

October 8, 2024

ELECTRONIC SUBMITTAL

Amy Tempus-Doom Environmental Engineer Consultant Kentucky Department for Environmental Protection Division for Air Quality Permit Review Branch 300 Sower Boulevard, 2nd Floor Frankfort, KY 40601

RE: Big Run Power Producers, LLC Source ID: 21-019-00134 Agency Interest: 128843 Permit F-16-052 R3 Proposed Addition of RNG Plant Backup Flare Permit Modification Application

Dear Ms. Tempus-Doom,

Archaea Holdings, LLC (Archaea) is submitting the enclosed permit modification application for the addition of a Renewable Natural Gas (RNG) plant backup flare for its Big Run Power Producers, LLC (BRPP), facility, located at the Rumpke of Kentucky, Inc. (Rumpke) Boyd County Landfill in Ashland, Kentucky. This attachment constitutes a part of the Title V permit modification application. Archaea is proposing the addition of a new non-enclosed flare as a backup control device for the thermal oxidizer, consistent with other similar RNG facilities operated by Archaea.

In Permit #F-016-052, initially issued on September 13, 2016, and the subsequent modifications and renewals, the RNG process is divided into three emission points: Emission Point 01 – Temperature Swing Adsorption System, Emission Point 02 – Membrane System, and Emission Point 03 – Pressure Swing Adsorption System. The thermal oxidizer is included as a control device for each emission point. To simplify and align the permit with other similar facilities, the renewal application submitted on March 30, 2021 requested the emission point be combined into one emission unit (Renewable Natural Gas Plant). This permit modification application uses the same emission unit configuration for the calculations and forms.

The facility currently sends excess treated landfill gas (LFG) that cannot be processed by the RNG plant to the Rumpke Landfill Flare (FL-02), permitted under Title V Permit #V-016-053 R2. Landfill Flare (FL-02) is also used for the disposal of LFG that cannot be processed by the RNG plant due to low quality, RNG product gas that does not meet pipeline quality specifications, and RNG process waste gases during periods of thermal oxidizer downtime. The new RNG Plant Backup Flare will be used for the disposal of RNG plant waste gas during periods of thermal oxidizer downtime and off-spec product gas that cannot be sent to the pipeline. The new flare will not have the ability to process treated LFG that has not been processed by the RNG plant.

Archaea Energy

201 Helios Way Floor 6 Houston, TX 77079

Based on communications with KDAQ during the renewal application process in 2021, it is the understanding of Archaea and Rumpke that the landfill and RNG plant will be considered a single source in future permits. While the RNG Plant Backup Flare is a new emission unit, the total emissions for the combined landfill and RNG plant will remain the same. The new flare is a backup control device that will not increase the capacity or potential emissions of the RNG plant. Currently, emissions due to RNG plant waste gas and off-spec gas disposal are included in the potential emissions calculations for the Rumpke Landfill Flare. In this permit modification application, the emissions from those activities are included in the potential emissions for the RNG Plant Backup Flare.

The included calculations provide emissions for two operating scenarios: the off-spec mode where the RNG plant is producing off-spec gas that is sent to the RNG Plant Backup Flare, and thermal oxidizer backup mode where RNG Plant waste gas is sent to the RNG Plant Backup Flare instead of the thermal oxidizer. Please note that the emissions calculations use the emission factors from Final AP-42 Chapter 2.4, published in August 2024.

Included with this application are emission calculations, process flow diagrams, a site map, and the following required application forms:

- DEP7007AI Administrative Information
- DEP7007B Manufacturing or Processing Operations
- DEP7007N Source Emissions Profile
- DEP7007V Applicable Requirements and Compliance Activities
- DEP7007GG Control Equipment

Please note that in previous permits, the RNG plant process was regulated under 401 KAR 63:020, Potentially hazardous matter or toxic substances. 40 CFR 60 Subpart WWW was precluded by requiring BRPP to purchase and use only treated gas from Boyd County Landfill. Since the most recent permit renewal application submitted on March 30, 2021, Boyd County Landfill and BRPP have become subject to 40 CFR 63 Subpart AAAA. This change is reflected in Form DEP7007V – Application Requirements and Compliance Activities.

Archaea trusts that this application addresses all requirements of the KDAQ and USEPA. Please do not hesitate to contact Emily Zambuto at (585) 948-4616 or e-mail ezambuto@archaea.energy should you need any additional information or have any questions.

Archaea Energy

201 Helios Way Floor 6 Houston, TX 77079

I, the undersigned, hereby certify under penalty of law, that I am a responsible official, and that I have personally examined, and am familiar with, the information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the information is on knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false or incomplete information, including the possibility of fine or imprisonment.

Sincerely,

Archaea Holdings, LLC

DocuSigned by:

Sturn Boor Steven Boor Chief Operating Officer

Enclosures

cc: Kristen Bell, Optim Environmental Resources, Inc.

Archaea Energy

201 Helios Way Floor 6 Houston, TX 77079

Division	for Air Qı	uality		DEP7)07AI	Add	itional Documentation
		lanty	Admi	inistrativ	e Information		
300 So	wer Bouleva	rd	Sec	tion AI.1: S	Additio	onal Documentation attached	
Frankf	Cort, KY 4060	1	Sec	tion AI.2: A			
(502	2) 564-3999		Sec	tion AI.3: C	Wher Information		
			Sec	tion AI.4: T	ype of Application		
			Sec	tion AI.5: C	Other Required Informat	tion	
			Sec	tion AI.6: S	ignature Block		
			Sec	tion AI.7: N	lotes, Comments, and E	Explanations	
Source Name:		Big Run P	ower Producers, LLC				
KY EIS (AFS) #:		21- 019-00134					
Permit #:		F-16-052 F	3				
Agency Interest (AI)	ID:	128843					
Date:		10/1/2024					
Section AI.1: S	ource Info	ormation					
Physical Location	Street:		Cities Drive				
Address:	City:	Ashland		County:	Boyd	Zip Code:	41102
Mailing Address:	Street or P.O. Box:	201 Helios	Way, Floor 6				
Franking Francess	City:	Houston		State:	Texas	Zip Code:	77079
			Standard Coo	ordinates fo	r Source Physical Loc	cation	
Longitude:		-82.7500	(decimal degrees)		Latitude:	38.3707	(decimal degrees)
Primary (NAICS) Ca	tegory:	Natural Ga	s Distribution	_	Primary NAICS #:	221210	

Classification (SIC) C	ategory:	Gas Production and/or I	Distribution	Primary SIC #:	4925	
Briefly discuss the typ conducted at this site:		Collecting LFG from Rum	pke of Kentucky - Boyd	County Sanitary Landfill to produ	ce pipeline quality renewabl	e natural gas (RNG)
Description of Area Surrounding Source:	Rural AreaUrban Area	☐ Industrial Park✓ Industrial Area	Residential AreaCommercial Area	Is any part of the source located on federal land?	☐ Yes ✓ No	Number of Employees: 3
Approximate distance to nearest residence o commercial property:	r	iles	Property Area:	2 acres	Is this source portable?	Yes VNo
	What oth	er environmental permi	ts or registrations do	es this source currently hold	or need to obtain in Ken	tucky?
NPDES/KPDES:	Currently Ho	old 🗌 Need	N/A			
Solid Waste:	Currently Ho	old Need	✓ N/A			
RCRA:	Currently Ho	old 🗌 Need	✓ N/A			
UST:	Currently Ho	old 🗌 Need	✓ N/A			
Type of Regulated	Mixed Wast	e Generator	Generator	Recycler	Other:	_
Waste Activity:	U.S. Importe	r of Hazardous Waste	Transporter	Treatment/Storage/Disposal	Facility I N/2	4

11/2018

Section AI.2: Ap	plicant Information					
Applicant Name:	Big Run Power Producers,	LLC				
Fitle: (if individual)						
Mailing Address:	Street or P.O. Box:	201 Helios Way, Floor 6				
Maning Address.	City:	Houston	State:	TX	Zip Code:	77079
E mail: (if individual)						
Phone:						
Fechnical Contact						
Name:	Nevin Edwards					
Title:	Air Permitting Manager					
Mailing Address:	Street or P.O. Box:	201 Helios Way, Floor 6				
11 111111 1 1 1 1 1 5551	City: Houston		State:	TX	Zip Code:	77079
Email:	nedwards@archaea.energy					
Phone:	(412) 860-4550					
Air Permit Contact for	Source					
Name:	Emily Zambuto					
Title:	Director of Compliance and	d Permitting				
Mailing Address:	Street or P.O. Box:	201 Helios Way, Floor 6				
	City: Houston		State:	ТХ	Zip Code:	77079
Email:	ezambuto@archaea.energy					
Phone:	(585) 948-4616					

DEP7007AI

Section AI.3: Ow	vner Information				
Owner same	as applicant				
Name:					
Title:					
Mailing Address:	Street or P.O. Box:		State:	Zip Code:	
Email:					
Phone:					
List names of owners a	nd officers of the company who hav	ve an interest in the com	pany of 5% or more.		
	Name			Position	

Docusign Envelope ID: E84B8578-63B5-454C-887A-6889983211C3

• •	e of Application								
irrent Status:	Title V 🗹 Condit	ional Major	State-O	Drigin		General Permit	Registra	tion	None None
	Name Change	Initial Re	gistration	<u> </u>	ignificant Revis	sion	Adminis	strative Per	mit Amendment
	Renewal Permit	Revised	Registration		Inor Revision		Initial S	ource-wide	e OperatingPermit
equested Action: heck all that apply)	502(b)(10)Change	Extensio	n Request		ddition of New	Facility	Portable	Plant Rel	ocation Notice
	Revision	Off Perm	nit Change	🗌 I	andfill Alternat	e Compliance Submittal	✓ Modific	ation of Ex	tisting Facilities
	Ownership Change	Closure							
quested Status:	✓ Title V	ional Major	State-O	Drigin	PSD	NSR	Other	:	
the source requesting	a limitation of potentia	al emissions	?		Yes 🗸	No			
Pollutant:		Requested	Limit:		Po	llutant:		Request	ed Limit:
Particulate Matter						Single HAP			
Volatile Organic C	Compounds (VOC)					Combined HAPs			
Carbon Monoxide						Air Toxics (40 CFR 68, 5	Subpart F)		
Nitrogen Oxides						Carbon Dioxide			
Sulfur Dioxide						Greenhouse Gases (GHC	i)		
Lead						Other			
For New Construct	on:								
-	Date of Construction: M/YYYY)		N/A		Proposed Op	eration Start-Up Date:	(MM/YYYY)		N/A
For Modifications:									
	Date of Modification:				D 10	eration Start-Up Date:			

Section AI.5 Other Required Information	
Indicate the documen	ts attached as part of this application:
DEP7007A Indirect Heat Exchangers and Turbines	DEP7007CC Compliance Certification
☑ DEP7007B Manufacturing or Processing Operations	DEP7007DD Insignificant Activities
DEP7007C Incinerators and Waste Burners	DEP7007EE Internal Combustion Engines
DEP7007F Episode Standby Plan	DEP7007FF Secondary Aluminum Processing
DEP7007J Volatile Liquid Storage	✓ DEP7007GG Control Equipment
DEP7007K Surface Coating or Printing Operations	DEP7007HH Haul Roads
DEP7007L Mineral Processes	Confidentiality Claim
DEP7007M Metal Cleaning Degreasers	Ownership Change Form
J DEP7007N Source Emissions Profile	Secretary of State Certificate
DEP7007P Perchloroethylene Dry Cleaning Systems	✓ Flowcharts or diagrams depicting process
DEP7007R Emission Offset Credit	Digital Line Graphs (DLG) files of buldings, roads, etc.
DEP7007S Service Stations	Site Map
DEP7007T Metal Plating and Surface Treatment Operations	Map or drawing depicting location of facility
J DEP7007V Applicable Requirements and Compliance Activities	Safety Data Sheet (SDS)
DEP7007Y Good Engineering Practice and Stack Height Determination	Emergency Response Plan
DEP7007AA Compliance Schedule for Non-complying Emission Units	Other:
DEP7007BB Certified Progress Report	_
Section AI.6: Signature Block	
the information submitted in this document and all its attachmen	n a responsible official*, and that I have personally examined, and am familiar with, nts. Based on my inquiry of those individuals with primary responsibility for owledge and belief, true, accurate, and complete. I am aware that there are ion, including the possibility of fine or imprisonment.
Steven Boor	10/3/2024
Authorized Signature	Date
Steven Boor	Chief Operating Officer

11/2018

Title of Signatory

Type or Printed Name of Signatory

*Responsible official as defined by 401 KAR 52:001.

<u>DE</u>P7007AI

Section AI.7: Notes, Comments, and Expla	nations	

Source Nai KY EIS (A Permit #:		oulevard 7 40601 3999 21-	019-00134	F-16-052 R3 128843						
Section 1	B.1: Process	Information								
Emission Unit #	Emission Unit Name	Describe Emission Unit	Process ID	Process Name	Manufacturer	Model No.	Proposed/Actual Dat of Construction Commencement (MM/YYYY)	e Is the Process <u>Continuous</u> or <u>Batch</u> ?	Number of Batches per 24 Hours (if applicable)	Hours per Batch (if applicable)
EU03	Renewable Natural Gas Plant	Treatment system process converts landfill gas (LFG) to high BTU pipeline quality gas	-	Renewable Natural Gas Plant	<u>Gas Plant:</u> N/A <u>Thermal Oxidizer:</u> Process Combustion Corporation <u>Flare:</u> Perennial Energy, Inc	<u>Gas Plant:</u> N/A <u>Thermal</u> <u>Oxidizer:</u> Custom <u>Flare:</u> FL-14-C	<u>Gas Plant/Thermal</u> <u>Oxidizer:</u> 05/2018 <u>Flare:</u> Upon Permit Issuance	Continuous	N/A	N/A

DEP7007B

Section B.2: Materials and Fuel Information

*Maximum yearly fuel usage rate only applies if applicant request operating restrictions through federally enforceable limitations.

Emission Unit #	Emission Unit Name	Name of Raw Materials	erials Inp		Weight Rate for Finished	Name of Finished	Each Finis	Quantity of hed Material itput		Maximum Hourly Fuel Usage Rate		Maximum Yearly Fuel Usage Rate		Sulfur Content	Ash Content
		Input		(Specify Units/hr)	(tons/hr)	Materials		(Specify Units/hr)			(Specify Units)		(Specify Units)	(%)	(%)
EU03	Renewable Natural Gas Plant	Landfill Gas (LFG)	0.24	mmscf/hr	N/A	High BTU Pipeline Quality Gas	0.14	mmscf/hr	Thermal Oxidizer: Natural Gas	133	scf/hr	70	mmscf/yr	0%	0%

11/2018

ection B.3: Notes, Comments, and Explanations	

	Dis	vision fo	or Air Q	uality					DEP70 0	7N						
	DI		, All Q	uanty				Sourc	e Emissic	ons Profile			1	Additional I	Ocumentation	l
		300 Sowe	er Boulev	ard				Section	n N.1: Emiss	ion Summary						
		Frankfor	t, KY 406	501			Section N.2: Stack Information					Comple	Complete DEP7007AI			
			564-3999					Section	n N.3: Fugitiv	ve Information			1			
								Section	n N.4: Notes,	Comments, an	d Explana	tions				
Source N	ame:				Big Rur	Big Run Power Producers, LLC										
KY EIS (AFS) #:			21-	019-001	34										
Permit #:					F-16-05	F-16-052 R3										
Agency I	nterest (AI) ID:				128843	28843										
Date:					10/1/202	24										
N.1: Er	nission Summ	ary														
							. ·									
Emission	Emission Unit	Process	Process	Control	Control	Stack	Maximum Design		Uncontrolled Emission	Emission Factor Source	Capture		Hourly E	Hourly Emissions Annua		missions
Unit #	Name	ID	1	Device Name	Device ID	ID	Capacity (SCC	Pollutant	Factor	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency	Efficiency	Uncontrolled	Controlled	Uncontrolled	Controlled
							Units/hour)		(lb/SCC Units)	Test, Mass Balance)			Potential (lb/hr)	Potential (lb/hr)	Potential (tons/yr)	Potential (tons/yr)
EU03	Renewable Natural Gas Plant	-	-	Thermal Oxidizer	TOU-1	TOU-1			-	Please s	ee attached er	missions calcu	ulations			
EU03	Renewable Natural Gas Plant	-	-	Backup Flare	CS-1	CS-1				Please s	ee attached ei	missions calcu	lations			

Section N.2: Stack Information

UTM Zone:

	Identify all Emission Units (with Process ID) and	Sta	ack Physical Da	ata	Stack UTM	Coordinates	St	Stack Gas Stream Data			
Stack ID	Control Devices that Feed to Stack	Equivalent Diameter (ft)	Height (ft)	Base Elevation (ft)	Northing (m)	Easting (m)	Flowrate (acfm)	Temperature (°F)	Exit Velocity (ft/sec)		
TOU-1	Renewable Natural Gas Plant Thermal Oxidizer	3	35	775	4248370	347109	7,785	1,600	18.4		
CS-1	RNG Plant Backup Flare	1.33	40	774	4248363	347108	4,381	1,400	52.3		

Section N.3: Fugitive Information

UTM Zone:

	Emission Unit Name	Process ID	Area Physic	al Data	Area UTM (Coordinates	Area Release Data			
Emission Unit #			Length of the X Side (ft)	Length of the Y Side (ft)	Northing (m)	Easting (m)	Release Temperature (°F)	Release Height (ft)		

Section N.4: Notes, Comments, and Explanations

DEP7007N

				DEP7007V			Additional Documentation							
	Division for Air Qualit	У	Applica	Complete D	EP7007AI									
	300 Sower Boulevard		Section V.1	: Emission and Operating Limitati	ion(s)									
	Frankfort, KY 40601		Section V.2	: Monitoring Requirements		L								
	(502) 564-3999		Section V.3	: Recordkeeping Requirements										
			Section V.4	: Reporting Requirements										
L			Section V.5	: Testing Requirements										
			Section V.6	: Notes, Comments, and Explanat	ions									
Source Nan	ne: Big Run Powe	er Producers, LLC												
KY EIS (Al	FS) #: 21- 019-00134													
Permit #:	F-16-052 R3													
- ·	erest (AI) ID: <u>128843</u>													
Date:	10/1/2024													
Section V.1	: Emission and Operating Limit	ation(s)		1										
Emission Unit #	Emission Unit Description	Applicable Regulation or Requirement	Pollutant	Emission Limit (if applicable)	Voluntary Emission Limit or Exemption (if applicable)	Operating Requirement or Limitation (if applicable)	Method of Determining Compliance with the Emission and Operating Requirement(s)							
		40 CFR 63.1959(b)(2)(iii)(B) (40 CFR 63 Subpart AAAA incorporated by reference in 401 KAR 63:002, Section 2(4)(hhh))	NMOC	Reduce NMOC by 98% or reduce the outlet NMOC concentration to less than 20 ppmv, at 3% O ₂	N/A	The 3-hour average combustion chamber temperature in any 24-hour period shall not fi 28°C below the average combustion temperatu during the most recent performance test.								
EU03	Renewable Natural Gas Plant	401 KAR 59:020 Section 3	Particulate Matter	No visible emissions equal to or greater than 20% opacity. No particulate emissions in excess of the quantity specified in 401 KAR 59:020 Appendix A	N/A	N/A	Operation and maintenance of thermal oxidizer in conformance with its design. If requested by KDAQ, use of USEPA Method 9, Kentucky Method 150 (F-1), or comparable method selected by Archaea and approved by KDAQ.							
		40 CFR 63.1959(b)(2)(iii)(A) 40 CFR 63.11(b)(4) (40 CFR Subpart A incorporated by reference in 401 KAR 63:002, Section 2(1))	Visible Emissions	No visible emissions except for periods not to exceed a total of 5 minutes during any 2 consecutive hours.	N/A	Flares shall be operated with a flame present all times.	Operation and maintenance of flare in conformance with its design. If requested by KDAQ, USEPA Method 22, or comparable method selected by Archaea and approved by KDAQ.							
CS-1	RNG Plant Backup Flare	401 KAR 63:015, Section 3	Particulate Matter	No emissions of particulate matter greater than 20% opacity for more than 3 minutes in any 1 day.	N/A	N/A	Operation and maintenance of flare in conformance with its design. If requested by KDAQ, use of USEPA Method 9, Kentucky Method 150 (F-1), or comparable method selected by Archaea and approved by KDAQ.							

