
in both form and spirit to be enforced. I will leave the
discussion of monitoring science and monitoring failures to
our attorney, Bud Hixson. Thank you.

MR. GOWINS: Thank you, Mr. Coyte.

Mr. Hixson.

 ${\tt MR.\ HIXSON:}$ We will provide a copy now of the written comments of Mr. Coyte.

My name is Clarence Hixson and I've been retained by Coalition for the Advancement of Regional Transportation and have conducted a study of the -- the request document, the Redesignation Request and Maintenance Plan for the Kentucky portion of the Louisville, Kentucky, Indiana 1997 annual PM2.5 non-attainment area.

This multicounty area has -- was designated for non-attainment for particulate matter 2.5 micrometer size particles, not a coarse particle but not an ultra fine particle, kind of a mid-level particle there. And they were designated for non-attainment in 2005 and have had three years, beginning about 2006, to implement a plan to reattain

the national ambient air quality standards, the NAAQS standards, which are 15 micrograms per cubic meter.

I'm going to briefly cover some of the highlights of the points that I'll be making and then I'll get into some of the points a little bit — in a little bit more depth but in view of everybody's time and folks here, I don't want to belabor some of the points to the nth degree and this is pretty dense material and you can go on and on about it.

But in summary, today's comments support our conclusion that an EPA decision to redesignate Louisville as in attainment of the 1997 PM2.5 NAAQS standards would be against the interest of public health protection.

Since 2007, Kentucky has experienced an economic recession, which produced a reduction in measured particulate emissions. The emissions data shows a dip in 2008 as lost jobs, reduced construction, and manufacturing resulted in reduced traffic and vehicular activity and resulted in reduced particulate emissions. This produced a set of three-year average particulate monitoring results that are offered here by the state as proof of attainment of the NAAQS standard. And that — that data is reproduced herein in our comments.

The document supporting the request for redesignation rely on outdated measurements of the mass or

the weight of fine particulate air pollution. Emerging science, since 2000, has shown, however, that a standard for particle counts of the more toxic ultra fine particulate must be established EPA to protect the public.

The continued use of federal reference method gravimetric analysis measuring the weight of filter pads to yield grams per cubic meter of air volume is an inadequate measure to document public health risk and its sources at the places where people are exposed.

It is unacceptable and misleading for Metro Air Pollution Control District and the EPA to ignore the very high levels of ultra fine toxic particulates in the community while claiming attainment of the NAAQS PM2.5 standards. Ultra fine particulate has emerged in the peer reviewed scientific literature as a public health threat caused by mobile source emissions in present and great concentrations on highways, in urban areas, and around airports but the established gravimetric analysis for PM2.5 based on the weight of larger particulate fails to detect it.

Engine combustion of gasoline and diesel produces particulate that is between 80 and 90 percent composed of particle size well below the 2.5 micrometer width, which the NAAQS standard is based on, for instance, diesel engines have about a 20 to 130 nanometer width of 80 percent of

their particulate emissions and, for gasoline engines, about 20 to 60 nanometers in particle width, this is ultra fine particle.

EPA revised the NAAQS particulate standards in 2006 -- excuse me -- with a significant body of peer reviewed studies at the time, demonstrating that the adopted standards at that time did not go far enough to protect public health. But, presently, the Clean Air Scientific Advisory Committee, CASAC, for particulate matter, the panel that advises EPA on the particulate NAAQS standards, is approaching and developing a consensus that would lower the PM2.5 standard even lower, perhaps to as low as 10 micrograms per cubic meter. Redesignation to attainment of the Louisville non-attainment area against this scientific controversy background would be misleading to the public.

EPA must move forward to adopt a public health protection standard based on particle numbers per cubic centimeter. Because the redesignation request is based on data and calculations using the FRM, Federal Reference Method, gravimetric analysis, it produces misleading predictions of future maintenance of NAAQS standards estimated in tons per year of emitted PM2.5.

These maintenance targets are similarly misleading and unprotective of public health. Ultra fine particulate is measured in nanometers width and penetrates more deeply

into the lungs and crosses the lung epithelium and gets into the bloodstream where it causes tissue damage. Our comments cite to a substantial number of peer reviewed journal articles identifying the public health risk from ultra fine particulate.

The network of monitors in Jefferson County is located away from busy highway interchanges, located away from the airport and from major sources of particulate pollution where people are exposed.

The monitor network gives a low estimate of the actual average PM2.5 exposure of the public, it gives no information about particle counts of ultra fine particulate. The monitoring network data was used in conjunction with old data from 2000 to create a travel demand model and emissions factors that were used in predicting future maintenance of the NAAQS standards. These predictions included a required 15 percent safety margin. The model predictions are likely to be violated because they are not based on real world 2011 socio-economic data and current vehicle registration.

And then here are the -- and we're going to present a CD ROM and a written copy of the comments at this time to the State. And -- and then I'll get in a little bit to the basis of some of the comments.

The redesignation request starts out by laying out the legal framework under section 107 of the Clean Air Act

and highlights criteria that must be met in order for an area to be redesignated from non-attainment to attainment. The first criteria is a determination that the area has attained the PM2.5 standard.

As we said before, CART argues that its members will suffer significant air pollution health effects by an erroneous determination of attainment of the PM2.5 fine particulate standard by use of FRM gravimetric analysis that ignores mode sifting to ultra fine particle of mobile source emissions, a mode not detected by the FRM method.

The public health risk is underestimated and the data demonstrating attainment is flawed, biased, and unreliable.

A second criteria to be redesignated is an approved State Implementation Plan for the area under section 110(k). CART argues in this regard that its members will suffer significant air pollution and health effects because of erroneous adoption and approval of the State Implementation Plan. The State Implementation Plan uses erroneous emissions factors based on FRM gravimetric data that ignores PM2.5 mode shifting to ultra fine particle and uses outdated socio-economic data in 2000 vehicle registrations and the travel demand model to generate erroneous emissions predictions in tons per year of PM2.5. Approval of the SIP would harm CART's interest by approving

a plan that ignores public health risk from UFP emissions of mobile sources. These sources would actually be lowered by control measures in the form of mass transit projects instead of trying to use ineffective emissions control based on FRM gravimetric analysis.

The third criteria listed is a determination that the improvement in air quality is due to permanent and enforceable reductions in emissions resulting from implementation of the State Implementation Plan and other federal requirements — permanent and enforceable reductions in emissions resulting from the implementation of the SIP and other federal requirements.

And our comment, CART argues that what has caused a transient dip in the Louisville Metro Area of PM2.5 emissions is the economic slowdown or recession which has not yet ended. Trends charted from 2008 to 2010 are unreliable indicators of PM2.5 declines achievable by the State Implementation Plan and other measures.

It is noted that EPA is in the early stages of the process of rulemaking to reduce further NAAQS for PM2.5 and could adopt a new standard in five years as low as ten micrograms per cubic meter in recognition of the growing understanding of health impacts and public exposure to fine particulate. Enforceable reductions that ignore the principal mode of mobile source combustion emissions, ultra

fine particulate, do not result in improved air quality.

Such enforcement measures mask actual public health impacts and exposure.

Recently, the EPA has promulgated a requirement for near-road monitoring evidencing a recognition of the highest concentrations of pollution at the near roadway areas. Data based on this modeling will require revision of the PM2.5 NAAQS and redeployment of the Louisville Metro Area PM2.5 network to more accurately reflect actual public exposure.

We, in the course of investigating the application for redesignation, we took a photo safari to the Louisville Metro Area PM2.5 network station and we have included on our CD ROM, that we're tendering there, photographs of each of the stations showing that they're generally located what we think is about 300 meters or more from busy highway intersections and major traffic arteries that would -- that are known to be high levels of particulate, especially ultra fine particulate.

Our findings in this regard are based on recent articles in the peer reviewed literature, one among them being Near Roadway Air Quality Synthesizing the Findings from Real World Data, an environmental science and technology article from 2010. And this material is reproduced in our comments and shows a graphic that demonstrates that ultra

fine particulate is -- is highly concentrated in main traffic arteries and corridors and that people driving down these main roadways are being exposed to very high concentrations of ultra find particulate. And this particulate, as we've said, is not monitored or measured by the -- the current network and, thus, proving a redesignation with that background would be unreliable and unprotected.

We found particular problems with some of the monitors and the data submitted to demonstrate attainment. The attainment basis is based on a three-year average of annual means data collected by the Louisville area monitor system. And those data are given on page five of our comments and were included in the redesignation application. And just to go down quickly through some of the monitor criticism.

The Wyandotte Park site, the 21-111-0044 site appears to have no co-location monitor for PM2.5 to validate the results. We understand that the Wyandotte Park 2.5 monitor has been subjected to repeated vandalism and that the air pollution control district has applied to EPA to allow it to close the station because of vandalism. And we argue that that data set should not be allowed in the application.

The Watson Lane data site, the 21-111-0051 site is

very close to the existing NAAQS limit. It had a annual average of means of 14.83 micrograms per meter, which was close to the limit, that was in the 2010 year that it had that.

And, generally, the readings on the monitoring stations have been upticking coming out of the economic dip since 2008.

We used the application listed Barret Avenue and Cannons Lane monitoring stations but those two stations did not each have three continuous years of monitoring, which was required by the reapplication statutes. If — to use Barret Avenue and Cannons Lane would require spacial variability averaging and we didn't think that the coefficient of variability, the difference in the average means readings would not permit spacial averaging for those two stations.

We reproduce on page eight of our comments a graphic taken from the Indiana application for redesignation, which I show here, which shows the economic dip in the average readings a trough and shows the uptick as the local area network stations are showing economic activity increasing and that we're coming out of this economic recession and having more vehicle activity. And that is predicted -- we predict that to result in rising particle emissions that will cause us to violate any

maintenance plan based on the economic dip.

We had a question about the Thunder Over
Louisville data. When we tried to access data to show
accurate particle readings for April 18th of 2011, Thunder
Over Louisville day, we were unable to find any on-line
accessible data for Jefferson County, Kentucky.

The Indiana Department of Environmental Management provides an on-line website where you can plug in a date and see the actual particulate monitor readings. And, therefore, we were able to look at the New Albany monitoring station data for April 18th and rolling into April 19th.

That showed large increase of particulate monitor readings into April 19th with the highest reading being 60 micrograms per cubic meter. None of the other stations, Jeffersonville or Charlestown or any of the Louisville stations had data that was on-line and accessible that we could look at to show accurate monitoring and documenting of such a -- the detonation of 60 tons of fireworks and the resulting particulate matter pollution resulting from that.

