11/2018								DE
Division	for Air Ou	ality		DEP7	007AI		Add	litional Documentation
DIVISION		anty	Admir	nistrativo	e Information			
300 Sc	ower Boulevard	1	Sect	tion AI.1: S	Source Information	n	Additi	onal Documentation attached
Frank	fort, KY 40601		Sect	tion AI.2: A	Applicant Informa	tion		
(50	2) 564-3999		Sect	tion AI.3: C	Owner Information	n		
			Sect	tion AI.4: 7	Гуре of Applicatio	on		
			Sect	tion AI.5: C	Other Required Inf	formation		
			Sect	tion AI.6: S	Signature Block			
			Sect	tion AI.7: N	Notes, Comments,	and Explanat	ions	
Source Name:		Cobb-Vai	ntress Feed Mill					
XY EIS (AFS) #:	2	21- <u>053-00007</u>	7					
Permit #:		S-13-100-	R3					
Agency Interest (Al	I) ID:	119204						
Date:		2-Jun-23						
Section AI.1: S	Source Info	rmation						
Physical Location	Street:	1475 Burk	esville Road					
Address:	City:	Albany		County:	Clinton		Zip Code:	42602
Mailing Address:	P.O. Box:	1475 Burk	tesville Road					
	City:	Albany		State:	KY		Zip Code:	42602
			Standard Coor	dinates fo	r Source Physica	Location		
			Stanuar u COO	unates 10		a Location		
Longitude:	-8	35.16188	(decimal degrees)		Latitude:	36.699	95	(decimal degrees)
Primary (NAICS) C	ategory:	Other Ani	mal Feed Manufacturing	_	Primary NAICS	#: 311	119	

Classification (SIC) (Category:	Prepared Feeds and Fee	d Ingredients	Primary SIC #:	2048	
Briefly discuss the type conducted at this site	pe of business :	Feed Mill				
Description of Area Surrounding Source:	✓ Rural Area☐ Urban Area	Industrial Park Industrial Area	Residential AreaCommercial Area	Is any part of the source located on federal land?	☐ Yes ✓ No	Number of Employees: 15
Approximate distanc to nearest residence o commercial property	e r : 200 yards		Property Area: 17 Acres		Is this source portable?	Yes VNo
	What other	environmental permit	s or registrations doe	s this source currently hold	or need to obtain in Ke	ıtucky?
NPDES/KPDES:	Currently Ho	old 🗌 Need	□ N/A			
Solid Waste:	Currently Ho	old 🗌 Need	✓ N/A			
RCRA:	Currently Ho	old 🗌 Need	☑ N/A			
UST:	Currently Ho	old 🗌 Need	✓ N/A			
Type of Regulated	Mixed Wast	e Generator	Generator	Recycler	Other:	_
Waste Activity:	U.S. Importe	er of Hazardous Waste	Transporter	Treatment/Storage/Disposa	l Facility 🗌 N/A	A

Section AI.2: Ap	plicant Information	n					
Applicant Name:	Cobb Vantress Feed Mil	ll - Albany KY					
Title: (if individual)							
Mailing Address.	Street or P.O. Box:	1475 Burkesville Road					
Manning Address.	City:	Albany	State:		KY	Zip Code:	42602
Email: (if individual)	NA						
Phone:							
Technical Contact							
Name:	Rechelle Hollowaty						
Title:	Sr. Environmental Mana	ager					
Mailing Address:	Street or P.O. Box:	7136 Harrison Hill Trail					
8	City: Chanhasse	en	State:	MN		Zip Code:	55317
Email:	Rechelle Hollowaty@ty	son.com					
Phone:	(479) 290-2506						
Air Permit Contact for	Source						
Name:	Lauren Luttrell						
Title:	EHS Manager						
Mailing Address.	Street or P.O. Box:	1475 Burkesville Road					
Maning Mulless.	City:	Albany	State:		KY	Zip Code:	42602
Email:	Lauren.Luttrell@cobbva	antress.com					
Phone:	(606) 340-2705						

Section AI.3: Ov	vner Information				
🗹 Owner same	as applicant				
Name:					
Title:					
Mailing Addross:	Street or P.O. Box:				
Maning Address.	City:	State	:	Zip Code:	
Email:					
Phone:					
List names of owners a	nd officers of the company who have	e an interest in the company	of 5% or more.		
	Name			Position	
Information submitted in p	previous applications has not changed				

Section AI.4: Type	of Application							
Current Status:	Title V 🗌 Condit	ional Major 🛛 🗹 State	-Origin	General Permit	Registra	ation 🗌 None		
Degraced Actions	☐ Name Change✓ Renewal Permit	 Initial Registration Revised Registration 		Significant Revision Minor Revision	AdminiInitial S	strative Permit Amendment Source-wide OperatingPermit		
(check all that apply)	502(b)(10)Change	Extension Request		Addition of New Facility	Portable	e Plant Relocation Notice		
	Revision	Off Permit Change		Landfill Alternate Compliance Submittal	✓ Modifie	cation of Existing Facilities		
	Ownership Change	Closure						
Requested Status:	Title V 🗹 Condit	ional Major 🗌 State	-Origin	□ PSD □ NSR	Other	r:		
Is the source requesting	a limitation of potent	ial emissions?		✓ Yes □ No				
Pollutant:		Requested Limit:		Pollutant:		Requested Limit:		
Particulate Matter		less than 100 tpy		✓ Single HAP		less than 10 tpy		
✓ Volatile Organic Co	ompounds (VOC)	less than 100 tpy		Combined HAPs	less than 25 tpy			
Carbon Monoxide				Air Toxics (40 CFR 68, Subpart F)				
Nitrogen Oxides				Carbon Dioxide				
Sulfur Dioxide				Greenhouse Gases (GHC	i)			
Lead				Other				
For New Construction	on:							
Proposed Start E (MN	Date of Construction: //YYYY)			Proposed Operation Start-Up Date:	(MM/YYYY)			
For Modifications:								
Proposed Start I (MA	Date of Modification: //YYYY)			Proposed Operation Start-Up Date:	(MM/YYYY)			
Applicant is seeking o	coverage under a permit	shield.		Identify any non-applica Identify any non-applica No sought on a separation	ble requirem trate attachm	ents for which permit shield is ent to the application.		

Section AI.5 Other Required Information

Indicate the documents attached as part of this application.					
	acheu as part of this application:				
DEP7007A Indirect Heat Exchangers and Turbines	✓ DEP7007CC Compliance Certification				
DEP7007B Manufacturing or Processing Operations	DEP7007DD Insignificant Activities				
DEP7007C Incinerators and Waste Burners	DEP7007EE Internal Combustion Engines				
DEP7007F Episode Standby Plan	DEP7007FF Secondary Aluminum Processing				
DEP7007J Volatile Liquid Storage	DEP7007GG Control Equipment				
DEP7007K Surface Coating or Printing Operations	DEP7007HH Haul Roads				
DEP7007L Mineral Processes	Confidentiality Claim				
DEP7007M Metal Cleaning Degreasers	Ownership Change Form				
DEP7007N Source Emissions Profile	Secretary of State Certificate				
DEP7007P Perchloroethylene Dry Cleaning Systems	Flowcharts or diagrams depicting process				
DEP7007R Emission Offset Credit	Digital Line Graphs (DLG) files of buldings, roads, etc.				
DEP7007S Service Stations	Site Map				
DEP7007T Metal Plating and Surface Treatment Operations	Map or drawing depicting location of facility				
DEP7007V Applicable Requirements and Compliance Activities	Safety Data Sheet (SDS)				
DEP7007Y Good Engineering Practice and Stack Height Determination	Emergency Response Plan				
DEP7007AA Compliance Schedule for Non-complying Emission Units	Other:				
DEP7007BB Certified Progress Report					

Section AI.6: Signature Block

I, the undersigned, hereby certify under penalty of law, that I am a responsible official*, and that I have personally examined, and am familiar with, the information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the information is on knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false or incomplete information, including the possibility of fine or imprisonment.

Authorized Signature

Randy Harrington

Type or Printed Name of Signatory

*Responsible official as defined by 401 KAR 52:001.

6-2-2023

Date

Senior Feed Mill Manager

Title of Signatory

September 14, 2022

Authorization to Sign/Submit Environmental Documents

To Whom It May Concern,

Pursuant to my authority as a corporate officer of Cobb-Vantress Inc., I hereby authorize the facility manager to sign as a 'Responsible Corporate Official", "Cognizant Official", or a capacity substantially similar thereto, on all reports, applications and documents relating to the Environmental Programs at the facilities listed below for which the signature of a Responsible Corporate Official, Cognizant Official, or person in a capacity substantially similar thereto is required.

The facilities covered under this authorization include:

Kentucky	Tennessee
Kentucky R&D Farm	Tennessee Pedigree Complex
Kentucky Production	Tennessee Hatchery
Kentucky Hatchery	Tennessee Production
Kentucky Feed Mill	

Questions about the foregoing may be directed to Adam Prater, Environmental Health and Safety Director, Cobb-Vantress Inc. 479-549-2844

Company Officer:

Ray Ables

Vice President Live Production North America

Cobb-Vantress LLC.

x Ray Albles

Section AI.7: Notes, Comments, and Explanations

Included in this application submittal is the Delegated Signatory Authority Letter as well as the PTE calculations.

List of Owners has not changed since that last submittal and thus is not included in this renewal.

300 Sower Bo Frankfort, KY (502) 564-	ir Quality pulevard 7 40601 3999	Cobb Van	Manu Section B Section B Section B	DEP700 facturing o Operatio .1: Process Inf .2: Materials a .3: Notes, Com	Additional Documentation Complete DEP7007AI, DEP7007N, DEP7007V, and DEP7007GG. Attach a flow diagram Attach SDS				
AFS) #:	21-	053-00007							
		S-13-100-R	3						
terest (AI) ID:		119204							
		2-Jun-23							
B.1: Process	Information								
Emission Unit Name	Describe Emission Unit	Process ID	Process Name	Manufacturer	Model No.	Proposed/Actual Dat of Construction Commencement (MM/YYYY)	e Is the Process <u>Continuous</u> or <u>Batch</u> ?	Number of Batches per 24 Hours (if applicable)	Hours per Batch (if applicable)
Pelleting	Pellet Mill and	017			7.022.12	0/2012			
System Truck	Cooler	017	Pelleting	CPM Todd and	7 932-12	9/2013	Continuous		
Loadout	Loadout	020	Loadout	Sargent	NA	9/2013	Batch (loads)	~40 loads	0.12
	ivision for A 300 Sower Bo Frankfort, KY (502) 564-3 me: AFS) #: terest (AI) ID: B.1: Process Emission Unit Name Pelleting System Truck Loadout	ivision for Air Quality 300 Sower Boulevard Frankfort, KY 40601 (502) 564-3999 me: AFS) #: 21- terest (AI) ID: B.1: Process Information Emission Unit Name Describe Emission Unit Pelleting Pellet Mill and Cooler Truck Loadout Loadout Interpret Cooler Cooler Truck Loadout Loadout Interpret Cooler Cooler Truck Loadout Interpret Cooler Truck Loadout Interpret Cooler Truck Loadout Interpret Cooler Truck Interpret Cooler Interpret Cooler Inter	ivision for Air Quality 300 Sower Boulevard Frankfort, KY 40601 (502) 564-3999 me: <u>Cobb-Vant</u> AFS) #: 21- 053-00007 <u>S-13-100-R</u> <u>119204</u> <u>2-Jun-23</u> B.1: Process Information Remission Unit Describe Emission Name Pellet Mill and System Cooler 017 Truck Loadout Loadout 020 Pelleting Pellet Mill and System Cooler 017 Truck Loadout Loadout 020 010 010 010 010 010 010 010	ivision for Air Quality 300 Sower Boulevard Frankfort, KY 40601 (502) 564-3999 me:Section B Section B Secti	Initial System Describe Emission Value Process ID Process Name Manufacturer Pelleting Pellet Mill and System 017 Pelleting CPM Truck Cooler 017 Pelleting CPM Truck 020 Loadout Sargent Loadout 020 Loadout Loadout Loadout 020 Loadout Loadout Loadout Intervent Intervent Intervent Loadout Intervent Intervent	ivision for Air Quality 300 Sower Boulevard Frankfort, KY 40601 (502) 564-3999 me: XFS) #: 21- Section B.1: Process Information Cobb-Vantress Feed Mill Section B.3: Notes, Comments, and Section B.3: Notes, Comments, and Section B.3: Notes, Comments, and S-13-100-R3 119204 2-Jun-23 B.1: Process Information Femission Unit Pellet Mill and System Cooler Unit Pelleting Pellet Mill and System Cooler O17 Pelleting Pellet Mill and System Cooler O17 Pelleting Pellet Mill and System Cooler O17 Pelleting Pellet Mill and System Cooler O17 Pelleting CPM 7 932-12 Truck Loadout Cooler O17 Pelleting CPM 7 932-12 Todd and Sargent NA Cooler O17 Pelleting CPM 7 932-12 Truck Loadout Cooler O17 Pelleting CPM 7 932-12 Truck Cooler O17 Pelleting CPM 7 932-12 Truck Cooler O17 Polleting CPM 7 932-12 Truck Cooler O17 Polleting CPM 7 932-12 Truck Cooler O17 Polleting CPM 7 932-12 Truck Cooler O17 Polleting CPM 7 932-12 Truck Cooler O17 CPM 7 932-12 Truck Cooler O17 CPM 7 932-12 CPM 7	ivision for Air Quality 300 Sower Boulevard Frankfort, KY 40601 (502) 564-3999	DEP7007B Addition: Operations Complete DEP 300 Sower Boulevard	DEP7007B Manufacturing or Processing Operations Section B.1: Process Information Section B.2: Materials and Fuel Information Section B.3: Notes, Comments, and Explanations Section B.3: Notes, Comments, and Explanation Section B.3: Notes, Comments, and Section B.3: Notes, Commente, and S

Section H	ection B.2: Materials and Fuel Information														
*Maximum	*Maximum yearly fuel usage rate only applies if applicant request operating restrictions through federally enforceable limitations.														
Emission Emis Unit # Unit	Emission Unit Name	Name of Raw Materials	Maximum Quantity of Each Raw Material Input		Total Process Weight Rate for Emission	Name of Finished	Maximum Quantity of Each Finished Material Output		Fuel Type	Maximum Hourly Fuel Usage Rate		Maximum Yearly Fuel Usage Rate		Sulfur Content	Ash Content
		Input		(Specify Units/hr)	Unit (tons/hr)	Materials		(Specify Units/hr)			(Specify Units)		(Specify Units)	(%)	(%)
017	Pelleting System	Mash Feed	40	tons	40	Finished Feed	40	tons	NA	NA	NA	NA	NA	NA	NA
020	Truck Loadout	Finished Feed	200	tons	200	Finished Feed	200	tons	NA	NA	NA	NA	NA	NA	NA

Section B.3: Notes, Comments, and Explanations
Pelleting system operation is by batches but the system is operated batch after batch thus continuous batches.