Section V.2	: Monitoring Require	ements			
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Monitored	Description of Monitoring
	Renewable Natural Gas	NMOC	40 CFR 63.1961(b)	Parameters as required under 40 CFR 63.1961(b).	Monitoring as required under 40 CFR 63.1961(b).
EU03	Plant	Particulate Matter	401 KAR 52:020	Visible Emissions	Daily qualitative observation of visible emissions from thermal oxidizer stack.
		Visible Emissions	40 CFR 63.1961(c)	Parameters as required under 40 CFR 63.1961(c)	Monitoring as required under 40 CFR 63.1961(c).
CS-1	RNG Plant Backup Flare	Particulate Matter	401 KAR 52:020	Visible Emissions	Daily qualitative observation of visible emissions from flare.

Section V.3	: Recordkeeping R	equirements			
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Recorded	Description of Recordkeeping
	Renewable Natural	ewable Natural		Parameters as required under 40 CFR 63.1983(b)&(c).	Records as required under 40 CFR 63.1983 maintained for 5 years, except for initial records required under 40 CFR 63.1983(b)(2)&(5), which must be maintained for the life of the equipment.
EU03	Gas Plant	Particulate Matter	401 KAR 52:020	Visible Emissions	Maintain log of daily qualitative visible emissions observations of thermal oxidizer stack.
CS-1	RNG Plant Backup	Visible Emissions	40 CFR 63.1983(b)&(c)	Parameters as required under 40 CFR 63.1983(b)&(c).	Records as required under 40 CFR 63.1983 maintained for 5 years.
0.5-1	Flare	Particulate Matter	401 KAR 52:020	Visible Emissions	Maintain log of daily qualitative visible emissions observations of flare.

Section V.4	: Reporting Requ	irements			
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Reported	Description of Reporting
ELIO2	Renewable Natural	NMOC 40 CFR 63.1981(h)		Parameters as required under 40 CFR 63.1981(h).	Reports as required under 40 CFR 63.1981(h) will be submitted.
EU03	Gas Plant	Particulate Matter	401 KAR 52:020	N/A	N/A
CS-1	RNG Plant Backup Flare	Visible Emissions	40 CFR 63.1981(h)	Parameters as required under 40 CFR 63.1981(h).	Reports as required under 40 CFR 63.1981(h) will be submitted.
	Tidle	Particulate Matter	401 KAR 52:020	N/A	N/A

Section V.5	: Testing Require	ments			
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Tested	Description of Testing
	Renewable Natural	NMOC	40 CFR 63.1959(d)&(f)	Parameters as required under 40 CFR63.1959(d)&(f).	Testing as required under 40 CFR 63.1959(d)&(f) will be performed.
EU03	Gas Plant	Particulate Matter	401 KAR 52:020	N/A	N/A
CS-1	RNG Plant Backup	Visible Emissions	40 CFR 63.1959(e)&(f), 40 CFR 63.11(b)	Parameters as required by 40 CFR 63.1959(e)&(f) and 40 CFR 63.11(b).	Testing as required under 40 CFR 63.1959(e)&(f) using USEPA Method 22 per 40 CFR 63.11(b) or comparable method approved by KDAQ.
0.5-1	Flare	Particulate Matter	401 KAR 52:020	N/A	N/A

Section V.6: Notes, Comments, and Explanations

E	vivision fo	or Air Qu	ality				DEP7007GC ontrol Equipm				Con		ditional D			licable
	300 Sowe	er Bouleva	rd				Complete Sections GG.1 through GG.12, as applicable Attach manufacturer's specifications for each control device									
	Frankfort											nplete DEP7			caen control	device
		564-3999									Con		007711			
	(302)	JUH-J///														
Source N	ame:		Big Run Powe	r Producers, L	LC											
KY EIS ((AFS) #:	21-	019-00134													
Permit #:			F-16-052 R3													
Agency I	nterest (AI) ID:	128843													
Date:			10/1/2024													
Section GG.	1: General Inf	ormation - C	ontrol Equipmen	t												
					D.		Inlet Gas Stream Dat	a For <u>All Contro</u>	l Devices			tream Data For Afterburners, I Oxidizers <u>Only</u>	ncinerators,	Equipmer	nt Operational Control Devid	
Control Device ID #	Control Device Name	Cost	Manufacturer	Model Name/ Serial #	Date Installed	Temperature (°F)	Flowrate (scfm @ 68°F)	Average Particle Diameter (mm)	Particle Density (<i>lb/ft</i> ³) or Specific Gravity	Gas Density (<i>lb/ft</i> ³)	Gas Moisture Content (%)	Gas Composition	Fan Type	Pressure Drop Range (in. H ₂ O)	Pollutants Collected/C ontrolled	Pollutant Removal (%)
TOU-1	Thermal Oxidizer	\$900,000	Process Combustion Corporation	Custom	05/2018	77	2,000	N/A	N/A	0.109	Minimal	CO ₂ : 93-95% CH ₄ : 3-5% O ₂ : 0.5% N ₂ : 1.5-2%	Blower	N/A	VOC/HAP	98%
CS-1	RNG Plant Backup Flare	\$200,500	Perennial Energy, Inc.	FL-14-C	Upon Permit Issuance	77	2,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	VOC/HAP	98%

Section GG.2:	Flare Source Information					
Control Device ID #	Identify all Emission Units and Control Devices that Feed to Flare	Type of Flare (e.g. steam-assisted, air- assisted, nonassisted)	Process Gas Flowrate (acfm)	Net Heating Value of Stream(s) (Btu/scf)	Removal Efficiency (%)	Flare Rated Capacity (MMBtu/hr)
CS-1	EU03 - Renewable Natural Gas Plant	Nonassisted	2,000	1,000 (Off-Spec Gas) 100 (Waste Gas)	98	108.0

-

Section	ection GG.7: Afterburner/Incinerator/Oxidizer																
Control	Identify all Emission Units and Control Devices that	Identify Type: Afterburner,	Number of	Burner Rating	Dimensions of Combustion	Residence	Combustion Chamber	Type of	Type of Heat				Auxiliary Fu	el			Composition and Quantities of
Device ID #	Feed to Afterburner/Incinerator/Oxi dizer	Incinerator, Oxidizer, <u>or</u> Other (specify)	Burners	(BTU/hr)	Chamber (specify units)	Time (sec)	Temperature (°F)	Catalyst (if applicable)	Exchanger (if applicable)	Identify Fuel Type	Higher Heating Value (MMBtu/scf)	Hourly Fuel Usage (scf/hr)	% Sulfur (Maximum)	% Sulfur (Average)	% Ash (Maximum)	% Ash (Average)	Combusted Waste
EP01	Renewable Natural Gas Plant	Oxidizer	2 (Main & Aux.)	Main: 8 mmBTU/hr Aux: 2 mmBTU/hr	15 ft length 5.33 ft O.D. 5.08 ft I.D.	0.5	1600	N/A	Tubular	Natural Gas	0.000001	133	N/A	N/A	N/A	N/A	See attatched emission calculations

Section GG.12: Notes, Comments, and Explanations

Attachment 1: Big Run Flare Addition Potential Emissions Calculations

Archaea Energy

201 Helios Way Floor 6 Houston, TX 77079

Facility Emissions Summary Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC

	Marta Stream		Off-	Spec Mode: F	Pre-Modificati	ion Worst Cas	e Potential E	missions (to	ns/yr)		
Emission Unit ID & Description	Waste Stream	СО	NOx	PM	PM ₁₀	PM _{2.5}	SO ₂	VOC	Single HAP	Total HAP	
RNG Plant	LFG Controlled Emissions	10.69						1.88			
Thermal Oxidizer			8.76	0.67	0.67	0.67	2.05	0.19	4.10(HCI)	7.61	
Rumpke Landfill Flares	Off-Spec RNG	30.48	19.97	8.94	8.94	8.94			4.10(HCI)	7.01	
Total RNG Plant Emissions		48.53	28.73	9.60	9.60	9.60	2.05	2.07			
Emission Unit ID & Description	Waste Stream	Off-Spec Mode: Post-Modification Worst Case Potential Emissions (tons/yr)									
Emission Unit ID & Description	waste stream	со	NOx	PM	PM ₁₀	PM _{2.5}	SO2	VOC	Single HAP	Total HAP	
RNG Plant	LFG Controlled Emissions	10.69						1.88			
Thermal Oxidizer	Natural Gas & RNG Waste Gas	7.36	8.76	0.67	0.67	0.67	2.05	0.19			
RNG Plant Backup Flare	Off-Spec RNG	30.48	19.97	8.94	8.94	8.94			4.10(1)	7.61	
Rumpke Landfill Flares	N/A			No F	low from RNG	Plant			- 4.10(HCl)	7.01	
Total RNG Plant Emissions		48.53	28.73	9.60	9.60	9.60	2.05	2.07	1		
Project Net Emissions		0	0	0	0	0	0	0			

Emission Unit ID & Description	Waste Stream		RTO I	Backup Mode	: Pre-Modifica	ation Worst C	ase Potential	Emissions (tons/yr)	
Emission Unit ID & Description	waste stream	СО	NOx	PM	PM ₁₀	PM _{2.5}	SO ₂	voc	Single HAP	Total HAP
RNG Plant	LFG Controlled Emissions	10.69						1.88		
Thermal Oxidizer	N/A			No Fl	low from RNG	Plant				7.01
Rumpke Landfill Flares	RNG Waste Gas	3.05	2.00	0.89	0.89	0.89	2.03		4.10(HCl)	7.61
Total RNG Plant Emissions		13.74	2.00	0.89	0.89	0.89	2.03	1.88		
Emission Unit ID & Description	Waste Stream	со	NOx	PM	PM ₁₀	PM _{2.5}	SO ₂	VOC	Single HAP	Total HAP
			RTO B	ackup Mode:	Post-Modific	ation Worst C	ase Potentia	l Emissions (tons/yr)	
RNG Plant	LFG Controlled Emissions	10.69						1.88		
Thermal Oxidizer	N/A			No Fl	ow from RNG	Plant				
RNG Plant Backup Flare	RNG Waste Gas	3.05	2.00	0.89	0.89	0.89	2.03			7.64
Rumpke Landfill Flares	N/A		•	No Fl	low from RNG	Plant			4.10(HCl)	7.61
Total RNG Plant Emissions		13.74	2.00	0.89	0.89	0.89	2.03	1.88	7	
Project Net Emissions		0	0	0	0	0	0	0		

Big Run Flare Modification PTE.xlsx/Emissions Summary

Facility-Wide Emissions Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC

		Normal Operation			RTO Backup Mode			Off-Spec Mode			4
Pollutant	LFG Controlled Emissions ^a (tons/yr)	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions ^b (tons/yr)	Total Combustion Emissions (tons/yr)	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions ^b (tons/yr)	Total Combustion Emissions (tons/yr)	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions ^b (tons/yr)	Total Combustion Emissions (tons/yr)	Maximum Total Emissions ^c (tons/yr)
CO	10.69		7.36	7.36	3.05		3.05	30.48	7.36	37.84	48.53
NMOC	3.91		0.30	0.30					0.30	0.30	4.21
NOx			8.76	8.76	2.00		2.00	19.97	8.76	28.73	28.73
PM/PM ₁₀ /PM _{2.5}			0.67	0.67	0.89		0.89	8.94	0.67	9.60	9.60
SO ₂			0.02	0.02	2.03		2.03		2.05	2.05	2.05
VOC	1.88		0.19	0.19					0.19		2.07
CO ₂	47,990		10,239	10,239	6,035		6,035	60,346	10,239	70,586	118,576
Methane	480.99		0.08	0.08					0.08		481.07
N ₂ O			0.10	0.10	0.07		0.07	0.73	0.10	0.83	0.83
CO ₂ e	60,015		10,270	10,270	6,056		6,056	60,564	10,270	70,834	130,849

^aLFG Controlled Emissions calculated based on LFG inlet concentration and a minimum control efficiency of 98%. LFG Controlled Emissions are independent of operating mode.

^bTotal RTO Combustion Emissions include emissions generated from combusting the maximum flowrate of RNG waste gases and from combusting natural gas as fuel in the RTO.

^cMaximum Plant Emissions includes the LFG controlled emissions and the maximum Total RNG Plant Combustion emissions.

Hourly Potential Criteria and GHG Pollutant Emissions:

			Normal Operation	ı		RTO Backup Mod	e		Off-Spec Mode		
Pollutant	LFG Controlled Emissions (lb/hr)	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions (tons/yr)	Total Combustion Emissions (tons/yr)	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions (tons/yr)	Total Combustion Emissions (tons/yr)	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions (tons/yr)	Total Combustion Emissions (tons/yr)	Maximum RNG Plant Emissions (tons/yr)
CO	2.44		1.68	1.68	0.70		0.70	6.96	1.68	8.64	11.08
NMOC	0.89		0.07	0.07					0.07	0.07	0.96
NOx			2.00	2.00	0.46		0.46	4.56	2.00	6.56	6.56
PM/PM ₁₀ /PM _{2.5}			0.15	0.15	0.20		0.20	2.04	0.15	2.19	2.19
SO ₂			4.80E-03	4.80E-03					0.47	0.47	0.47
VOC	0.43		0.04	0.04					0.04		0.47
CO ₂	10,957		2,338	2,338	1,378		1,378	13,778	2,338	16,115	27,072
Methane	109.82		0.02	0.02					0.02		109.83
N ₂ O			0.02	0.02	0.02		0.02	0.17	0.02	0.19	0.19
CO ₂ e	13,702		2,345	2,345	1,383		1,383	13,827	2,345	16,172	29,874

Note: Emissions operating scenarios described in footnotes for Total Criteria and GHG Pollutant Emissions table.

Facility-Wide Emissions Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC

LFG Controlled Pollutant Emissions (tons/yr)			Normal Operation	1		RTO Backup Mod	e		Off-Spec Mode	1	
	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions (tons/yr)	Total Combustion Emissions (tons/yr)	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions (tons/yr)	Total Combustion Emissions (tons/yr)	Flare CS-1 Combustion Emissions (tons/yr)	RTO Combustion Emissions (tons/yr)	Total Combustion Emissions (tons/yr)	Maximum RNG Plant Emissions (tons/yr)	
1,1,1-Trichloroethane	3.49E-03										3.49E-03
1,1,2,2-Tetrachloroethane	0.01										0.01
1,1-Dichloroethane	0.01										0.01
1,1-Dichloroethene	1.06E-03										1.06E-03
1,2-Dichloroethane	2.21E-03										2.21E-03
1,2-Dichloropropane	1.11E-03										1.11E-03
Acrylonitrile	0.02										0.02
Arsenic Compounds			9.25E-06	9.25E-06					9.25E-06	9.25E-06	9.25E-06
Benzene	0.10		7.36E-05	7.36E-05					7.36E-05	7.36E-05	0.10
Beryllium Compounds	0.10		1.17E-06	1.17E-06					1.17E-06	1.17E-06	1.17E-06
Cadmium Compounds			4.41E-05	4.41E-05					4.41E-05	4.41E-05	4.41E-05
Carbon Disulfide	1.86E-04		4.412-05	4.412-05					4.412-05	4.412-05	1.86E-04
Carbon Tetrachloride	3.36E-05										3.36E-04
Carbonyl Sulfide	5.50E-05										5.50E-05
Chlorobenzene	1.60E-03										1.60E-03
	4.57E-03										4.57E-03
Chloroethane Chloroform	1.02E-03										1.02E-03
Chloromethane	3.30E-03										3.30E-03
	5.30E-03		6 435 65	6 435 65					6 435 65	6 435 05	1
Chromium Compounds	-		6.42E-05	6.42E-05					6.42E-05	6.42E-05	6.42E-05
Cobalt Compounds	1.005.00		3.74E-06	3.74E-06					3.74E-06	3.74E-06	3.74E-06
Dichlorobenzene	4.00E-03		4.20E-05	4.20E-05					4.20E-05	4.20E-05	4.04E-03
Dichloromethane	0.06										0.06
Ethylbenzene	0.05										0.05
Ethylene Dibromide	1.02E-05										1.02E-05
Formaldehyde			2.63E-03	2.63E-03					2.63E-03	2.63E-03	2.63E-03
HCI			4.10	4.10	4.10		4.10		4.10	4.10	4.10
Hexane	0.03		0.06	0.06					0.06	0.06	0.09
HF			2.03	2.03	2.03		2.03		2.03	2.03	2.03
Lead Compounds			1.89E-05	1.89E-05					1.89E-05	1.89E-05	1.89E-05
Manganese Compounds			1.72E-05	1.72E-05					1.72E-05	1.72E-05	1.72E-05
Mercury Compounds	1.59E-04		9.47E-06	9.47E-06					9.47E-06	9.47E-06	1.68E-04
Methyl Isobutyl Ketone	0.03										0.03
Naphthalene			2.14E-05	2.14E-05					2.14E-05	2.14E-05	2.14E-05
Nickel Compounds			9.35E-05	9.35E-05					9.35E-05	9.35E-05	9.35E-05
Perchloroethylene	0.03										0.03
Selenium Compounds			1.18E-06	1.18E-06					1.18E-06	1.18E-06	1.18E-06
Toluene	0.85		1.19E-04	1.19E-04					1.19E-04	1.19E-04	0.85
Total POM			3.09E-06	3.09E-06					3.09E-06	3.09E-06	3.09E-06
Trichloroethene	0.02										0.02
Vinyl Chloride	0.02										0.02
Xylene	0.15			_							0.15
Highest Individual HAP											4.10 (HCl)
Total HAPs	1.42	0	6.19	6.19	6.13	0	6.13	0	6.19	6.19	7.61
Total HAPs (lb/hr)	0.32	0	1.41	1.41	1.40	0	1.40	0	1.41	1.41	1.74

Note: Emissions operating scenarios described in footnotes for Total Criteria and GHG Pollutant Emissions table.