Furthermore, the multiple months in 2008 to 2010 exceeded the standard of 15 micrograms per meter so that while the statutes allow yearly averages — annual averages to be used to demonstrate compliance, it shouldn't overlook the fact that three months in 2008, July, August, and September had monthly averages exceeding the 15 micrograms

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

per cubic meter level. The July of 2008 was 18.1; August, 17.1; and September, 17.6. Four months in 2010, February, 16.3; July, 16; August 16.4; October 17.0. Three months in 2011, January, 15.2; July, 19.7, a very high reading only recently; and August, 16.2.

It should be noted that our observation about the economic recession was echoed by KIPDA in its comments to the Indiana request, actually, it predated our comments, so I guess it didn't echo them, but Larry Chaney, the MPO director for KIPDA made the comment, there is sufficient uncertainty associated with several variables used in the analysis of regional air quality that establishing motor vehicle emission budgets for PM2.5 and NOx based on 15 percent margins of safety will be too low. Establishing motor vehicle emissions budgets that are too low, (i.e., too stringent) will increase the probability that a conformity failure will occur. If this occurs, the metropolitan transportation plan and transportation improvement plan cannot be updated or amended. This would hinder the progress in implementing transportation projects, some of which have the potential to reduce pollutant emissions and presumably improve local air quality.

We also include a listing of current peer reviewed scientific journals underscoring the growing scientific understanding of the health impacts of ultra fine

1 particulate. 2 MR. COYTE: Yeah. Yeah. My -- if I may 3 interject here. I think -- I want to make sure that --4 MR. GOWINS: Could -- could -- could you 5 indicate --MR. COYTE: David Coyte with CART again. I 6 think it's important to note in the studies that Bud was 7 8 citing relative to the placement of the meter -- of the monitors, which are -- average about 300 meters from the 9 10 main traffic corridors. Many of these studies show that the 11 actual measurable emissions off these -- off these roadways 12 drop significantly within a hundred meters. 13 So, if you place your monitor 300 meters away from 14 the road, you're not getting an accurate reading of what 15 that -- of what the real pollutant load is for the users of 16 that roadway be it the cyclist, drivers or pedestrians. 17 And I think that this is tremendously important as 18 we -- as we realize that people use those roads and it's people on those roads, it's not just vehicles, it's people 19 20 in those cars, it's pedestrians, it's cyclist, and if we 21 want to encourage a healthier state and encourage people to 22 walk, then they -- they are -- they are certainly being 23 impacted negatively by proximity to those, and our monitors 24 need to be placed in a way that show that. 25

I think there's also some -- some standards in the

EPA monitoring guidelines that talk about specifically that, that you have to make sure that your -- you are testing and showing your higher -- your hotspots as well as the general background.

So there seems to be a real bias in how these monitors have been placed within the metro area that are keeping the accurate data and the accurate health impacts from being seen, not just for the ultra fine, which is a coming issue, but for the 2.5, which is with us today.

I think the other point that Bud made is it had to do with the information available from the monitors relative to the Thunder Over Louisville. The only monitor that he was able to get ready information on was the one upwind in New Albany and even that showed exceedances following the Thunder Over Louisville program. So it seems to be a concerted effort to obfuscate some of the realities of air pollution in this — in this region.

We've seen it before, we -- we're hoping that EPA will get -- we'll get our -- cover our backs and -- and take their role of protecting the citizens of this region seriously. Thank you.

MR. GOWINS: Okay. Thank you, Mr. Coyte.
Mr. Hixson, were you completed?

MR. HIXSON: I -- I'm going to conclude my comments just offering that if anybody wants to give me an

```
e-mail I can send them the complete text of our comments and
 1
 2
    some of the supporting documents if they need that.
 3
                  MR. GOWINS: Okay. Thank you, Mr. Hixson.
 4
    The next person on the list that indicated they might
    possibly offer comments would be Jeff Gallic.
 5
                  MR. GALLIC: Yes. You're -- you're one of the
 6
 7
    few people to get that right the first time.
 8
                  MR. GOWINS: You might need to come to the
    table, sir, in order for our court reporter to hear you.
 9
10
                  MR. GALLIC: Well, I wrote possibly because
    I'm not completely sure what the procedure is in regards to
11
12
    hearings like this. And I -- I certainly don't want to
13
    waste anyone's time.
14
              We're very interested in this event and we have
15
    questions about the side effects of approving redesignation.
16
    I don't know if this is an appropriate time venue for those
17
    questions or not?
18
                  MR. GOWINS: Well, what you can do if you have
19
    comments and questions regarding the package, you can state
20
    them and then in our response to comments, we will respond
21
    to what your comments are.
22
                  MR. GALLIC: All right. We -- our two
23
    questions are, what would -- if -- if redesignation is
24
    approved, if the EPA considers this now to be an attainment
25
    area, what would the impact be on stage 2 vapor recovery
```

requirements at retail gasoline facilities. And what would the impact be on the current requirement for reformulated gasoline to be sold in this area. Thank you.

MR. GOWINS: Thank you, Mr. Gallic. The next person that has indicated they would like to give testimony is Mary Love.

MS. LOVE: Thank you. My name is Mary Love. I am here as a member of Kentuckians for the Commonwealth. The Jefferson County chapter has been working on trying to look at the issue of the pollution that's coming from the coal fired power plants, specifically, the landfill, the coal ash landfills.

The folks who live in the Cane Run neighborhood are just across the street from that 14-story coal ash landfill. They regularly have dust, which has been shown to have come from the landfill, polluting their homes, their cars, gets inside the -- the -- their houses. Their children are suffering from asthma and other diseases. We just are very concerned about the fact that we feel like that pollution is not being monitored in the way it should be. I just raise that concern.

The Mill Creek and Cane Run plants are on the southwest side of Louisville. Mill Creek also has a huge landfill there for coal ash. And the prevailing winds are from the southwest. And we are pretty certain that all that

pollution coming from those coal ash landfills is coming all 1 2 over Louisville and adding to the fact that we -- Louisville 3 is one of the highest -- has one of the highest asthma rates 4 around. 5 So we just want to raise those as concerns and we're not -- we're not sure at all that there are monitoring 6 7 stations that are close enough to that pollution to really measure what's coming out particularly for those 8 9 neighborhoods. Thank you. 10 MR. GOWINS: Thank you, Ms. Love. 11 MR. COYTE: May I just -- a little bit of 12 information? 13 MR. GOWINS: Yeah. Yes, sir. 14 MR. COYTE: This is David Coyte with CART. 15 just -- because we've looked at where these monitoring 16 stations are located, we can tell you, the nearest one is 17 the Watson Lane Elementary, which is probably five miles 18 away and it's probably south and -- east and south of 19 that -- of that facility, which doesn't put it in the direct 20 air flow from the -- from those -- that ash landfill. MS. LOVE: But there is a middle school that 21 22 is just to the north and slightly northeast of the Cane Run 23 plant that's within, what, a mile, mile and a half, 24 something like that, so there are -- there are a bunch of

25

school surrounding that area.

MR. GOWINS: Okay. Thank you all. Does 1 2 anyone present, who has not offered comments previously, 3 have any final comments before we close the hearing. Your 4 name? 5 MS. RUNYON: I did sign up. MR. GOWINS: Ms. Runyon? 6 MS. RUNYON: Yes. 7 8 MR. GOWINS: Okay. If you could give your name for the --9 10 MS. RUNYON: My name is Meme Sweets Runyon. I'm executive director of River Fields Incorporated, 643 11 12 West Main Street. 13 I am speaking here on behalf of River Fields. I 14 will be brief. River Fields is a 52-year old river 15 conservancy. We monitor the health of the river in its 16 corridor through advocacy, education, and we also do a great 17 deal of land conservation work. We are active from West 18 Point, Kentucky to Westport. And we are very concerned 19 about air pollution issues in the river corridor. 20 The Ohio River corridor master plan, which was a joint planning process with MSD, Jefferson County, and River 21 22 Fields funded for \$300,000 and their goals and objectives 23 are a part of Cornerstone 20/20. One of their -- one of 24 their goals is that the air quality in the river corridor 25 will be healthy for its citizens.

River Fields has a number of questions that we look forward to answers in your responses, first, we would like to understand in depth the -- your -- your thinking, your methodology behind the placements of the monitors, exactly what was the thought process, why each one of those areas of those spots were placed.

We also support CART's comments, excellent in depth research that really we can't improve on. And we're concerned particularly about the question of redesignation and we'd like some in depth explanation about your use of traffic data and exactly how you decided on the particular years that you -- you did in this traffic data.

Another issue that we're concerned about is the number of monitors and the relationship between the monitors, which are chosen in places like parks or schools and not known hot spots in the community.

So those are our questions and we are very concerned about this redesignation, and hope that the air pollution control district board will also be aware of the grave health issues that exist in our community.

One member of our board is Dr. Hiram Polk, who's renown as a very important public health leader in this community. And his explanation to me of what the lungs of citizens in Louisville look like versus the lungs of citizens from other parts of the state is truly a grave

situation. And so there's such new science that's coming out about fine particulates that I think it would be important in terms of public health to err on the conservative side rather than the liberal side in terms of redesignation. Thank you. MR. GOWINS: Thank you, Ms. Runyon. So I'll ask again, is there anyone present who has not offered comments previously to have any final comments before we close this hearing? In the absence of any additional testimony then, this public hearing is adjourned. Thank you very much. (Whereupon, said public hearing was concluded at approximately 10:42 a.m.)

```
1
    STATE OF KENTUCKY
                          ) SS:
 2
    COUNTY OF OLDHAM
 3
              I, Linda A. Fox, Notary Public in and for the
 4
    State of Kentucky at Large, hereby certify that the
    foregoing public hearing was taken at the time and place
 5
    stated in the caption; that the appearances are as set forth
 6
    in the caption; that prior to giving the testimony the
 7
 8
    witness was first duly sworn by me;
              That said testimony was reported by me in
 9
10
    stenographic notes and transcribed under my personal
11
    direction and supervision; and that said typewritten
12
    transcript is a true and correct transcript, to the best of
13
    my ability and understanding.
14
              I further certify that I am not related by blood
15
    or marriage to any of the parties hereto and that I have no
16
    interest in the outcome of the captioned case.
17
              My Commission as Notary Public expires
18
    February 23, 2015. My notary ID is 437175.
19
              Given under my hand this the 14th, day of
20
    February, 2012.
21
22
23
24
                                 LINDA A. FOX, CCR
                                 CCR NO. 20042030
25
                                 NOTARY PUBLIC, STATE OF KENTUCKY
```