	DEP7007L	Additional Documentation						
Division for Air Quality	Mineral Processes	Complete DEP7007AI,						
	Section L.1: Source Operating Information	DEP/00/N, DEP/00/V, and DEP7007GG.						
300 Sower Boulevard	Section L.2: Concrete Operations							
Frankfort, KY 40601	Section L.3: Asphalt Operations	Attach flow diagram						
(502) 564-3999	Section L.4: Coal Operations							
	Section L.5: Aggregate Processing Operations							
	Section L.6: Feed, Corn, and Flour Operations							
	Section L.7: Grain Elevators							
	Section L.8: Fertilizer Operations							
	Section L.9: Notes, Comments, and Explanations							
Source Name:	Cobb-Vantress Feed Mill							
KY EIS (AFS) #: 21-	053-00007							
Permit #:	S-13-100-R3							
Agency Interest (AI) ID:	119204							
Date:	2-Jun-23							
Section L.1: Source Operation	ting Information							
Type of Plant:	Asphalt Coal Fertilizer Feed Corn Flour Grain Eleva	tors Aggregate Processing						
Operating Schedule:	24 Hours/Day: 7 Days/Week:	52 Weeks/Year:						
Percent Annual Throughput:	DecFeb.: 25 % MarMay: 25 % JunAug.: 25	% SepNov.:%						
Maximum Rated Source Capacity:	Iaximum Rated Source Capacity: 40 tons/hour 350,400 tons/year							

Combustion Equipment:								
Is there a generator located on site?] No							
Is it possible for the generator to remain at one site longer than twelve months? yes No								
Is there a hot water heater located on site?] Yes	☑ No						
Is there a dryer located on site?] Yes	✓ No						
Is there a hot oil heater (asphalt heater) located on site?		Ves Vo						
Describe briefly the disposal of particulates collected in th baghouse and/or other waste generated at the site:	Describe briefly the disposal of particulates collected in the Disposal via landfill.							
Is there additional information attached to support the data required in this form Brief description of additional information included: <i>Calculations</i> Total number of additional pages, including drawings, maps, and diagrams: <i>17</i>								

1	1/2018
---	--------

Section	Section L.6: Feed, Corn, and Flour Operations												
Type of O	peration:	✓ Feed		Corn	Flour	Other:							
New Sourc	e Performance St	andard/N	MACT AJ	pplicability									
Are any em	ission units for the	operation	n subject t	0:	└ MACT, Sut	opart DDDD	DDD	∐ None	U Other:				
Complete	he Table:												
Emission	Affected Facility	Maxi Rated C	mum Capacity	Control Method or	Control Efficiency	SCC Code	Pollutant	Emission Factor	Source of Emission	Proposed/Actual Date of Construction	Installation Date of	Is the Unit Subject to	
Unit #		(tons/hr)	(tons/yr)	Equipment	(% removal)			(lb/SCC unit)	Factor	Commencement (MM/YYYY)	Each Unit	NSPS/MACT? (Yes or No)	
017	Pellet Mill/Cooler (1)	40	350,400	Dual Cyclone	95	30200806	PM	0.15	AP-42	9/2013	2013	Yes	
017	Pellet Mill/Cooler (1)	40	350,400	Dual Cyclone	95	30200806	PM10	0.075	AP-42	9/2013	2013	Yes	
017	Pellet Mill/Cooler (1)	40	350,400	Dual Cyclone	95	30200806	PM2.5	0.0375	AP-42	9/2013	2013	Yes	
017	Pellet Mill/Cooler (1)	40	350,400	Dual Cyclone	NA	30200806	Formaldeh yde	7.43E-02	Stack Testing	9/2013	2013	Yes	
017	Pellet Mill/Cooler (1)	40	350,400	Dual Cyclone	NA	30200806	Methanol	0.46	Stack Testing	9/2013	2013	Yes	
017	Pellet Mill/Cooler (1)	40	350,400	Dual Cyclone	95	30200806	Manganes e	6.97E-04	Material Balance	9/2013	2013	Yes	
017	Pellet Mill/Cooler (1)	40	350,400	Dual Cyclone	NA	30200806	VOC	5.34E-01	Stack Testing	9/2013	2013	Yes	

Emission	Affected Facility	Maxi Rated C	imum Capacity	Control	Control		D. II. 4 4	Emission Factor	Source of	Proposed/Actual Date of	Installation	Is the Unit Subject to
Unit #		(tons/hr)	(tons/yr)	Equipment	(% removal)	SCC Code	Ponutant	(lb/SCC unit)	Factor	Construction Commencement (MM/YYYY)	Date of Each Unit	NSPS/MACT? (Yes or No)
020	Truck Loadout	200	350,400	Baghouse	99	30200812	РМ	0.0033	AP-42	9/2013	2013	Yes
020	Truck Loadout	200	350,400	Baghouse	99	30200812	PM10	0.0008	AP-42	9/2013	2013	Yes
020	Truck Loadout	200	350,400	Baghouse	99	30200812	PM2.5	0.0004	AP-42	9/2013	2013	Yes
020	Truck Loadout	200	350,400	Baghouse	NA	30200812	Formaldeh yde	5.44E-06	Material Balance	9/2013	2013	Yes
020	Truck Loadout	200	350,400	Baghouse	NA	30200812	Methanol	1.27E-04	Stack Testing	9/2013	2013	Yes
020	Truck Loadout	200	350,400	Baghouse	99	30200812	Manganes e	7.66E-07	Material Balance	9/2013	2013	Yes
020	Truck Loadout	200	350,400	Baghouse	NA	30200812	VOC	1.32E-04	Stack Testing	9/2013	2013	Yes

Emission	Affected Facility	Maxi Rated C	mum Capacity	Control Method or	Control Efficiency	SCC Code	Pollutant	Emission Factor	Source of Emission	Proposed/Actual Date of Construction	Installation Date of	Is the Unit Subject to
Unit #		(tons/hr)	(tons/yr)	Equipment	(% removal)	See cour	Tonucunt	(lb/SCC unit)	Factor	Commencement (MM/YYYY)	Each Unit	NSPS/MACT? (Yes or No)

Section L.9: Notes, Comments, and Explanations Emission Units 017 and 020 were built in 2013, started operating in 2015 but didn't have any Formaldehyde or Methanol emissions until 9/2018 when the formaldehyde solution (Termin-8/SalCurb) was permitted. Testing report the formaldehdye and methanol emissions are based on has already been submitted to the agency and will be resubmitted upon request.

	Division for Air Quality]	DEP700	7N						
	DIV	151011 10	I All Q	uanty				Sourc	e Emissic	ons Profile			A	Additional I	Ocumentation	1
	3	00 Sowe	r Boulev	ard				Section	n N.1: Emiss	ion Summary						
	H	Frankfort	, KY 406	501				Section	n N.2: Stack	Information			Compl	ete DEP70	07AI	
		(502) 5	564-3999)				Section	n N.3: Fugiti	ve Information	ı		1			
		()						Section	n N.4: Notes	, Comments, a	nd Explan	ations				
Source N	ame:				Cobb-Va	antress	Feed Mill				1					
KY EIS ((AFS) #:			21-	053-000	07										
Permit #	:				S-13-10	0-R3										
Agency I	nterest (AI)	ID:			119204											
Date:					2-Jun-2	3										
N.1: E1	nission S	ummar	y													
				Control	Control	Maximum Design Uncontrolle Emission Capture Control Hourly Emissions Annual Emissions										
Unit #	Emission Unit Name	ID ID	Process Name	Device Name	Device ID	Stack ID	Capacity (SCC	Pollutant	d Emission Factor (lb/SCC Units)	Factor Source (e.g. AP-42, Stack Test, Mass Balance)	Efficiency (%)	Efficiency (%)	Uncontrolled Potential	Controlled Potential	Uncontrolled Potential	Controlled Potential
							Units/nour)						(lb/hr)	(lb/hr)	(tons/yr)	(tons/yr)
017	Pelleting System	017	Pelleting	Cyclone	017C	017	40 tons	РМ	0.15	AP-42, includes control efficiency (lbs/ton finished feed)	100%	95%	120.00	6.00	525.60	26.28
017	Pelleting System	017	Pelleting	Cyclone	017C	017	40 tons	РМ	0.075	AP-42, includes control efficiency (lbs/ton finished feed)	100%	95%	60.00	3.00	262.80	13.14
017	Pelleting System	017	Pelleting	Cyclone	017C	017	40 tons	PM2.5	0.0375	AP-42, includes control efficiency (lbs/ton finished feed)	100%	95%	30.00	1.50	131.40	6.57
017	Pelleting System	017	Pelleting	Cyclone	017C	017	40 tons	Formaldehyde	7.43E-02	Stack Testing (lbs/fton finished feed)	100%	NA	2.97	2.97	13.02	13.02
017	Pelleting System	017	Pelleting	Cyclone	017C	017	40 tons	Methanol	0.46	Stack Testing (lbs/fton finished feed)	100%	NA	21.47	21.47	94.02	94.02
017	Pelleting System	017	Pelleting	Cyclone	017C	017	40 tons	Manganese	6.97E-04	Mass Balance (lbs/ton finished feed)	100%	95%	0.03	1.39E-03	0.12	6.10E-03

DEP7007N

Emission	Emission	Process	Process	Control	Control	Stack	Maximum Design	_	Uncontrolle d Emission	Emission Factor Source	Capture	Control	Hourly E	missions	Annual E	missions
Unit #	Unit Name	ID	Name	Device Name	Device ID	ID	Capacity (SCC Units/hour)	Pollutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency (%)	Efficiency (%)	Uncontrolled Potential (<i>lb/hr</i>)	Controlled Potential (lb/hr)	Uncontrolled Potential (tons/yr)	Controlled Potential (tons/yr)
017	Pelleting System	017	Pelleting	Cyclone	017C	017	40 tons	VOC	5.34E-01	Mass Balance (lbs/ton finished feed)	100%	NA	25.48	25.48	111.60	111.60
020	Truck Loadout	020	Loadout	Baghouse	020C	020	200 tons	PM	0.0033	AP-42 (lbs/ton finished feed)	100%	99%	0.66	0.01	0.58	5.78E-03
020	Truck Loadout	020	Loadout	Baghouse	020C	020	200 tons	PM10	0.0008	AP-42 (lbs/ton finished feed)	100%	99%	0.16	1.60E-03	0.14	1.40E-03
020	Truck Loadout	020	Loadout	Baghouse	020C	020	200 tons	PM2.5	0.0004	AP-42 (lbs/ton finished feed)	100%	99%	0.08	8.00E-04	7.01E-02	7.01E-04
020	Truck Loadout	020	Loadout	Baghouse	020C	020	200 tons	Formaldehyde	5.44E-06	Stack Testing (Ibs/fton feed loaded out)	100%	NA	1.09E-03	1.09E-03	9.53E-04	9.53E-04
020	Truck Loadout	020	Loadout	Baghouse	020C	020	200 tons	Methanol	1.27E-04	Stack Testing (Ibs/fton feed loaded out)	100%	NA	0.03	0.03	0.03	0.03
020	Truck Loadout	020	Loadout	Baghouse	020C	020	200 tons	Manganese	7.66E-07	Mass Balance (Ibs/ton feed)	100%	99%	3.07E-05	3.07E-07	1.34E-04	1.34E-06
020	Truck Loadout	020	Loadout	Baghouse	020C	020	200 tons	VOC	1.32E-04	Mass Balance (lbs/ton loadout feed)	100%	NA	1.07	1.07	4.58	4.58
-	-															

DEP7007N

Emission	Emission	Process	ess Process Control Control Stack Design Capacity Pollutant Capacity Pollutant Emission Factor Source		rce Capture Contr ack Efficiency Efficie	Control	Hourly Emissions		Annual Emissions							
Unit #	Unit Name	ID	Name	Name	ID	ID	(SCC Units/hour)	ronutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	(%)	(%)	Uncontrolled Potential (<i>lb/hr</i>)	Controlled Potential (lb/hr)	Uncontrolled Potential (tons/yr)	Controlled Potential (tons/yr)

Section N.2: Stack Information

UTM Zone:

	Identify all Emission Units (with Process ID) and	Sta	ack Physical D	ata	Stack UTM	Coordinates	Stack Gas Stream Data			
Stack ID	Control Devices that Feed to Stack	Equivalent Diameter (ft)	Height (ft)	Base Elevation (ft)	Northing (m)	Easting (m)	Flowrate (acfm)	Temperature (°F)	Exit Velocity (ft/sec)	
17	Pelleting System Cyclone	2.83	177	989	664236	4063158	23,290	140	57.96	
20	Truck Loadout Baghouse	0.83	12	989	664237	4063167	1,020	Amb	31.14	

Section N.4: Notes, Comments, and Explanations

Emissions shown on N.1 are unlimited. Cobb is requesting a limit of less than 10 tpy for any single HAP and 25 tpy for total HAPs.

VOC emissions include Formaldehyde, Methanol, and Propionic Acid.

Since the emission control equipment for the 017C and 020C hasn't changed Forms GG have not been submitted.

Testing report the formaldehdye and methanol emissions are based on has already been submitted to the agency and will

be resubmitted on request.

Pleae note that uncontrolled particulate emsision for the pelleting are shown without the cyclone but the unit is integral

to the system and the pellet operations can never operate without the cyclone.