RNG Plant Operating Specifications Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC

Equipment Specifications:

RNG Plant Inlet LFG Capacity (mmscf/hr)	0.24	Reference: Permit F-16-052 R3.
RNG Plant Inlet LFG Capacity (scfm)	4,000	
RNG Plant Inlet LFG Capacity (mmscf/yr)	2,102	
Maximum waste gas produced (scfm)	2,000	Reference: Archaea RNG plant specifications.
TOU-1 Natural Gas Required (mmBtu/hr)	8.00	Reference: Manufacturer's specifications.
Natural Gas/Methane Heat Content (BTU/scf)	1,000	
TOU-1 Maximum Natural Gas Input (scf/hr)	133.33	
Flare Control Efficiency	98%	Reference: Manufacturer's guarantees.
TOU-1 Destruction Efficiency	98%	Reference: Manufacturer's guarantees.

RNG Plant Gas Streams Specifications:

	Inlet LFG	Total Waste Gas	Off-Spec Gas
Maximum Gas Inlet Flow Rate (scfm)	4,000	2,000	2,000
Maximum Gas Methane Content (vol%)	55%	10%	100%
Maximum Methane Inlet Flow Rate (scfm)	2,200	200	2,000
Maximum Annual Methane Inlet Flow Rate (mmscf/yr)	1,156	105.12	1,051
Maximum Annual Methane Inlet Flow Rate (ton/yr)	24,050	2,186	21,863
Gas Heat Content (BTU/scf)	550.00	100.00	1,000
Maximum Heat Input (mmBTU/hr)	132.00	12.00	120.00
Maximum Annual Heat Input (mmBTU/yr)	1,156,320	105,120	1,051,200

Operating Scenarios Flow Rates:

	т	ormal Operatio OU-1 Operatin L Not in Operat	g	TOL CS-1 Operat	J-1 Backup N J-1 Not Oper ting on RNG hum Producti	ating Waste Gas at	T CS-1 Opera	f-Spec Operat OU-1 Operati ating on Off-s num Productio	ng pec RNG at
	то	U-1	CS-1	то	U-1	CS-1	то	U-1	CS-1
Gas Description	RNG Plant Waste Gas	TOU-1 Natural Gas				RNG Plant Waste Gas	RNG Plant Waste Gas	TOU-1 Natural Gas	Off-spec Gas
Maximum Gas Inlet Flow Rate (scfm)	2,000	133.33				2,000	2,000	133.33	2,000
Maximum Annual Gas Inlet Flow Rate (mmscf/yr)	1,051	70.08	N/A	N/A	N/A	1,051	1,051	70.08	1,051
Maximum Gas Methane Content (vol%)	10%	100%	,//			10%	10%	100%	100%
Maximum Annual Methane Inlet Flow Rate (mmscf/yr)	105.12	70.08				105.12	105.12	70.08	1,051
Maximum Annual Methane Inlet Flow Rate (ton/yr)	2,186	1,458				2,186	2,186	1,458	21,863
Maximum Annual Heat Input (mmBTU/yr)	105,120	70,080				105,120	105,120	70,080	1,051,200

LFG Inlet, Controlled, and Generated Emissions Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC

LFG Inlet, Controlled, and Generated Pollutant Flow Rates: TOU-1/Flare Sulfur System LEG Molecular Inlet Inlet Uncontrolled Controlled Removal Destruction VOC? Number of Number of Flow Rate Pollutant Concentration Weight Flow Rate Fmissions Emissions Efficiency Efficiency (Y/N) Chlorine Atoms Fluorine Atoms (ppmy) (g/mol) (m³/yr) (tons/yr) (tons/yr) (tons/yr) (%) (%) CO^a 140.00 28.01 8,341 10.69 0% 10.69 0% 10.69 NMOC^a 831.87 86.18 49,562 195.43 0% 195.43 98% 3.91 Total Chloride Compounds (as Chlorine) 42.00 2.502 4.06 4.06 0.08 35.45 0% 98% Total Fluoride Compounds (as Fluorine) 37.96 19.00 2,262 1.97 0% 1.97 98% 0.04 1,454 32.06 86,602 127.04 99.2% 1.02 100% 0 Total Reduced Sulfur (as Sulfur)b 399.06 86.18 23,776 93.75 0% 93.75 98% 1.88 VOC 44.01 23,831,633 47,990 0% 47,990 0% 47,990 CO₂ CH4d 16 04 32.768.496 24.050 0% 24.050 98% 480.99 1.1.1-Trichloroethane^a 0.48 133.41 28.60 0.17 0% 0.17 98% 3.49E-03 Ν 3 1,1,2,2-Tetrachloroethane^a 1.10 167.85 65.54 0.50 0% 0.50 98% 0.01 Y 4 1,1-Dichloroethane^a 2 40 98 97 142 99 0.65 0% 0.65 98% 0.01 Υ 2 1.06E-03 0.20 96.94 11.92 0.05 0% 0.05 98% Y 2 1.1-Dichloroethene 0.41 98.96 24.43 0.11 0% 0.11 98% 2.21E-03 Y 2 1.2-Dichloroethane 1,2-Dichloropropane^a 0.18 112.99 10.72 0.06 0% 0.06 98% 1.11E-03 Υ 2 6.30 53.06 375.35 0.91 0% 0.91 98% 0.02 Y Acrylonitrile^a Benzene^e 23.08 78.11 1,375 4.91 0% 4.91 98% 0.10 Y Carbon Disulfide^e 5 60 76.13 333.64 1.16 99.2% 9.30F-03 98% 1.86F-04 Υ 4.00E-03 153.84 0.24 1.68E-03 0% 1.68E-03 98% 3.36E-05 Y 4 Carbon Tetrachloride 2.10 60.07 125.12 0.34 99.2% 2.75E-03 98% 5.50E-05 Y Carbonyl Sulfide 112.56 0.08 0.08 1.60E-03 Chlorobenzene 0.26 15.49 0% 98% Y 1 1.30 64.52 0.23 0% 0.23 98% 4.57E-03 Chloroethane^a 77.45 Υ 1 Chloroform^e 0.16 119.39 9.35 0.05 0% 0.05 98% 1.02E-03 Υ 3 1.20 71.49 0.17 3.30E-03 Chloromethane 50.49 0.17 0% 98% Y 1 0.50 147.00 29.73 0.20 0.20 98% 4.00E-03 Dichlorobenzene 0% Y 2 834.11 Dichloromethane^a 14.00 84.94 3.24 0% 3.24 98% 0.06 Ν 2 8.53 106.16 508.27 2.47 0% 2.47 98% 0.05 Y Ethylbenzene 1.00E-03 187.88 0.06 5.12E-04 0% 5.12E-04 98% 1.02E-05 Y Ethylene Dibromide^a Hexane 6.60 86.18 393.22 1.55 0% 1.55 98% 0.03 Υ 2.90E-04 200.61 0.02 1.59E-04 0% 1.59E-04 0% 1.59E-04 Mercury Υ 5.77 100.16 343.47 1.57 0% 1.57 98% 0.03 Methyl Isobutyl Ketone Y 3.70 1.67 1.67 165.83 220.44 0% 98% 0.03 Ν 4 Perchloroethylene^a 170.00 92.13 42.70 42.70 10,128 0% 98% 0.85 Y Toluene^a 2 80 131.40 166 82 1.00 0% 1.00 98% 0.02 Υ 3 Trichloroethene^a 7.30 62.50 434.93 1.24 1.24 0.02 98% Vinyl Chloride^a 0% Υ 1 106.16 1,498 7.28 7.28 25.15 0% 98% 0.15 Y Xvlene^e Total LFG HAPs 289.12 2,948 17,225 72.33 70.84 1.42 163.83 184.70 1.38 0 1.38 0.98 0.03 Y 3.10 2 Bromodichloromethane 1.30 77.45 6.13E-03 Ν 86.47 0.31 0 0.31 0.98 1 2 Chlorodifluoromethane Dichlorodifluoromethane 16.00 120.91 953.27 5.27 0 5.27 0.98 0.11 Ν 2 2 2.60 102.92 154.91 0.73 0.73 0.98 0.01 0 2 Dichlorofluoromethane Υ 1 0.76 137.38 45.28 0.28 0 0.28 0.98 5.69E-03 Y 3 1 Fluorotrichloromethane t-1,2-Dichloroethene 2.80 96.94 166.82 0.74 0 0.74 0.98 0.01 v 2 7.00 58.08 417.05 1.11 0 1.11 0.98 0.02 Ν Acetone^g 890.00 30.07 53.025 72.96 0 72.96 0.98 1.46 Ν Ethane

Note: Inlet flow rates calculated based on AP-42 Section 2.4, Equations 3 and 4 (August 2024).

^aLFG default concentration from USEPA LandGEM v3.03.

^bConcentration based on maximum from quarterly landfill gas analyses (Sampled December 2, 2022, January 26, 2023, April 24, 2023, July 13, 2023, November 27, 2023, February 6, 2024, and April 25, 2024) and a safety factor of 20%.

⁶VOC inlet concentration calculated as NMOC concentration minus the concentration of VOC exempt compounds per the definition of VOC at 40 CFR 51.100(s).

^dInlet CO₂ flow rate based on the USEPA LandGEM v.3.03 default LFG CO₂ concentration of 50% by volume.

^eLFG concentration from site-specific historical data.

^fPollutant is not a HAP but contributes to HCI/HF emissions.

^gVOC exempt compounds used to calculate VOC inlet flow rate.

Thermal Oxidizer Combustion Emissions Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC

RTO Combustion Emission Factors:

Pollutant	Emission Factors (lb/mmBTU)	Reference
CO	0.084	AP-42 Table 1.4-1 (July 1998)
NOx	0.10	AP-42 Table 1.4-1 (July 1998)
PM/PM ₁₀ /PM _{2.5} ^a	0.0076	AP-42 Table 1.4-2 (July 1998)

^aPer AP-42 Table 1.4-2 (July 1998) footnote "c", most particulate matter is less than $PM_{2.5}$. Therefore, all PM emissions have been considered to be equivalent to $PM_{2.5}$.

RTO Natural Gas Fuel Combustion Pollutant Emission Factors:

Pollutant	Emission Factors (lb/mmscf)	Reference
NMOC	8.70	AP-42 Table 1.4-2 (July 1998): TOC - Methane
SO ₂	0.60	AP-42 Table 1.4-2 (July 1998)
VOC	5.50	AP-42 Table 1.4-2 (July 1998)
CO ₂	120,000	AP-42 Table 1.4-2 (July 1998)
Methane	2.30	AP-42 Table 1.4-2 (July 1998)
N ₂ O	0.64	AP-42 Table 1.4-2 (July 1998)

RTO Waste Gas Combustion GHG Pollutant Emission Factors:

Pollutant	Emission Factor (lb/mmBTU)	Reference
CO ₂	114.81	40 CFR 98 Subpart C Table C-1
N ₂ O	0.0014	40 CFR 98 Subpart C Table C-2

RTO Combustion Potential Emissions:

Pollutant	Waste Gas Combustion Emissions (tons/yr)	Natural Gas Combustion Emissions (tons/yr)	Total Combustion Emissions (tons/yr)
СО	4.42	2.94	7.36
NMOC		0.30	0.30
NOx	5.26	3.50	8.76
PM/PM ₁₀ /PM _{2.5}	0.40	0.27	0.67
SO ₂	2.03	0.02	2.05
VOC		0.19	0.19
HCl ^a	4.10		4.10
HF ^a	2.03		2.03
CO ₂	6,035	4,205	10,239
Methane		0.08	0.08
N ₂ O	0.07	0.02	0.10
CO ₂ e ^c	6,056	4,213	10,270

^aBased on inlet chlorine compounds to TOU multiplied by the ratio of molecular weight of HCl to the molecular weight of Cl of "1.03".

^bBased on inlet fluorine compounds to TOU multiplied by the ratio of molecular weight of HF to the molecular weight of F of 20.01/19.

^cBased on global warming potential factors for CO₂, methane, and N₂O in 40 CFR 98 Table A-1.

Thermal Oxidizer HAP Emissions Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC

RTO Natural Gas Combustion Potential HAP Emissions:

Pollutant	Emission Factor (lb/mmcf) ^a	Potential Emissions (tons/yr)
Arsenic Compounds ^b	2.64E-04	9.25E-06
Benzene	2.10E-03	7.36E-05
Beryllium Compounds ^b	3.33E-05	1.17E-06
Cadmium Compounds ^b	1.26E-03	4.41E-05
Chromium Compounds ^b	1.83E-03	6.42E-05
Cobalt Compounds ^b	1.07E-04	3.74E-06
Dichlorobenzene	1.20E-03	4.20E-05
Formaldehyde	7.50E-02	2.63E-03
Hexane	1.80	0.06
Lead Compounds ^b	5.39E-04	1.89E-05
Manganese Compounds ^b	4.91E-04	1.72E-05
Mercury Compounds ^b	2.70E-04	9.47E-06
Naphthalene	6.10E-04	2.14E-05
Nickel Compounds ^b	2.67E-03	9.35E-05
Selenium Compounds ^b	3.37E-05	1.18E-06
Toluene	3.40E-03	1.19E-04
Total Polycyclic Organic Matter (POM)	8.82E-05	3.09E-06
2-Methylnaphthalene - POM	2.40E-05	8.41E-07
3-Methylchloranthrene - POM	1.80E-06	6.31E-08
,12-Dimethylbenz(a)anthracene - POM	1.60E-05	5.61E-07
Acenaphthene - POM	1.80E-06	6.31E-08
Acenaphthylene - POM	1.80E-06	6.31E-08
Anthracene - POM	2.40E-06	8.41E-08
Benz(a)anthracene - POM	1.80E-06	6.31E-08
Benzo(a)pyrene - POM	1.20E-06	4.20E-08
Benzo(b)fluoranthene - POM	1.80E-06	6.31E-08
Benzo(g,h,i)perylene - POM	1.20E-06	4.20E-08
Benzo(k)fluoranthene - POM	1.80E-06	6.31E-08
Chrysene - POM	1.80E-06	6.31E-08
Dibenzo(a,h)anthracene - POM	1.20E-06	4.20E-08
Fluoranthene - POM	3.00E-06	1.05E-07
Fluorene - POM	2.80E-06	9.81E-08
Indeno(1,2,3-cd)pyrene - POM	1.80E-06	6.31E-08
Phenanathrene - POM	1.70E-05	5.96E-07
Pyrene - POM	5.00E-06	1.75E-07
Total HAPs		0.07

^aReference: AP-42 Tables 1.4-3 and 1.4-4 (7/98).

^bMetal compounds emission factors based on base metal emission factor multiplied by the metal oxide ratio.

Flare CS-1 Combustion Emissions Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC

Flare CS-1 CO, NOx, and PM/PM₁₀/PM_{2.5} Emission Factors:

Pollutant	Emission Factor (lb/mmdscf methane)	Reference	
СО	58.00	AP-42 Table	
NOx	38.00	2.4-5 (August 2024)	
PM/PM ₁₀ /PM _{2.5} ^a	17.00	2.4-5 (August 2024)	

^aPer AP-42 Table 2.4-5 (August 2024) footnote "b", most particulate matter is less than $PM_{2.5}$. Therefore, all PM emissions have been considered to be equivalent to $PM_{2.5}$.