		28
\$	593-4940 [1] 1/19	analysis [7] 7/3 9/6 9/18
	6	10/20 12/8 13/5 18/12
\$300,000 [1] 24/22		and located [1] 3/13
0	60 [3] 10/2 17/13 17/18 643 [1] 24/11	announcement [1] 3/10
0044 [1] 15/17		annual [4] 7/19 15/12 16/1 17/22
0051 [1] 15/25	8	Another [1] 25/13
	80 [2] 9/22 9/25	answers [1] 25/2
1	850 [1] 2/4	any [10] 4/3 6/17 7/2 16/25
10 [2] 3/2 10/12	9	17/5 17/15 24/3 26/8 26/10
107 [1] 11/25	9	27/15
10:00 [2] 1/20 2/5	90 [1] 9/22	anybody [1] 20/25
10:42 [1] 26/14	A	anyone [4] 3/19 4/2 24/2
110 [1] 12/16		26/7
130 [1] 9/25	a.m [4] 1/20 2/5 3/2 26/14	anyone's [1] 21/13
14-story [1] 22/14	ability [1] 27/13	APCD [2] 6/11 6/16
14.83 [1] 16/2	able [2] 17/10 20/13	appearances [1] 27/6
14th [1] 27/19 15 [5] 8/2 11/17 17/21 17/25	about [18] 7/25 8/9 9/25 10/1 11/12 14/16 17/2 18/6	appears [1] 15/18
18/13	19/9 20/1 21/15 22/19 24/19	application [5] 14/11 15/14
15.2 [1] 18/4	25/9 25/10 25/13 25/18 26/2	15/24 16/8 16/18
16 [1] 18/3	absence [1] 26/10	<pre>applied [1] 15/21 approaching [1] 10/11</pre>
16.2 [1] 18/5	access [1] 17/3	appropriate [2] 3/22 21/16
16.3 [1] 18/3	accessible [2] 17/6 17/16	approval [2] 12/18 12/25
16.4 [1] 18/3	accurate [5] 17/4 17/17	approved [2] 12/15 12/25
17.0 [1] 18/3	19/14 20/7 20/7	approving [2] 12/25 21/15
17.1 [1] 18/2	accurately [1] 14/9	approximately [2] 2/5 26/14
17.6 [1] 18/2	achievable [1] 13/17	April [4] 17/4 17/11 17/11
18.1 [1] 18/1	across [1] 22/14	17/13
18th [2] 17/4 17/11	Act [1] 11/25	April 18th [2] 17/4 17/11
19.7 [1] 18/4	action [1] 6/17	April 19th [2] 17/11 17/13
1990s [1] 5/13	actions [1] 3/18	are [47]
1993 [1] 5/2	active [1] 24/17	area [18] 4/7 5/5 5/9 7/19
1997 [3] 4/7 7/18 8/12 19th [2] 17/11 17/13	actively [1] 4/25	7/20 10/14 12/2 12/3 12/15
	16/23	13/14 14/9 14/13 15/12 16/21
2	acts [1] 6/4	20/6 21/25 22/3 23/25 areas [3] 9/17 14/7 25/6
2.5 [5] 4/7 7/21 9/23 15/19	actual [5] 11/11 14/2 14/9	arque [1] 15/23
20/9	17/9 19/11	argues [3] 12/5 12/16 13/13
20 [3] 9/25 10/2 24/23	actually [2] 13/2 18/8	around [4] 5/16 6/6 9/17
20/20 [1] 24/23	adding [1] 23/2	23/4
200 [1] 2/10	addition [1] 3/14	arteries [2] 14/17 15/2
2000 [3] 9/2 11/14 12/22	additional [1] 26/10	article [1] 14/24
20042030 [1] 27/24	address [1] 5/23	articles [2] 11/4 14/21
2005 [2] 7/1 7/24	adequately [2] 6/6 6/12	as [26] 3/4 4/24 5/7 5/16
2006 [2] 7/25 10/5	adjourned [1] 26/11	6/5 7/2 8/11 8/17 8/21 9/15
2007 [1] 8/14	admittedly [1] 6/22	10/12 10/12 12/5 13/21 13/21
2008 [6] 8/17 13/16 16/7	adopt [2] 10/16 13/21	15/5 16/20 19/17 19/18 20/3
17/20 17/24 18/1 2010 [5] 13/16 14/24 16/3	adopted [1] 10/6 adoption [1] 12/18	20/3 22/8 23/5 25/22 27/6
17/20 18/2	Advancement [3] 4/16 4/23	27/17
2011 [3] 11/18 17/4 18/4	7/15	ash [5] 22/12 22/14 22/24 23/1 23/20
2012 [4] 1/20 2/5 3/2 27/20	adversarial [1] 3/16	ask [2] 3/20 26/7
2015 [1] 27/18	advises [1] 10/10	asks [1] 3/6
21 [1] 2/20	Advisory [1] 10/9	associated [2] 5/10 18/11
21-111-0044 [1] 15/17	advocacy [1] 24/16	asthma [3] 5/9 22/18 23/3
21-111-0051 [1] 15/25	after [1] 4/19	attained [1] 12/4
22 [1] 2/20	again [2] 19/6 26/7	attainment [16] 4/7 7/19 7/21
23 [1] 27/18	against [3] 6/14 8/13 10/14	7/24 8/12 8/21 9/13 10/13
24 [1] 2/21	air [30]	10/14 12/2 12/2 12/7 12/12
3	airport [1] 11/8	15/10 15/11 21/24
300 [3] 14/16 19/9 19/13	airports [1] 9/18 Albany [2] 17/10 20/14	attendance [1] 3/8
300 [3] 14/16 19/9 19/13 3rd [1] 3/2	all [9] 3/7 3/22 6/1 6/24	attending [2] 3/6 3/19
	21/22 22/25 23/1 23/6 24/1	attitude [1] 5/24 attorney [2] 4/15 7/9
4	allow [2] 15/22 17/22	August [4] 17/24 18/1 18/3
40601 [1] 2/11	allowed [1] 15/23	18/5
437175 [1] 27/18	also [6] 18/23 19/25 22/23	August 16.4 [1] 18/3
4940 [1] 1/19	24/16 25/7 25/19	available [1] 20/11
5	am [3] 22/8 24/13 27/14	Avenue [3] 2/4 16/8 16/12
	ambient [1] 8/1	average [7] 8/20 11/11 15/11
502 [1] 1/19	amended [1] 18/19	16/2 16/14 16/20 19/9
52-year [1] 24/14	among [1] 14/21	

		29
A	cardiac [1] 5/10	concerned [5] 22/19 24/18
Α	cars [2] 19/20 22/17	25/9 25/13 25/18
averages [3] 17/22 17/22	CART [10] 4/18 4/24 4/25	concerns [1] 23/5
17/25	5/13 7/5 12/5 12/16 13/13	concerted [1] 20/16
averaging [2] 16/13 16/15	19/6 23/14	conclude [1] 20/24
avoiding [1] 5/21	CART's [2] 12/25 25/7	concluded [1] 26/13
aware [1] 25/19	CASAC [1] 10/9	conclusion [1] 8/11
away [4] 11/7 11/7 19/13	case [1] 27/16	conditions [2] 5/10 6/17
23/18	cause [1] 16/25	conducted [1] 7/16
В	caused [2] 9/16 13/13	conference [1] 3/8
	causes [1] 11/2	conformity [1] 18/16
background [3] 10/15 15/7	CCR [3] 1/19 27/24 27/24	conjunction [1] 11/13
20/4	CD [2] 11/21 14/14	consensus [1] 10/11
backs [4] 5/24 7/5 7/6 20/19 balance [1] 5/17	centimeter [1] 10/18	conservancy [1] 24/15
Barret [3] 2/4 16/8 16/12	certain [1] 22/25	conservation [1] 24/17
based [12] 9/19 9/24 10/17	certainly [2] 19/22 21/12	conservative [1] 26/4
10/18 11/18 12/20 13/4 14/7	Certified [1] 2/2	consideration [3] 3/24 3/25 7/2
14/20 15/11 17/1 18/13	certify [2] 27/4 27/14 Chaney [1] 18/9	7/2 considers [1] 21/24
basis [2] 11/23 15/11	chapter [1] 22/9	construction [3] 5/3 5/7 8/17
be [32]	Charlestown [1] 17/15	contact [1] 4/3
because [6] 10/18 11/18	charted [1] 13/16	continued [1] 9/5
12/18 15/22 21/10 23/15	childhood [1] 6/3	continuous [1] 16/10
been [9] 4/25 5/18 6/20 7/14	children [3] 6/2 6/10 22/18	control [6] 3/12 9/11 13/3
15/20 16/6 20/6 22/9 22/15	chosen [1] 25/15	13/4 15/21 25/19
before [5] 2/2 12/5 20/18	chronic [1] 5/9	controversy [1] 10/15
24/3 26/9	circulation [1] 3/15	copy [5] 3/25 4/2 4/11 7/12
begin [1] 6/15	cite [1] 11/3	11/21
beginning [1] 7/25	cities [1] 6/19	Cornerstone [1] 24/23
behalf [1] 24/13	citing [1] 19/8	correct [1] 27/12
behind [1] 25/4	citizens [9] 5/4 5/12 5/25	corridor [4] 24/16 24/19
being [9] 4/4 6/6 6/22 14/22	6/13 7/5 20/20 24/25 25/24	24/20 24/24
15/3 17/13 19/22 20/8 22/20	25/25	corridors [3] 6/8 15/2 19/10
belabor [1] 8/7	claiming [1] 9/13	could [6] 13/21 17/16 19/4
below [1] 9/23	CLARENCE [4] 2/14 4/13 4/14	19/4 19/4 24/8
benefits [1] 6/2 best [1] 27/12	7/14	counts [2] 9/3 11/12
between [4] 5/14 5/17 9/22	<pre>clarify [1] 3/21 Clean [2] 10/8 11/25</pre>	county [7] 3/13 6/11 11/6 17/6 22/9 24/21 27/2
25/14	Clean [2] 10/8 11/23 clerk's [1] 3/14	course [1] 14/11
bias [1] 20/5	close [7] 3/14 close [7] 3/23 15/22 16/1	court [3] 1/19 2/3 21/9
biased [1] 12/12	16/3 23/7 24/3 26/9	cover [2] 8/3 20/19
bicycles [1] 6/3	co [1] 15/18	COYTE [9] 2/13 4/17 4/20
bikers [1] 5/6	co-location [1] 15/18	4/22 7/10 7/13 19/6 20/22
biking [1] 5/1	coal [5] 22/11 22/12 22/14	23/14
bit [4] 8/5 8/5 11/22 23/11	22/24 23/1	COYTE'S [1] 2/19
blood [1] 27/14	Coalition [3] 4/15 4/23 7/15	create [1] 11/14
bloodstream [1] 11/2	coarse [1] 7/22	Creek [2] 22/22 22/23
board [2] 25/19 25/21	coefficient [1] 16/14	criteria [4] 12/1 12/3 12/14
body [1] 10/5	collected [1] 15/12	13/6
both [1] 7/7	collecting [1] 6/16	criticism [1] 15/16
brainer [1] 6/4 brawl [1] 6/23	combustion [2] 9/21 13/25	cross [1] 5/5
Bridges [1] 6/24	come [3] 4/9 21/8 22/16	crosses [1] 11/1
brief [2] 4/18 24/14	coming [8] 16/6 16/22 20/9 22/10 23/1 23/1 23/8 26/1	cubic [7] 8/2 9/7 10/13 10/17 13/22 17/14 18/1
briefly [1] 8/3	comment [5] 3/21 3/23 4/11	current [5] 3/11 11/19 15/6
Bud [3] 7/9 19/7 20/10	13/13 18/10	18/23 22/2
budgets [2] 18/13 18/15	comments [33]	cut [1] 6/20
bunch [1] 23/24	Commission [1] 27/17	cyclist [2] 19/16 19/20
bus [1] 5/5	Committee [1] 10/9	
busy [2] 11/7 14/16	Commonwealth [2] 3/15 22/8	D
c	community [4] 9/13 25/16	damage [1] 11/2
	25/20 25/23	dangerous [1] 6/9
Cabinet [1] 2/2	complete [1] 21/1	data [24] 8/16 8/22 10/19
calculations [1] 10/19	completed [1] 20/23	11/13 11/14 11/19 12/12
called [1] 4/10	completely [1] 21/11	12/20 12/22 14/7 14/23 15/10
can [9] 4/9 4/10 5/7 8/8 17/8 21/1 21/18 21/19 23/16	compliance [1] 17/23	15/12 15/13 15/23 15/25 17/3
1//8 21/1 21/18 21/19 23/16 can't [1] 25/8	composed [1] 9/22	17/3 17/6 17/11 17/15 20/7 25/11 25/12
Cane [3] 22/13 22/22 23/22	<pre>concentrated [1] 15/1 concentrations [3] 9/17 14/6</pre>	date [2] 1/20 17/8
Cannons [2] 16/9 16/12	15/4	Dave [1] 4/17
cannot [1] 18/19	concept [2] 5/13 5/20	DAVID [4] 2/13 4/21 19/6
caption [2] 27/6 27/7	concern [1] 22/21	23/14
captioned [1] 27/16]	day [2] 17/5 27/19