				DEP7	'007V	Addi	tional Documentation	
Divis	ion for Air Qual	ity Ap	plicable	Requirem	ents and Complia	ince		
				Activ	vities	C	omplete DEP7007AI	
30	0 Sower Boulevard		Section	on V.1: Emis	sion and Operating Lin	nitation(s)		
Fr	ankfort, KY 40601		Section	on V.2: Moni	itoring Requirements			
	(502) 564-3999		Section	on V.3: Reco	rdkeeping Requirement	t		
			Sectio	on V.4: Repo	orting Requirements			
			Sectio	on V.5: Testi	ng Requirements			
			Sectio	on V.6: Note	s, Comments, and Expl	anations		
Source Nar	ne: Cobb-V							
KY EIS (A	FS) #: 21- 053-000)07						
Permit #:	S-13-10	0-R3						
Agency Int	erest (AI) ID:	119204						
Date:	2-Jun- 2	23						
Section V	.1: Emission an	d Operating Li	mitation	(s)				
Emission Unit #	Emission Unit Description	Applicable Regulation or Requirement	Pollutant	Emission Limit (if applicable)	Voluntary Emission Limit or Exemption (if applicable)	Operating Requirement or Limitation (if applicable)	Method of Determining Compliance with the Emission and Operating Requirement(s)	
Total Facility	Facility limit	401 KAR 52:030, Section 1; Section 11	Single HAP	<10	<10 <10		Monthly emission calcs and 12 month rolling total	
Total Facility	Facility limit	401 KAR 52:030, Section 1; Section 11	Total HAPs	<25	<25	NA	Monthly emission calcs and 12 month rolling total	
Total Facility	Facility limit	401 KAR 52:030, Section 1; Section 11	PM10	<100	<100	NA	IA Monthly emission calcs and 12 month rolling total	
Total Facility	Facility limit	401 KAR 52:030, Section 1; Section 11	voc	<100	<100	NA	Monthly emission calcs and 12 month rolling total	

DEP7007V

Emission Unit #	Emission Unit Description	Applicable Regulation or Requirement	Pollutant	Emission Limit (if applicable)	Voluntary Emission Limit or Exemption (if applicable)	Operating Requirement or Limitation (if applicable)	Method of Determining Compliance with the Emission and Operating Requirement(s)

Section V	.3: Recordkeep	ing Requireme	ents		
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Recorded	Description of Recordkeeping
Total Facility	Facility limit	Single HAP	401 KAR 52:030 Section 3 and 5	Formaldehyde Soltuion Type and Monthly Receiving and Usage Rate, Fuel for Boiler, Emergency Generator	Facility will track the monthly amount of SalCurb and/or Termin-8 received, the monthly usage rate of SalCurb and/or Termin-8, monthly gas and/or fuel oil.
Total Facility	Facility limit	Total HAPs	401 KAR 52:030 Section 3 and 5	Formaldehyde Soltuion Type and Monthly Receiving and Usage Rate, Fuel for Boiler, Emergency Generator	Facility will track the monthly amount of SalCurb and/or Termin-8 received, the monthly usage rate of SalCurb and/or Termin-8, monthly gas and/or fuel oil.
Total Facility	Facility limit	PM10	401 KAR 52:030 Section 3 and 5	Feed Production	Facility will track the monthly produciton of feed
Total Facility	Facility limit	VOC	401 KAR 52:030 Section 3 and 5	Formaldehyde Soltuion Type and Monthly Receiving and Usage Rate, Fuel for Boiler, Emergency Generator	Facility will track the monthly amount of SalCurb and/or Termin-8 received, the monthly usage rate of SalCurb and/or Termin-8, monthly gas and/or fuel oil.

Section V	Section V.4: Reporting Requirements											
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Reported	Description of Reporting							
Facility limit	Facility limit	Single HAP	401 KAR 52:030 Section 21 and 22	Single HAPs monthly and 12 month rolling	Annual Compliance Certification							
Facility limit	Facility limit	Total HAPs	401 KAR 52:030 Section 21 and 22	Total HAPss monthly and 12 month rolling	Annual Compliance Certification							
Facility limit	Facility limit	PM10	401 KAR 52:030 Section 21 and 22	PM10s monthly and 12 month rolling	Annual Compliance Certification							
Facility limit	Facility limit	VOC	401 KAR 52:030 Section 21 and 22	VOCs monthly and 12 month rolling	Annual Compliance Certification							

Section V.6: Notes, Comments, and Explanations							
lew regulatory requirements as applicable to the facility limits are shown in V forms. All other requirements							
applicable to the faciility will remain in place.							

11/2018										DEP7007CC
Division for Air			DEP7	007CC				·	<u> </u>	
Quality			Compliance	Certific	ation					
Submit to the			Section CC.1: Source	Information	ation 1					
Regional Office			Section CC 2: Signatu	re Block	•					
acoutified in your			Section CC.3: Identific	nt Diot	instan T		र्षक	A		
perime			Section CC:3, Identific		ISSION U	mis æ i	Each Term	or Cond	ution of t	he Permit
	,	. <u> </u>	Section CC.4: Notes, 0	Comments,	and Exp	lanation	15			
Section CC.1: Sou	irce Information	L								
1) Source Name		· · · · ·		2) Age	ncy Inter	est (AI) 1				<u> </u>
Cobb-Vantress Feed M	Mill						1	19204		
3) Source Location Ad	dress (street, city, state	e, zip)		<u> </u>	. <u></u> .					
1475 Burkesville Rd,	Albany, KY 42602									
4) Technical Contact (name, e-mail, phone #)						.			
Rechelle Hollowaty; reche	lle.hollowaty@tyson.cor	n, (479) 290-2506								
5) Permit Number(s)		6) County	<u> </u>	<u>-</u> .:	7) KY E	IS (AFS)				
S-13-1(00-R3		Clinton		21-	053-98	, " 60 [:] 7			
8) Submittal Informatio	 20							<u> </u>		
Are you certifying a in continuous compl	ny requirement(s) as "i jance?"	^{not} 🕢 Yes 🗌 No	What is the reporting period?	<u>09</u> mm/	01 dd/	2019 УУ	_TO <u>11</u>	01 dd/	_ <u>2022</u> уу	
Section CC.2: Sig	nature Block						. <u> </u>	<u> </u>		
9) CERTIFICATION	SIGNATURE				· · · · ·		i			
I, THE UNDERSIG, AND AM FAMI INDIVIDUALS & KNOWLEDGE AN	NED, HEREBY CER LIAR WITH, THE IN /ITH PRIMARY RES D BELIEF, TRUE, A INCO.	TIFY UNDER PENALTY FORMATION SUBMITT PONSIBILITY FOR OBT CCURATE, AND COMP MPLETE INFORMATIO	OF LAW, THAT I AM A RESP TED IN THIS DOCUMENT AN TAINING THE INFORMATION LETE. I AM AWARE THAT TH N, INCLUDING THE POSSIBI	ONSIBLE (D ALL ITS A I CERTIF IERE ARE S LITY OF FI	DFFICIA ATTACH Y THAT SIGNIFI NE OR 1	L, ANE MENTS THE ST CANT I MPRIS) THAT I H S. BASED (FATEMENT PENALTIE: ONMENT:	AVE PE ON MY S AND S FOR S	ERSONAL INQUIR INFORM UBMITI	LY EXAMINED, Y OF THOSE IATION IS ON TNG FALSE OR
BY:	Randy H	HORIZED STGNATURE		6	-2-	202	3 DATE			
	Randy Harr Typed or	ING TON PRINTED NAME OF SIGNA	TORY	Ser	<u>ior #</u> T	red /	N <u>;11 Mai</u> SIGNATOR	<u>AGEV</u> Y		

Section CC.3: Identification of Emission Units & Each Term or Condition of the Permit **Emission Units in Continuous Compliance** 10a) Emission Units in Continuous Compliance. The following emission units were in continuous compliance with each permit term or condition(s) and applicable requirements listed here, such as emission standards, emission control requirements, emission testing, court requirements, work practices, or enhanced monitoring, based on the compliance methods specified below. If additional space is required, reproduce this page as needed. The method used for determining compliance over the reporting period, and Permit Term, Condition, Actual Emissions or **Emission Unit/Permit** Permit Limit or Emission Unit Description whether the method provided continuous or intermittent data. status of or ID# requirement Applicable Regulation (such as test methods, monitoring procedures, recordkeeping and reporting) requirement

Section CC.3: Ide	ection CC.3: Identification of Emission Units & Each Term or Condition of the Permit										
		Emission	Units Subject to Future Compliance Dates								
10b) Emission Unit c	10b) Emission Units Subject to Future Compliance Dates. The following emission units will achieve compliance on a timely basis and maintain compliance with future compliance dates as they become applicable during the permit term. If additional space is required, reproduce this page as needed.										
Emission Unit/Permit ID#	Future Compliance Schedule	Emission Unit Description	Reason for Future Compliance Date								
See CC.4											

٦

Section CC.3: Ide	entification of Em	ission Units & Each T	erm or Cond	lition of the Pe	rmit
		Emissic	on Units Not in	Continuous Comj	pliance
10c)(1) Emissio applicable requi	n Units Not in Contin irements listed here, su monitoring, based c	nuous Compliance. The fo uch as emission standards, on the compliance methods	llowing emission emission contro specified below	n units were not in ol requirements, e ^y . If additional spc	n continuous compliance with each permit term or condition and mission testing, court requirements, work practices, or enhanced ace is required, reproduce this page as needed.
Emission Unit/Permit ID#	Permit Term, Condition, or Applicable Regulation	Emission Unit Description	Permit Limit or Requirement	Actual Emissions or Status of Requirement	The method used for determining compliance over the reporting period, and whether compliance was continuous or intermittent. (such as test methods, monitoring procedures, recordkeeping and reporting)
017	401 KAR 52:030, Section 1	Pelleting System with Formaldehyde Solution single HAP (Methanol)	<10 tpy of Single HAP (Methanol)	Highest 12 month rolling during period listed above was 13.66 tpy	Recordkeeping and Reporting based on Stack Test results and past formaldehdye solution usage records starting 8/1/2018. Facility is now in compliance by reducing the formaldehyde solution usage such the emissions are less than 10 tpy for methanol from all sources.
Facility Wide	401 KAR 52:030, Section 1	Facility Wide single HAP (Methanol)	<10 tpy of Single HAP (Methanol)	Highest 12 month rolling during period listed above was 13.67 tpy	Recordkeeping and Reporting based on Stack Test results and past formaldehdye solution usage records starting 8/1/2018. Also includes methanol from other facility sources. Facility is now in compliance by reducing the formaldehyde solution usage such the emissions are less than 10 tpy for methanol from all sources.
Facility Wide	401 KAR 52:030, Section 1	Facility Wide Total HAPs	<25 tpy	There has been an actual exceedance of Total HAPs	Based on the new emission data for formaldehdye and methanol the potential to emit total HAPs for the site are calcualted at greater than 25 tpy. There has not be an actual exceedance of total HAP emissions.
Facility Wide	401 KAR 52:030, Section 1	Facility Wide VOC	<100 tpy	There was not an actual exceedance of VOC	Based on the new emission data for formaldehdye and methanol the potential to emit VOC emissions are calculated greater than 100 tpy. There has not be an actual exceedance of VOC emissions.

Section CC.3: Id	entification of Emission Units & Each Term or Condition of the Permit
	Emission Units Not in Continuous Compliance (continued)
10c)(2) Emission U reporting period,	Units Not in Continuous Compliance. For the emission units and requirements listed in 10c)(1) that were not in continuous compliance since the last state the duration, magnitude, and reason or reasons for non-compliance. Each row of 10c)(2) must relate to the corresponding row of 10c)(1). If additional space is required, reproduce this page as needed.
Emission Unit/Permit ID#	Description of duration, magnitude, and reason(s) for non-compliance and corrective steps taken or planned.
017	Single HAP emissions from the pelleting system are calculated from the beginning of use of formaldehyde solution at the location. The highest 12 mo rolling of any single HAP (methanol) is 13.66 tpy, the exceedance of 10 tpy for methanol began in July 2019 thru Feb 2023 when the application rate of formaldehyde solution was reduced
Facility Wide	Total facility single HAP emissions (include processing and combustion) are calculated from the beginning of use of formaldehyde solution at the location. The highest 12 mo rolling of any single HAP (methanol) is 13.67 tpy, the exceedance of 10 tpy for methanol began in July 2019 thru Feb 2023 when the application rate of formaldehyde solution was reduced.
Facility Wide	There has not been an exceedance of total HAPs for the site above 25 tpy. The issue is the facility should have had a conditional major permit rather than a true minor including a limit of less than 25 tpy of total HAPs.
Facility Wide	There has not been an exceedance of total VOCs for the site above 100 tpy. The issue is the facility should have had a conditional major permit rather than a true minor including a limit of less than 100 tpy of VOCs.

Section CC.4: Notes, Comments, and Explanations

Not included in the compliance list is RSL formaldehyde exceedenance for which Cobb has already committed to erecting a new stack for the

pelleting system.

Compliance records and calculations will be submitted upon request.