GHG Pollutant Emission Factors:

Pollutant Emission Factor (lb/mmBTU)		Reference			
CO ₂	114.8	40 CFR 98 Subpart C Table C-1			
N ₂ O	0.0014	40 CFR 98 Subpart C Table C-2			

Potential Flare CS-1 Emissions:

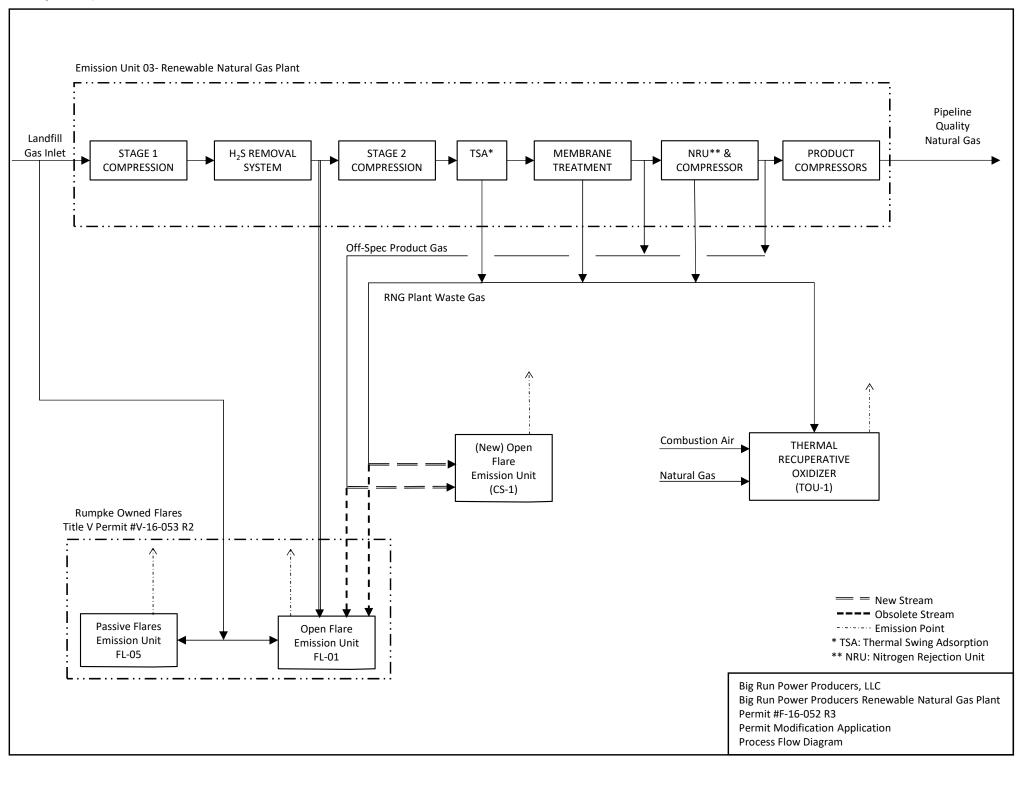
Pollutant	Normal Operation	RTO Backup Mode (Waste Gas)	Off-Spec Mode (Methane)	Total Maximum
	CS-1 (tons/yr)	CS-1 Combustion (tons/yr)	CS-1 Combustion (tons/yr)	Emissions (tons/yr)
CO		3.05	30.48	30.48
NOx		2.00	19.97	19.97
PM/PM ₁₀ /PM _{2.5}		0.89	8.94	8.94
SO ₂		2.03		2.03
HCL ^a		4.10		4.10
ΗF ^b		2.03		2.03
CO ₂		6,035	60,346	60,346
N ₂ O		0.07	0.73	0.73
CO ₂ e ^c		6,056	60,564	60,564

^aBased on inlet chlorine compounds to TOU multiplied by the ratio of molecular weight of HCI to the molecular weight of CI of "1.03".

^bBased on inlet fluorine compounds to TOU multiplied by the ratio of molecular weight of HF to the molecular weight of F of 20.01/19.

^cBased on global warming potential factors for CO₂, methane, and N₂O in 40 CFR 98 Table A-1.

Metal Oxide Ratios Potential Emissions Calculations Dedicated RNG Plant Flare Application Big Run Power Producers, LLC


	Metal		Oxide	
Metal	Molecular	Metal Oxide	Molecular	Oxide:Metal
	Weight		Weight	
Antimony	122	Sb ₂ O ₃	292	1.20
Arsenic	75	As ₂ O ₃	198	1.32
Barium	137	BaO	153	1.12
Beryllium	9	BeO	25	2.78
Cadmium	112	CdO	128	1.14
Chlorine	35.5	Cl ₂ O	87	1.23
Chromium	52	CrO	68	1.31
Cobalt	59	CoO	75	1.27
Copper	64	CuO	80	1.25
Fluorine	19	F ₂ O	54	1.42
Lead	207	PbO	223	1.08
Manganese	55	MnO	71	1.29
Mercury	201	Hg ₂ O	418	1.04
Nickel	59	NiO	75	1.27
Selenium	79	SeO ₂	111	1.41
Silver	108	Ag ₂ O	232	1.07
Vanadium	51	VO	67	1.31
Zinc	65	ZnO	81	1.25

Attachment 2: Big Run Flare Addition Process Flow Diagram

Archaea Energy

201 Helios Way Floor 6 Houston, TX 77079 archaeaenergy.com +1 346 708 8272

Attachment 3: Big Run Flare Addition Control Equipment Specifications

Archaea Energy

201 Helios Way Floor 6 Houston, TX 77079 archaeaenergy.com +1 346 708 8272

2.2 DESIGN BASIS

Our design is based on the preliminary information supplied by Venture Engineering.

Process Design Basis:

Waste Gas	Design Case
Flow, scfm	2000 max
Pressure, psig	5
Temperature, °F	75 to 100
Composition, vol%	
Carbon Dioxide	93 to 95
Methane	3 to 5
Oxygen	0.5
Nitrogen	1.5 to 2
Elevation	775 ft AMSL
Ambient temp, °F	6 to 91
Design wind speed	90 mph
Turndown, min	5:1

Specified Emission Limits:

NOx:	50 ppm _v
VOC:	98% DRE
CO:	75 ppm _v

Thermal Oxidizer Design Basis:
Туре:
Orientation:
Residence Time:
Design Oxidizer Temp.:
Operating Time:

Forced Draft Horizontally fired 0.5 seconds min 1600°F 24/7/365

Estimated Fuel Consumption: 1600°F operating temp. 600°F combustion air preheat

1000 F operating temp, 000 F combustion an preneat						
Waste stream CH4	Total System Heat	Waste Stream Heat	Natural Gas Burner Heat			
content at 2000 scfm flow	Release	Release	Release			
and 75°F						
5%	10.265MM Btu/hr	6.06MM Btu/hr	4.2MM Btu/hr			
3%	10MM Btu/hr	3.6MM Btu/hr	6.4MM Btu/hr			

Waste stream CH4 content at 2000 scfm flow and 450°F	Total System Heat Release	Waste Stream Heat Release	Natural Gas Burner Heat Release
5%	8.4MM Btu/hr	6.06MM Btu/hr	2.34MM Btu/hr
3%	8.16MM Btu/hr	3.6MM Btu/hr	4.5MM Btu/hr

PROCESS COMBUSTION CORPORATION

Please note that Information contained in this communication and proposal is confidential, proprietary information. Any unauthorized use, distribution, copying or disclosure of this communication or proposal is prohibited. Burner design advantages:

- Refractory baffle flame stabilization (no metal flame stabilizer that wears out)
- Refractory baffle shields the burner body/internals from flame radiant heat •
- Rugged long life construction •
- No moving parts and very low maintenance •
- High turndown, multiple fuel capabilities, wide range of operation (sub-stoic high excess air)

A typical PCC "Baffle Type" burner is shown below.

Typical Large Capacity Burners

Main Natural Gas Burner Design Data:

•	Burner Capacity:	8MM Btu/hr, approximately
---	------------------	---------------------------

- Main Fuel Type:
- Auxiliary fuel:
- Turndown:
- Pilot: •
- UV Scanners:
- Casing: •
- Flame Stabilizer:
- Fuel Nozzle:
- Surface Prep.:
- Paint::

- Natural gas
- Natural gas (only when needed)
- 10:1 on fuel, 5:1 on air
- Premix natural gas
- Two (2) included
- Carbon steel
- Patented refractory baffle shop installed
- Single stainless steel nozzle
 - PCC standard SSPC-SP6
- Primer coat of inorganic zinc
- Accessories: Sight ports, pressure& temperature taps, plate flange connections, bolt kit and mounting gaskets

Auxiliary Natural Gas Burner:

An auxiliary burner has been included with a maximum capacity of 2MM Btu/hr and spark ignitor. This burner will serve as a continuous pilot/source of ignition for the waste stream and the main burner. This approach provides a continuous, reliable source of ignition while increasing the available turndown capacity of natural gas.

PROCESS COMBUSTION CORPORATION

Please note that Information contained in this communication and proposal is confidential, proprietary information. Any unauthorized use, distribution, copying or disclosure of this communication or proposal is prohibited.

3.1.2 Thermal Oxidizer:

The Thermal Oxidizer is a custom designed horizontal unit designed to destroy the contaminants contained in a single waste gas stream from a landfill gas processing system.

Preliminary Thermal Oxidizer Design Data:

Combustion Chamber:

•	Diameter:	5'-4" OD
•	Length:	~ 15'-0"
•	Casing Thickness:	1/4" min
•	Casing Material:	Carbon Steel
•	Refractory Lining:	Materials & installation by PCC. Refractory material will be selected specifically for the application and rated several hundred degrees above the design operating temperature of the unit.
•	Estimated Shell Temp.:	Above the acid dewpoint temp, unless no sulfur or chlorides will be present in the waste stream
•	Retention Time:	0.5 seconds minimum
-	Courfs as Duan & Dainte	DCC standard CCDC CDC & prime cost of increasing inc

- Surface Prep & Paint: PCC standard SSPC-SP6 & prime coat of inorganic zinc
- Horizontally oriented system on saddles, located at grade for access
- Two (2) Tubular heat exchangers with sootblowers, bypass configuration and in parallel, located between the combustion chamber and stack to preheat the combustion air to approximately 600°F and the waste gas stream to 450°F 490°F.
- Refractory-lined ductwork will be necessary to deliver the products of combustion (POCs) from the combustion chamber to the heat exchangers. Ducts from the heat exchangers to the induced draft fan, and from the induced draft fan to the stack may not be lined.
- Combustion air ductwork post-heat exchanger will be unlined (externally insulated by others). Personnel protection on the ducts is possibly required to prevent injury, but not included at this time.
- A high temperature induced draft fan rated for approximately 10,000 ACFM, 8" wcdp, 20 HP has been added to draw the products of combustion (POCs) from the combustion chamber and through the heat exchangers. A variable frequency drive has been included.
- Regen ductwork and expansion joints, gaskets, hardware etc for the end user's process to/from the exchanger are not included.
- Additional controls and instrumentation for temperature and flow control of exchangers is included (control valves, thermocouples, etc)
- Expansion/flex joints in the combustion air ducts, where necessary
- <u>ADVANTAGE</u>: This option offers the greatest efficiency in the form of reduced fuel consumption and the most operational flexibility
- <u>ADVANTAGE:</u> This configuration offers the greatest protection with respect to the heat exchangers. Flow would be controlled with dampers downstream of each heat exchanger and the variable frequency drive on the induced draft fan. This design can control the flow and temperature of each exchanger individually, regardless of operating case. Hot exhaust flow from the oxidizer can actually be shut off completely to one or both exchangers.

PROCESS COMBUSTION CORPORATION

Please note that Information contained in this communication and proposal is confidential, proprietary information. Any unauthorized use, distribution, copying or disclosure of this communication or proposal is prohibited.

14" Candlestick Flare

Equipment Data Sheet

Spec. # FLR-1 Sheet # **1** of By: Date:

1

Reference Designator or Item # **FLR-1 (3200 Model)**

Quantity	1	
Manufacturer	Perennial Energy, Inc.	West Plains, MO 65775 USA
Model #	FL-14-C	Open / Non-Assisted
Capacity	360-3600 SCFM	10.8 – 108 MMBtuh
Design Criteria	EPA- 40 CFR, §60.18	
Theoretical NMOC Destruction Efficiency	98%	Per EPA-CICA Fact Sheet-Flare
Design Heat Flux	See Heat Flux Calcs	
Flame Presence Monitoring	Yes	Thermocouples (Type "K")
Burner Tip I.D.	13 5/8"	304L S.S.
Overall Flare Height	40 ft	From bottom of base
Fuel Gas Nozzle Adjustment	No	Velocity Seal
Wind Shroud Air Inlet Adjustment	Yes	Manual
Wind Shroud Diameter /Height	60" / 96"	
Wind Shroud Insulation	1" Ceramic Fiber	
Insulation Attachment	Inconel Studs & Retainers	
Insulation Layers	1	
Insulation Density	8 lb/ft ³ density	
Inlet Nozzle Size	12"	ANSI 150# Flange Pattern
Flare Burner – Construction Material	304L S.S.	
Wind Shroud – Construction Material	304L S.S.	
Self Supporting Base	Yes	No Guys Required*
Flare Mounted Equipment	12" Detonation Arrester	Safety Shutdown Valve
Supplied with other Equipment	Yes	Flare System Controls

COMMENTS or NOTES:

* If anchored adequately to appropriately designed equipment pad/foundation

CSF provided with other process control devices and control panel system

CSF provided with ground serviceable thermocouple assemblies and a flame front generator ignition continuous pilot locally mounted to the stack.

16 August 2022

Perennial Energy, LLC Candlestick (Utility) Flares operating on Landfill Gas

This document certifies that all standard PEI designed and manufactured candlestick (utility) type flares are compliant with 40 CFR 60.18 requirements for non-assisted devices.

Specifically, PEI designed and manufactured flares comply with the following requirements of 40 CFR 60.18 when in good repair & operated in accordance with nameplate limitations on Landfill Gas (LFG):

(c) (1) requires that the flare doesn't produce visible emissions as determined by EPA Method 22. PEI designed and manufactured flares operated on typical LFG are guaranteed to comply with this requirement.

(c) (2) requires that a flame is present at all times the flare is operational, and the presence of flame is confirmed with a device such as a thermocouple (f) (2). PEI designed and manufactured flares use a thermocouple to ensure a pilot flame is present before opening the safety shutdown valve and allowing gas to flow to the flare. A thermocouple is used to ensure main flame presence, and the flare will automatically shut down in event of a flame failure, and will not vent unburned LFG.

(c) (3) (ii) requires that the net heating value of the gas going to the flare is 200 BTU/ scf (net heating value) or greater. PEI designed & manufactured flares are compliant when operated in accordance with Manufacturer's instructions.

(c) (4) limits exit velocity to 60 ft/ sec, and exit velocity is determined by dividing the SCFM by the unobstructed cross-sectional area of the flare tip (f)(4). PEI designed & manufactured flares are compliant.

Emission Factors are taken from values published by the US EPA in AP-42. Several different values are presented in this reference, the owner must consult with a qualified Subject Matter Expert to ascertain the appropriate Emission Factor for their application. Published values, and their sources, are as shown on the following page:

	Published EPA AP	-42 Emission Fact	ors for Utility Flar	es					
Compound	Table 2-4-3 Dated 11/98	Table 2.4-5 Dated 11/98	Section 2.4.4.2 Dated 11/98	Table 2-4-3 DRAFT Dated 10/08	Table 2.4-4 DRAFT Dated 10/08	Section 2.4.4.2 DRAFT Dated 10/08	Table 13.5-1 Dated 02/18⁴	Table 13.5-2 Dated 02/18*	Chapter 13.5 Text Page 13.5-3 Dated 02/18
NMOCs Destruction									
Efficency	99.20%			97.70%					989
VOCs	Halogenated-98.0%								
Destruction	Non-Halogenated								
Efficiency	99.7%			97.70%					
NOX Units as noted		40 #/ MM SCF CH4			39#/MM SCF CH4		0.068 # /MM BTU HHV		
CO Units as					· · ·			0.031 #/ MM BTU	
noted		750#/ MM SCF CH4			46#/MM SCF CH4			LHV	
SO2			Site Specific- Use Mass Balance			Site Specific- Use Mass Balance			
PM #/Million									
SCF CH4		17#/MM SCF CH4			15#/MM SCF CH4		0**		
HCL			Site Specific- Use Mass Balance			Site Specific- Use Mass Balance			
Dioxin/Furans					4.2E-7 #/MM SCF CH4				
					* Valid for flares run	ning on gas with a net	heating value greater	than 300 BTU/Cu Ft	
						ootnote d for a non-smo			

PEI JOB# N/A

SCOPE OF SUPPLY

FOR Archaea Model 3200 CSF's

Perennial Energy will supply the following equipment as described in the accompanying documents:

- 1. A 360 3600 SCFM fully rated RNG Candlestick Flare system with one 10" ANSI Flanged inlet, detonation arrestor and pneumatically actuated shutdown valve with spring fail closed capabilities.
- 2. A 100,000 BTU/Hr Continuous pilot w/ Flame Front Generator assembly. All electrical parts for the pilot are mounted integral to the flare stack.
- 3. Qty 2 Ground Serviceable thermocouple assemblies, with removable straightener.
- 4. Fully outdoor rated and automated control system with stand and sunshield, assembly mounted by others in an unclassified location.
- 5. Qty 3 System O&M Manuals.

The above equipment will be delivered to the Job Site. Unloading and installation are *not* included.

All piping and wiring are pre-installed at factory to the extent possible.

A 3-Day Onsite Startup Trip is included.

SYSTEM OPERATION INFORMATION – R0

PROJECT Archaea CSF's All Models

SYSTEM DESCRIPTION

The Flare System consists of the following major components:

TSE-301(..2)Flare Detonation Arrestor(s)FV-301Flare Shutdown Valve

The Flare acts as relief to the RNG plant. When the plant goes down, both in the process of the plant shutting down and, in the aftermath, the Flare will handle the gas. Either off-spec, reject gas or biogas is combusted in the Flare.

STANDARD AUTO MODE

For the Flare System to run in AUTO mode, the following switches on the Flare System control panel must be in the following positions:

_	Switch	Description	Position
1.	HS-1	System	On
2.	HS-2	Continuous Pilot Fuel	Auto
3.	HS-3	FFG Fuel	Auto
3.	HS-4	Spark	Auto
4.	HS-5	Main Shutdown Valve	Auto
5.	HS-7	CP E-Stop (@ CP)	Out
6.	HS-8	FLR E-Stop (@ FLR)	Out

In addition to the physical hand switch positions, selections of pilot mode can be made in the touchscreen. Any pilot mode can be selected in order to run the Flare. These modes are listed and below:

- 1. Continuous Mode
 - a. As long as all of the hand switches are in the positions described in the table above, the pilot will run.
 - b. If the pilot fails to stay lit, it will attempt to relight for a user settable number of times. If the pilot succeeds to relight, the counter resets. If not, the system will shut down.
 - c. In continuous mode, Flare flame proof is through the pilot thermocouple. This helps in times where brief spurts of gas are sent to the flare (i.e. at startup). CAUTION! Continuous mode should be used when flow rate is greater than the "Starting" values presented below at starting*. After a period of time, when the stack composition dips below the LEL, flow can reach as low as the "Running" values presented below when running.

Model	Starting (SCFM)	Running (SCFH)
9600	350	500
6400	250	300
3200	150	200

- d. Low main flame temperature is ignored in "Continuous" mode.
- 2. Intermittent Mode
 - a. The pilot will attempt to light when the flare receives a "Run" signal from the BOP. The pilot will continue to run until the "Run" signal is lost.
 - b. If the pilot fails to light, the same actions as in (b) in the first section will take place.
 - c. In intermittent mode, Flare flame proof is through the pilot thermocouple, as in Continuous mode.
 - d. Low main flame temperature is ignored in "Intermittent" mode.
- 3. Interrupted Mode (selected when both Continuous Mode and Intermittent Mode are de-selected)
 - a. The pilot will attempt to light when the Flare system receives a "Run" signal from the BOP and will shut off when the main flame is proven. Flare flame proof is through the main flame thermocouple.
 - b. If the pilot fails to light, the same actions as in (b) in the first section will take place.