		30
	echo [1] 18/9	executive [1] 24/11
D		
1 1 11 0 11 1	echoed [1] 18/7	exercise [1] 6/10
deal [1] 24/17	economic [10] 8/14 11/19	exist [1] 25/20
decades [1] 6/14	12/22 13/15 16/6 16/19 16/21	existing [1] 16/1
decided [1] 25/11	16/23 17/1 18/7	experience [1] 5/8
decision [1] 8/11		
	education [1] 24/16	experienced [1] 8/14
declare [1] 3/4	effects [4] 7/4 12/6 12/17	expires [1] 27/17
declines [1] 13/17	21/15	explanation [2] 25/10 25/23
deeply [1] 10/25	effort [2] 7/1 20/16	exposed [3] 9/9 11/9 15/3
defer [1] 4/17		
	Efforts [1] 5/20	exposure [4] 11/11 13/23
degree [1] 8/7	EGGEN [1] 2/13	14/3 14/10
demand [2] 11/14 12/23	eight [1] 16/17	ਜ
demonstrate [3] 6/7 15/10	elderly [1] 6/2	r
17/23	Elementary [1] 23/17	facilities [1] 22/1
, -		
demonstrates [1] 14/25	elevated [1] 6/8	facility [1] 23/19
demonstrating [2] 10/6 12/12	embraced [1] 5/13	fact [3] 17/24 22/19 23/2
dense [1] 8/8	embracing [1] 5/22	factors [2] 11/15 12/20
Department [1] 17/7	emerged [1] 9/14	fails [1] 9/19
dependent [1] 6/21	Emerging [1] 9/1	failure [1] 18/17
depth [4] 8/6 25/3 25/8	emission [1] 18/13	failures [1] 7/8
25/10	emissions [19] 8/16 8/16 8/19	FAIR [1] 2/10
describe [1] 5/14		far [1] 10/7
designated [2] 7/20 7/24		FEBRUARY [6] 1/20 2/5 3/2
detect [1] 9/19	13/15 13/25 16/25 18/15	18/2 27/18 27/20
detected [1] 12/10	18/21 19/11	February 23 [1] 27/18
determination [3] 12/3 12/7	emitted [1] 10/22	February 3rd [1] 3/2
13/6	encourage [3] 6/10 19/21	federal [4] 9/5 10/19 13/10
detonation [1] 17/18	19/21	13/12
developing [1] 10/11	encouraging [1] 6/4	feel [1] 22/19
development [1] 5/2	end [1] 6/13	fellow [1] 5/12
did [5] 6/17 10/7 16/9 24/5	ended [1] 13/16	few [1] 21/7
25/12	Energy [1] 2/1	Fields [5] 24/11 24/13 24/14
		
didn't [2] 16/13 18/9	enforceable [3] 13/8 13/10	24/22 25/1
diesel [2] 9/21 9/24	13/24	filter [1] 9/6
difference [1] 16/14	enforced [1] 7/7	final [2] 24/3 26/8
dip [5] 8/16 13/14 16/6	enforcement [1] 14/2	financial [1] 6/20
16/20 17/1	enforcing [1] 6/12	find [2] 15/4 17/5
		findings [2] 14/20 14/22
direct [1] 23/19	Engine [1] 9/21	
direction [1] 27/11	engines [2] 9/24 10/1	fine [20] 6/9 7/22 9/1 9/3
director [2] 18/10 24/11	enough [2] 10/7 23/7	9/12 9/14 10/2 10/24 11/4
disabled [1] 5/4	entrance [1] 3/8	11/12 12/8 12/9 12/21 13/23
discussion [1] 7/8	enviromental [1] 14/23	14/1 14/19 15/1 18/25 20/8
diseases [2] 5/10 22/18		26/2
_ · · · · · · · · · · · · · · · · · · ·		
disputes [1] 6/13	Environmental [1] 17/7	fired [1] 22/11
	EPA [15] 5/11 5/18 5/22 8/11	fireworks [1] 17/18
25/19	9/4 9/11 10/4 10/10 10/16	first [5] 4/13 12/3 21/7
division [6] 1/1 2/10 3/3	13/19 14/4 15/21 20/1 20/18	25/2 27/8
3/6 3/16 3/20		five [3] 13/21 15/13 23/17
division's [1] 3/11	epithelium [1] 11/1	flawed [1] 12/12
do [5] 6/10 14/1 20/11 21/18	equal [1] 3/23	flow [1] 23/20
24/16	err [1] 26/3	focus [1] 5/21
document [3] 7/16 8/24 9/8	erroneous [4] 12/7 12/18	folks [2] 8/6 22/13
documenting [1] 17/17	12/20 12/24	following [1] 20/14
3		
documents [2] 6/25 21/2	especially [1] 14/18	forced [1] 6/24
Does [1] 24/1	ESQUIRE [1] 2/14	foregoing [1] 27/5
doesn't [1] 23/19	established [2] 9/4 9/18	form [2] 7/7 13/3
don't [3] 8/7 21/12 21/16		format [1] 3/22
down [2] 15/2 15/15	5	forth [1] 27/6
	estimate [1] 11/10	
Dr [1] 25/21	estimated [1] 10/22	forward [4] 4/9 7/3 10/16
drivers [2] 5/5 19/16	EVALUATION [2] 2/9 3/3	25/2
driving [1] 15/2	even [2] 10/12 20/14	fought [1] 6/14
drop [1] 19/12	event [1] 21/14	found [1] 15/9
due [1] 13/7	every [1] 3/24	founding [1] 5/2
duly [1] 27/8	everybody's [1] 8/6	Four [1] 18/2
duress [1] 6/20	everyone [2] 3/6 3/11	FOX [7] 1/19 2/2 4/1 4/3 4/9
dust [1] 22/15	evidencing [1] 14/5	27/3 27/24
E	exactly [2] 25/5 25/11	framework [1] 11/25
	exceedances [1] 20/14	FRANKFORT [1] 2/11
e-mail [1] 21/1	exceeded [1] 17/21	FRM [5] 10/19 12/8 12/10
each [3] 14/14 16/10 25/5	exceeding [1] 17/25	12/20 13/5
early [2] 5/13 13/19	excellent [1] 25/7	funded [1] 24/22
		= =
earned [1] 5/8	excuse [1] 10/5	funding [1] 6/23
east [1] 23/18		further [2] 13/20 27/14