ALBANY, KY FEEDMILL FACILITY-WIDE CONTROLLED POTENTIAL EMISSIONS, Reviewed 5/31/23

		Controlled Potential Emissions										
		РМ	PM ₁₀	PM _{2.5}	SO2	NOx	VOCs	CO	CO2e	HAP		
Source	SN #	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy		
Truck/Rail Receiving (1) w/ Baghouse	002	2.66E-02	3.91E-03	1.95E-03								
Grain Silos (4)	003	0.00E+00	0.00E+00	0.00E+00								
Dry Ingredient Transfer to Silos w/ Baghouse	004	3.02E-02	1.68E-02	2.87E-03								
Salt Receiving w/ Baghouse	005	2.25E-04	1.25E-04	2.14E-05								
Hammer mill w/ Baghouse	006	1.28	1.28	0.64								
Ground Corn Silos (2)	007	0.00E+00	0.00E+00	0.00E+00								
Mash Rework Silo (1)	008	0.00E+00	0.00E+00	0.00E+00								
Major Dry Ingredient Scale (1)	009	0.00E+00	0.00E+00	0.00E+00								
Minor Dry Ingredient Scale (1)	010	0.00E+00	0.00E+00	0.00E+00								
Micro Bin System (16)	011	5.80E-02	3.23E-02	5.52E-03						2.48E-03		
Micro Surge Bin (1)	012	0.00E+00	0.00E+00	0.00E+00								
Mixer (1)	013	0.00E+00	0.00E+00	0.00E+00								
Mixer Surge Bin (1)	014	0.00E+00	0.00E+00	0.00E+00								
Pellet Mash Bins (2)	015	0.00E+00	0.00E+00	0.00E+00								
Pellet Surge Bin (1)	016	0.00E+00	0.00E+00	0.00E+00								
Pellet Mill/Cooler (1) w/ Cyclone System	017	26.28	13.14	6.57			111.60			107.05		
Pellet Bin Surge Hopper (1)	018	0.00E+00	0.00E+00	0.00E+00								
Finished Feed Silos (10)	019	0.00E+00	0.00E+00	0.00E+00								
Truck Loadout w/ Baghouse	020	5.78E-03	1.40E-03	7.01E-04			4.58			0.03		
Alimet Tank	021	NA	NA	NA								
Choline Chloride Tank	022	NA	NA	NA								
Fat Tank	023	NA	NA	NA								
Formaldehyde Solution Storage Tank	025	NA	NA	NA			0.06			2.63E-02		
Central Vac System	026	1.20E-01	1.20E-01	6.01E-02								
Natural Gas Emergency Generator	024	3.79E-03	3.79E-03	3.79E-03	2.35E-04	0.25	0.13	0.50	46.65	2.25E-02		
250 HP Natural Gas Boiler	001	1.05	1.05	1.05	22.57	6.36	0.24	3.74	7,280.20	9.39E-02		
Diesel Tank (1,000 gal)	IS						4.51E-04					
Heater	IS	1.33E-01	1.33E-01	1.33E-01	1.05E-02	0.88	0.10	1.47	2,048.17	3.31E-02		
Total Facility-wid	de Emissions	28.99	15.78	8.47	22.58	7.48	116.70	5.71	9,375	107.25		
Title V	Threshold	100	100	100	100	100	100	100	N/A	25 / 10		
Above Title V T	Above Title V Threshold?			No	No	No	Yes	No	No	No		

ALBANY, KY FEEDMILL FACILITY-WIDE UNCONTROLLED POTENTIAL EMISSIONS, Updated 5/31/23

		Uncontrolled Potential Emissions										
		РМ	PM ₁₀	PM _{2.5}	SO2	NOx	VOCs	CO	CO2e	HAP		
Source	SN #	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy		
Truck/Rail Receiving (1) w/ Baghouse	002	2.66	0.39	0.20								
Grain Silos (4)	003	0.00E+00	0.00E+00	0.00E+00								
Dry Ingredient Transfer to Silos w/ Baghouse	004	3.02	1.68	0.29								
Salt Receiving w/ Baghouse	005	2.25E-02	1.25E-02	2.14E-03								
Hammer mill w/ Baghouse	006	128.31	128.31	64.16								
Ground Corn Silos (2)	007	0.00E+00	0.00E+00	0.00E+00								
Mash Rework Silo (1)	008	0.00E+00	0.00E+00	0.00E+00								
Major Dry Ingredient Scale (1)	009	0.00E+00	0.00E+00	0.00E+00								
Minor Dry Ingredient Scale (1)	010	0.00E+00	0.00E+00	0.00E+00								
Micro Bin System (16)	011	5.80E-02	3.23E-02	5.52E-03						2.48E-03		
Micro Surge Bin (1)	012	0.00E+00	0.00E+00	0.00E+00								
Mixer (1)	013	0.00E+00	0.00E+00	0.00E+00								
Mixer Surge Bin (1)	014	0.00E+00	0.00E+00	0.00E+00								
Pellet Mash Bins (2)	015	0.00E+00	0.00E+00	0.00E+00								
Pellet Surge Bin (1)	016	0.00E+00	0.00E+00	0.00E+00								
Pellet Mill/Cooler (1) w/ Cyclone System	017	525.60	262.80	131.40			111.60			107.16		
Pellet Bin Surge Hopper (1)	018	0.00E+00	0.00E+00	0.00E+00								
Finished Feed Silos (10)	019	0.00E+00	0.00E+00	0.00E+00								
Truck Loadout w/ Baghouse	020	0.58	0.14	0.07			4.58			0.03		
Alimet Tank	021	NA	NA	NA								
Choline Chloride Tank	022	NA	NA	NA								
Fat Tank	023	NA	NA	NA								
Formaldehyde Solution Storage Tanks	025	NA	NA	NA			0.06			2.63E-02		
Central Vac System	026	0.00E+00	0.00E+00	0.00E+00								
Natural Gas Emergency Generator	024	3.79E-03	3.79E-03	3.79E-03	2.35E-04	0.25	0.13	0.50	46.65	2.25E-02		
250 HP Natural Gas Boiler	001	1.05	1.05	1.05	22.57	6.36	0.24	3.74	7,280.20	9.39E-02		
Diesel Tank (1,000 gal)	IS						4.51E-04					
Heater	IS	1.33E-01	1.33E-01	1.33E-01	0.01	0.88	0.10	1.47	2,048.17	3.31E-02		
TOTAL FACILITY-WIDE	E EMISSIONS:	661.43	394.56	197.30	22.58	7.48	116.70	5.71	9,375	107.37		
Title V	Threshold	100	100	100	100	100	100	100	N/A	25 / 10		
Above Title V T	hreshold?	Yes	Yes	Yes	No	No	Yes	No	No	No		

ALBANY, KY FEEDMILL HAP CONTROLLED POTENTIAL EMISSIONS (TPY), Updated 5/31/23

				Natural Gas			Pellet Mill/Cooler			Formaldehvde
		НАР		Emergency	Natural Gas	Micro Bin System	(1) w/ Cyclone	Truck Loadout w/		Solution Storage
Pollutant	CAS No.	(Y or N)	Natural Gas Boiler	Generator	Heater	(16)	System 5.6.8	Baghouse	Central Vac	Tank
2-Methylnaphthalene	91-57-6	Y	1.07E-06	9.98E-05	4.20E-07	(=*)	0,0,0,0			
3-Methylchloranthrene	56-49-5	Y	8.01E-08	0.00E+00	3.15E-08					
7 12-Dimethylbenz(a)anathracene	57-97-6	Y	7 12E-07	0.00E+00	2.80E-07					
Acenaphthene	83-32-9	Y	6.71E-06	4.99E-07	3.15E-08					
Acenaphtylene	203-96-8	Y	8 04E-08	0.00E+00	3 15E-08					
Anthracene	120-12-7	Ŷ	3.88E-07	0.00E+00	4.20E-08					
Benz(a)anthracene	56-55-3	Y	1.27E-06	0.00E+00	3.15E-08					
Benzene	71-43-2	Y	9.34E-05	1.76E-04	3.68E-05					
Benzo(a)pyrene	50-32-8	Y	5.34E-08	0.00E+00	2.10E-08					
Benzo(b)fluoranthene	205-99-2	Y	8.01E-08	6.62E-08	3.15E-08					
Benzo(g.h.I)pervlene	191-24-2	Y	7.18E-07	1.65E-07	2.10E-08					
Benzo(k)fluoranthene	205-82-3	Y	8.01E-08	0.00E+00	3.15E-08					
Benzo(b,k)fluoranthene	207-08-9	Y	4.70E-07	0.00E+00						
Chrysene	218-01-9	Y	7.56E-07	2.77E-07	3.15E-08					
Dibenz(a,h)anthracene	53-70-3	Y	5.31E-07	0.00E+00	2.10E-08					
p-dichlorobenzene	106-46-7	Y	5.34E-05	0.00E+00	2.10E-05					
Fluoranthene	206-44-0	Y	1.54E-06	4.43E-07	5.26E-08					
Fluorene	86-73-7	Y	1.42E-06	2.26E-06	4.91E-08					
Formaldehyde	50-00-0	Y	1.05E-02	2.11E-02	1.31E-03		13.02	9.53E-04	NA	0.01
Hexane	110-54-3	Y	8.01E-02	0.00E+00	3.15E-02					
Indeno(1.2.3-cd)pyrene	193-39-5	Y	6.80E-07	0.00E+00	3.15E-08					
Methanol	67-56-1	Y		9.98E-04	0.00E+00		94.02	0.03	NA	0.01
Naphthalene	91-20-3	Y	3.59E-04	2.97E-05	1.07E-05					
Phenanathrene	85-01-8	Y	3.34E-06	0.00E+00	2.98E-07					
Pyrene	129-00-0	Y	1.35E-06	5.43E-07	8.76E-08					
Toluene	108-88-3	Y	1.97E-03	1.63E-04	5.96E-05					
Arsenic	7440-38-2	Y	8.90E-06	0.00E+00	3.50E-06					
Bervllium	7440-41-7	Y	5.34E-07	0.00E+00	2.10E-07					
Cadmium	7440-43-9	Y	4.89E-05	0.00E+00	1.93E-05					
Chromium Compounds	7440-47-3	Y	6.23E-05	0.00E+00	2.45E-05					
Chromium VI	N/A - CRVI	Y		0.00E+00	2.45E-05					
Cobalt	7440-48-4	Y	3.74E-06	0.00E+00	1.47E-06					
Lead	7439-92-1	Y	4.80E-04	0.00E+00	8.76E-06					
Manganese	7439-96-5	Y	1.69E-05	0.00E+00	6.66E-06	2.48E-03	6.10E-03	1.34E-06	1.34E-06	
Mercury	7439-97-6	Y	1.16E-05	0.00E+00	4.56E-06	1				1
Nickel	7440-02-0	Y	9.34E-05	0.00E+00	3.68E-05					
Selenium	7782-49-2	Y	1.07E-06	0.00E+00	4.20E-07					
Ethylbenzene	100-41-4	Y	2.02E-05							
o-Xylene	1330-20-7	Y	3.46E-05							
1.1.1-Trichloroethane (Methyl Chloroform)	71-55-6	Y	7.50E-05							
Total HAP			9.39E-02	2.25E-02	3.31E-02	2.48E-03	107.05	0.03	1.34E-06	2.63E-02

ALBANY, KY FEEDMILL HAP UNCONTROLLED POTENTIAL EMISSIONS (TPY), Reviewed 5/31/23

				Natural Gas			Pellet Mill/Cooler			Formaldehyde
		HAP		Emergency	Natural Gas	Micro Bin System	(1) w/ Cyclone	Truck Loadout w/		Solution Storage
Pollutant	CAS No.	(Y or N)	Natural Gas Boiler	Generator	Heater	(16)	System 5, 6,8	Baghouse	Central Vac	Tank
2-Methylnaphthalene	91-57-6	Y	1.07E-06	9.98E-05	4.20E-07			Ŭ		
3-Methylchloranthrene	56-49-5	Y	8.01E-08	0.00E+00	3.15E-08					
7.12-Dimethylbenz(a)anathracene	57-97-6	Y	7.12E-07	0.00E+00	2.80E-07					
Acenaphthene	83-32-9	Y	6.71E-06	4.99E-07	3.15E-08					
Acenaphtylene	203-96-8	Y	8.04E-08	0.00E+00	3.15E-08					
Anthracene	120-12-7	Y	3.88E-07	0.00E+00	4.20E-08					
Benz(a)anthracene	56-55-3	Y	1.27E-06	0.00E+00	3.15E-08					
Benzene	71-43-2	Y	9.34E-05	1.76E-04	3.68E-05					
Benzo(a)pyrene	50-32-8	Y	5.34E-08	0.00E+00	2.10E-08					
Benzo(b)fluoranthene	205-99-2	Y	8.01E-08	6.62E-08	3.15E-08					
Benzo(g,h,I)pervlene	191-24-2	Y	7.18E-07	1.65E-07	2.10E-08					
Benzo(k)fluoranthene	205-82-3	Y	8.01E-08	0.00E+00	3.15E-08					
Benzo(b,k)fluoranthene	207-08-9	Y	4.70E-07	0.00E+00						
Chrysene	218-01-9	Y	7.56E-07	2.77E-07	3.15E-08					
Dibenz(a,h)anthracene	53-70-3	Y	5.31E-07	0.00E+00	2.10E-08					
p-dichlorobenzene	106-46-7	Y	5.34E-05	0.00E+00	2.10E-05					
Fluoranthene	206-44-0	Y	1.54E-06	4.43E-07	5.26E-08					
Fluorene	86-73-7	Y	1.42E-06	2.26E-06	4.91E-08					
Formaldehyde	50-00-0	Y	1.05E-02	2.11E-02	1.31E-03		13.02	9.53E-04		0.01
Hexane	110-54-3	Y	8.01E-02	0.00E+00	3.15E-02					
Indeno(1,2,3-cd)pyrene	193-39-5	Y	6.80E-07	0.00E+00	3.15E-08					
Methanol	67-56-1	Y		9.98E-04	0.00E+00		94.02	0.03		0.01
Naphthalene	91-20-3	Y	3.59E-04	2.97E-05	1.07E-05					
Phenanathrene	85-01-8	Y	3.34E-06	0.00E+00	2.98E-07					
Pyrene	129-00-0	Y	1.35E-06	5.43E-07	8.76E-08					
Toluene	108-88-3	Y	1.97E-03	1.63E-04	5.96E-05					
Arsenic	7440-38-2	Y	8.90E-06	0.00E+00	3.50E-06					
Beryllium	7440-41-7	Y	5.34E-07	0.00E+00	2.10E-07					
Cadmium	7440-43-9	Y	4.89E-05	0.00E+00	1.93E-05					
Chromium Compounds	7440-47-3	Y	6.23E-05	0.00E+00	2.45E-05					
Chromium VI	N/A - CRVI	Y		0.00E+00	2.45E-05					
Cobalt	7440-48-4	Y	3.74E-06	0.00E+00	1.47E-06					
Lead	7439-92-1	Y	4.80E-04	0.00E+00	8.76E-06					
Manganese	7439-96-5	Y	1.69E-05	0.00E+00	6.66E-06	2.48E-03	1.22E-01	1.34E-04	1.34E-06	
Mercury	7439-97-6	Y	1.16E-05	0.00E+00	4.56E-06					
Nickel	7440-02-0	Y	9.34E-05	0.00E+00	3.68E-05					
Selenium	7782-49-2	Y	1.07E-06	0.00E+00	4.20E-07					
Ethylbenzene	100-41-4	Y	2.02E-05							
o-Xylene	1330-20-7	Y	3.46E-05							
1,1,1-Trichloroethane (Methyl Chloroform)	71-55-6	Y	7.50E-05							
Total HAP			9.39E-02	2.25E-02	3.31E-02	2.48E-03	107.16	0.03	1.34E-06	2.63E-02