*This is the minimum recommended flowrate to start. Adjustment of this value can be made in the system touchscreen. Lower starting flowrates may result in flashback or detonation!

AUTOMATIC SEQUENCE OF OPERATION

CANDLESTICK FLARE OPERATION

- 1. All hand-operated butterfly valves should be in the position described by the P&ID
- 2. The switches should be in the position described herein under *Standard Auto Mode*.
- 3. Pre-Start PLC Checks
 - a. The PLC verifies, via digital inputs, the necessary switches are in the AUTO position.
 - b. The PLC verifies there are no active shutdowns.
- 4. Start Sequence
 - a. A "FLARE READY" signal is sent to the BOP when all hand switches are in the prescribed positions in the table above and when there are no outstanding shutdowns.
 - b. The Flare control panel will then receive a "RUN" command from the BOP.
 - c. If the pilot is in "Interrupted" or "Intermittent" mode, it will attempt to light and prove using the pilot thermocouple (TE-502).
 - i. Solenoid valves FV-101..2 will open simultaneously.
 - ii. The igniter will pulse for a settable time, then de-energize for a settable time.
 - iii. This will happen until either the pilot flame is proven or the cycle limit is reached. At this time, only FV-101 will shut and the igniter will stop. If the cycle limit is reached with no pilot proof, the pilot will cycle again and again for a settable number of times. Once this limit is reached, the flare will shut down on a "Pilot Fail" shutdown.
 - iv. Once pilot temp is proven, the shutdown valve will open and send gas to the flare.
 - v. When in interrupted mode, the pilot will wait until main flame temperature is proven to shut off.
 - d. If the pilot is switched to "Continuous" mode, the pilot will be lit continuously, as long as all hand switches are in the prescribed positions in the table above.
 - i. The pilot will start as in section (c) above, and once proven, will shut only FV-101 and the igniter will stop.
 - ii. The pilot it will run regardless of FV-301's position.
 - iii. When the Flare System receives the "RUN" command from the BOP, the shutdown valve (FV-301) will open and the Flare will be controlled by the pilot thermocouple. NOTE! This is to ensure smooth operation when short spurts of gas are sent to the flare (i.e. at startup). CAUTION! Continuous mode should be used when flowrate is greater than the "Starting" flowrates at starting, as aforementioned.
- 5. Run and Stop Sequences
 - a. The flare will continue to run until a shutdown is experienced.
 - i. Most shutdowns will require a manual reset action.
 - ii. Loss of flame is an exception. Depending on the selected pilot mode the PEI control system will operate differently.
 - Continuous Mode: In Continuous Mode, loss of flame is a lack of temperature on the pilot thermocouple. The system will simply attempt to relight the pilot a set number of times until it relights (resulting in counter resetting) or the limit is reached, which will require a manual reset. If the shutdown valve is open when pilot proof is lost, the valve will close until pilot is re-proven. This will take place regardless of Run Command status from the BOP.
 - Intermittent Mode: Intermittent Mode performs similarly to Continuous Mode in this regard. Loss of flame is a lack of temperature on the pilot thermocouple. When attempting to relight, the shutdown valve (FV-301) will close until pilot is proven.
 - Interrupted Mode: In Interrupted Mode, loss of flame is a lack of temperature on the main flame thermocouple. In this event, the pilot will attempt to relight until the attempt limit is reached or main flame temperature is re-established. This will take place only if a Run Command is maintained from the BOP control system.
 - iii. Cool-Down Mode This is a feature selectable in the flare system's HMI, which applies to all pilot modes. Cool-Down mode is used to allow the pilot thermocouple to cool down before attempting to re-light. This ensures a strict pilot proof before introducing biogas to the flare. As aforementioned, this mode can be disabled, which will disable the pilot thermocouple's influence in the flare's operation. Additionally, the shutdown valve (FV-301) will close at loss of main flame temperature. The pilot will try to relight only on main flame lost. Additionally, FV-301 remains closed until either the main flame is proven again or the relight fail threshold is reached.
 - b. The Flare will continue to run until the "RUN" signal is lost.

Docusign Envelope ID: E84B8578-63B5-454C-887A-6889983211C3

- i. If the pilot is in "Intermittent" mode, the pilot will extinguish and the shutdown valve will close. If the pilot is in "Interrupted" or "Continuous" mode, only the shutdown valve will close.
- c. If the system experiences a shutdown, power failure or controlled shutdown, FV-301 will spring closed.
- 6. The following signals will be communicated over Ethernet:
 - a. Flare Flowrate This is an analog signal derived from the site supplied flow transmitter adjacent to the candlestick flare. This analog signal is sent from the BOP via Ethernet to the CSF control system.
 - b. BOP Communications Heartbeat This is a simple Ethernet communications heart beat that occurs once a second. The counter starts at 1 and resets to 1 at 60. This signal will be derived from the BOP control system.

*See asterisk note on the previous page...

CUSTOMER SUPPLIED NITROGEN OR DRY, COMPRESSED AIR @ 80 PSI MIN

PROCESS IN

MODE 1: RAW LFG FLOW RATE: MIN: 352 SCFM MAX: 3520 SCFM MAX PRESSURE: 5 PSIG MAX TEMP: 140 DEG F COMPOSITION: CH4: 52% CO2:___% N2:____% H2S:<1500_PPMV NH3:<10 PPMV

MODE 3: OFFSPEC PRODUCT GAS

FLOW RATE:

COMPOSITION:

CH4: 97% CO2:___%

N2:___%

FLOW RATE:

COMPOSITION:

CH4: 52% CO2:___% N2:___%

MIN: 160 SCFM

MAX: 1585 SCFM

MAX PRESSURE: 5 PSIG

MAX TEMP: 140 DEG F

H2S:<1500 PPMV

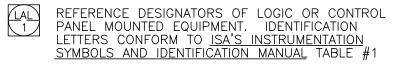
MODE 4: TSA BLOWDOWN

NH3:<10 PPMV

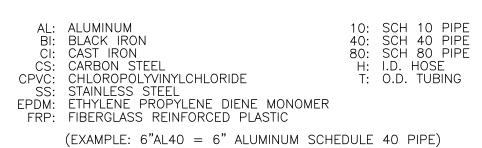
MIN: 300 SCFM MAX PRESSURE: 5 PSIG

MAX TEMP: 140 DEG F

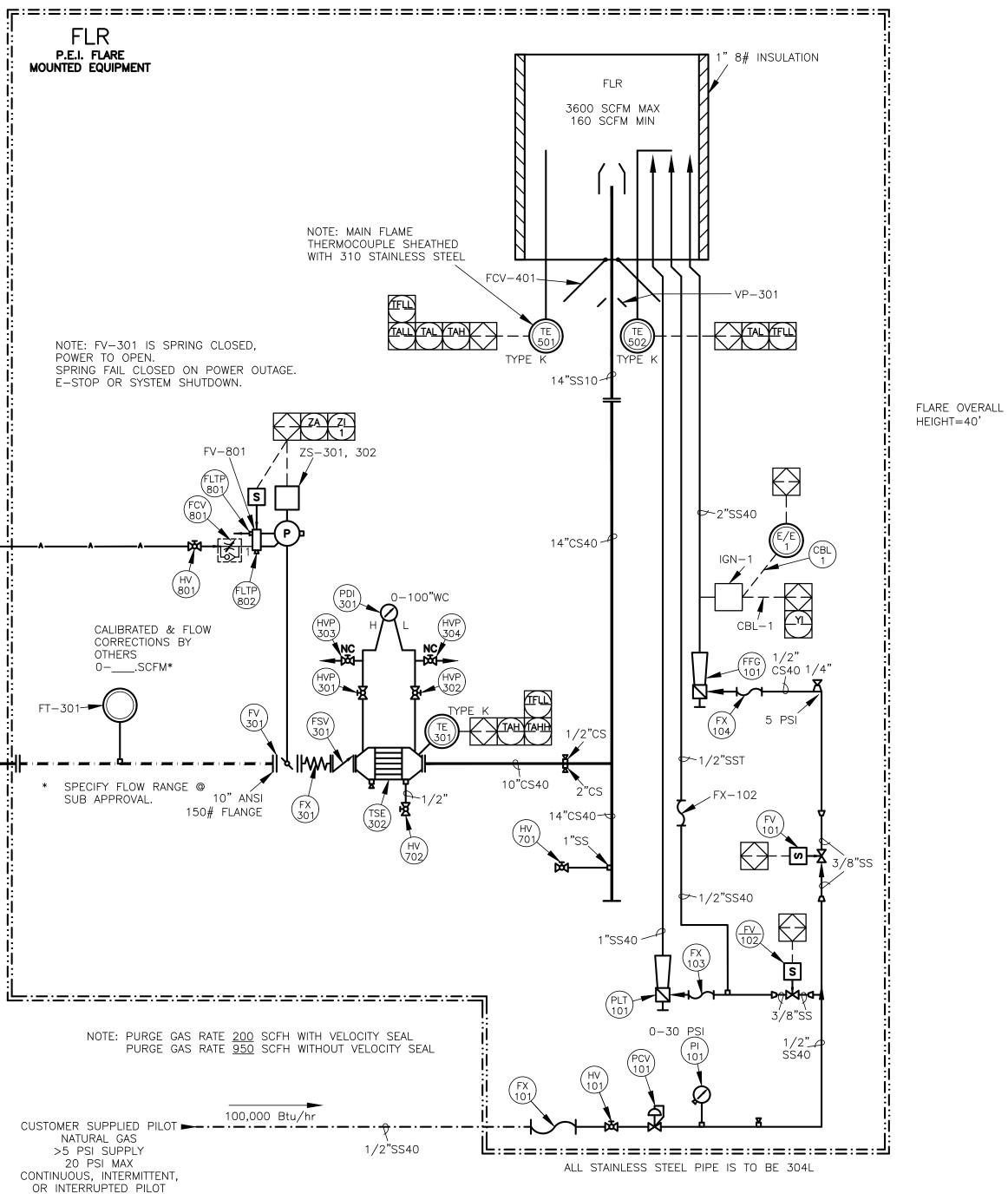

H2S:<1500 PPMV


NOTE: FAILURE TO MAINTAIN SUFFICIENT FLOW

MAY RESULT IN FLASHBACK & DETONATION

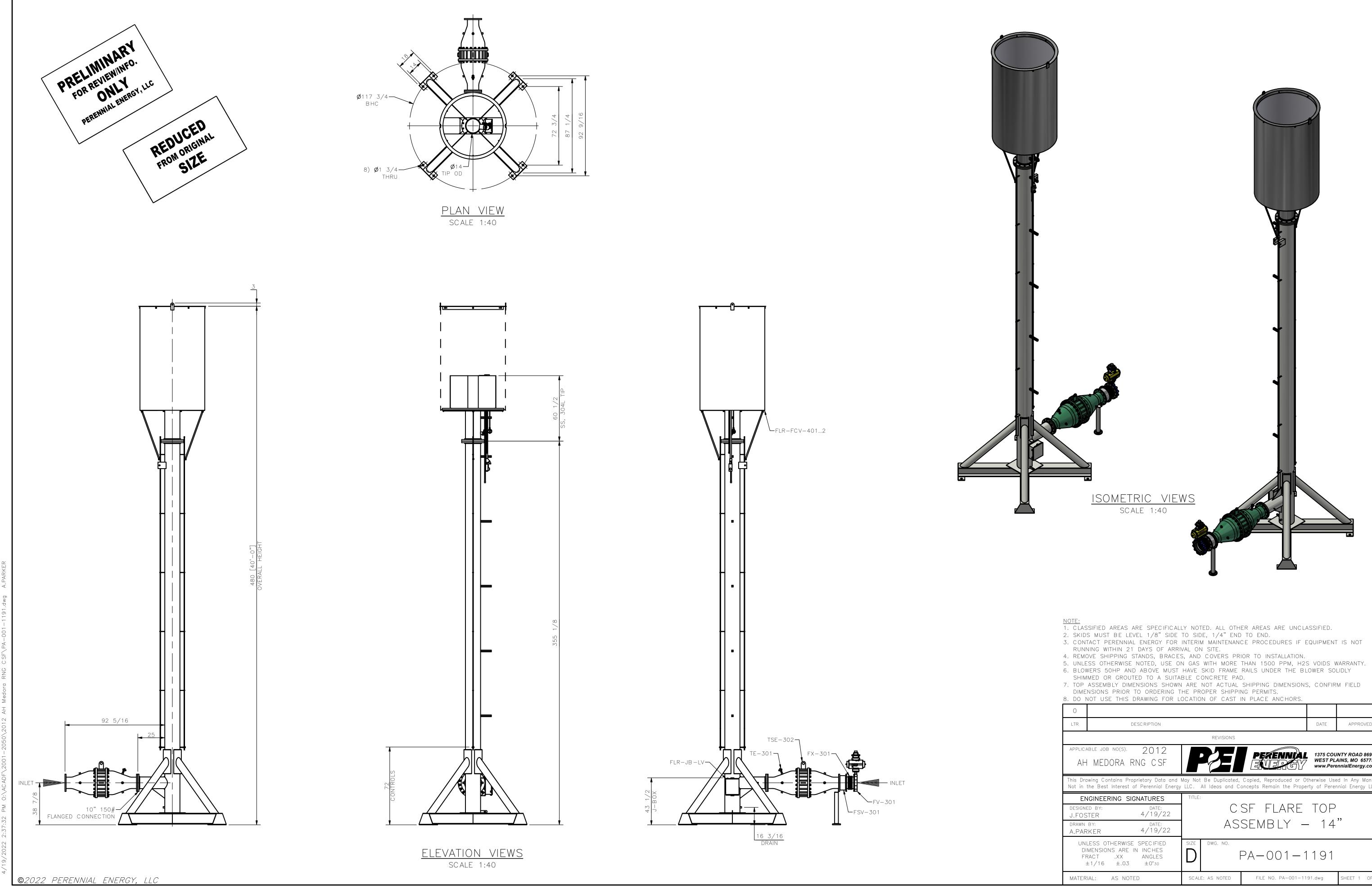

NH3:<10 PPMV

MODE 2: PRODUCT GAS FLOW RATE: MIN: 196 SCFM MAX: 1960 SCFM MAX PRESSURE: 5 PSIG MAX TEMP: 140 DEG F COMPOSITION: CH4: 83% CO2:___% N2:___% H2S:<1500 PPMV NH3:<10 PPMV



MANUAL VALVES ARE NORMALLY OPEN DURING SYSTEM OPERATION UNLESS DESIGNATED BY "NC"

©2022 PERENNIAL ENERGY, LLC


Fluid Designators	
--------------------------	--

	ELECTRICAL CONNECTIONS
	MAIN PIPING
	SUB PIPING
^A	AIR LINE
cc	CONDENSATE LINE
	CUSTOMER SUPPLIED MAIN PIPING
_ · _ · _ · _ · _ ·	CUSTOMER SUPPLIED SUB PIPING
	LOCATION BORDER
	FUTURE/PENDING PIPING BORDER

Ref Des	Fluid
1XX	Fossil Fuels
2XX	Oils
3XX≈	Biogas
4XX	Air
5XX	Combustion Exhaust
6XX	Coolants
7XX	Condensate
8XX	Inert Gases
9XX	Digester Fluids

SITE ELI	evation: <u>839ft</u> amsl			PRELIMINA FOR REVIEWI FOR REVIEWI PERENNIAL E	RY NFO. N NERGY, I	NC.
0						
LTR	DESCRIPTION				DATE	APPROVED
			REVISIONS			
	le job no(s). 2012 MEDORA RNG CS				5 COUNTY I ST PLAINS, v.PerennialE	MO 65775
	wing Contains Proprietary Data of	•	•	•		•
		1	All Ideas and C	oncepts Remain the Property o	r Perennial	Energy, Inc.
DESIGNED J.FOST				CSF FLARE		
drawn b B.HOLN				P & ID		
DII F	ESS OTHERWISE SPECIFIED MENSIONS ARE IN INCHES RACT .XX ANGLES 1/16 ±.03 ±0°30	SIZE D 34x22	DWG. NO.	ME-009-0)551	
MATERIA	AL: AS NOTED	SCALE	AS NOTED	FILE NO. ME-009-0551 RO.D	NG SH	EET 1 OF 2

REDUCED REDUCED FROM ORIGINAL FROM SIZE

						-	
0							
LTR	DESCRIPTION				DATE	APPROVED	
			REVISIONS				
	able job no(s). 2012 I MEDORA RNG CSF			PERENNIAL ENERGY	WEST PL	INTY ROAD 8690 AINS, MO 65775 ennialEnergy.com	
	awing Contains Proprietary Data ar the Best Interest of Perennial Ene						
EN	IGINEERING SIGNATURES	TITLE					
designi J.FOS			CSF FLARE TOP				
drawn A.PAR	1/10/00		AS	SEMBLY -	- 14		
DI FF	LESS OTHERWISE SPECIFIED MENSIONS ARE IN INCHES RACT .XX ANGLES ±1/16 ±.03 ±0°30	SIZE D	DWG. NO.	PA-001-1	191		
MATER	IAL: AS NOTED	SC AL	E: AS NOTED	FILE NO. PA-001-11	91.dwg	SHEET 1 OF 1	

07 February, 2019

Perennial Energy, LLC Candlestick (Utility) Flares operating on Off Spec Gas

This document certifies that all standard PEI designed and manufactured candlestick (utility) type flares are compliant with 40 CFR 60.18 requirements for non-assisted devices.

Off Spec Gas is gas produced from Biogas to Pipeline projects that is predominately methane with a few percentages of Nitrogen &/or Carbon Dioxide.

Specifically, PEI designed and manufactured flares comply with the following requirements of 40 CFR 60.18 when in good repair & operated in accordance with nameplate limitations and operations instructions on Off Spec Gas with a methane content of greater than 90%:

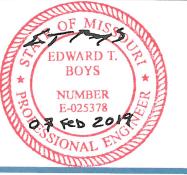
(c) (1) requires that the flare doesn't produce visible emissions as determined by EPA Method 22. PEI designed and manufactured flares are guaranteed to comply with this requirement.

(c) (2) requires that a flame is present at all times the flare is operational, and the presence of flame is confirmed with a device such as a thermocouple (f) (2). PEI designed and manufactured flares use a thermocouple to ensure a pilot flame is present before opening the safety shutdown valve and allowing gas to flow to the flare. A thermocouple is used to ensure flame presence, and the flare will automatically shut down in event of a flame failure, and will not vent unburned gas.