		31
F	16/19 19/3 22/8 24/13	indicators [1] 13/17
Furthermore [1] 17/20	hereby [1] 27/4 herein [1] 8/23	<pre>individual [1] 3/24 individuals [1] 3/18</pre>
future [2] 10/21 11/15	hereto [1] 27/15	industrial [1] 6/13
G	high [5] 5/9 9/12 14/18 15/3 18/4	information [5] 3/7 11/12
Gallic [2] 21/5 22/4	higher [1] 20/3	20/11 20/13 23/12
GALLIC'S [1] 2/20 gasoline [4] 9/21 10/1 22/1	highest [4] 14/6 17/13 23/3 23/3	<pre>initiatives [1] 6/25 inside [1] 22/17</pre>
22/3	highlights [2] 8/3 12/1	instance [1] 9/24
<pre>general [1] 20/3 generally [2] 14/15 16/5</pre>	highly [1] 15/1 highway [3] 6/22 11/7 14/16	<pre>instead [1] 13/4 intent [1] 3/21</pre>
generate [1] 12/23	highways [1] 9/17	interchanges [1] 11/7
get [7] 5/23 8/4 11/22 20/13 20/19 20/19 21/7		interest [3] 8/13 12/25
gets [2] 11/1 22/17	Hiram [1] 25/21 his [2] 5/22 25/23	27/16 interested [2] 4/2 21/14
getting [1] 19/14	history [1] 6/12	<pre>interject [1] 19/3</pre>
give [3] 20/25 22/5 24/8 given [2] 15/13 27/19	HIXSON [9] 2/14 4/13 4/15 6/5 7/9 7/11 7/14 20/23 21/3	intersections [1] 14/17
gives [2] 11/10 11/11	HIXSON'S [1] 2/19	investigating [1] 14/11
giving [1] 27/7 go [4] 3/1 8/8 10/7 15/15	homes [1] 22/16	is [66]
goals [2] 24/22 24/24	hope [1] 25/18 hoping [1] 20/18	issue [3] 20/9 22/10 25/13 issues [2] 24/19 25/20
going [3] 8/3 11/20 20/24	hot [1] 25/16	it [21] 8/9 9/10 9/20 10/20
Good [1] 3/1 government [1] 5/24	hotspots [1] 20/3 houses [1] 22/17	11/2 11/11 13/19 15/22 16/1 16/3 17/23 18/6 18/8 18/9
governor's [1] 5/22	housewives [1] 5/4	19/16 20/10 20/15 20/18
GOWINS [2] 2/9 3/3 grams [1] 9/7	how [2] 20/5 25/11 however [4] 3/20 5/19 6/5	22/20 23/19 26/2 it's [8] 3/2 19/7 19/18
graphic [2] 14/25 16/18	9/2	19/19 19/19 19/20 19/20
<pre>grasped [1] 5/20 grave [2] 25/20 25/25</pre>	huge [1] 22/23 hundred [1] 19/12	23/18
gravimetric [6] 9/6 9/18	I	its [7] 5/2 9/8 12/5 12/16 18/7 24/15 24/25
10/20 12/8 12/20 13/5 great [2] 9/16 24/16		J
growing [2] 13/22 18/24	:	January [1] 18/4
growth [1] 5/17	I'm [6] 4/15 4/22 8/3 20/24	Jeff [1] 21/5
<pre>guess [1] 18/9 guidelines [1] 20/1</pre>	21/11 24/11 I've [1] 7/14	Jefferson [5] 6/11 11/6 17/6 22/9 24/21
н	i.e [1] 18/15	Jeffersonville [1] 17/14
had [7] 7/24 16/1 16/3 17/2	ID [1] 27/18 identifying [1] 11/4	jobs [1] 8/17 JOHN [2] 2/9 3/2
17/15 17/25 20/10	ignore [2] 9/11 13/24	joint [1] 24/21
half [1] 23/23 hand [1] 27/19	<pre>ignores [3] 12/9 12/21 13/1 impact [2] 21/25 22/2</pre>	journal [1] 11/3 journals [1] 18/24
harm [1] 12/25	<pre>impacted [1] 19/23</pre>	July [4] 17/24 18/1 18/3
has [23] 4/25 5/8 5/16 5/18 5/20 7/20 8/14 9/2 9/14 12/3	impacts [4] 13/23 14/2 18/25 20/7	18/4 just [11] 15/15 19/19 20/8
13/13 13/15 14/4 15/20 15/21	<pre>implement [1] 7/25</pre>	20/25 22/14 22/19 22/21 23/5
22/5 22/9 22/15 22/23 23/3 24/2 25/1 26/7	<pre>implementation [8] 1/7 12/15 12/19 12/19 13/9 13/9 13/11</pre>	23/11 23/15 23/22
have [19] 5/16 6/20 7/16	13/18	K
7/24 9/25 14/13 15/18 16/6 16/10 18/21 20/2 20/6 21/14	<pre>implementing [1] 18/20 important [4] 19/7 19/17</pre>	keeping [1] 20/7 Kentuckians [1] 22/8
21/18 22/15 22/16 24/3 26/8	25/22 26/3	KENTUCKY [19] 1/1 2/1 2/3
27/15 having [1] 16/23	improve [2] 18/22 25/8	2/4 2/11 3/3 4/6 4/6 5/20
he [1] 20/12	<pre>improved [2] 4/25 14/1 improvement [2] 13/7 18/18</pre>	5/24 6/3 7/18 7/18 8/14 17/6 24/18 27/1 27/4 27/25
health [22] 5/17 5/25 6/1	inadequate [1] 9/7	KENTUCKY'S [1] 1/7
8/13 9/8 9/15 10/8 10/16 10/24 11/4 12/6 12/11 12/17	<pre>include [1] 18/23 included [3] 11/16 14/13</pre>	Kentucky-Indiana [1] 4/6 kill [1] 7/2
13/1 13/23 14/2 18/25 20/7	15/14	kind [1] 7/23
24/15 25/20 25/22 26/3 healthier [1] 19/21	<pre>includes [1] 5/3 Incorporated [1] 24/11</pre>	KIPDA [2] 18/7 18/10 know [2] 6/1 21/16
healthy [1] 24/25	increase [4] 6/23 6/23 17/12	
hear [2] 4/9 21/9 hearing [15] 1/1 1/12 2/1	18/16 increasing [1] 16/22	L
3/4 3/7 3/10 3/16 3/19 4/2	<pre>independently [1] 6/16</pre>	land [2] 5/14 24/17
4/4 24/3 26/9 26/11 26/13 27/5	Indiana [5] 4/6 7/18 16/18 17/7 18/8	landfill [5] 22/11 22/15 22/16 22/24 23/20
hearings [1] 21/12	<pre>indicate [1] 19/5</pre>	landfills [2] 22/12 23/1
held [1] 4/4 here [8] 5/21 8/6 8/21 11/20	<pre>indicated [2] 21/4 22/5 indications [1] 4/8</pre>	LANE [5] 2/10 15/25 16/9 16/12 23/17
	1, 0	

		32
_	margins [1] 18/14	most [1] 6/9
L	marriage [1] 27/15	motor [2] 18/12 18/15
1amma [2] 0/4 17/10 07/4		
large [3] 2/4 17/12 27/4	Mary [2] 22/6 22/7	move [2] 7/2 10/16
larger [1] 9/19	mask [1] 14/2	MPO [1] 18/9
Larry [1] 18/9	mass [2] 8/25 13/3	MPO's [1] 6/25
last [1] 5/23	master [1] 24/20	MR [9] 2/13 2/14 2/19 2/19
lawyers [1] 5/5	material [2] 8/8 14/24	2/20 6/5 7/10 7/13 21/3
laying [1] 11/24	matter [3] 7/21 10/9 17/19	Mr. [5] 4/20 7/11 20/22
leader [2] 5/18 25/22	may [4] 3/20 6/11 19/2 23/11	
leads [1] 6/3	me [6] 4/11 10/5 20/25 25/23	Mr. Covte [2] 4/20 20/22
leave [2] 7/3 7/7	27/8 27/9	Mr. Gallic [1] 22/4
legal [1] 11/25	meaning [1] 3/21	Mr. Hixson [2] 7/11 20/23
LESLIE [1] 2/13		MS [9] 2/13 2/20 2/21 4/1
Let's [1] 3/1	Meanwhile [1] 6/21	4/3 4/9 23/10 24/6 26/6
level [2] 7/23 18/1	measurable [1] 19/11	MSD [1] 24/21
levels [3] 6/8 9/12 14/18	measure [2] 9/8 23/8	much [2] 5/15 26/11
liberal [1] 26/4		
		multicounty [1] 7/20
like [11] 4/14 4/17 6/19	measurements [1] 8/25	multiple [1] 17/20
21/12 22/5 22/19 23/24 25/3	measures [3] 13/3 13/18 14/2	must [3] 9/4 10/16 12/1
25/10 25/15 25/24	measuring [1] 9/6	my [14] 3/2 4/1 4/14 4/21
likely [1] 11/17	member [2] 22/8 25/21	7/14 19/2 20/24 22/7 24/10
limit [2] 16/1 16/3	members [3] 5/12 12/6 12/16	27/10 27/13 27/17 27/18
LINDA [5] 1/19 2/2 4/1 27/3	membership [1] 5/3	27/19
27/24	Meme [1] 24/10	N
line [3] 17/5 17/8 17/16	message [1] 5/22	TA
list [2] 3/11 21/4	met [1] 12/1	NAAQS [12] 8/1 8/12 8/22
listed [2] 13/6 16/8	meter [9] 8/2 9/7 10/13	9/13 9/24 10/4 10/10 10/21
listing [1] 18/23	13/22 16/2 17/14 17/21 18/1	11/16 13/20 14/8 16/1
literature [2] 9/15 14/21	19/8	name [8] 4/10 4/13 4/21 7/14
little [4] 8/5 8/5 11/22	meters [4] 14/16 19/9 19/12	22/7 24/4 24/9 24/10
23/11	19/13	name's [2] 3/2 4/14
live [1] 22/13	method [3] 9/5 10/20 12/10	nanometer [1] 9/25
load [1] 19/15		nanometers [2] 10/2 10/25
	methodology [1] 25/4	<u> </u>
local [3] 3/13 16/21 18/22	metro [9] 3/12 5/5 5/8 7/5	nation [1] 6/3
located [6] 3/8 3/13 11/7	9/10 13/14 14/8 14/13 20/6	nation's [1] 6/19
11/7 14/15 23/16	metropolitan [1] 18/17	national [1] 8/1
location [1] 15/18	micrograms [7] 8/2 10/13	near [3] 14/5 14/6 14/22
look [6] 5/11 17/10 17/16	13/22 16/2 17/13 17/21 17/25	near-road [1] 14/5
22/10 25/2 25/24	micrometer [2] 7/21 9/23	nearest [1] 23/16
looked [1] 23/15	mid [1] 7/23	need [5] 7/6 7/6 19/24 21/2
lost [1] 8/17	mid-level [1] 7/23	21/8
Louisville [24] 2/4 3/12 4/6		negatively [1] 19/23
4/22 5/20 6/14 6/19 7/6 7/18	might [2] 21/4 21/8	neighborhood [1] 22/13
8/11 10/14 13/14 14/8 14/12		neighborhoods [1] 23/9
15/12 17/3 17/5 17/15 20/12	miles [1] 23/17	neither [1] 5/19
20/15 22/23 23/2 23/2 25/24	Mill [2] 22/22 22/23	network [7] 11/6 11/10 11/13
Love [3] 22/6 22/7 23/10	misleading [4] 9/10 10/15	14/9 14/13 15/6 16/21
LOVE'S [1] 2/20	10/20 10/23	new [4] 13/21 17/10 20/14
low [5] 10/12 11/10 13/21	mobile [4] 9/16 12/9 13/2	26/1
18/14 18/15	13/25	newspaper [1] 3/15
lower [2] 10/11 10/12	mobility [1] 5/17	next [2] 21/4 22/4
lowered [1] 13/2	mode [4] 12/9 12/10 12/21	no [5] 6/4 11/11 15/18 27/15
lung [1] 11/1	13/25	27/24
lungs [3] 11/1 25/23 25/24		no-brainer [1] 6/4
LUTRAQ [2] 5/14 7/2	modeling [1] $14/7$	non [7] 3/16 4/7 7/19 7/21
M	moderator [1] 3/4	7/24 10/14 12/2
1-1	monitor [10] 11/10 15/12	non-adversarial [1] 3/16
made [2] 18/10 20/10	15/15 15/18 15/20 17/9 17/12	
mail [1] 21/1	19/13 20/12 24/15	7/21 7/24 10/14 12/2
mailed [1] 3/10		
	monitored [2] 15/5 22/20	None [1] 17/14
mailing [1] 3/11	monitoring [13] 7/8 7/8 8/20	north [1] 23/22
main [4] 15/1 15/3 19/10	11/13 14/5 16/5 16/9 16/10	northeast [1] 23/22
24/12	17/10 17/17 20/1 23/6 23/15	not [26] 3/17 3/19 6/6 7/22
maintenance [6] 4/5 7/17	monitors [9] 11/6 15/10 19/9	7/22 10/7 11/18 12/10 13/16
10/21 10/23 11/15 17/1	19/23 20/6 20/11 25/4 25/14	14/1 15/5 15/23 16/10 16/15
major [5] 6/6 6/7 6/25 11/8		
	25/15	19/14 19/19 20/8 21/11 21/17
14/17	monthly [1] 17/25	22/20 23/6 23/6 24/2 25/16
make [3] 4/9 19/3 20/2	months [4] 17/20 17/24 18/2	26/8 27/14
making [1] 8/4	18/3	notary [5] 2/3 27/3 27/17
Management [1] 17/7	more [7] 6/21 8/5 9/3 10/25	27/18 27/25
manufacturing [1] 8/17	14/9 14/16 16/23	note [1] 19/7
many [2] 6/19 19/10	morning [1] 3/2	noted [2] 13/19 18/6
margin [1] 11/17	3/2	
mary111 [1] 11/1/		notes [1] 27/10
	1	