ALBANY, KY FEEDMILL

PRODUCTION POTENTIAL PM AND MANGANESE EMISSIONS

Reviewed 11/16/22

			Control										
Source	SN #	Control Device	Device ID	Po tn/hr	tential Capa hr/yr	city tn/yr	Air Flow Rate cfm	Emis PM	sion Factor ll PM10	o/ton ² PM2.5	Control Efficiency	PM lb/hr	PM tn/yr
Truck/Rail Receiving (1) w/ Baghouse ^{1,7}	002	Baghouse	002C	100	8760	312,724		0.017	0.0025	0.00125	99%	0.02	0.03
Grain Silos (4)	003	N/A	N/A	100	8760	213,858		NA	NA		NA		
Dry Ingredient Transfer to Silos w/ Baghouse	004	Baghouse	004C	100	8760	98,866		0.061	0.034	0.0058	99%	0.06	0.03
Salt Receiving w/ Baghouse	005	Baghouse	005C	25	8760	738		0.061	0.034	0.0058	99%	0.02	2.25E-04
Hammer mill w/ Baghouse ³	006	Baghouse	006C	30	8760	213,858		0.012	0.012	0.006	99%	0.36	1.28
Ground Corn Silos (2)	007	N/A	N/A	30	8760	213,858		NA	NA		NA		
Mash Rework Silo (1)	008	N/A	N/A	50	8760	7,623		NA	NA		NA		
Major Dry Ingredient Scale (1)	009	N/A	N/A	35.82	8760	313,790		NA	NA		NA		
Minor Dry Ingredient Scale (1)	010	N/A	N/A	2.5	8760	21,936		NA	NA		NA		
Micro Bin System (16)	011	NA	NA	0.22	8760	1,902		0.061	0.034	0.0058	0%	1.34E-02	5.80E-02
Micro Surge Bin (1)	012	N/A	N/A	0.22	8760	1,902		NA	NA		NA		
Mixer (1)	013	N/A	N/A	40	8760	350,400		NA	NA		NA		
Mixer Surge Bin (1)	014	N/A	N/A	40	8760	350,400		NA	NA		NA		
Pellet Mash Bins (2)	015	N/A	N/A	40	8760	350,400		NA	NA		NA		
Pellet Surge Bin (1)	016	N/A	N/A	40	8760	350,400		NA	NA		NA		
Pellet Mill/Cooler (1) w/ Cyclone System ^{4, 5, 7, 8}	017	Cyclone	017C	40	8760	350,400		0.15	0.075	0.0375	95%	6.00	26.28
Pellet Bin Surge Hopper (1)	018	N/A	N/A	40	8760	350,400		NA	NA		NA		
Finished Feed Silos (10)	019	N/A	N/A	40	8760	350,400		NA	NA		NA		
Truck Loadout w/ Baghouse	020	Baghouse	020C	200	8,760	350,400		0.0033	0.0008	0.0004	99%	0.01	5.78E-03
Central Vac System ^{8,9}	026	Baghouse	025C	NA	8,760	NA	320	0.01	0.01	0.005	99%	2.74E-02	1.20E-01
Alimet Tank ⁶	021	N/A	N/A	PD	8760	PD		NA	NA		NA	NA	NA
Choline Chloride Tank ⁶	022	N/A	N/A	PD	8760	PD		NA	NA		NA	NA	NA
Fat Tank ⁶	023	N/A	N/A	PD	8760	PD		NA	NA		NA	NA	NA
									То	tal Productio	n Emissions	6.473	27.684

1. Rail and truck receiving areas employ baghouse with 99.9% particulate removal efficiency guaranteed by manufacturer.

2. All emissions factors used in determining amounts were obtained from AP-42 Section 9.9.1, Grain Elevators & Processes, Tables 9.9.1-1 and 9.9.1-2, dated May 2003.

3. Hammermill Baghouse 99% particulate removal efficiency guarnateed by manufacturer. Efficiency control is included in the AP-42 emission factor.

4. Cyclone System 95% particulate removal efficiency guaranateed by manufacturer, efficiency control is included in the AP-42 emission factor.

5. 350,400 tn/yr is based off a 40 tn/hr pelleting system.

6. PD Proprietary Data

7. No emission factor is given for $PM_{2.5}$. Therefore, it is assumed to be half of the PM_{10} as a conservative estimate.

8. No emission factor is given for PM_{10} . Therefore, it is assumed to be half of the PM as a conservative estimate.

9. Due to the limited data on the central vac system, 0.01 gr/ cf after control is assumed for worst case conservative emission estimate. HEPA filter is part of the central vac system therefore the system will not operate v

C	ontrolled Pote	ntial Emissions	5			Uncontrolled Potential Emissions								
PM ₁₀ lb/hr	PM ₁₀ tn/yr	PM _{2.5} lb/hr	PM _{2.5} tn/yr	HAP (Mn) lb/hr	HAP (Mn) tpy	PM lb/hr	PM tn/yr	PM ₁₀ lb/hr	PM ₁₀ tn/yr	PM _{2.5} lb/hr	PM _{2.5} tn/yr	HAP (Mn) lb/hr	HAP (Mn) tpy	
0.003	0.004	0.001	0.002	NA	NA	1.70	2.66	0.250	0.391	0.125	0.195	NA	NA	
Units a	re completely e	nclosed, no emi	ssions					Units a	re completely e	nclosed, no emi	ssions			
0.034	0.02	0.006	0.003	NA	NA	6.10 3.02 3.40 1.68 0.58 0.29 NA							NA	
0.009	1.25E-04	0.001	2.14E-05	NA	NA	1.53	0.02	0.85	0.01	0.15	0.002	NA	NA	
0.360	1.28	0.180	0.642	NA	NA	36.00	128.31	36.00	128.31	18.00	64.16	NA	NA	
Units a	re completely e	nclosed, no emi	ssions					Units a	re completely e	nclosed, no emi	ssions			
Units a	re completely e	nclosed, no emi	ssions					Units a	re completely e	nclosed, no emi	ssions			
Units are completely enclosed, no emissions								Units a	re completely e	nclosed, no emi	ssions			
Units a	re completely e	nclosed, no emi	ssions				Units are completely enclosed, no emissions							
7.48E-03	3.23E-02	1.28E-03	5.52E-03	5.67E-04	2.48E-03	0.01 0.06 0.007 0.032 0.001 0.006 5.67E-04 2.4							2.48E-03	
Units a	re completely e	nclosed, no emi	ssions					Units a	re completely e	nclosed, no emi	ssions			
Units are completely enclosed, no emissions								Units a	re completely e	nclosed, no emi	ssions			
Units a	Units are completely enclosed, no emissions							Units a	re completely e	nclosed, no emi	ssions			
Units a	Units are completely enclosed, no emissions							Units a	re completely e	nclosed, no emi	ssions			
Units a	re completely e	nclosed, no emi	ssions	1	1			Units a	re completely e	nclosed, no emi	ssions	1	1	
3.000	13.14	1.500	6.57	1.39E-03	6.10E-03	120.00	525.60	60.00	262.80	30.00	131.40	0.028	0.122	
Units a	re completely e	nclosed, no emi	ssions					Units a	re completely e	nclosed, no emi	ssions			
Units a	re completely e	nclosed, no emi	ssions					Units a	re completely e	nclosed, no emi	ssions			
1.60E-03	1.40E-03	8.00E-04	7.01E-04	3.07E-07	1.34E-06	0.66	0.58	0.16	0.14	0.08	7.01E-02	3.07E-05	1.34E-04	
2.74E-02	1.20E-01	1.37E-02	6.01E-02	3.07E-07	1.34E-06	06 0.03 0.12 0.03 0.12 0.01 0.06 3.07E-07 1.34E-							1.34E-06	
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
3.414	14.478	1.691	7.223	0.002	0.009	165.998	660.247	100.667	393.371	48.931	196.117	0.028	0.125	

ALBANY, KY FEEDMILL POTENTIAL FORMALDEHYDE, METHANOL, & VOC EMISSIONS Updated 5 31 23

Production and Formaldehyde Solution Information:

Value	Units	Description	Basis
350,400	tons/yr	Annual Feed Production Rate	Based on Maximum Production rate of Feedmill at 8760 hrs/yr
40.00	tons/hr	Hourly Production Rate	Based on Feed Mill Design Rate tons/hr produced
200.00	tons/hr	Hourly Loadout Rate	Based on Feed Mill Design Rate tons/hr loadout
6	lb/ton	Termin-8 added per ton of feed	Provided by Albany
6.5	lbs/ton	Sal CURB	Provided by Albany
240.00	lb/hr	Termin 8 added to feed	Mass Balance (6 lb/ton * 40 tons/hr)
2,102,400	lb/yr	Termin 8 added to feed	Mass Balance (6 lb/ton * 350,400 tons/yr)
260.00	lb/hr	Sal CURB added to feed	Mass Balance (6.5 lb/ton * 40 tons/hr)
2,277,600	lb/yr	Sal CURB added to feed	Mass Balance (6.5 lb/ton * 350,400 tons/yr)

Process Emissions from Pellet Mill/Cooler (017)

		Formaldabuda	,
		Formaldebyde Emission	Stack Testing at Albany Cobb April 23 @ 4 3 lbs of
5.37E-02	lbs/ton of feed	Factor	SalCurb/ton of feed
		Formaldehyde Emission	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of
7.43E-02	lbs/lbs of feed	Factor	SalCurb/ton of feed
		1 4000	
1.25E-02	lbs/lb of solution	Formaldehyde Emission	Stack Testing at Albany Cobb April 23 @ 4.3 lbs of
		Factor	SalCurb/ton of feed
		Formaldehyde Emission	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of
1.14E-02	Ibs/Ib of solution	Factor	SalCurb/ton of feed
		Percent Formaldehyde	
35%	%	in Termin-8	Provided by Termin-8 supplier Anitox
		Percent Formaldehyde	
37%	%	in Sal CURB	Provided by Kemin supplier of Sal Curb
		Worst Case Hourly	
2.97	lb/hr	Formaldehvde	Production (tons/hr) x Worst Case Emission Factor
		emissions	37% formaldehyde (lbs/ton of feed)
		Worst Case Daily	
71.33	lbs/dav	Formaldehvde	Hourly Formaldehyde emissions x 24 hrs/day
		emissions	
		Worest Case Annual	
26.035	lb/vr	Formaldehvde	Production (tons/yr) x Worst Case Emission Factor
.,	.,,	emissions	37% formaldehyde (lbs/ton of feed)
		Worst Case Annual	
13.02	tons/vr	Formaldehyde	Annual emissions (lb/yr) / (2000 lb/ton)
		emissions	
		Methanol	
		Methanol Emission	Stack Testing at Albany Cobb April 23 @ 4.3 lbs of
0.38	lbs/ton of feed	Factor	SalCurb/ton of feed @ 12% methanol
0.46		Methanol Emission	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of
0.46	lbs/ton of feed	Factor	SalCurb/ton of feed @12% methanol
0.00		Methanol Emission	Stack Testing at Albany Cobb April 23 @ 4.3 lbs of
0.09	IDS/ID OT SOlUTION	Factor	SalCurb/ton of feed @12% methanol
0.07	lhe/lh of colution	Methanol Emission	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of
0.07		Factor	SalCurb/ton of feed @12% methanol
0.44	lbs/top of food	Estimated Methanol	Stack Testing at Albany Cobb April 23 @ 4.3 lbs of
0.44	ibs/ton or reed	Emission Factor	SalCurb/ton of feed estimated to 14% methanol
0.54	lbs/lbs of feed	Estimated Methanol	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of
0.51	105/105 01 1000	Emission Factor	SalCurb/ton of feed estimated to 14% methanol
0.10	lbs/lb of solution	Estimated Methanol	Stack Testing at Albany Cobb April 23 @ 4.3 lbs of
		Emission Factor	SalCurb/ton of feed estimated to 14% methanol
0.08	lbs/lb of solution	Estimated Methanol	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of
		Emission Factor	SalCurb/ton of feed estimated to 14% methanol
14%	%	Percent Methanol in	Provided by Termin-8 supplier Anitox
		Termin-8	
12%	%	Percent Methanol in Sal	Provided by Kemin supplier of Sal Curb
		CORB	
		Went Creek haust	Braduction (tons/br) x Warst Case Emission Easter for
21.47	lb/hr	worst case nourly	14% methanel (lbs/tan of food)
		Methanol emissions	14% methanol (bs/ton of feed)
		Worst Case daily	
515.20	lbs/day	Mothanal amissions	Worst Case Hourly Methanal emissions x 24 hrs/day
		Wethanor emissions	
		Worst Case annual	Production (tons/yr) x Worst Case Emission Factor for
188,048	lb/yr	Methanol emissions	14% methanol (lbs/ton of feed)
		Worst Case Methanol	
94.02	tons/yr	emissions	Worst Case Annual emissions (lb/yr) / (2000 lb/ton)
	L	Propionic Acid	·
		Percent Propionic acid	
14%		in Termin-8	Provided by Termin-8 supplier Anitox
0.071		Percent Propionic acid	Descrided by Kenning III (C. L.C. L
20%		in Sal CURB	Provided by Kemin supplier of Sal Curb
2.0%		Percent Released	Assumption from Kemin and Anitox

Since testing was done on Salcurb and it has the maximum concentration of formaldehyde between SalCurb and Termin-8 no estimates were need to develop worst case emissions.

Since emission factors were developed using SalCurb is 12% methanol; the emission factors were scaled to estimate the methanol emissions when using Termin-8 @ 14% methanol assuming a linear relationship.