(c) (3) (ii) requires that the net heating value of the gas going to the flare is 200 BTU/scf (net heating value) or greater. PEI designed & manufactured flares are compliant. (c) (4) limits exit velocity to 60 ft/sec, and exit velocity is determined by dividing the SCFM by the unobstructed cross sectional area of the flare tip (f) (4). PEI designed & manufactured flares are compliant.

Emission Factors for utility flares operating on Off Spec Gas with a net heating value greater than 820 BTU/scf:

Compound	LFG Utility Flare Emission Factor	Data Source	Date
VOCs	98%- 99.99%	EPA AP 42 Section 13.5.2,	02/18
		footnotes to tables 13.5-1	
		and 13.5-2	
NOX	0.068 lb/Million BTU, HHV	EPA AP 42, table 13.5-1	02/18
CO	0.31 lb/Million BTU, LHV	EPA AP 42, table 13.5-2	02/18


Respectfully,

3075

Edward T Boys, PE Engineering Manager

1375 County Road 8690 West Plains, MO 65775 Phone (417) 256-2002 Fax (417) 256-2801 www.PerennialEnergy.com PEI@PerennialEnergy.com

\\server1\Apps_Sales\PEI Marketing\Flyers\CSF Emissions R3 unsigned Off Spec.doc

Attachment 4: Big Run Flare Addition LFG Sample Analyses

Archaea Energy

201 Helios Way Floor 6 Houston, TX 77079 archaeaenergy.com +1 346 708 8272

	Services	South Charlesto 1740 Union	cnergy services on, West Virginia Carbide Drive ton, WV 25303	Report Date: Dec 23	, 2022 12:36p
Client:	ARCHAEA ENERGY		Date Sampled:	Dec 2, 2022	
Client Code:	2697		Analysis Date:	Dec 6, 2022	
					c++
Site:	BRPP - QUARTERLY		Collected By:	WAYLON TACK	
Field:	100 - ARCHAEA ENE	RGY	Date Effective:	Dec 2, 2022 12	2:00a
Meter:	1301		Source Pressure (PS	I):	
Source Laboratory:	Charleston, WV		Source Temp (P):		
Lab File No:	SS3747				
Cylinder No:	BAG1				
Analysis Status:	good				
-	-				
Sample Type:	Spot				
Measurement Analyst:					
		Method: G	FPA-2199		
SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	<u>Grains / 100 cu.</u>
Hydrogen	700.2	41.381	Methyl	16.8	0.99
Carbonyl	0.8	0.049	Ethyl	0.6	0.03
Dimethyl	23.9	1.414	Isopropyl	2.0	0.11
Methyl Ethyl	< 0.5	< 0.5	n-Propyl	<0.5	<0.
Diethyl	N/D	N/D	Isobutyl	N/D	N/
Di-iso-Propyl Di-n-propyl	N/D N/D	N/D N/D	sec-Butyl	N/D	N/
Di-iso-Butyl	N/D	N/D	tert-Butyl	0.8	0.04
Di-sec-Butyl	N/D	N/D	n-Butyl	N/D	N/
Di-tert-Butyl	N/D	N/D	Isoamyl	<0.5	<0.
Di-n-Butyl	N/D	N/D	pri-Amyl	N/D	N/
Unknown	N/D	N/D	n-Amyl	N/D	N/
DISULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	OTHER	PPMV	<u>Grains / 100 cu.</u>
Carbon	N/D	N/D	Misc. Sulfurs	N/D	N/
Dimethyl	<0.5	<0.5	Thiophene	3.9	0.23
Vethyl Ethyl	N/D	N/D	Thiophane	N/D	N/
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-tert-Butyl	N/D	N/D			
Di-n-Butyl	N/D	N/D			
Jnknown	N/D	N/D			
Fotal Sulfur	686.0 PF	PMV S			
		Grains/100 cu.ft			
Odorant Concentratio	on	1 155 Graine/100	cu ft		
19.540 PPMV		1.155 Grains/100	cu.it		
Source Da	te Notes				

		1740 Union	on, West Virginia Carbide Drive ton, WV 25303	Report Date: Dec 23	, 2022 12:40p
Client:	ARCHAEA ENERGY		Date Sampled:	Dec 2, 2022	
Client Code:	2697		Analysis Date:	Dec 6, 2022	
Site:	BRPP - QUARTERLY		Collected By:	WAYLON TACK	FTT
		CV			
Field:	100 - ARCHAEA ENER	GY	Date Effective:	Dec 2, 2022 12	2:00a
Meter:	1301		Source Pressure (PSI)	:	
Source Laboratory:	Charleston, WV		Source Temp (P):		
Lab File No:	SS3748				
Cylinder No:	BAG2				
Analysis Status:	good				
Sample Type:	Spot				
Measurement Analyst:					
		Method: G	iPA-2199		
SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	<u>Grains / 100 cu.t</u>
Hydrogen	629.4	37.196	Methyl	13.1	0.77
Carbonyl	0.6	0.036	Ethyl	0.6	0.03
Dimethyl	17.6	1.041	Isopropyl	1.4	0.08
Methyl Ethyl	N/D	N/D	n-Propyl	N/D	N/I
Diethyl	N/D	N/D	Isobutyl	N/D	N/I
Di-iso-Propyl	N/D	N/D	sec-Butyl	N/D	N/I
Di-n-propyl	N/D	N/D	tert-Butyl	N/D	N/I
Di-iso-Butyl Di-sec-Butyl	N/D N/D	N/D N/D	n-Butyl		
Di-tert-Butyl	N/D	N/D	Isoamyl	N/D	N/I
Di-n-Butyl	N/D	N/D	pri-Amyl	N/D	N/I
Unknown	N/D	N/D	n-Amyl	N/D	N/[
			-	N/D	N/[
DISULFIDES	<u>PPMV</u>	<u>Grains / 100 cu.ft</u>	OTHER	PPMV	Grains / 100 cu.1
Carbon	N/D	N/D	Misc. Sulfurs	N/D	N/[
Dimethyl	<0.5	<0.5	Thiophene	2.1	0.12
Methyl Ethyl	N/D	N/D	Thiophane	N/D	N/I
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl Di-iso-Butyl	N/D	N/D			
Di-Iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-n-Butyl	N/D N/D	N/D N/D			
Unknown	N/D	N/D			
Total Sulfur	612.1 PPN				
	36.174 (Grains/100 cu.ft			
Odorant Concentrati	ion				
14.500 PPMV		0.857 Grains/100	cu.ft		
Source Da	ate Notes				

			on, West Virginia Carbide Drive iton, WV 25303	Report Date: Dec 23	, 2022 12:42p
Client:	ARCHAEA ENERGY		Date Sampled:	Dec 2, 2022	
Client Code:	2697		Analysis Date:	Dec 6, 2022	
Site:	BRPP - QUARTERLY		Collected By:	WAYLON TACK	FTT
	-		•		
Field:	100 - ARCHAEA ENER	GY	Date Effective:	Dec 2, 2022 12	2:00a
Meter:	1301		Source Pressure (PSI)):	
Source Laboratory:	Charleston, WV		Source Temp (P):		
Lab File No:	SS3749				
Cylinder No:	BAG3				
Analysis Status:	good				
Sample Type:	Spot				
Measurement Analyst:	5000				
Measurement Analyst.					
		Method: G	SPA-2199		
SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	<u>Grains / 100 cu.</u>
Hydrogen	706.6	41.761	Methyl	12.6	0.74
Carbonyl	0.7	0.043	Ethyl	<0.5	<0.
Dimethyl Mathada Ethad	15.1	0.892	lsopropyl	1.4	0.08
Methyl Ethyl Diethyl	N/D N/D	N/D N/D	n-Propyl	N/D	N/
Di-iso-Propyl	N/D	N/D	lsobutyl	N/D	N/
Di-n-propyl	N/D	N/D	sec-Butyl	N/D	N/
Di-iso-Butyl	N/D	N/D	tert-Butyl	N/D	N/
Di-sec-Butyl	N/D	N/D	n-Butyl	, N/D	N/
Di-tert-Butyl	N/D	N/D	Isoamyl	N/D	N/
Di-n-Butyl	N/D	N/D	pri-Amyl	N/D	N/
Unknown	N/D	N/D	n-Amyl	N/D	N/
DiSULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	OTHER	PPMV	, <u>Grains / 100 cu.</u>
Carbon	N/D	N/D	Misc. Sulfurs	N/D	N/
Dimethyl	< 0.5	< 0.5	Thiophene	2.2	0.12
Methyl Ethyl	N/D	N/D	Thiophane	N/D	N/
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-tert-Butyl	N/D	N/D			
Di-n-Butyl	N/D	N/D			
Unknown	N/D	N/D			
Total Sulfur	683.0 PP	MV S			
	40.366	Grains/100 cu.ft			
Odorant Concentration					
13.990 PPMV		0.827 Grains/100	cu.ft		

		1740 Union	on, West Virginia Carbide Drive ston, WV 25303	Report Date: Feb 10,	2023 12:15p
Client:	ARCHAEA ENERGY		Date Sampled:	Jan 26, 2023	
Client Code:	2697		Analysis Date:	Jan 30, 2023	
Site:	BRPP - QUARTERLY		Collected By:	WAYLON TACK	= + +
Field:	100 - ARCHAEA ENE	RGY	Date Effective:	Jan 26, 2023 1	2:00a
Meter:	1301		Source Pressure (PSI):	
Source Laboratory:	Charleston, WV		Source Temp (P):		
Lab File No:	SS3877				
Cylinder No:	BAG				
Analysis Status:	good				
Sample Type:	Spot				
	5000				
Measurement Analyst:					
		Method: 0	SPA-2199		
SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	<u>Grains / 100 cu.</u>
Hydrogen	482.4	28.509	Methyl	121.2	7.16
Carbonyl	1.2	0.069	Ethyl	2.6	0.15
Dimethyl Mathyl Ethyl	182.6	10.790	Isopropyl	3.0	0.17
Methyl Ethyl Diethyl	0.8 <0.5	0.047 <0.5	n-Propyl	1.8	0.10
Di-iso-Propyl	<0.5 N/D	<0.5 N/D	Isobutyl	N/D	N/
Di-n-propyl	< 0.5	<0.5	sec-Butyl	N/D	N/
Di-iso-Butyl	N/D	N/D	tert-Butyl	0.7	0.03
Di-sec-Butyl	N/D	N/D	n-Butyl	N/D	N/
Di-tert-Butyl	<0.5	<0.5	Isoamyl	<0.5	<0.
Di-n-Butyl	N/D	N/D	pri-Amyl	<0.5	<0.
Unknown	0.8	0.047	n-Amyl	<0.5	<0.
DISULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	OTHER	PPMV	<u>Grains / 100 cu.</u>
Carbon	<0.5	<0.5	Misc. Sulfurs	N/D	N/
Dimethyl	2.8	0.167	Thiophene	8.3	0.48
Methyl Ethyl	<0.5	<0.5	Thiophane	N/D	N/
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-tert-Butyl	<0.5	<0.5			
Di-n-Butyl	N/D	N/D			
Unknown	N/D	N/D			
Total Sulfur	639.1 PP	MV S			
.		Grains/100 cu.ft			
Odorant Concentration	ח				
124.849 PPMV		7.379 Grains/100	cu.ft		
Source Date	e Notes				

		1740 Union	on, West Virginia Carbide Drive ton, WV 25303	Report Date: Feb 10,	2023 12:21p
Client:	ARCHAEA ENERGY		Date Sampled:	Jan 26, 2023	
Client Code:	2697		Analysis Date:	Jan 30, 2023	
Site:	BRPP - QUARTERLY		Collected By:	WAYLON TACK	=TT
	-	DCV			
Field:	100 - ARCHAEA ENE	KGY	Date Effective:	Jan 26, 2023 1	2:00a
Meter:	1301		Source Pressure (PSI)	:	
Source Laboratory:	Charleston, WV		Source Temp (P):		
Lab File No:	SS3878				
Cylinder No:	BAG				
Analysis Status:	good				
, Sample Type:	Spot				
Measurement Analyst:	opor				
		Method: G	iPA-2199		
ULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	<u>Grains / 100 cu.</u>
Hydrogen	543.7	32.131	Methyl	187.1	11.05
Carbonyl	1.8	0.106	Ethyl	3.5	0.20
Dimethyl	237.0	14.009	Isopropyl	3.5	0.20
Methyl Ethyl	0.9	0.052	n-Propyl	1.9	0.11
Diethyl	< 0.5	< 0.5	Isobutyl	N/D	N/
Di-iso-Propyl	N/D	N/D	sec-Butyl	N/D	N/
Di-n-propyl	<0.5 N/D	<0.5 N/D	tert-Butyl	0.6	0.03
Di-iso-Butyl Di-sec-Butyl	N/D	N/D	n-Butyl	0.0 N/D	0.03 N/
Di-tert-Butyl	<0.5	<0.5	Isoamyl		
Di-n-Butyl	N/D	N/D	pri-Amyl	0.5	0.03
Jnknown	0.7	0.044	n-Amyl	<0.5	<0.
			-	<0.5	<0.
SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	OTHER	<u>PPMV</u>	<u>Grains / 100 cu.</u>
Carbon	<0.5	<0.5	Misc. Sulfurs	N/D	N/
Dimethyl	3.0	0.176	Thiophene Thiophane	8.2	0.48
Methyl Ethyl	< 0.5	< 0.5	Пюрпапе	N/D	N/
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl Di-iso-Butyl	N/D	N/D			
Di-Iso-Butyl	N/D	N/D			
Di-sec-Butyl Di-tert-Butyl	N/D	N/D			
Di-n-Butyl	<0.5 N/D	<0.5 N/D			
Jnknown	N/D	N/D			
otal Sulfur	769.9 PP				
		Grains/100 cu.ft			
Odorant Concentration					
191.150 PPMV		11.297 Grains/100	cu.ft		
Source Date	Notes				