		33
N	21/7	produced [2] 8/15 8/19
	per [11] 8/2 9/7 10/13 10/17	= -
notice [1] 3/14	10/22 12/24 13/22 16/2 17/14	
notoriety [1] 5/9		progress [1] 18/20
now [2] 7/12 21/24	<u> </u>	project [1] 6/24
NOx [1] 18/13	18/14	projects [5] 6/22 7/2 7/4
nth [1] 8/7	perhaps [1] 10/12	13/3 18/20
number [3] 11/3 25/1 25/14	period [1] 3/23	promoted [1] 6/22
numbers [1] 10/17	permanent [2] 13/7 13/10	promoting [2] 4/25 5/18
0	permeates [1] 5/24	promulgated [1] 14/4
	permit [1] 16/15	proof [1] 8/21
OAKS [1] 2/10	person [2] 21/4 22/5	proposed [2] 3/18 4/5
obesity [1] 6/3	personal [1] 27/10	<pre>protect [2] 9/4 10/7</pre>
obfuscate [1] 20/16	personally [1] 5/7	protecting [1] 20/20
objectives [1] 24/22		<pre>protection [4] 5/12 6/14 8/13</pre>
observation [1] 18/6	photographs [1] 14/14	10/17
obtaining [1] 4/2		protest [1] 6/11
occur [1] 18/17		provide [3] 3/7 4/10 7/12
occurs [1] 18/17	<u> </u>	provides [1] 17/8
October [1] 18/3	<u>-</u> -	proving [2] 6/17 15/6
October 17.0 [1] 18/3	-	proximity [1] 19/23
off [3] 5/23 19/11 19/11		public [28]
offer [1] 21/5	<u> </u>	published [1] 3/14
offered [3] 8/21 24/2 26/8		pulmonary [1] 5/9
offering [1] 20/25	13/18 17/1 18/18 18/18 24/20	put [1] 23/19
offices [2] 3/12 3/14	planning [2] 6/25 24/21	Q
Ohio [2] 6/24 24/20	plant [1] 23/23	
Okay [5] 4/20 20/22 21/3	plants [2] 22/11 22/22	quality [17] 1/1 2/10 3/3
24/1 24/8	Please [1] 4/9	5/1 5/8 5/15 5/21 6/5 6/15
old [2] 11/13 24/14	plug [1] 17/8	7/4 8/1 13/7 14/1 14/22
OLDHAM [1] 27/2	PM [1] 4/7	18/12 18/22 24/24
on-line [3] 17/5 17/8 17/16	PM2.5 [19] 7/19 8/12 9/13	question [2] 17/2 25/9
one [10] 14/21 20/13 21/6		questioned [1] 3/19
23/3 23/3 23/16 24/23 24/23	12/7 12/21 12/24 13/14 13/17	
25/5 25/21		21/15 21/17 21/19 21/23 25/1
only [3] 6/15 18/4 20/12	18/13	25/17
order [3] 3/20 12/1 21/9	point [2] 20/10 24/18	quickly [1] 15/15
other [7] 13/9 13/12 13/18	points [3] 8/4 8/5 8/7	R
17/14 20/10 22/18 25/25	Polk [1] 25/21	
our [34]	pollutant [2] 18/21 19/15	raise [2] 22/21 23/5
out [6] 11/24 11/24 16/6	polluting [1] 22/16	rates [2] 5/9 23/3
16/22 23/8 26/2	1	rather [2] 5/21 26/4
outcome [1] 27/16	9/11 11/9 12/6 12/17 14/6	RE [1] 1/7
outdated [2] 8/25 12/22	15/21 17/19 20/17 22/10	reading [3] 17/13 18/4 19/14
over [5] 17/2 17/5 20/12		readings [6] 16/5 16/15
20/15 23/2 overlook [1] 17/23	poor [1] 5/8	16/20 17/4 17/9 17/12
	portion [2] 4/6 7/18	ready [1] 20/13 real [4] 11/18 14/23 19/15
P	possible [1] 4/12	real [4] 11/18 14/23 19/15 20/5
package [1] 21/19	possibly [2] 21/5 21/10	realities [1] 20/16
package [1] 21/19 pads [1] 9/6	<pre>potential [1] 18/21 power [1] 22/11</pre>	
 		
Inage [3] 2/18 15/13 16/17	-	realize [1] 19/18
page [3] 2/18 15/13 16/17	predated [1] 18/8	really [2] 23/7 25/8
panel [1] 10/9	<pre>predated [1] 18/8 predict [1] 16/24</pre>	really [2] 23/7 25/8 reapplication [1] 16/11
<pre>panel [1] 10/9 Park [2] 15/17 15/19</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29]</pre>	<pre>predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25</pre>	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1
<pre>panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9</pre>	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignate [1] 8/11
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2 parties [1] 27/15	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25 prior [1] 27/7	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignate [1] 8/11 redesignated [2] 12/2 12/14
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2 parties [1] 27/15 parts [1] 25/25	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25 prior [1] 27/7 probability [1] 18/16	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignated [2] 12/2 12/14 redesignation [16] 4/5 7/1
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2 parties [1] 27/15 parts [1] 25/25 pedestrians [2] 19/16 19/20	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25 prior [1] 27/7 probability [1] 18/16 probably [2] 23/17 23/18	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignate [1] 8/11 redesignated [2] 12/2 12/14 redesignation [16] 4/5 7/1 7/17 8/25 10/13 10/18 11/24
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2 parties [1] 27/15 parts [1] 25/25 pedestrians [2] 19/16 19/20 peer [5] 9/14 10/5 11/3	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25 prior [1] 27/7 probability [1] 18/16 probably [2] 23/17 23/18 problems [1] 15/9	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignate [1] 8/11 redesignated [2] 12/2 12/14 redesignation [16] 4/5 7/1 7/17 8/25 10/13 10/18 11/24 14/12 15/7 15/14 16/19 21/15
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2 parties [1] 27/15 parts [1] 25/25 pedestrians [2] 19/16 19/20 peer [5] 9/14 10/5 11/3 14/21 18/23	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25 prior [1] 27/7 probability [1] 18/16 probably [2] 23/17 23/18 problems [1] 15/9 procedure [1] 21/11	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignate [1] 8/11 redesignated [2] 12/2 12/14 redesignation [16] 4/5 7/1 7/17 8/25 10/13 10/18 11/24
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2 parties [1] 27/15 parts [1] 25/25 pedestrians [2] 19/16 19/20 peer [5] 9/14 10/5 11/3 14/21 18/23 penetrates [1] 10/25	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25 prior [1] 27/7 probability [1] 18/16 probably [2] 23/17 23/18 problems [1] 15/9 procedure [1] 21/11 process [3] 13/20 24/21 25/5	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignate [1] 8/11 redesignated [2] 12/2 12/14 redesignation [16] 4/5 7/1 7/17 8/25 10/13 10/18 11/24 14/12 15/7 15/14 16/19 21/15 21/23 25/9 25/18 26/5
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2 parties [1] 27/15 parts [1] 25/25 pedestrians [2] 19/16 19/20 peer [5] 9/14 10/5 11/3 14/21 18/23 penetrates [1] 10/25 people [9] 6/21 9/9 11/9	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25 prior [1] 27/7 probability [1] 18/16 probably [2] 23/17 23/18 problems [1] 15/9 procedure [1] 21/11 process [3] 13/20 24/21 25/5	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignate [1] 8/11 redesignated [2] 12/2 12/14 redesignation [16] 4/5 7/1 7/17 8/25 10/13 10/18 11/24 14/12 15/7 15/14 16/19 21/15 21/23 25/9 25/18 26/5 reduce [2] 13/20 18/21
panel [1] 10/9 Park [2] 15/17 15/19 parks [1] 25/15 part [1] 24/23 particle [13] 7/22 7/23 7/23 9/3 9/23 10/2 10/3 10/17 11/12 12/9 12/21 16/25 17/4 particles [1] 7/22 particular [2] 15/9 25/11 particularly [2] 23/8 25/9 particulate [29] particulates [3] 6/9 9/12 26/2 parties [1] 27/15 parts [1] 25/25 pedestrians [2] 19/16 19/20 peer [5] 9/14 10/5 11/3 14/21 18/23 penetrates [1] 10/25 people [9] 6/21 9/9 11/9	predated [1] 18/8 predict [1] 16/24 predicted [1] 16/24 predicting [1] 11/15 predictions [4] 10/21 11/16 11/17 12/24 present [6] 3/18 4/8 9/16 11/21 24/2 26/7 presently [1] 10/8 president [2] 4/18 4/22 presumably [1] 18/22 pretty [2] 8/8 22/25 prevailing [1] 22/24 previously [2] 24/2 26/8 principal [1] 13/25 prior [1] 27/7 probability [1] 18/16 probably [2] 23/17 23/18 problems [1] 15/9 procedure [1] 21/11 process [3] 13/20 24/21 25/5	really [2] 23/7 25/8 reapplication [1] 16/11 reattain [1] 7/25 receive [3] 3/23 3/25 4/4 received [1] 3/22 recent [2] 6/7 14/20 recently [2] 14/4 18/5 recession [4] 8/15 13/15 16/23 18/7 recognition [2] 13/22 14/5 record [1] 3/1 recording [1] 4/1 recovery [1] 21/25 redeployment [1] 14/8 redesignate [1] 8/11 redesignated [2] 12/2 12/14 redesignation [16] 4/5 7/1 7/17 8/25 10/13 10/18 11/24 14/12 15/7 15/14 16/19 21/15 21/23 25/9 25/18 26/5 reduce [2] 13/20 18/21