1.04	lbs/hr	Worst Case Propionic acid emissions	Max of 2 solutions: Hourly Feed Production Rate (tons/hr) * lb/ton of formaldehyde solution *% Prop Acid * % Prop Acid Released
9,110	lb/yr	Worst Case Propionic acid emissions	Max of 2 solutions: Annual Feed Production Rate (tons/yr) * lb/ton formaldehyde solution * % Prop Acid * % Prop Acid Released
4.56	tons/yr	Worst Case Propionic acid emissions	Worst Case Annual emissions (lb/yr) / (2000 lb/ton)
25.48	lbs/hr	VOC emissions	Formaldehyde + Methanol + Propionic acid emissions
223,193	lb/yr	VOC emissions	Formaldehyde + Methanol + Propionic acid emissions
111.60	tons/yr	VOC emissions	Annual PTE VOC emissions (lb/yr) / (2000 lb/ton)

Process Emissions from Truck Loadout (020)

Г

5.44E-06	lbs/ton of feed loaded	Formaldehyde Emission	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of	Te
	out	Factor	SalCurb/ton loaded out)	
35%	%	Percent Formaldehyde in Termin-8	Provided by Termin-8 supplier Anitox	
37%	%	Percent Formaldehyde in Sal CURB	Provided by Kemin supplier of Sal Curb	
1.09E-03	lb/hr	Worst Case Hourly Formaldehyde	Production (tons/hr) x Worst Case Emission Factor 37% formaldehyde (lbs/ton of feed) @ 6.5 lbs	
0.03	lbs/day	Worst Case Daily Formaldehyde	application rate Hourly Formaldehyde emissions x 24 hrs/day	
1.91	lb/yr	emissions Worest Case Annual Formaldehyde	Production (tons/yr) x Worst Case Emission Factor 37% formaldehyde (lbs/ton of feed) @ 6.5 lbs	
9.53E-04	tons/yr	Worst Case Annual Formaldehyde emissions	Annual emissions (lb/yr) / (2000 lb/ton)	
		Methanol	1	1
1.27E-04	lbs/ton of feed loaded	Methanol Emission	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of	
	lbs/ton of feed loaded	Estimated Methanol	Stack Testing at Albany Cobb April 23 @ 6.5 lbs of	- w
1.48E-04	out	Emission Factor	SalCurb/ton of feed estimated to 14% methanol	wł
14%	%	Percent Methanol in Termin-8	Provided by Termin-8 supplier Anitox	1
12%	%	Percent Methanol in Sal CURB	Provided by Kemin supplier of Sal Curb	
0.03	lb/hr	Worst Case hourly Methanol emissions	Loadout Rate (tons/hr) x Worst Case Emission Factor for 14% methanol (lbs/ton of feed)	
0.71	lbs/day	Worst Case daily Methanol emissions	Worst Case Hourly Methanal emissions x 24 hrs/day	1
52	lb/yr	Worst Case annual Methanol emissions	Loadout Rate (tons/yr) x Worst Case Emission Factor for 14% methanol (lbs/ton of feed)	
0.03	tons/yr	Worst Case Methanol emissions	Worst Case Annual emissions (lb/yr) / (2000 lb/ton)	1
		Propionic Acid	•	1
14%		Percent Propionic acid in Termin-8	Provided by Termin-8 supplier Anitox	1
20%		Percent Propionic acid in Sal CURB	Provided by Kemin supplier of Sal Curb]
2.0%		Percent Released	Assumption from Kemin and Anitox	
1.04	lbs/hr	Worst Case Propionic acid emissions	Max of 2 solutions: Hourly Feed Production Rate (tons/hr) * lb/ton of formaldehyde solution *% Prop Acid * % Prop Acid Released	
9,110	lb/yr	Worst Case Propionic acid emissions	Max of 2 solutions: Annual Feed Production Rate (tons/yr) * lb/ton formaldehyde solution * % Prop Acid * % Prop Acid Released	
4.56	tons/yr	Worst Case Propionic acid emissions	Worst Case Annual emissions (lb/yr) / (2000 lb/ton)	1
1.07	lbs/hr	VOC emissions	Formaldehyde + Methanol + Propionic acid emissions	1
9,164	lb/yr	VOC emissions	Formaldehyde + Methanol + Propionic acid emissions	1
4 58	tons/vr	VOC emissions	Annual PTE VOC emissions (lb/vr) / (2000 lb/ton)	1

Testing was performed on feed with an applied rate of 6.5 lbs of salcurb/ton of feed

٦

Since emission factors were developed using SalCurb is 12% methanol; the emission factors were scaled to estimate the methanol emissions when using Termin-8 @ 14% methanol assuming

Termin-8 Storage Tank (Insignificant) Throughput Calculation and Emissions:

Value	Units	Description	Basis
250,400	tonchur	Annual Feed Production	Provided by Albany
350,400	tons/yr	Rate	Frovided by Albaliy
6	lh/ton	Termin-8 added per ton	Provided by Albany
0	ib/toli	of feed	Hovided by Alberty
252,000	gal/yr	Annual Termin-8 Usage	Set at 252,000 conservatively.
9.174	lb/gal	Density	Based on Anitox Termin-8 SDS info

2,311,848	lb/yr	Annual Termin-8 Usage	Annual Termin-8 Usage gal/yr * Density			
21,000 gal/month		Monthly Termin-8 Usage as input to TANKS ESP spreadsheet	Annual Termin-8 Usage (gal) / 12			
0.003	lb/hr	Hourly Formaldehyde Emissions	Annual Emissions / (8,760 hrs/yr)			
23.91	lb/yr	Annual Formaldehyde Emissions	Based on TANKS ESP Spreadsheet (see Tanks ESP calcs)			
0.01	0.01 tons/yr		Annual emissions (lb/yr) / (2000 lb/ton)			
0.003	lb/hr	Methanol Emissions	Annual Emissions / (8,760 hrs/yr)			
27.36	lb/yr	Methanol Emissions	Based on TANKS ESP Spreadsheet (see Tanks ESP calcs)			
0.014	tons/yr	Methanol Emissions	Annual emissions (lb/yr) / (2000 lb/ton)			
0.69	lb/yr	Propionic acid emissions	Based on TANKS ESP Spreadsheet (see Tanks ESP calcs)			
0.0003	tons/yr	Propionic acid emissions	Annual emissions (lb/yr) / (2000 lb/ton)			
117	lb/yr	Annual VOC Emissions	Formaldehyde + Methanol + Propionic acid emissions			
0.06	tons/vr	Annual VOC Emissions	Annual VOC emissions (lb/yr) / (2000 lb/ton)			

Notes:

Uncontrolled emissions = Controlled emissions Emissions calculated using Tanks ESP software (see Tanks ESP calcs).

Sal Curb Storage Tank (Insignificant) Throughput Calculation and Emissions:

Value	Units	Description	Basis
		Annual Feed Production	
350,400	tons/yr	Rate	Provided by Albany
		Sal Curb added per ton	
6.5	lb/ton	of feed	Provided by Albany
252,000	gal/yr	Annual Sal Curb Usage	Set at 252,000 gal/yr conservatively
9.174	lb/gal	Density	Based on Kemin Sal CURB SDS info
2,311,848	lb/yr	Annual Sal Curb Usage	Annual Sal Curb Usage gal/yr * Density
		Monthly Sal Curb Usage	
		as input to TANKS ESP	
21.000	gal/month	spreadsheet	Annual Sal Curb usage (gal) / 12
22,000	Bailtinoutri	Hourly Formaldehyde	Alimaa sai care asabe (Bai) / 12
0.003	lb/hr	Emissions	Annual Emissions / (8,760 hrs/vr)
0.000	,	Annual Formaldehvde	Based on TANKS ESP Spreadsheet (see Tanks ESP
25.25	lb/vr	Emissions	calcs)
		Annual Formaldehyde	,
0.01	tons/yr	Emissions	Annual emissions (lb/yr) / (2000 lb/ton)
0.003	lb/hr	Methanol Emissions	Annual Emissions / (8,760 hrs/yr)
	,		Based on TANKS ESP Spreadsheet (see Tanks ESP
24.76	lb/yr	Methanol Emissions	calcs)
0.012	tons/yr	Methanol Emissions	Annual emissions (lb/yr) / (2000 lb/ton)
i i	··· · ·		Based on TANKS ESP Spreadsheet (see Tanks ESP
1.04	lb/yr	Propionic acid emissions	calcs)
1			
0.0005	tons/yr	Propionic acid emissions	Annual emissions (lb/yr) / (2000 lb/ton)
51	lb/yr	Annual VOC Emissions	Formaldehyde + Methanol + Propionic acid emissions
0.03	tons/yr	Annual VOC Emissions	Annual VOC emissions (lb/yr) / (2000 lb/ton)

Notes:

Uncontrolled emissions = Controlled emissions

Emissions calculated using Tanks ESP software (see Tanks ESP calcs).

Emissions Summary:

Pollutant	Pellet Mill/Cooler (lb/hr)	Pellet Mill/Cooler (tpy)	Pellet Mill/Cooler (tpy) Product Loadout (lb/hr) Product Loadout (tp		Storage Tanks (lbs/hr)	Storage Tanks (tpy)	Total (tpy)
Formaldehyde	2.97	13.02	1.09E-03	9.53E-04	2.88E-03	1.26E-02	13.03
Methanol	21.47	94.02	0.03	0.03	3.12E-03	1.37E-02	94.06
VOC	25.48	111.60	1.07	4.58	1.33E-02	5.84E-02	116.24

Notes:

Uncontrolled emissions = Controlled emissions Emissions calculated derived emission factors from April 2023 testing

Formaldehyde and Methanol Emissions are assumed to be depleted from the pellet system and loadout and therefore would not be present in the Central Vac System (09)

TankSummaries for PTE

Site: Albany, KY, Feed Mill Equations for this site: After 2019 AP-42 revisions H/D ratio: Default 0.5

						Total loss com	ponents in the "My HAPs/VOC	" set (lbs)
					Formaldehyde	Methanol {methyl alcohol}	Propionic Acid	
Tank ID	Tank Diameter (ft)	Product	Throughput (gal)	Total estimated emissions (lbs)	50000	67561	79094	
Tank Sal Curb	9	Sal CURB	252000	51.048502	25.24621831	24.76383504	1.038448206	
Tank Termin-8	9	Termin-8	252000	51.962457	23.91092551	27.36306518	0.688466691	

ALBANY, KY FEEDMILL PRODUCTION POTENTIAL MANGANESE EMISSIONS

Reviewed 11/16/22

Annual Production (tpy)	350,400
Percentage Pelletized (%)	100%
Trace Mineral Used (lb/yr)	519,993.6
Percentage of Manganese from Trace Mineral (%)	31.30%
Total Manganese Processed (lb/yr)	162,758

Table B-4. Potential Manganese Emissions from Process Sources

Emission Source	Manganese Used tpy	Ratio of Mangaese lbs mn/lbs of finished	Control Efficiency %	PM Emission Factor ¹ (lb/ton)	PM Emissions lbs/hr	Potential Controlled Manganese Emissions (lb/yr) ³ (lb/hr) (tpy)			Potential ((lb/yr) ³	Potential Uncontrolled Manganese Emissions (lb/yr) ³ (lb/hr) (tpy)	
Micro Bin System	81.38			0.061		4.96E+00	5.67E-04	2.48E-03	4.96	5.67E-04	2.48E-03
Pellet Cooler Systems	81.38		95%	0.15		1.22E+01	1.39E-03	6.10E-03	244.14	0.03	1.22E-01
Truck Loadout	81.38		99%	0.0033		2.69E-03	3.07E-07	1.34E-06	0.27	3.07E-05	1.34E-04
Central Vac		0.00023			11.56	2.69E-03	3.07E-07	1.34E-06	2.69E-03	3.07E-07	1.34E-06
Total						17.18	1.96E-03	8.59E-03	249.37	0.03	0.12

1. AP-42 Section 9.9.1, Grain Elevators & Processes, Tables 9.9.1-1 and 9.9.1-2, dated May 2003. The Pellet Cooler is a controlled factor. The other two are uncontrolled

2. Controlled Emissions (lb/yr) = Emission Factor (lb/ton) * Manganese in Feed (tons/year) *(1-% Control if not included in AP-42 factor)

3. HEPA filter is part of the central vac system and will not operate without the filter

Boilers Information Reviewed 11 16/22

Source	Emission Source ID	Low NO _x Burner?	Heat Input Capacity (MMBtu/hr)	Natural Gas Heating Value (Btu/scf)	Hourly Natural Gas Consumption (MMscf/hr)	Diesel Heating Value (MMBtu/Mgal)	Hourly Diesel Combustion (Mgal/hr)	Annual Hours of Operation (hr/yr)	Maximum Fuel Oil gal/yr	Maximum Annual Natural Gas cf/yr
250 hp Boiler	7	Yes	10.16	1,000	1.02E-02	140	7.26E-02	8,760	635,663	88,992,840
		Maximum MMBtu/yr MMBtu/yr used from Diesel	88992.84 88992.84						635.6631429	88.99284

MMBtu/yr used from Diesel 88 MMBtu/hr for natural gas

0

Criteria Pollutant Potential Emissions from the Boilers

Pollutant	Em Natural Gas ¹ (lb/MMscf)	ission Factors Diesel ² (lb/Mgal)	25 Natural Gas ³ (lb/hr)	0 hp Boiler Diesel (lb/hr)	r Potential Emissio Natural Gas ⁴ tpy	ons Fuel Oil ⁴ (tpy)	Total Po Max (lb/hr) ⁵	otential Emissions Worst Case Emissions between Diesel and Natural gas (tpy)
NO _X Low NOx	50	20	0.51	1.45	2.22	6.36	1.45	6.36
CO	84	5	0.85	0.36	3.74	1.59	0.85	3.74
PM	7.6	3.3	0.08	0.24	0.34	1.05	0.24	1.05
SO ₂	0.6	71	0.01	5.15	0.03	22.57	5.15	22.57
VOC	5.5	0.2	0.06	0.01	0.24	0.064	0.06	0.24
Lead	5.00E-04	1.51E-03	5.08E-06	1.10E-04	2.22E-05	4.80E-04	1.10E-04	4.80E-04
CO ₂ e ⁶	117,098	22,906	1,190	1,662	5,210.44	7280.20	1662.15	7280.20

1. AP-42 Section 1.4, Natural Gas Combustion, Tables 1.4-1 and 1.4-2, dated July 1998.

2. AP-42 Section 1.3, Fuel Oil Combustion, Tables 1.3-1, 1.3-2, and 1.3-3, dated May 2010. Emission factors utilized are for distillate oil combustion. The SO₂ emission factor is based on a maximum diesel sulfur content of 0.5% by weight. PM is the sum of filterable PM and condensable PM emissions. The VOC emission factor is the emission factor for non-methane total organic compounds for industrial boilers.

3. Natural gas NO_X emissions for boiler are based on the emission factor for a low NO_X burner.

4. Potential annual emissions for the boiler is based on the hourly potential emissions from natural gas combustion multiplied by 8,760 hours of operation per year.

5. Total potential hourly emissions for boiler is based on the worst-case hourly emissions for each pollutant between natural gas and diesel combustion

6. CO2e factor calculated based on the emission factors for CO2, CH4, and N2O from 40 CFR 98, Subpart C, Tables C-1 and C-2, and the global warming potential (GWP) for each pollutant per 40 CFR 98, Subpart A, Table A-1.