Hydrogen 565.6 33.425 Methyl 211.3 12 Carbonyl 2.1 0.124 Ethyl 3.8 00 Dimethyl 264.5 15.632 Isopropyl 3.8 00 Methyl Ethyl 0.9 0.056 n -Propyl 2.1 00 Diethyl <0.5 <0.5 Isobutyl N/D 00 Di-iso-Propyl N/D N/D Isobutyl N/D N/D Di-n-propyl <0.5 <0.5 sec-Butyl N/D N/D Di-sec-Butyl N/D N/D N/D N/D 0.5 0.05 Di-sec-Butyl <0.5 <0.5 $n-Amyl$ <0.5 0.5 0.5 0.5 Di-n-Butyl N/D N/D N/D <0.5 0.5 0.5 0.5 Di-n-Butyl N/D N/D N/D <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 $<0.$			1740 Union	on, West Virginia Carbide Drive ton, WV 25303	Report Date: Feb 10,	2023 12:26p
Site:: BRPP - QUARTERLY Collected By: WAYLON TACKETT Field: 100 - ARCHAEA ENERGY Date Effective: Jan 26, 2023 12:00a Meter: 1301 Source Pressure (PSI): Source Laboratony: Charleston, WV Source Temp (P): Lab File No:: SS3377 Cylinder No:: BAG Analysis Status: god Sample Type: Source Temp (P): Lab File No:: Source Temp (P): Vertex (PSP-2199) VLFIDES PPMY Grains / 100 cu.ft MERCAPTANS PPMY Grains / 100 cu.ft Measurement Analyst: 211.0 0.21 0.124 Ethyl 3.8 0 Ydrogen 565.6 33.425 Methyl 3.8 0 Ydrogen 264.5 15.632 Isopropyl 3.8 0 Ydrogen 2.0.5 <0.5	Client:	ARCHAEA ENERGY		Date Sampled:	Jan 26, 2023	
Site: BRPP - QUARTERLY Collected By: WAYLON TACKETT Field: 100 - ARCHAEA ENERGY Date Effective: Jan 26, 2023 12:00a Meter: 1301 Source Pressure (PSI): Source Items (PSI): Source Laboratory: Chaleston, WV Source Temp (P): Lab File No: SS3379 Lab File No: SS3379 Source Temp (P): Lab File No: SS3379 Cylinder No: BAG Analysis Status: good Source Temp (P): Lab File No: Measurement Analyst: Source Temp (P): Lab File No: Source Temp (P): Lab Status: PPMY VUFIDES PPM Grains / 100 cu.ft MERCAPTANS PPMY Grains / 100 cu.ft Measurement Analyst: Tito cu.ft MERCAPTANS PPMY Grains / 100 cu.ft VIFIDES PPM Grains / 100 cu.ft MERCAPTANS PPMY Grains / 100 cu.ft Status / 100 cu.ft MERCAPTANS PPMY Grains / 100 cu.ft MERCAPTANS PPMY Grains / 100 cu.ft Status / 100 cu.ft MERCAPTANS PPMY Grains / 100 cu.ft MERCAPTANS PPMY Grains / 100 cu.ft ND ND	Client Code:	2697		Analysis Date:	Jan 30, 2023	
Field: 100 - ARCHAEA ENERGY Date Effective: Jan 26, 2023 12:00a Meter: 1301 Source Pressure (PSI): Source Laboratory: Charleston, WV Source Temp (P): Lab FIE No: SS3879 Cylinder No: BAG Sample Type: Spot Metsurent Analyst: Betod: GPA-2199 ULFIDES PEMNY Grains/100 cult Method: GPA-2199 Samole 7:10 cult MERCAPTANS PPMNY Grains/100 cult Method: GPA-2199 Samole 7:10 cult ULFIDES PPMNY Grains/100 cult Method: GPA-2199 3.8 Carbony 2.1 0.124 Chinder King 211, 3 3.2 Somethyl 2.64.5 15.632 Isopropyl 3.8 0 Sheabuly 0.5 c0.5 Isopropyl 3.8 0 Sheabuly N/D N/D N/D 0.5 0 Sheabuly 0.5 c0.5 Isopropyl 3.8 0 Sheabuly				,	-	ETT
Meter: 1301 Source Pressure (PSI): Source Laboratory: Charleston, WV Source Temp (P): Lab File No: SS3879 Cylinder No: BAG Analysis Status: good Sample Type: Spot Measurement Analyst: Method: GPA-2199 ULFIDES PPMV Grains / 100 cu.ft MERCAPTANS PPMV Grains / 100 cu.ft Vydrogen 565.6 33.425 Methyl 3.8 0 Dimethyl 2.1 0.124 Ethyl 3.8 0 Dimethyl 0.9 0.056 n-Propyl 2.1 0 Diso-Propyl 2.1 0.124 Ethyl 0 0 Diso-Propyl 0.5 <0.5		-				
Source Laboratory: Charlestin, WV Source Temp (P): Lab File No: SS3379 Cylinder No: BAG Analysis Status: god Sample Type: Spt Sample Type: Spt Wetsource Analysis ULFIDES PPMV Grains / 100 cu.ft MERCATANS PPMV Grains / 100 cu.ft Varionce on Social Science (GPA-2199 211 0.124 Ethyl 3.8 0.0 Varionce on Social Science (GPA-2199 2.1 0.124 Ethyl 3.8 0.0 Carbonyl 2.1 0.124 Ethyl 3.8 0.0 Carbonyl 2.1 0.025 n-Propyl 2.1 0.0 Dises-Propyl N/D N/D N/D N/D 0.0 0.0 Dises-Pethyl <0.5	Field:		RGY			2:00a
Lab File No: SS3879 BAG Cylinder No: BAG Analysis Status: good Sample Type: Spot Measurement Analyst: Method: GPA-2199 ULFIDES PPMV Grains / 100 cu.ft MERCAPTANS PPMV Jondry 2.1 0.124 Ethyl Samboryl 2.1 0.124 Ethyl Jonethyl 264.5 15.632 Isopropyl 3.8 0 Otherhyl 0.9 0.056 n-Propyl 2.1 0 Otherhyl 0.5 <0.5	Meter:	1301		Source Pressure (PSI)	:	
Cylinder No: BAG Analysis Status: good Sample Type: Spot Measurement Analyst: Method: GPA-2199 ULFIDES PPMV Grains / 100 cu.ft MERCAPTANS PPMV Grains / 100 Vydrogen 565.6 33.425 Methyl 21.1.3 102 Carbonyl 2.1 0.124 Ethyl 3.8 00 Dimethyl 264.5 15.632 Isopropyl 3.8 00 Diseptropyl <0.5	Source Laboratory:	Charleston, WV		Source Temp (P):		
Aalaysis Status: good Sample Type: Spot Measurement Analyst: Method: GPA-2199 VILFIDES PEMV Grains / 100 cu.ht MERCAPTANS PEMV Grains / 100 cu.ht tydrogen 565.6 33.425 Methyl 211.3 121.3 121.3 121.3 121.3 120.2 chronyl 2.1 0.124 Ethyl 3.8 00 00.55 normalityl 3.8 00 Dimethyl 2.64.5 15.632 Isopropyl 3.8 00 00.55 normalityl 0.5 00 00.55 00.5 normalityl N/D 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00 00.5 00 00.5 00 00.5 00 00.5 00 00.5 00 00.5 00 00.5 00 00 00.5 00 00 00 00 00 00 00 00 00 00 00 00	Lab File No:	SS3879				
Analysis Status: good Sample Type: Spot Measurement Analysts: Method: GPA-2199 MULFIDES PPMV Grains / 100 cu.ft MERCAPTANS PPMV Grains / 100 ru.ft Ardrogen 565.6 33.425 Methyl 211.3 112 Joinethyl 2.1 0.124 Ethyl 3.8 0 Joinethyl 2.65.5 <0.5	Cylinder No:	BAG				
Sample Type: Spot Measurement Analyst: Method: GPA-2199 NULFIDES PPMV Grains / 100 cu.ft MERCAPTANS PPMV Grains / 100 Audrogen 565.6 33.425 Methyl 211.3 12 Carbonyl 2.1 0.124 Ethyl 3.8 0 Dimethyl 264.5 15.632 Isopropyl 3.8 0 Dimethyl 0.9 0.056 n-Propyl 2.1 0.0 Dirlso-Propyl 0.5 <0.5	•	aood				
Method: GPA-2199 WLFIDES PPMV Grains/100 cu.ft MERCAPTANS PPMV Grains/100 Hyperbolic Grains/100 cu.ft MERCAPTANS PPMV Grains/100 Hyperbolic MUE Grains/100 Hyperbolic PPMV Grains/100 Hyperbolic PPMV Grains/100 Hyperbolic PPMV Grains/100 Colspan="2">PPMV Grains/100 Colspan="2">MUE For Colspan="2">MUE For Colspan="2" PPMV Grains/100 Origina / 100 MUE For Colspan="2" PPMV Grains/100 Origina / 100 Colspan="2" MUE For Colspan="2" Origina / 100 Colspan="2" Grains / 100 Origina / 100 Colspan="2" Grains / 100 Origing / 100						

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

			Report Date: May 02, 2023 8:36 PM
Client:	ARCHAEA ENERGY	Date Sampled:	Apr 24, 2023
Client Code:	2697	Analysis Date:	Apr 28, 2023
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Apr 24, 2023 12:00 AM
Meter:	1301	Source Pressure (kPa	a):
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4081		
Cylinder No:	BAG		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			
•	Ma	thad: CRA 2100	

SULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	;		PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		514.1	30.383	Methyl			18.3	1.082
Carbonyl		1.1	0.065	Ethyl			1.1	0.066
Dimethyl		65.0	3.839	Isopropyl			3.1	0.184
Methyl Ethyl		N/D	N/D	n-Propyl			<0.5	<0.5
Diethyl		N/D	N/D	Isobutyl			N/D	N/D
Di-iso-Propyl		N/D	N/D	sec-Butyl			N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl			0.8	0.044
Di-iso-Butyl		N/D	N/D	n-Butyl			N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl			<0.5	<0.5
Di-tert-Butyl		N/D	N/D	pri-Amyl			N/D	N/D
Di-n-Butyl		N/D	N/D	n-Amyl			N/D	N/D
Unknown		N/D	N/D					
DISULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	OTHER			PPMV	<u>Grains / 100 cu.ft</u>
Carbon		<0.5	<0.5	Misc. Sulfurs			N/D	N/D
Dimethyl		0.5	0.027	Thiophene			5.4	0.322
Methyl Ethyl		N/D	N/D	Thiophane			N/D	N/D
Diethyl		N/D	N/D					
Di-iso-Propyl		N/D	N/D					
Di-n-Propyl		N/D	N/D					
Di-iso-Butyl		N/D	N/D					
Di-sec-Butyl		N/D	N/D					
Di-tert-Butyl		N/D	N/D					
Di-n-Butyl		N/D	N/D					
Unknown		N/D	N/D					
Total Sulfur	534.9 PPM	V S						
	31.611 Gr	ains/100 c	u.ft					
Odorant Concentration								
22.170 PPMV					1.310	Grains/100 cu.ft		
Source	Date	Notes						

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Speciated Sulfur Analysis Report

Report Date:	May 0	2 2023	8.40 PM	1
Report Date.	Thay U	2, 2025	0.10 11	I.

Client:	ARCHAEA ENERGY	Date Sampled:	Apr 24, 2023
Client Code:	2697	Analysis Date:	Apr 28, 2023
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Apr 24, 2023 12:00 AM
Meter:	1301	Source Pressure (kPa)	:
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4082		
Cylinder No:	BAG 2		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

Method: GPA-2199

SULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS		PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		554.8	32.791	Methyl		16.9	1.002
Carbonyl		1.3	0.078	Ethyl		0.9	0.050
Dimethyl		49.2	2.908	Isopropyl		2.4	0.140
Methyl Ethyl		N/D	N/D	n-Propyl		<0.5	<0.5
Diethyl		N/D	N/D	Isobutyl		N/D	N/D
Di-iso-Propyl		N/D	N/D	sec-Butyl		N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl		0.6	0.035
Di-iso-Butyl		N/D	N/D	n-Butyl		N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl		<0.5	<0.5
Di-tert-Butyl		N/D	N/D	pri-Amyl		N/D	N/D
Di-n-Butyl		N/D	N/D	n-Amyl		N/D	N/D
Unknown		N/D	N/D				
DISULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	OTHER		<u>PPMV</u>	<u>Grains / 100 cu.ft</u>
Carbon		<0.5	<0.5	Misc. Sulfurs		N/D	N/D
Dimethyl		<0.5	<0.5	Thiophene		4.4	0.260
Methyl Ethyl		N/D	N/D	Thiophane		N/D	N/D
Diethyl		N/D	N/D				
Di-iso-Propyl		N/D	N/D				
Di-n-Propyl		N/D	N/D				
Di-iso-Butyl		N/D	N/D				
Di-sec-Butyl		N/D	N/D				
Di-tert-Butyl		N/D	N/D				
Di-n-Butyl		N/D	N/D				
Unknown		N/D	N/D				
Total Sulfur	563.2 P	PMV S					
	33.288	Grains/100 cu	.ft				
Odorant Concentration							
19.920 PPMV				1.17	77 Grains/100 cu.ft		

Source

Date

Notes

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303 Speciated Sulfur Analysis Report

Report Date: May 02, 2023 8:43 PM

Client:	ARCHAEA ENERGY	Date Sampled:	Apr 24, 2023
Client Code:	2697	Analysis Date:	Apr 28, 2023
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Apr 24, 2023 12:00 AM
Meter:	1301	Source Pressure (kPa)	:
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4083		
Cylinder No:	BAG 3		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTAN	5		PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		582.2	34.410	Methyl			14.5	0.859
Carbonyl		1.2	0.071	Ethyl			0.7	0.042
Dimethyl		34.1	2.016	Isopropyl			2.1	0.124
Methyl Ethyl		N/D	N/D	n-Propyl			<0.5	<0.5
Diethyl		N/D	N/D	Isobutyl			N/D	N/D
Di-iso-Propyl		N/D	N/D	sec-Butyl			N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl			0.5	0.031
Di-iso-Butyl		N/D	N/D	n-Butyl			N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl			N/D	N/D
Di-tert-Butyl		N/D	N/D	pri-Amyl			<0.5	<0.5
Di-n-Butyl		N/D	N/D	n-Amyl			N/D	N/D
Unknown		N/D	N/D					
DISULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	OTHER			PPMV	<u>Grains / 100 cu.ft</u>
Carbon		<0.5	<0.5	Misc. Sulfurs			N/D	N/D
Dimethyl		<0.5	<0.5	Thiophene			3.4	0.201
Methyl Ethyl		N/D	N/D	Thiophane			N/D	N/D
Diethyl		N/D	N/D					
Di-iso-Propyl		N/D	N/D					
Di-n-Propyl		N/D	N/D					
Di-iso-Butyl		N/D	N/D					
Di-sec-Butyl		N/D	N/D					
Di-tert-Butyl		N/D	N/D					
Di-n-Butyl		N/D	N/D					
Unknown		N/D	N/D					
Total Sulfur	578.9 F	PPMV S						
	34.212	Grains/100 c	u.ft					
Odorant Concentration								
17.160 PPMV					1.014	Grains/100 cu.ft		
Source	Date	Notes						
A								

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

			Report Date: Aug 08, 2023 1:18 PM
Client:	ARCHAEA ENERGY	Date Sampled:	Jul 13, 2023
Client Code:	2697	Analysis Date:	Jul 27, 2023
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Jul 13, 2023 12:00 AM
Meter:	1301	Source Pressure (kPa)):
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4354		
Cylinder No:	BAG 1		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	5		PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		466.4	27.563	Methyl			85.9	5.077
Carbonyl		1.1	0.062	Ethyl			2.0	0.121
Dimethyl		115.6	6.835	Isopropyl			3.8	0.223
Methyl Ethyl		<0.5	<0.5	n-Propyl			1.6	0.092
Diethyl		N/D	N/D	Isobutyl			N/D	N/D
Di-iso-Propyl		0.8	0.048	sec-Butyl			N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl			0.9	0.050
Di-iso-Butyl		N/D	N/D	n-Butyl			N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl			<0.5	<0.5
Di-tert-Butyl		N/D	N/D	pri-Amyl			N/D	N/D
Di-n-Butyl		N/D	N/D	n-Amyl			N/D	N/D
Unknown		N/D	N/D					
DISULFIDES		PPMV	Grains / 100 cu.ft	OTHER			PPMV	<u>Grains / 100 cu.ft</u>
Carbon		N/D	N/D	Misc. Sulfurs			N/D	N/D
Dimethyl		1.1	0.063	Thiophene			4.8	0.281
Methyl Ethyl		N/D	N/D	Thiophane			N/D	N/D
Diethyl		N/D	N/D					
Di-iso-Propyl		N/D	N/D					
Di-n-Propyl		N/D	N/D					
Di-iso-Butyl		N/D	N/D					
Di-sec-Butyl		N/D	N/D					
Di-tert-Butyl		N/D	N/D					
Di-n-Butyl		N/D	N/D					
Unknown		N/D	N/D					
Total Sulfur	562.8 PPMV	S						
	33.261 Gra	ins/100 ci	u.ft					
Odorant Concentration								
90.540 PPMV					5.351	Grains/100 cu.ft		
Source	Date	Notes						

Critical Control Energy Services

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

			Report Date: Aug 08, 2023 1:21 PM
Client:	ARCHAEA ENERGY	Date Sampled:	Jul 13, 2023
Client Code:	2697	Analysis Date:	Jul 27, 2023
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Jul 13, 2023 12:00 AM
Meter:	1301	Source Pressure (kPa)):
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4355		
Cylinder No:	BAG 2		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES		PPMV	Grains / 100 cu.ft	MERCAPTANS			PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		447.8	26.463	Methyl			71.4	4.220
Carbonyl		1.1	0.065	Ethyl			1.6	0.092
Dimethyl		88.7	5.242	Isopropyl			3.2	0.191
Methyl Ethyl		<0.5	<0.5	n-Propyl			0.9	0.056
Diethyl		N/D	N/D	Isobutyl			N/D	N/D
Di-iso-Propyl		0.6	0.035	sec-Butyl			N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl			0.6	0.035
Di-iso-Butyl		N/D	N/D	n-Butyl			N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl			<0.5	<0.5
Di-tert-Butyl		N/D	N/D	pri-Amyl			N/D	N/D
Di-n-Butyl		N/D	N/D	n-Amyl			N/D	N/D
Unknown		N/D	N/D					
DISULFIDES		<u>PPMV</u>	Grains / 100 cu.ft	OTHER			PPMV	<u>Grains / 100 cu.ft</u>
Carbon		N/D	N/D	Misc. Sulfurs			N/D	N/D
Dimethyl		0.7	0.040	Thiophene			3.4	0.198
Methyl Ethyl		N/D	N/D	Thiophane			N/D	N/D
Diethyl		N/D	N/D					
Di-iso-Propyl		N/D	N/D					
Di-n-Propyl		N/D	N/D					
Di-iso-Butyl		N/D	N/D					
Di-sec-Butyl		N/D	N/D					
Di-tert-Butyl		N/D	N/D					
Di-n-Butyl		N/D	N/D					
Unknown		N/D	N/D					
Total Sulfur	519.9 PPMV S	5						
	30.729 Grair	ns/100 cu	u.ft					
Odorant Concentration								
75.230 PPMV					4.446	Grains/100 cu.ft		
Source	Date	Notes						

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

			Report Date: Aug 08, 2023 1:23 PM
Client:	ARCHAEA ENERGY	Date Sampled:	Jul 13, 2023
Client Code:	2697	Analysis Date:	Jul 27, 2023
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Jul 13, 2023 12:00 AM
Meter:	1301	Source Pressure (kPa)):
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4356		
Cylinder No:	BAG		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES		PPMV	Grains / 100 cu.ft	MERCAPTANS	5		PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		548.6	32.426	Methyl			105.8	6.251
Carbonyl		1.8	0.104	Ethyl			2.3	0.135
Dimethyl		127.0	7.508	Isopropyl			4.2	0.245
Methyl Ethyl		<0.5	<0.5	n-Propyl			1.6	0.098
Diethyl		N/D	N/D	Isobutyl			N/D	N/D
Di-iso-Propyl		0.7	0.043	sec-Butyl			N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl			0.9	0.053
Di-iso-Butyl		N/D	N/D	n-Butyl			N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl			<0.5	<0.5
Di-tert-Butyl		N/D	N/D	pri-Amyl			N/D	N/D
Di-n-Butyl		N/D	N/D	n-Amyl			N/D	N/D
Unknown		N/D	N/D					
DISULFIDES		PPMV	Grains / 100 cu.ft	OTHER			PPMV	Grains / 100 cu.ft
Carbon		N/D	N/D	Misc. Sulfurs			N/D	N/D
Dimethyl		0.9	0.056	Thiophene			4.7	0.278
Methyl Ethyl		N/D	N/D	Thiophane			N/D	N/D
Diethyl		N/D	N/D					
Di-iso-Propyl		N/D	N/D					
Di-n-Propyl		N/D	N/D					
Di-iso-Butyl		N/D	N/D					
Di-sec-Butyl		N/D	N/D					
Di-tert-Butyl		N/D	N/D					
Di-n-Butyl		N/D	N/D					
Unknown		N/D	N/D					
Total Sulfur	659.8 PPMV 9	S						
	38.996 Grai	ns/100 c	u.ft					
Odorant Concentration								
110.810 PPMV					6.549	Grains/100 cu.ft		
Source	Date	Notes						

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Report Date: Dec 08, 2023 12:52 PM

Client:	ARCHAEA ENERGY	Date Sampled:	Nov 27, 2023
Client Code:	2697	Analysis Date:	Nov 30, 2023
Site:	BRPP - QUARTERLY	Collected By:	W TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Nov 27, 2023 12:00 AM
Meter:	1301	Source Pressure (kPa)	:
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4584		
Cylinder No:	BAG1		
Analysis Status:	good		
Sample Type:	Spot		

SULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTAN	s		PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		426.9	25.230	Methyl			82.3	4.866
Carbonyl		0.7	0.044	Ethyl			1.8	0.106
Dimethyl		62.0	3.663	Isopropyl			2.4	0.142
Methyl Ethyl		<0.5	<0.5	n-Propyl			1.9	0.110
Diethyl		N/D	N/D	Isobutyl			N/D	N/D
Di-iso-Propyl		<0.5	<0.5	sec-Butyl			N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl			0.6	0.033
Di-iso-Butyl		N/D	N/D	n-Butyl			N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl			N/D	N/D
Di-tert-Butyl		N/D	N/D	pri-Amyl			N/D	N/D
Di-n-Butyl		N/D	N/D	n-Amyl			N/D	N/D
Unknown		N/D	N/D					
DISULFIDES		PPMV	Grains / 100 cu.ft	OTHER			PPMV	<u>Grains / 100 cu.ft</u>
Carbon		N/D	N/D	Misc. Sulfurs			N/D	N/D
Dimethyl		0.7	0.043	Thiophene			2.9	0.169
Methyl Ethyl		N/D	N/D	Thiophane			N/D	N/D
Diethyl		N/D	N/D					
Di-iso-Propyl		N/D	N/D					
Di-n-Propyl		N/D	N/D					
Di-iso-Butyl		N/D	N/D					
Di-sec-Butyl		N/D	N/D					
Di-tert-Butyl		N/D	N/D					
Di-n-Butyl		N/D	N/D					
Unknown		N/D	N/D					
Total Sulfur	493.5 PPMV 9	5						
	29.168 Grain	ns/100 ci	u.ft					
Odorant Concentration								
85.298 PPMV					5.041	Grains/100 cu.ft		
Source	Date	Notes						

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Report Date:	Dec 08,	2023	12:55	ΡM
--------------	---------	------	-------	----

Client:	ARCHAEA ENERGY	Date Sampled:	Nov 27, 2023
Client Code:	2697	Analysis Date:	Nov 30, 2023
Site:	BRPP - QUARTERLY	Collected By:	W TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Nov 27, 2023 12:00 AM
Meter:	1301	Source Pressure (kPa):	
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4585		
Cylinder No:	BAG		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES		PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTAN	S		PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		401.7	23.741	Methyl			79.0	4.668
Carbonyl		1.0	0.058	Ethyl			1.7	0.102
Dimethyl		53.3	3.149	Isopropyl			1.9	0.113
Methyl Ethyl		<0.5	<0.5	n-Propyl			1.5	0.088
Diethyl		N/D	N/D	Isobutyl			N/D	N/D
Di-iso-Propyl		<0.5	<0.5	sec-Butyl			N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl			<0.5	<0.5
Di-iso-Butyl		N/D	N/D	n-Butyl			N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl			N/D	N/D
Di-tert-Butyl		N/D	N/D	pri-Amyl			N/D	N/D
Di-n-Butyl		N/D	N/D	n-Amyl			N/D	N/D
Unknown		N/D	N/D					
DISULFIDES		PPMV	Grains / 100 cu.ft	OTHER			PPMV	<u>Grains / 100 cu.ft</u>
Carbon		N/D	N/D	Misc. Sulfurs			N/D	N/D
Dimethyl		0.9	0.051	Thiophene			2.6	0.155
Methyl Ethyl		N/D	N/D	Thiophane			N/D	N/D
Diethyl		N/D	N/D					
Di-iso-Propyl		N/D	N/D					
Di-n-Propyl		N/D	N/D					
Di-iso-Butyl		N/D	N/D					
Di-sec-Butyl		N/D	N/D					
Di-tert-Butyl		N/D	N/D					
Di-n-Butyl		N/D	N/D					
Unknown		N/D	N/D					
Total Sulfur	462.8 PPMV	S						
	27.353 Gra	ins/100 c	u.ft					
Odorant Concentration								
81.313 PPMV					4.806	Grains/100 cu.ft		
Source	Date	Notes						

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Report Date: Dec 08, 2023 1:03 PM

2607		
2697	Analysis Date:	Nov 30, 2023
BRPP - QUARTERLY	Collected By:	W TACKETT
100 - ARCHAEA ENERGY	Date Effective:	Nov 27, 2023 12:00 AM
1301	Source Pressure (kPa):	
Charleston, WV	Source Temp (P):	
SS4586		
BAG3		
good		
Spot		
	BRPP - QUARTERLY 100 - ARCHAEA ENERGY 1301 Charleston, WV SS4586 BAG3 good	BRPP - QUARTERLYCollected By:100 - ARCHAEA ENERGYDate Effective:1301Source Pressure (kPa):Charleston, WVSource Temp (P):SS4586BAG3goodSource Temp (P):

SULFIDES		PPMV	Grains / 100 cu.ft	MERCAPTANS	5		PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen		412.0	24.348	Methyl			79.7	4.708
Carbonyl		1.2	0.071	Ethyl			1.6	0.093
Dimethyl		51.0	3.016	Isopropyl			2.1	0.123
Methyl Ethyl		<0.5	<0.5	n-Propyl			1.1	0.068
Diethyl		N/D	N/D	Isobutyl			N/D	N/D
Di-iso-Propyl		<0.5	<0.5	sec-Butyl			N/D	N/D
Di-n-propyl		N/D	N/D	tert-Butyl			<0.5	<0.5
Di-iso-Butyl		N/D	N/D	n-Butyl			N/D	N/D
Di-sec-Butyl		N/D	N/D	Isoamyl			N/D	N/D
Di-tert-Butyl		N/D	N/D	pri-Amyl			N/D	N/D
Di-n-Butyl		N/D	N/D	n-Amyl			N/D	N/D
Unknown		N/D	N/D					
DISULFIDES		PPMV	Grains / 100 cu.ft	OTHER			PPMV	<u>Grains / 100 cu.ft</u>
Carbon		N/D	N/D	Misc. Sulfurs			N/D	N/D
Dimethyl		0.6	0.037	Thiophene			2.1	0.126
Methyl Ethyl		N/D	N/D	Thiophane			N/D	N/D
Diethyl		N/D	N/D					
Di-iso-Propyl		N/D	N/D					
Di-n-Propyl		N/D	N/D					
Di-iso-Butyl		N/D	N/D					
Di-sec-Butyl		N/D	N/D					
Di-tert-Butyl		N/D	N/D					
Di-n-Butyl		N/D	N/D					
Unknown		N/D	N/D					
Total Sulfur	471.3 PPMV	S						
	27.855 Grai	ns/100 c	u.ft					
Odorant Concentration								
82.185 PPMV					4.857	Grains/100 cu.ft		
Source	Date	Notes						

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Report Date: Mar 04, 2024 11:32 AM

Client:	ARCHAEA ENERGY	Date Sampled:	Feb 6, 2024
Client Code:	2697	Analysis Date:	Feb 15, 2024
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Feb 06, 2024 12:00 AM
Meter:	1301	Source Pressure (kPa):	
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4828		
Cylinder No:	BAG1		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen	158.7	9.381	Methyl	33.8	1.998
Carbonyl	1.5	0.089	Ethyl	1.1	0.063
Dimethyl	58.7	3.469	Isopropyl	4.2	0.246
Methyl Ethyl	N/D	N/D	n-Propyl	0.9	0.052
Diethyl	N/D	N/D	Isobutyl	N/D	N/D
Di-iso-Propyl	N/D	N/D	sec-Butyl	N/D	N/D
Di-n-propyl	N/D	N/D	tert-Butyl	0.9	0.055
Di-iso-Butyl	N/D	N/D	n-Butyl	N/D	N/D
Di-sec-Butyl	N/D	N/D	Isoamyl	1.6	0.092
Di-tert-Butyl	N/D	N/D	pri-Amyl	N/D	N/D
Di-n-Butyl	N/D	N/D	n-Amyl	N/D	N/D
Unknown	N/D	N/D			
DISULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	OTHER	PPMV	<u>Grains / 100 cu.ft</u>
Carbon	<0.5	<0.5	Misc. Sulfurs	N/D	N/D
Dimethyl	2.0	0.118	Thiophene	6.3	0.374
Methyl Ethyl	N/D	N/D	Thiophane	N/D	N/D
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-tert-Butyl	N/D	N/D			
Di-n-Butyl	N/D	N/D			
Unknown	N/D	N/D			
Total Sulfur	210.4 PPMV S				
	12.437 Grains/100 c	u.ft			
Source	Date Notes				

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Report Date: Mar 04, 2024 11:36 AM

Client:	ARCHAEA ENERGY	Date Sampled:	Feb 6, 2024
Client Code:	2697	Analysis Date:	Feb 15, 2024
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Feb 06, 2024 12:00 AM
Meter:	1301	Source Pressure (kPa):	:
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4839		
Cylinder No:	BAG2		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES	PPMV	Grains / 100 cu.ft	MERCAPTANS	PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen	211.0	12.470	Methyl	42.6	2.517
Carbonyl	1.7		Ethyl	1.9	0.111
Dimethyl	75.5	4.462	Isopropyl	3.4	0.198
Methyl Ethyl	0.8		n-Propyl	1.2	0.070
Diethyl	N/C		Isobutyl	N/D	N/D
Di-iso-Propyl	N/C		sec-Butyl	N/D	N/D
Di-n-propyl	N/C	N/D	tert-Butyl	0.8	0.047
Di-iso-Butyl	N/C	N/D	n-Butyl	N/D	N/D
Di-sec-Butyl	N/C	N/D	Isoamyl	N/D	N/D
Di-tert-Butyl	N/C		pri-Amyl	N/D	N/D
Di-n-Butyl	N/C	N/D	n-Amyl	N/D	N/D
Unknown	N/C	N/D			
DISULFIDES	PPMV	Grains / 100 cu.ft	OTHER	PPMV	<u>Grains / 100 cu.ft</u>
Carbon	N/D	N/D	Misc. Sulfurs	N/D	N/D
Dimethyl	2.3	0.134	Thiophene	6.3	0.370
Methyl Ethyl	N/D	N/D	Thiophane	N/D	N/D
Diethyl	N/D	N/D			
Di-iso-Propyl	N/C	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/C	N/D			
Di-tert-Butyl	N/C	N/D			
Di-n-Butyl	N/D	N/D			
Unknown	N/C	N/D			
Total Sulfur	274.2 PPMV S				
	16.204 Grains/100	cu.ft			
Source	Date Note	S			

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Report Date: Mar 04, 2024 11:40 AM

Client:	ARCHAEA ENERGY	Date Sampled:	Feb 6, 2024
Client Code:	2697	Analysis Date:	Feb 15, 2024
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Feb 06, 2024 12:00 AM
Meter:	1301	Source Pressure (kPa):	:
Source Laboratory:	Charleston, WV	Source Temp (P):	
Lab File No:	SS4840		
Cylinder No:	BAG3		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	Grains / 100 cu.ft
Hydrogen	196.7	11.626	Methyl	37.9	2.240
Carbonyl	2.0	0.118	Ethyl	1.4	0.085
Dimethyl	63.8	3.773	Isopropyl	3.0	0.177
Methyl Éthyl	N/D	N/D	n-Propyl	0.8	0.045
Diethyl	N/D	N/D	Isobutyl	N/D	N/D
Di-iso-Propyl	N/D	N/D	sec-Butyl	N/D	N/D
Di-n-propyl	N/D	N/D	tert-Butyl	0.8	0.044
Di-iso-Butyl	N/D	N/D	n-Butyl	N/D	N/D
Di-sec-Butyl	N/D	N/D	Isoamyl	0.7	0.044
Di-tert-Butyl	N/D	N/D	pri-Amyl	N/D	N/D
Di-n-Butyl	N/D	N/D	n-Amyl	N/D	N/D
Unknown	N/D	N/D			
DISULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	OTHER	PPMV	<u>Grains / 100 cu.ft</u>
Carbon	N/D	N/D	Misc. Sulfurs	N/D	N/D
Dimethyl	1.9	0.115	Thiophene	6.7	0.398
Methyl Ethyl	N/D	N/D	Thiophane	N/D	N/D
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-tert-Butyl	N/D	N/D			
Di-n-Butyl	N/D	N/D			
Unknown	N/D	N/D			
Total Sulfur	251.0 PPMV S				
	14.836 Grains/100 c	u.ft			
Source	Date Notes				

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Report Date: Apr 25, 2024 2:53 PM

Client:	ARCHAEA ENERGY	Date Sampled:	Apr 4, 2024
Client Code:	2697	Analysis Date:	Apr 15, 2024
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Apr 04, 2024 12:00 AM
Meter:	1301	Source Pressure (PSI):	
Source Laboratory:	Charleston, WV	Source Temp (°F):	
Lab File No:	SS4942		
Cylinder No:	BAG 1		
Analysis Status:	good		
Sample Type:	Spot		

		Curring / 100 au ft			Cusing (100 au ft
SULFIDES	<u>PPMV</u>	Grains / 100 cu.ft	MERCAPTANS	PPMV	Grains / 100 cu.ft
Hydrogen	377.7	22.323	Methyl	52.6	3.111
Carbonyl	1.1	0.062	Ethyl	1.6	0.092
Dimethyl	82.3	4.864	Isopropyl	2.6	0.152
Methyl Ethyl	<0.5	<0.5	n-Propyl	0.9	0.053
Diethyl	N/D	N/D	Isobutyl	N/D	N/D
Di-iso-Propyl	N/D	N/D	sec-Butyl	N/D	N/D
Di-n-propyl	<0.5	<0.5	tert-Butyl	0.6	0.034
Di-iso-Butyl	N/D	N/D	n-Butyl	N/D	N/D
Di-sec-Butyl	N/D	N/D	Isoamyl	0.7	0.040
Di-tert-Butyl	N/D	N/D	pri-Amyl	N/D	N/D
Di-n-Butyl	N/D	N/D	n-Amyl	N/D	N/D
Unknown	0.5	0.030			
DISULFIDES	<u>PPMV</u>	Grains / 100 cu.ft	OTHER	PPMV	<u>Grains / 100 cu.ft</u>
Carbon	<0.5	<0.5	Misc. Sulfurs	N/D	N/D
Dimethyl	7.7	0.456	Thiophene	4.9	0.291
Methyl Ethyl	<0.5	<0.5	Thiophane	N/D	N/D
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-tert-Butyl	0.6	0.033			
Di-n-Butyl	N/D	N/D			
Unknown	N/D	N/D			
Total Sulfur	444.0 PPMV S				
	26.244 Grains/100 c	u.ft			
Source	Date Notes				

Spot

Sample Type:

Measurement Analyst:

Critical Control Energy Services

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

			Report Date: Apr 25, 2024 2:58 PM
Client:	ARCHAEA ENERGY	Date Sampled:	Apr 4, 2024
Client Code:	2697	Analysis Date:	Apr 15, 2024
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Apr 04, 2024 12:00 AM
Meter:	1301	Source Pressure (PS	SI):
Source Laboratory:	Charleston, WV	Source Temp (°F):	
Lab File No:	SS4943		
Cylinder No:	BAG 2		
Analysis Status:	good		

SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen	371.4	21.952	Methyl	44.4	2.623
Carbonyl	0.8	0.044	Ethyl	1.2	0.070
Dimethyl	65.8	3.889	Isopropyl	2.0	0.121
Methyl Ethyl	<0.5	<0.5	n-Propyl	1.0	0.057
Diethyl	N/D	N/D	Isobutyl	N/D	N/D
Di-iso-Propyl	N/D	N/D	sec-Butyl	N/D	N/D
Di-n-propyl	N/D	N/D	tert-Butyl	<0.5	<0.5
Di-iso-Butyl	N/D	N/D	n-Butyl	N/D	N/D
Di-sec-Butyl	N/D	N/D	Isoamyl	N/D	N/D
Di-tert-Butyl	N/D	N/D	pri-Amyl	N/D	N/D
Di-n-Butyl	N/D	N/D	n-Amyl	N/D	N/D
Unknown	<0.5	<0.5			
DISULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	OTHER	PPMV	<u>Grains / 100 cu.ft</u>
Carbon	<0.5	<0.5	Misc. Sulfurs	N/D	N/D
Dimethyl	2.1	0.125	Thiophene	2.7	0.158
Methyl Ethyl	N/D	N/D	Thiophane	N/D	N/D
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-tert-Butyl	N/D	N/D			
Di-n-Butyl	N/D	N/D			
Unknown	N/D	N/D			
Total Sulfur	418.1 PPMV S				
	24.708 Grains/100 c	u.ft			
Source	Date Notes				

South Charleston, West Virginia 1740 Union Carbide Drive South Charleston, WV 25303

Report Date: Apr 25, 2024 3:02 PM

Client:	ARCHAEA ENERGY	Date Sampled:	Apr 4, 2024
Client Code:	2697	Analysis Date:	Apr 15, 2024
Site:	BRPP - QUARTERLY	Collected By:	WAYLON TACKETT
Field:	100 - ARCHAEA ENERGY	Date Effective:	Apr 15, 2024 12:00 AM
Meter:	1301	Source Pressure (PSI):	:
Source Laboratory:	Charleston, WV	Source Temp (°F):	
Lab File No:	SS4944		
Cylinder No:	BAG 3		
Analysis Status:	good		
Sample Type:	Spot		
Measurement Analyst:			

SULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	MERCAPTANS	PPMV	<u>Grains / 100 cu.ft</u>
Hydrogen	384.6	22.728	Methyl	62.7	3.707
Carbonyl	1.2	0.071	Ethyl	1.6	0.092
Dimethyl	101.5	5.998	Isopropyl	2.9	0.173
Methyl Ethyl	<0.5	<0.5	n-Propyl	1.3	0.079
Diethyl	N/D	N/D	Isobutyl	N/D	N/D
Di-iso-Propyl	N/D	N/D	sec-Butyl	N/D	N/D
Di-n-propyl	0.6	0.034	tert-Butyl	0.6	0.036
Di-iso-Butyl	N/D	N/D	n-Butyl	N/D	N/D
Di-sec-Butyl	N/D	N/D	Isoamyl	1.2	0.072
Di-tert-Butyl	N/D	N/D	pri-Amyl	N/D	N/D
Di-n-Butyl	N/D	N/D	n-Amyl	0.6	0.037
Unknown	<0.5	<0.5			
DiSULFIDES	PPMV	<u>Grains / 100 cu.ft</u>	OTHER	PPMV	<u>Grains / 100 cu.ft</u>
Carbon	<0.5	<0.5	Misc. Sulfurs	N/D	N/D
Dimethyl	15.2	0.899	Thiophene	5.3	0.313
Methyl Ethyl	0.5	0.032	Thiophane	N/D	N/D
Diethyl	N/D	N/D			
Di-iso-Propyl	N/D	N/D			
Di-n-Propyl	N/D	N/D			
Di-iso-Butyl	N/D	N/D			
Di-sec-Butyl	N/D	N/D			
Di-tert-Butyl	0.7	0.041			
Di-n-Butyl	N/D	N/D			
Unknown	N/D	N/D			
Total Sulfur	473.4 PPMV S				
	27.978 Grains/100 c	u.ft			
Source	Date Notes				