	-	34
R	rolling [1] 17/11	8/7 11/23 15/9 15/15 18/20
K	ROM [2] 11/21 14/14	19/25 19/25 20/16 21/2 25/10
reduction [1] 8/15	room [1] 3/9	something [1] 23/24
reductions [3] 13/8 13/10	roster [1] 3/8	sought [1] 5/16
13/24	rulemaking [1] 13/20	source [3] 9/16 12/10 13/25
reference [2] 9/5 10/19	Run [3] 22/13 22/22 23/22	sources [4] 9/8 11/8 13/2
reflect [1] 14/9	Runyon [3] 24/6 24/10 26/6	13/2
reflects [1] 5/25	RUNYON'S [1] 2/21	south [2] 23/18 23/18
reformulated [1] 22/2	S	southwest [2] 22/23 22/25
regard [2] 12/16 14/20	6 1 111 14/10	spacial [2] 16/12 16/15
regarding [2] 3/17 21/19	safari [1] 14/12	speaking [1] 24/13
regards [1] 21/11	safety [2] 11/17 18/14	specifically [2] 20/1 22/11
region [2] 20/17 20/20	said [5] 12/5 15/5 26/13	specified [1] 3/13
regional [5] 3/12 4/16 4/23	27/9 27/11	spirit [1] 7/7
7/15 18/12	samples [1] 6/16	spots [2] 25/6 25/16
registration [1] 11/19	school [2] 23/21 23/25	SS [1] 27/1
registrations [1] 12/23	schools [1] 25/15	stage [1] 21/25
regularly [1] 22/15	science [4] 7/8 9/2 14/23	stages [1] 13/19
regulations [3] 5/21 6/12 7/6	26/1	standard [9] 8/22 9/2 9/24
related [1] 27/14	scientific [5] 9/15 10/8	10/12 10/17 12/4 12/8 13/21
relationship [3] 5/14 5/19	10/14 18/24 18/24	17/21
25/14	second [1] 12/14	standards [10] 8/1 8/2 8/12
relationships [1] 5/16	section [4] 2/9 3/4 11/25	9/14 10/4 10/7 10/10 10/21
relative [2] 19/8 20/11	12/16	11/16 19/25
rely [1] 8/25	see [1] 17/9	starts [1] 11/24
removal [1] 6/24	seems [3] 6/4 20/5 20/15	state [18] 1/7 2/3 5/23 5/23
renown [1] 25/22	seen [2] 20/8 20/18	5/23 8/21 11/22 12/15 12/18
repeated [1] 15/20	send [1] 21/1	12/19 13/9 13/18 19/21 21/19
reported [1] 27/9	September [2] 17/25 18/2	25/25 27/1 27/4 27/25
reporter [3] 1/19 2/3 21/9	seriously [2] 6/15 20/21	stated [1] 27/6
representative [1] 3/20	seriousness [1] 6/17	statement [1] 3/25
reproduce [1] 16/17	services [1] 6/20	station [3] 14/13 15/22
reproduced [2] 8/22 14/24	session [1] 3/5	17/11
request [7] 4/5 7/16 7/17	set [3] 8/20 15/23 27/6	stations [10] 14/15 16/6
8/24 10/18 11/24 18/8	several [1] 18/11	16/9 16/9 16/16 16/21 17/14
requested [1] 3/7	shifting [1] 12/21	17/15 23/7 23/16
require [2] 14/7 16/12	should [4] 4/3 15/23 18/6	statutes [2] 16/11 17/22
required [2] 11/16 16/11	22/20	stenographic [1] 27/10
requirement [2] 14/4 22/2	shouldn't [1] 17/23	story [1] 22/14
requirements [4] 6/23 13/10	show [7] 6/5 6/8 16/19 17/3	street [2] 22/14 24/12
13/12 22/1	17/17 19/10 19/24	stringent [1] 18/16
research [1] 25/8	showed [2] 17/12 20/14	students [1] 5/4
resident [1] 4/22	showing [3] 14/15 16/21 20/3	studies [4] 6/7 10/6 19/7
respond [2] 3/17 21/20	shown [2] 9/2 22/15	19/10
response [1] 21/20	shows [4] 8/16 14/25 16/19	study [1] 7/16
responses [1] 25/2	16/20	subjected [1] 15/20
result [2] 14/1 16/24	side [4] 21/15 22/23 26/4	submits [1] 3/24
resulted [2] 8/18 8/19	26/4	submitted [1] 15/10
resulting [4] 13/8 13/11	sifting [1] 12/9	substantial [1] 11/3
17/18 17/19	sign [1] 24/5	successful [1] 7/1
results [2] 8/20 15/19	significant [3] 10/5 12/6	such [4] 5/10 14/2 17/17
retail [1] 22/1	12/17	26/1
retained [1] 7/14	significantly [2] 6/8 19/12	suffer [2] 12/6 12/17
retirees [1] 5/3	similarly [1] 10/23	suffering [1] 22/18
reviewed [5] 9/15 10/6 11/3	simple [2] 6/2 6/4	sufficient [1] 18/10
14/21 18/23	since [5] 5/2 5/15 8/14 9/2	summary [1] 8/10
REVISE [1] 1/7	16/7	supervision [1] 27/11
revised [1] 10/4	SIP [2] 12/25 13/11	SUPERVISOR [1] 2/9
revision [1] 14/7	sir [2] 21/9 23/13	support [2] 8/10 25/7
revolved [1] 5/16	site [4] 15/17 15/17 15/25	supporting [2] 8/24 21/2
riders [1] 5/6	15/25	sure [5] 4/9 19/3 20/2 21/11
riding [1] 6/2	situation [1] 26/1	23/6
right [3] 4/1 21/7 21/22	size [2] 7/21 9/23	surrounding [1] 23/25
rising [1] 16/24	slightly [1] 23/22 slowdown [1] 13/15	sustainable [1] 5/1
	slowdown 1 13/15	Sweets [1] 24/10
river [11] 6/24 24/11 24/13 24/14 24/14 24/15 24/19	19/13 20/5 20/15 23/5 23/24	sworn [1] 27/8
24/14 24/14 24/15 24/19 24/20 24/21 24/24 25/1	25/17 26/1 26/7	Synthesizing [1] 14/22
road [2] 14/5 19/14	25/1/ 26/1 26/ 	system [1] 15/13
roads [2] 19/18 19/19	socio-economic [2] 11/19	T
roadway [3] 14/6 14/22 19/16	12/22	table [1] 21/9
roadways [2] 15/3 19/11	sold [1] 22/3	take [2] 6/18 20/19
role [1] 20/20	some [14] 4/18 6/9 8/3 8/5	taken [3] 2/2 16/18 27/5

-	15/2 19/10 25/11 25/12	view [1] 8/6
T	transcribed [1] 27/10	violate [1] 16/25
talk [1] 20/1	transcript [3] 4/3 27/12	violated [1] 11/18
targets [1] 10/23	27/12	volume [1] 9/7
teachers [1] 5/4	transient [1] 13/14	
technology [1] 14/23	transit [4] 5/1 6/20 6/25	W
tell [1] 23/16	13/3	walk [1] 19/22
ten [1] 13/21	Transporation [1] 4/23	walkers [1] 5/6
tendering [1] 14/14	transportation [8] 4/16 5/2	walking [2] 5/1 6/2
terms [2] 26/3 26/4	5/15 6/8 7/15 18/18 18/18	want [6] 6/10 8/7 19/3 19/21
tested [1] 6/7	18/20	21/12 23/5
testimony [6] 3/18 4/8 22/5	travel [2] 11/14 12/23	wants [2] 7/5 20/25
26/10 27/7 27/9	tremendous [1] 6/1	was [21] 2/2 3/10 3/14 5/23
testing [3] 6/12 6/16 20/2	tremendously [1] 19/17	7/20 11/13 16/2 16/3 16/11
text [1] 21/1	Trends [1] 13/16	17/16 18/1 18/7 19/7 20/13
than [2] 5/21 26/4	tried [1] 17/3	20/13 24/20 25/5 26/13 27/5
Thank [15] 4/21 7/9 7/10	trough [1] 16/20	27/8 27/9
20/21 20/22 21/3 22/3 22/4	true [1] 27/12	waste [1] 21/13
22/7 23/9 23/10 24/1 26/5	truly [1] 25/25	Watson [2] 15/25 23/17
26/6 26/11	trying [2] 13/4 22/9	way [2] 19/24 22/20
that [116]	two [3] 16/9 16/16 21/22	we [50]
that's [3] 22/10 23/23 26/1	typewritten [1] 27/11	we'd [1] 25/10
their [9] 10/1 20/20 22/16		we'll [1] 20/19
22/16 22/17 22/17 24/22	מ	we're [9] 11/20 14/14 16/22
24/23 24/24	UFP [1] 13/1	20/18 21/14 23/6 23/6 25/8
them [6] 5/22 6/21 14/21	ultra [16] 7/22 9/3 9/12	25/13
18/9 21/1 21/20	9/14 10/2 10/24 11/4 11/12	we've [3] 15/5 20/18 23/15
	12/9 12/21 13/25 14/18 14/25	
11/22 19/22 21/20 26/10	15/4 18/25 20/8	weight [3] 9/1 9/6 9/19
there [13] 4/3 4/8 6/1 7/23	unable [1] 17/5	welcome [1] 5/11
14/14 18/10 20/5 22/24 23/6	unacceptable [1] 9/10	well [4] 9/23 20/3 21/10
23/21 23/24 23/24 26/7	uncertainty [1] 18/11	21/18
there's [2] 19/25 26/1	under [5] 6/20 11/25 12/15	were [7] 7/23 11/15 15/14
therefore [1] 17/10	27/10 27/19	17/5 17/10 20/23 25/6
these [11] 6/4 7/2 10/23	underestimated [1] 12/11	west [3] 6/13 24/12 24/17
11/16 13/2 15/3 19/10 19/11	underscoring [1] 18/24	Westport [1] 24/18
19/11 20/5 23/15	understand [2] 15/19 25/3	what [13] 13/13 14/15 19/14
they [11] 6/11 6/15 7/23	understanding [4] 5/19 13/23	19/15 21/11 21/18 21/21
11/18 19/22 19/22 19/22 21/2		21/23 21/25 22/1 23/23 25/5
21/4 22/5 22/15	unprotected [1] 15/8	25/23
they're [1] 14/15	unprotective [1] 10/24	what's [1] 23/8
think [8] 14/16 16/13 19/3	unreliable [3] 12/13 13/17	when [4] 4/9 6/15 6/21 17/3
19/7 19/17 19/25 20/10 26/2	15/7	where [5] 9/9 11/2 11/9 17/8
thinking [1] 25/3	up [2] 4/19 24/5	23/15
third [1] 13/6	updated [1] 18/19	Whereupon [1] 26/13
this [40]	uptick [1] 16/20	which [18] 5/14 8/2 8/15
thorough [1] 7/3	upticking [1] 16/6	9/23 13/15 16/2 16/10 16/19
1		16/19 18/21 19/9 20/8 20/9
thoroughfares [1] 6/6	upwind [1] 20/13	
those [18] 5/16 6/17 7/4	urban [1] 9/17	22/15 23/17 23/19 24/20
15/13 16/9 16/15 19/18 19/19		25/15
19/20 19/23 21/16 23/1 23/5	use [7] 5/14 9/5 12/8 13/4	while [2] 9/13 17/22
23/8 23/20 25/5 25/6 25/17	16/11 19/18 25/10	who [5] 3/18 3/24 22/13 24/2
thought [1] 25/5	used [5] 11/13 11/15 16/8	26/7
threat [1] 9/15	17/23 18/11	who's [1] 25/21
three [6] 7/24 8/20 15/11	users [1] 19/15	why [1] 25/5
16/10 17/24 18/3	uses [2] 12/19 12/22	wide [1] 3/15
three-year [2] 8/20 15/11	using [1] 10/19	width [4] 9/23 9/25 10/2
through [3] 5/1 15/15 24/16	V	10/25
Thunder [4] 17/2 17/4 20/12	lidata [1] 15/10	will [22] 3/17 3/18 3/23
20/15	validate [1] 15/18	3/24 4/19 6/5 6/22 7/1 7/7
thus [1] 15/6	vandalism [2] 15/20 15/22	7/12 12/6 12/17 14/7 16/25
	vapor [1] 21/25	18/14 18/16 18/17 20/19
10/6 10/7 11/22 21/7 21/13	variability [2] 16/13 16/14	21/20 24/14 24/25 25/19
21/16 27/5	variables [1] 18/11	winds [1] 22/24
tissue [1] 11/2	vehicle [5] 11/19 12/22	within [4] 3/15 19/12 20/6
today [2] 5/11 20/9	16/23 18/13 18/15	23/23
today's [4] 3/6 3/10 4/1	vehicles [1] 19/19	without [1] 7/3
8/10	vehicular [1] 8/18	witness [1] 27/8
tons [3] 10/22 12/24 17/18	venue [1] 21/16	work [2] 5/15 24/17
too [3] 18/14 18/15 18/15	versus [1] 25/24	worker [1] 5/7
took [1] 14/12	very [10] 9/11 15/3 16/1	workers [1] 5/3
toxic [3] 6/15 9/3 9/12	18/4 21/14 22/19 24/18 25/17	
traffic [7] 6/23 8/18 14/17	25/22 26/11	world [2] 11/18 14/23
		•