HAP Potential Emissions from the Boilers Reviewed 11/16/22

	Emission Factors		250 hp Boiler Potential Emissions				
			Natual				
Pollutant	Natural Gas ¹ (lb/MMscf)	Diesel ² (lb/Mgal)	Natural Gas (lb/hr)	Diesel (lb/hr)	Gas tpy	Diesel tpy	Annual ³ (tpy)
2-Methylnaphthalene*	2.40E-05	-	2.44E-07	-	1.07E-06		1.07E-06
3-Methylchloranthrene*	1.80E-06	-	1.83E-08	-	8.01E-08		8.01E-08
7,12-Dimethylbenz(a) anthracene*	1.60E-05	-	1.63E-07	-	7.12E-07		7.12E-07
Acenaphthene*	1.80E-06	2.11E-05	1.83E-08	1.53E-06	8.01E-08	6.71E-06	6.71E-06
Acenaphthylene*	1.80E-06	2.53E-07	1.83E-08	1.84E-08	8.01E-08	8.04E-08	8.04E-08
Anthracene*	2.40E-06	1.22E-06	2.44E-08	8.85E-08	1.07E-07	3.88E-07	3.88E-07
Benz(a)anthracene*	1.80E-06	4.01E-06	1.83E-08	2.91E-07	8.01E-08	1.27E-06	1.27E-06
Benzene	2.10E-03	2.14E-04	2.13E-05	1.55E-05	9.34E-05	6.8E-05	9.34E-05
Benzo(a)pyrene*	1.20E-06	-	1.22E-08	-	5.34E-08		5.34E-08
Benzo(b)fluoranthene*	1.80E-06	-	1.83E-08	-	8.01E-08		8.01E-08
Benzo(g,h,I)perylene*	1.20E-06	2.26E-06	1.22E-08	1.64E-07	5.34E-08	7.18E-07	7.18E-07
Benzo(k)fluoranthene*	1.80E-06	-	1.83E-08	-	8.01E-08		8.01E-08
Benzo(b,k)fluoranthene*	-	1.48E-06	-	1.07E-07		4.7E-07	4.70E-07
Chrysene*	1.80E-06	2.38E-06	1.83E-08	1.73E-07	8.01E-08	7.56E-07	7.56E-07
Dibenzo(a,h)anthracene*	1.20E-06	1.67E-06	1.22E-08	1.21E-07	5.34E-08	5.31E-07	5.31E-07
Dichlorobenzene	1.20E-03	-	1.22E-05	-	5.34E-05		5.34E-05
Fluoranthene*	3.00E-06	4.84E-06	3.05E-08	3.51E-07	1.33E-07	1.54E-06	1.54E-06
Fluorene*	2.80E-06	4.47E-06	2.84E-08	3.24E-07	1.25E-07	1.42E-06	1.42E-06
Formaldehyde	7.50E-02	3.30E-02	7.62E-04	2.39E-03	3.34E-03	0.010488	1.05E-02
Hexane	1.80E+00	-	1.83E-02	-	8.01E-02		8.01E-02
Indeno(1,2,3-cd)pyrene*	1.80E-06	2.14E-06	1.83E-08	1.55E-07	8.01E-08	6.8E-07	6.80E-07
Naphthalene	6.10E-04	1.13E-03	6.20E-06	8.20E-05	2.71E-05	0.000359	3.59E-04
Phenanathrene*	1.70E-05	1.05E-05	1.73E-07	7.62E-07	7.56E-07	3.34E-06	3.34E-06
Pyrene*	5.00E-06	4.25E-06	5.08E-08	3.08E-07	2.22E-07	1.35E-06	1.35E-06
Toluene	3.40E-03	6.20E-03	3.45E-05	4.50E-04	1.51E-04	0.001971	1.97E-03
Arsenic	2.00E-04	-	2.03E-06	-	8.90E-06		8.90E-06
Beryllium	1.20E-05	-	1.22E-07	-	5.34E-07		5.34E-07
Cadmium	1.10E-03	-	1.12E-05	-	4.89E-05		4.89E-05
Chromium	1.40E-03	-	1.42E-05	-	6.23E-05		6.23E-05
Cobalt	8.40E-05	-	8.53E-07	-	3.74E-06		3.74E-06
Manganese	3.80E-04	-	3.86E-06	-	1.69E-05		1.69E-05
Mercury	2.60E-04	-	2.64E-06	-	1.16E-05		1.16E-05
Nickel	2.10E-03	-	2.13E-05	-	9.34E-05		9.34E-05
Selenium	2.40E-05	-	2.44E-07	-	1.07E-06		1.07E-06
Ethylbenzene	-	6.36E-05	-	4.62E-06		2.02E-05	2.02E-05
o-Xylene	-	1.09E-04	-	7.91E-06		3.46E-05	3.46E-05
1,1,1-Trichloroethane (Methyl Chloroform)	-	2.36E-04	-	1.71E-05		7.5E-05	7.50E-05
Polycyclic Organic Matter (POM) ⁶	-	3.30E-03		2.39E-04		0.001049	1.05E-03
Total Boiler HAP			0.02	0.003	0.08	0.01	0.09

1. Emission factors for natural gas combustion per AP-42 Section 1.4, Tables 1.4-3 and 1.4-4, dated July 1998.

2. Emission factors for diesel combustion per AP-42, Section 1.3, Tables 1.3-8 through 1.3-10, dated May 2010.

3. Potential annual emissions for the 400 hp boiler are based on the worst-case hourly emissions for each pollutant between natural gas and diesel combustion, multiplied by 8,760 hours of operation per year.

4. Potential annual emissions for the 300 hp boiler are based on the hourly potential emissions from natural gas combustion multiplied by 8,760 hours of operation per year.

5. Total potential hourly emissions for both boilers are based on the worst-case hourly emissions for each pollutant between natural gas and diesel combustion for the 400 hp boiler and on the hourly emissions from natural gas combustion for the 300 hp boiler.

6. The starred compounds are POM. For natural gas, only individual POM compounds are listed. For fuel oil, there is a factor for total POM as well as for individual POM HAPs. These were conservatively summed (all included in the HAP total).

ALBANY, KY NATURAL GAS FIRED EMERGENCY GENERATOR (024)

Reviewed 11/16/22

Generator Emissions - Natural G	as	
Annual Hours of Operation:	500	hr/yr
Concretor Conscitu (Output)	150	kW
Generator Capacity (Output).	228	hp
Heating Value for Natural Gas=	1000	Btu/ft3

Heating Value for Natural Gas=

Bollutont	Natural Gas-fired Generators			Potential Emissions			ions
Ponutant	(lb/MMBtu) ¹	(lb/hp-hr) ^{2,3}	grams/bhp-hr ⁴	(lb/hr)	(lb/yr)	(tpy)	Emission Factor Source
NOx			2.00E+00	1.00	502.20	0.251	Manufacturer's Data
CO			4.00E+00	2.01	1004.41	0.502	Manufacturer's Data
PM ₁₀	9.50E-03	6.65E-05		1.52E-02	7.58	3.79E-03	AP-42, Table 3.2-2 (08/00)
PM _{2.5}	9.50E-03	6.65E-05		1.52E-02	7.58	3.79E-03	AP-42, Table 3.2-2 (08/00)
S0 ₂	5.88E-04	4.12E-06		9.38E-04	0.47	2.35E-04	AP-42, Table 3.2-2 (08/00)
VOC			1.00E+00	0.50	251.10	0.126	Manufacturer's Data
1.1.2.2-Tetrachloroethane	4.00E-05	2.80E-07		6.38E-05	3.19E-02	1.60E-05	AP-42, Table 3.2-2 (08/00)
1,1,2-Trichloroethane	3.18E-04	2.23E-06		5.08E-04	2.54E-01	1.27E-04	AP-42, Table 3.2-2 (08/00)
1,1-Dichloroethane	2.36E-05	1.65E-07		3.77E-05	1.88E-02	9.42E-06	AP-42, Table 3.2-2 (08/00)
1,2,3-Trimethylbenzene	2.30E-05	1.61E-07		3.67E-05	1.84E-02	9.18E-06	AP-42, Table 3.2-2 (08/00)
1,2,4-Trimethylbenzene	1.43E-05	1.00E-07		2.28E-05	1.14E-02	5.71E-06	AP-42, Table 3.2-2 (08/00)
1,2-Dichloroethane	2.36E-05	1.65E-07		3.77E-05	1.88E-02	9.42E-06	AP-42, Table 3.2-2 (08/00)
1,2-Dichloropropane	2.69E-05	1.88E-07		4.29E-05	2.15E-02	1.07E-05	AP-42, Table 3.2-2 (08/00)
1,3,5-Trimethylbenzene	3.38E-05	2.37E-07		5.39E-05	2.70E-02	1.35E-05	AP-42, Table 3.2-2 (08/00)
1,3-Butadiene	2.67E-04	1.87E-06		4.26E-04	2.13E-01	1.07E-04	AP-42, Table 3.2-2 (08/00)
1,3-Dichloropropene	2.64E-05	1.85E-07		4.21E-05	2.11E-02	1.05E-05	AP-42, Table 3.2-2 (08/00)
2,2,4-Trimethylpentane	3.32E-05	2.32E-07		5.30E-05	2.65E-02	1.32E-05	AP-42, Table 3.2-2 (08/00)
2-Methylnaphthalene	2.50E-04	1.75E-06		3.99E-04	2.00E-01	9.98E-05	AP-42, Table 3.2-2 (08/00)
Acenaphthene	1.25E-06	8.75E-09		2.00E-06	9.98E-04	4.99E-07	AP-42, Table 3.2-2 (08/00)
Acenaphthylene	5.53E-06	3.87E-08		8.83E-06	4.41E-03	2.21E-06	AP-42, Table 3.2-2 (08/00)
Acetaldehyde	8.36E-03	5.85E-05		1.33E-02	6.67E+00	3.34E-03	AP-42, Table 3.2-2 (08/00)
Acrolein	5.14E-03	3.60E-05		8.20E-03	4.10E+00	2.05E-03	AP-42, Table 3.2-2 (08/00)
Benzene	4.40E-04	3.08E-06		7.02E-04	3.51E-01	1.76E-04	AP-42, Table 3.2-2 (08/00)
Benzo(b)fluoranthene	1.66E-07	1.16E-09		2.65E-07	1.32E-04	6.62E-08	AP-42, Table 3.2-2 (08/00)
Benzo(e)pyrene	4.15E-07	2.91E-09		6.62E-07	3.31E-04	1.66E-07	AP-42, Table 3.2-2 (08/00)
Benzo(g,h,i)perylene	4.14E-07	2.90E-09		6.61E-07	3.30E-04	1.65E-07	AP-42, Table 3.2-2 (08/00)
Biphenyl	2.12E-04	1.48E-06		3.38E-04	1.69E-01	8.46E-05	AP-42, Table 3.2-2 (08/00)
Butane	5.41E-04	3.79E-06		8.63E-04	4.32E-01	2.16E-04	AP-42, Table 3.2-2 (08/00)
Butyr/Isobutyraldehyde	1.01E-04	7.07E-07		1.61E-04	8.06E-02	4.03E-05	AP-42, Table 3.2-2 (08/00)
Carbon Tetrachloride	3.67E-05	2.57E-07		5.86E-05	2.93E-02	1.46E-05	AP-42, Table 3.2-2 (08/00)
Chlorobenzene	3.04E-05	2.13E-07		4.85E-05	2.43E-02	1.21E-05	AP-42, Table 3.2-2 (08/00)
Chioroform	2.85E-05	2.00E-07		4.55E-05	2.27E-02	1.14E-05	AP-42, Table 3.2-2 (08/00)
Cuclopoptano	0.93E-07	4.83E-09	-	2.62E.04	5.53E-04	2.77E-07	AP-42, Table 3.2-2 (08/00)
Ethana	2.27E-04	7.35E-00	-	3.02E-04	0.205+01	9.06E-05	AP-42, Table 3.2-2 (08/00)
Ethulbongono	2.07E.0E	2.78E.07	-	1.08E-01 6.24E.0E	2.17E.02	1 EQE OF	AP-42, Table 3.2-2 (08/00)
Ethylene Dibromide	4.43E-05	3.10E-07		7.07E-05	3.54E-02	1.30E-05	AP-42, Table 3.2-2 $(00/00)$
Fluoranthene	1.11F-06	7.77E-09		1.77E-06	8.86F=04	4.43E=07	AP-42 Table 3.2-2 (08/00)
Fluorene	5.67F=06	3.97E-08	-	9.05E-06	4.52E=03	2.26E=06	AP-42 Table 3.2-2 (08/00)
Formaldehyde	5.28F=02	3.70E-04	-	8.43E-02	4.21F+01	2.11E-02	AP-42 Table 3.2-2 (08/00)
Methanol	2.50E-03	1.75E-05		3.99E-03	2.00E+00	9.98E-04	AP-42, Table 3.2-2 (08/00)
Methylcyclohexane	1.23E-03	8.61E-06		1.96E-03	9.82E-01	4.91E-04	AP-42, Table 3.2-2 (08/00)
Methylene Chloride	2.00E-05	1.40E-07		3.19E-05	1.60E-02	7.98E-06	AP-42, Table 3.2-2 (08/00)
n-Hexane	1.11E-03	7.77E-06		1.77E-03	8.86E-01	4.43E-04	AP-42, Table 3.2-2 (08/00)
n-Nonane	1.10E-04	7.70E-07		1.76E-04	8.78E-02	4.39E-05	AP-42, Table 3.2-2 (08/00)
n-Octane	3.51E-04	2.46E-06		5.60E-04	2.80E-01	1.40E-04	AP-42, Table 3.2-2 (08/00)
n-Pentane	2.60E-03	1.82E-05		4.15E-03	2.07E+00	1.04E-03	AP-42, Table 3.2-2 (08/00)
Naphthalene	7.44E-05	5.21E-07		1.19E-04	5.94E-02	2.97E-05	AP-42, Table 3.2-2 (08/00)
PAH	2.69E-05	1.88E-07		4.29E-05	2.15E-02	1.07E-05	AP-42, Table 3.2-2 (08/00)
Phenanthrene	1.04E-05	7.28E-08		1.66E-05	8.30E-03	4.15E-06	AP-42, Table 3.2-2 (08/00)
Phenol	2.40E-05	1.68E-07		3.83E-05	1.92E-02	9.58E-06	AP-42, Table 3.2-2 (08/00)
Propane	4.19E-02	2.93E-04		6.69E-02	3.34E+01	1.67E-02	AP-42, Table 3.2-2 (08/00)
Pyrene	1.36E-06	9.52E-09		2.17E-06	1.09E-03	5.43E-07	AP-42, Table 3.2-2 (08/00)
Styrene	2.36E-05	1.65E-07		3.77E-05	1.88E-02	9.42E-06	AP-42, Table 3.2-2 (08/00)
Tetrachloroethane	2.48E-06	1.74E-08		3.96E-06	1.98E-03	9.90E-07	AP-42, Table 3.2-2 (08/00)
Toluene	4.08E-04	2.86E-06		6.51E-04	3.26E-01	1.63E-04	AP-42, Table 3.2-2 (08/00)
Vinyl Chloride	1.49E-05	1.04E-07	L	2.38E-05	1.19E-02	5.95E-06	AP-42, Table 3.2-2 (08/00)
Xylene	1.84E-04	1.29E-06		2.94E-04	1.47E-01	7.34E-05	AP-42, Table 3.2-2 (08/00)

Notes: ¹ AP-42 Section 3.2 (08/2000), Table 3.2-2, Emission Factors for Uncontrolled Natural Gas Engines (4-Stroke Lean Burn Engine).