KENTUCKY DIVISION FOR AIR QUALITY NOTICE OF PUBLIC HEARING TO REVISE KENTUCKY'S STATE IMPLEMENTATION PLAN

The Kentucky Energy and Environment Cabinet will conduct a public hearing on December 22, 2011, at 10:00 am (EDT) in the Conference Room of the Louisville Metro Air Pollution Control District, 850 Barret Avenue, Louisville, Kentucky. This hearing is being held to receive comments on a proposed State Implementation Plan (SIP) revision to redesignate the Kentucky portion of the Louisville, Kentucky-Indiana area from nonattainment to attainment for the annual PM_{2.5} National Ambient Air Quality Standard to address sections 107 and 175A of the Clean Air Act (CAA). This revision, when approved by the U.S. EPA, will redesignate the Counties of Bullitt and Jefferson to attainment, and document that the ambient monitoring data for annual PM_{2.5} indicates attainment of the standard.

This hearing is open to the public and all interested persons will be given the opportunity to present testimony. The hearing will be held, if requested, at the date, time and place given above. It is not necessary that the hearing be held or attended in order for persons to comment on the proposed submittal to EPA. To assure that all comments are accurately recorded, the Division requests that oral comments presented at the hearing also be provided in written form, if possible. To be considered part of the hearing record, comments must be received by the close of the hearing. Comments should be sent to the contact person. If no request for a public hearing is received, the hearing will be cancelled, and notice of the cancellation will be posted at the website listed below. Request for a public hearing must be received no later than December 15, 2011 while all comments must be submitted no later than December 22, 2011.

The full text of the proposed SIP revision is available for public inspection and copying during regular business hours (8:00 a.m. to 4:30 p.m.) at the locations listed below. Any individual requiring copies may submit a request to the Division for Air Quality in writing, by telephone, or by fax. Requests for copies should be directed to the contact person. In addition, an electronic version of the proposed SIP revision document and relevant attachments can be downloaded from the Division for Air Quality's website at:

http://air.ky.gov/Pages/PublicNoticesandHearings.aspx.

The hearing facility is accessible to people with disabilities. An interpreter or other auxiliary aid or service will be provided upon request. Please direct these requests to the contact person.

CONTACT PERSON: Leslie Eggen, Environmental Technologist III, Division for Air Quality, 200 Fair Oaks Lane, Frankfort, Kentucky 40601. Phone (502) 564-3999; Fax (502) 564-4666; E-mail lesliem.eggen@ky.gov.

The Environmental and Public Protection Cabinet does not discriminate on the basis of race, color, national origin, sex, age, religion, or disability and provides, upon request, reasonable accommodation including auxiliary aids and services necessary to afford an individual with a disability an equal opportunity to participate in all services, programs, and activities.

Ashland Regional Office 1550 Wolohan Drive, Suite 1 Ashland, KY 41102-8942

Hazard Regional Office 233 Birch Street, Suite 2 Hazard, KY 41701-2179

Bullitt County Clerk 149 N. Walnut Street Shepherdsville, KY 40165 Bowling Green Regional Office 1508 Westen Avenue Bowling Green, KY 42104-3356

London Regional Office 875 S Main Street London, KY 40741

Jefferson County Clerk 527 W. Jefferson Street Louisville, KY 40202 Florence Regional Office 8020 Veterans Mem Dr, Suite 110 Florence, KY 41042

Owensboro Regional Office 3032 Alvey Park Dr W, Suite 700 Owensboro, KY 42303-2191 Frankfort Regional Office 200 Fair Oaks, 3rd Floor Frankfort, KY 40601

Paducah Regional Office 130 Eagle Nest Drive Paducah, KY 42003-0823

Louisville Metro Air Pollution Control District 850 Barret Avenue Louisville, KY 40204

ALITY IBLIC HEARING UCKY'S STATE IM ATION PLAN PLEMENTATION PLAN

The Kentucky Energy and Environment Cabinet will conduct a public hearing on February 3, 2012, at 10:00 am (EDT) in the Conference Room of the Louisville Metro Air Pollution Control District, 850 Barret Avenue, Louisville, Kentucky. This hearing is being held to receive comments on a proposed State Implementation Plan (SIP) revision to redesignate the Kentucky portion of the Louisville, Kentucky-Indiana area from nonattainment to attainment for the annual PM2.5 National Ambient Air Quality Standard to address sections 107 and 175A of the Clean Air Act (CAA). This revision, when approved by the U.S. EPA, will redesignate the Counties of Bullitt and Jefferson to attainment, and document that the ambient monitoring data for annual PM2.5 indicates attainment of the standard.

This hearing is open to the public for annual PM2.5 indicates attainment of the standard.

This hearing is open to the public and all interested persons will be given the opportunity to present testimony. The hearing will be held if requested, at the date, time and place given above. It is not necessary that the hearing be held or attended in order for persons to comment on the proposed submittal to EPA. To assure that all comments are accurately recorded, the Division requests that oral comments presented at the hearing also be provided in written form, if possible. To be considered part of the hearing record, comments must be received by the close of the hearing. Comments should be sent to the contact person. If no request for a public hearing is received, the hearing will be cancelled, and notice of the cancellation will be posted at the website listed below. Request for a public hearing must be received no later than January 27, 2012 while all comments must be submitted no later than February 3, 2012.

The full text of the proposed SIP received in the proposed SIP received and and the proposed SIP received and significant and sig The full text of the proposed SIP revision is available for public inspection and copying during regular business hours (8:00 a.m. to 4:30 p.m.) at the locations listed below. Any individual requiring copies may submit a request to the Division for Air Quality in writing, by telephone, or by fax. Requests for copies should be directed to the contact person. In addition, an electronic version of the proposed SIP revision document and relevant attachments can be downloaded from the Division for Air Quality's website at: http://air.ky.gov/Pages/PublicNoticesandHearings.aspx. The hearing facility is accessible to people with disabilities. An interpreter or other auxiliary aid or service will be provided upon request. Please direct these requests to the contact person.

CONTACT PERSON: John Gowins, Evaluation Section Supervisor, Division for Air Quality, 200 Fair Oaks Lane, Frankfort, Kentucky 40601. Phone (502) 564-3999; Fax (502) 5 6 4 - 4 6 6 6 ; E - m a i ljohn.gowins@ky.gov. The Environmental and Public Protection Cabinet does not discriminate on the basis of race, color, national origin, sex, age, religion, or disability and provides, upon request, reasonable accommodation including auxiliary aids and services necessary to afford an individual with a disability an equal opportunity to participate in all services, programs, and activities.

Ashland Regional Office 1550 Wolohan Drive, Suite 1 Ashland, KY 41102-8942 Bowling Greer 1508 Western Bowling Greer n Regional Office Avenue n, KY 42104-3356

Florence Regional Office 8020 Veterans Mem Dr. Suite 110 Florence, KY 41042

Hazard Regional Office 233 Birch Street, Suite 2 Hazard, KY 41701-2179

London Regional Office 875 S. Main St. London, KY 40741

Owensboro Regional Office 3032 Alvey Park Dr. W. Suite 700 Owensboro, KY 42303-2191

Paducah Regional Office 130 Eagle Nest Dr. Paducah, KY 42003-0823

Bullitt County Clerk 149 N. Walnut Street Shepherdsville, KY 40165

Jefferson County Cl 527 W. Jefferson St. Louisville, KY 40202

Louisville Metro Air Pollution Control District 850 Barret Ave. Louisville, KY 40204