² Assume a brake specific fuel consumption of 7,000 Btu/hp-hr per AP-42 Section 3.3 (10/1996), Table 3.3-1, Footnote a.

³ Per EPA Certificate of Conformity for NSPS JJJJ Emergency SI Engine > 130 hp

Manufacturer 3 million mation for	Model 150				
	Uncontrolled	Uncontrolled			
	Emission	Emission			
	Factor for	Factor for		Total	Total
	Natural Gas	Natural Gas	Total Emissions	Emissions	Emissions
GHG Pollutant	(lb/MMBtu)	(lb/hp-hr)	(lb/hr)	(lb/yr)	(TPY)
CO ₂	1.17E+02	8.17E-01	186.4	93193.7	46.6
Methane	2.20E-03	1.54E-05	3.52E-03	1.76E+00	8.79E-04
N20	2.20E-04	1.54E-06	3.52E-04	1.76E-01	8.79E-05

 $\begin{array}{ll} 1. \mbox{ GHG factors from Tables C-1 through C-2 of EPA's GHG Reporting Rule.} \\ 2. \mbox{ CO}_2 e = CO_2 \mbox{ Emissions + CH}_4 \mbox{ Emissions * GWP of CH}_4 + N_2 O \mbox{ Emissions * GWP of N}_2 O \\ \mbox{ GWP for CH}_4 & \mbox{ 25} & \mbox{ (Table A-1 of 40 CFR Part 98)} \end{array}$

GWP for N₂O 298 (Table A-1 of 40 CFR Part 98)

ALBANY, KY FEEDMILL INSIGNIFICANT NATURAL GAS FIRED HEATERS POTENTIAL EMISSIONS

Reviewed 11/16/22

22 Potential Ratings: Total Heater Rating = Maximum Natural Gas Usage =

4 MMBtu/hr 35.04 mmft³/yr 8760 hrs/year

Potential Hours of Operation =

Conversions: Heating Value for Natural Gas= Dekatherm =

1000 Btu/ft3 999,761 Btu

-					Potential Emissions (Uncontrolled=Controlled)		
Pollutant	CAS No.	Uncontrolled Emission Factor for Natural Gas (lb/mmft ³)	Ref	HAP (Y or N)	Total Emissions (lb/hr)	Total Emissions (lb/yr)	Total Emissions (TPY)
PM	N/A - PM	7.6	1		0.03	266.30	0.13
PM-10	N/A - PM-10	7.6	1		0.03	266.30	0.13
PM-2.5	N/A - PM-2.5	7.6	1		0.03	266.30	0.13
SO ₂	N/A - SO2	0.6000	1		0.00	21.02	0.01
NOx	N/A - NOx	50	1		0.20	1,752.00	0.88
VOCs	N/A - VOC	5.500	1		0.02	192.72	0.10
CO	N/A - CO	84	1		0.34	2,943.36	1.47
2-Methylnaphthalene	91-57-6	2.40E-05	1	Y	9.60E-08	8.41E-04	4.20E-07
3-Methylchloranthrene	56-49-5	1.80E-06	1	Y	7.20E-09	6.31E-05	3.15E-08
7,12-Dimethylbenz(a)anathracene	57-97-6	1.60E-05	1	Y	6.40E-08	5.61E-04	2.80E-07
Acenaphthene	83-32-9	1.80E-06	1	Y	7.20E-09	6.31E-05	3.15E-08
Acenaphtylene	203-96-8	1.80E-06	1	Y	7.20E-09	6.31E-05	3.15E-08
Anthracene	120-12-7	2.40E-06	1	Y	9.60E-09	8.41E-05	4.20E-08
Benz(a)anthracene	56-55-3	1.80E-06	1	Y	7.20E-09	6.31E-05	3.15E-08
Benzene	71-43-2	2.10E-03	1	Y	8.40E-06	7.36E-02	3.68E-05
Benzo(a)pyrene	50-32-8	1.20E-06	1	Y	4.80E-09	4.20E-05	2.10E-08
Benzo(b)fluoranthene	205-99-2	1.80E-06	1	Y	7.20E-09	6.31E-05	3.15E-08
Benzo(g,h,I)perylene	191-24-2	1.20E-06	1	Y	4.80E-09	4.20E-05	2.10E-08
Benzo(k)fluoranthene	205-82-3	1.80E-06	1	Y	7.20E-09	6.31E-05	3.15E-08
Butane	106-97-8	2.1	1		8.40E-03	7.36E+01	3.68E-02
Chrysene	218-01-9	1.80E-06	1	Y	7.20E-09	6.31E-05	3.15E-08
Dibenz(a,h)anthracene	53-70-3	1.20E-06	1	Y	4.80E-09	4.20E-05	2.10E-08
p-dichlorobenzene	106-46-7	1.20E-03	1	Y	4.80E-06	4.20E-02	2.10E-05
Ethane	74-84-0	3.1	1		1.24E-02	1.09E+02	5.43E-02
Fluoranthene	206-44-0	3.00E-06	1	Y	1.20E-08	1.05E-04	5.26E-08
Fluorene	86-73-7	2.80E-06	1	Y	1.12E-08	9.81E-05	4.91E-08
Formaldehyde	50-00-0	7.50E-02	1	Y	3.00E-04	2.63E+00	1.31E-03
Hexane	110-54-3	1.8	1	Y	7.20E-03	6.31E+01	3.15E-02
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	1	Y	7.20E-09	6.31E-05	3.15E-08
Naphthalene	91-20-3	6.10E-04	1	Y	2.44E-06	2.14E-02	1.07E-05
Pentane	109-66-0	2.6	1		1.04E-02	9.11E+01	4.56E-02
Phenanathrene	85-01-8	1.70E-05	1	Y	6.80E-08	5.96E-04	2.98E-07
Propane	74-98-6	1.6	1		6.40E-03	5.61E+01	2.80E-02
Pyrene	129-00-0	5.00E-06	1	Y	2.00E-08	1.75E-04	8.76E-08
Toluene	108-88-3	3.40E-03	1	Y	1.36E-05	1.19E-01	5.96E-05
Arsenic	7440-38-2	2.00E-04	1	Y	8.00E-07	7.01E-03	3.50E-06
Barium	7440-39-3	4.40E-03	1		1.76E-05	1.54E-01	7.71E-05
Beryllium	7440-41-7	1.20E-05	1	Y	4.80E-08	4.20E-04	2.10E-07
Cadmium	7440-43-9	1.10E-03	1	Y	4.40E-06	3.85E-02	1.93E-05
Chromium Compounds	7440-47-3	1.40E-03	1	Y	5.60E-06	4.91E-02	2.45E-05
Chromium VI	N/A - CRVI	1.40E-03	1	Y	5.60E-06	4.91E-02	2.45E-05
Cobalt	7440-48-4	8.40E-05	1	Y	3.36E-07	2.94E-03	1.47E-06
Copper	7440-50-8	8.50E-04	1		3.40E-06	2.98E-02	1.49E-05
Lead	7439-92-1	5.00E-04	1	Y	2.00E-06	1.75E-02	8.76E-06
Manganese	7439-96-5	3.80E-04	1	Y	1.52E-06	1.33E-02	6.66E-06
Mercury	7439-97-6	2.60E-04	1	Y	1.04E-06	9.11E-03	4.56E-06
Molybdenum	7439-98-7	1.10E-03	1		4.40E-06	3.85E-02	1.93E-05
Nickel	7440-02-0	2.10E-03	1	Y	8.40E-06	7.36E-02	3.68E-05
Selenium	7782-49-2	2.40E-05	1	Y	9.60E-08	8.41E-04	4.20E-07
Vanadium	7440-62-2	2.30E-03	1		9.20E-06	8.06E-02	4.03E-05
Zinc	7440-66-6	2.90E-02	1		1.16E-04	1.02E+00	5.08E-04
Total HAP					7.56E-03	6.62E+01	3.31E-02

GHG Pollutant	Uncontrolled Emission Factor for Natural Gas (kg/MMBtu)	Ref	Total Emissions (lb/hr)	Total Emissions (lb/yr)	Total Emissions (TPY)
CO ₂	5.30E+01	2	467.14	4,092,116.30	2,046.06
Methane	1.00E-03	2	0.01	77.18	0.04
N ₂ 0	1.00E-04	2	0.00	7.72	0.00
CO2e		3	467.62	4.096.345.80	2.048.17

1. AP -42; Compilation of Air Pollutant Emission Factors Vol. 1 - Stationary Sources USEPA, 5th ed. Section 1.4, 7/98 - Small Boiler with Low NOx/ Flue Gas Recirculation (assuming CRVI = CRIII) 2. GHG factors from Tables C-1 through C-2 of EPA's GHG Reporting Rule. 3. CO₂e = CO₂ Emissions + CH₄ Emissions * GWP of CH₄ + N₂O Emissions * GWP of N₂O GWP for CH₄ 25 (Table A-1 of 40 CFR Part 98) GWP for N₂O 298 (Table A-1 of 40 CFR Part 98)

Diesel Tank D-1 Reviewed 11/16/22

Volume of tank; 1,000 gallons

•	Horizontal or Vertical tank; Horizontal
•	Dimensions of tank; 46" dia. X 142" length

Maximum Throughput Per Year: 32,000 gal Potential Emissions: Ibs/yr 0.90 tpy 4.51E-04

Emissions Determined from Tanks Calcs

Tank Summary for PTE

Site: Cobb Albany, Cobb Feed Mill

Equations for this site: After 2019 AP-42 revisions H/D ratio: Default 0.5

Tank ID	Product	Throughput (gal)	Estimated standing losses (lbs)	Estimated working losses (lbs)	Total estimated emissions (lbs)
Diesel Tank	Diesel	31999.99992	0.20826163	0.69352517	0.9017868

Division 300 Sov Frankfo (502	for Air Quality ver Boulevard nt, KY 40601) 564-3999	DEP7007DD Insignificant Activities Section DD.1: Table of Insignificant Activities Section DD.2: Signature Block Section DD.3: Notes, Comments, and Explanations						
Source Name:	LI ME MOVINGEN AL MERINA DE MOVINE MOLTE MOLTE MOLTE MOVINE AL MERINA.	Cobb-Vantress Feed Mill						
KY EIS (AFS) #	: 21-	053-00007						
Permit #:		S-13-100-R3						
Agency Interest	(AI) ID:	119204		······································				
Date:		3/20/2024	·····					
Section DD.1:	Table of Insignific	cant Activities						
*Identify each acti	vity with a unique Insign	ificant Activity number (IA #); for e	example: 1, 2, 3, etc.					
Insignificant	Description of Activity	Serial Number or Other Unique	Applicable Regulation(s)	Calculated Emissions				
Activity #	Capacity	Identifier						
IA #1 (EU 021)	Alimet Tank	EU-021	NA	ŇA				
IA #2 (EU-022)	Choline Chloride Tank	EU-022	ŇA	NA				
IA #3 (EU-023)	Fat Tank	EU-023	NA	NA				
IA.#4	Natural Gas Direct Fired Heaters Constructed: 2018 (truck wash bay; 4 mmbtu/hr	-	401 KAR 59:010	Emissions considered negligible				
IA #5	Diesel Tank (1000 gal) Constructed: 2018	.	401 KAR 59:010	Emissions considered negligible				

Insignificant Activity #	Description of Activity including Rated Capacity	Serial Number or Other Unique Identifier	Applicable Regulation(s)	Calculated Emissions
IA #6 (EU-003)	Grain Silos (Enclosed)	EU-003;	401 KAR 59:010, 52:030(6)	Emissions considered negligible
IA-#7-(EU-007)	Ground Corn silos (Enclosed System)		401-KAR 59:010, 52:030(6)	Emissions considered negligible
IA #8 (EU-009)	Major Scale (Enclosed System)	EU-009	401 KAR 59:010, 52:030(6)	Emissions considered negligible
IA #9 (EU-010)	Minor Scale (Enclosed System)		401 KAR 59:010, 52:030(6)	Emissions considered negligible
IA #10 (EU-025)	Liquid Storage Tank	EU-025	401 KAR 59:010, 52:030(6), 401 KAR 63:020	Emissions considered negligible
ection DD.2: I, THE UNDER EXAMINED, NQUIRY OF TH ON KNOWLEDG	Signature Block SIGNED, HEREBY CERT AND AM FAMILIAR WI OSE INDIVIDUALS WITH E AND BELIEF, TRUE, 4 FALSE OR INCOL	TIFY UNDER PENALTY OF LAW, TH, THE INFORMATION SUBMIT H PRIMARY RESPONSIBILITY FO ACCURATE, AND COMPLETE. I MPLETE INFORMATION, INCLUE	THAT I AM A RESPONSIBL TED IN THIS DOCUMENT A OR OBTAINING THE INFORM AM AWARE THAT THERE A DING THE POSSIBILITY OF F	E OFFICIAL, AND THAT I HAVE PERSONALLY ND ALL ITS ATTACHMENTS. BASED ON MY MATION, I CERTIFY THAT THE INFORMATION IS IRE SIGNIFICANT PENALTIES FOR SUBMITTING FINE OR IMPRISONMENT.
	By:	Kandy Harrington		4/1/2024 Date Sr. Feed Mill Manager
		Type/Print Name of Signatory	-	