

FELKER BROTHERS CORPORATION

125 Beaver Trail Road, Glasgow KY 42141 TELEPHONE (270) 678-4143 FAX (270) 678-2338

January 10, 2024

Amy K. Tempus-Doom, P.E.
Division For Air Quality
Permit Review Branch
Commonwealth of Kentucky
Department for Environmental Protection
300 Sower Boulevard
Frankfort, KY 40601

RE: Air Permit Renewal Application Felker Brothers Corporation Agency Interest (AI) Number: 71 Facility ID: 21-009-00064/Permit F-19-016

Dear Ms. Temple-Doom:

Felker Brothers Corporation air permit F-19-016 expires on August 18, 2024. We are submitting the attached application to renew the existing air permit. Ms. McCloskey of the Division of Air Quality indicated that as long as there are no changes to the facility, such as adding or changing a process, only Form DEP700A1 is required. There have been no changes to the facility other than two approved minor off-permit changes listed in Section A.1.7. These minor changes do not alter the potential air emissions. The Potential to Emit (PTE) has been recalculated to include:

- New hydrofluoric acid emission factors based on the permit required stack test of the scrubbers in 2020.
 The revised emission factors were approved by the DEP and have been used in the Air Emission Inventory.
- 2) Revised approach to estimating emissions for the Saw Cutting EP03 is presented for review and approval. This revised approach does not impact the air permitting status of the facility, but it was completed to represent emissions more accurately from 98 Mill which uses a plasma cutting saw instead of standard saw.

Attached please find the following:

- 1) Form DEP7007AI
- 2) Form DEP7007N with attached calculations to update the Potential to Emit (PTE) analysis.

These calculations show that the facility can remain a Conditional Minor source and no changes to the air permit limits appear to be necessary. Please feel free to contact the undersigned or Mary Recktenwalt of Mead & Hunt at 414-755-1122 or mary.recktenwalt@meadhunt.com. if you have any questions.

Felker Brothers Corporation

Robert Steger

Plant Manager - Glasgow, Ky. Operations

Division for Air Quality

300 Sower Boulevard

Frankfort, KY 40601 (502) 564-3999

DEP7007AI

Administrative Information

- Section AI.1: Source Information
- ___ Section AI.2: Applicant Information
- ____ Section AI.3: Owner Information
- ____ Section AI.4: Type of Application
- Section AI.5: Other Required Information
- __ Section AI.6: Signature Block
- ___ Section AI.7: Notes, Comments, and Explanations

Source Name:

Felker Brothers Corporation

KY EIS (AFS) #:

21- 009-00064

Permit #:

F-19-016

Agency Interest (AI) ID:

71

Date:

1.10.24

Section AI.1: Source Information

Physical Location

Street:

125 Beaver Trail Road

Address: City:

Glasgow

Street or

125 Beaver Trail Road

Mailing Address:

P.O. Box: City:

--

Glasgow

State:

KY

County: Barren

Zip Code:

42141

Additional Documentation

Additional Documentation attached

Zip Code: 42141

Standard Coordinates for Source Physical Location

Longitude:

-85.92469

(decimal degrees)

Latitude:

37.03061

(decimal degrees)

Primary (NAICS) Category:

Iron and Steel Pipe & Tube

Manufacturing from Purchased Steel

Primary NAICS #:

331210

Classification (SIC)	Categ	ory:	Steel I	Pipe & Tu	bes			Primary SIC #:	<u>3</u>	317		
Briefly discuss the ty conducted at this site		business	tube fo	rming by re	olling from	flat stock, we	elding and	e facility consistes of five (5) tuba cutoff saw. The tube mills progneth with a cutoff saw and then	cess flat	stainless steel	stock into pipe by forming	
Description of Area Surrounding Source:	<a> 	Rural Area Urban Area		Industrial Industrial		Residentia Commerc		Is any part of the source located on federal land?		Yes No	Number of Employees:	69
Approximate distance to nearest residence commercial property	r	500	ft			Property Area:	63.71 ac	eres (entire)	Is thi	s source porta	able? ☐ Yes ☑ No	
		What oth	er envi	ronmenta	l permits	or registrat	tions does	this source currently hold	or need	d to obtain ir	1 Kentucky?	
NPDES/KPDES:	Ø	Currently Ho	old		Need		N/A					
Solid Waste:		Currently Ho	old		Need	V	N/A					
RCRA:	V	Currently Ho	old		Need		N/A					
UST:		Currently Ho	old		Need	V	N/A					
Type of Regulated		Mixed Wast	e Genera	ntor	V	Generator		Recycler	Ot	her:		
Waste Activity:		U.S. Importe	er of Haz	zardous Wa	aste 🗆	Transport	er 🗆	Treatment/Storage/Disposal	l Facilit	у 🗆	N/A	

Section AI.2: Ap	plicant Information					
Applicant Name:	Robert Steger					
Title: (if individual)	Plant Manager					
Mailing Address:	Street or P.O. Box: City: Glasgow	125 Beaver Trail Road	State:	KY	Zip Code:	42141
Email: (if individual)	RSteger@felkerbrothers.	com		K1		42141
Phone:	270-678-4143					
Technical Contact						
Name:	Robert Steger				···	
Title:	Plant Manager					
Mailing Address:	Street or P.O. Box: City: Glasgow	125 Beaver Trail Road	State:	KY	Zip Code:	42141
Email:	RSteger@felkerbrothers.c	com				*
Phone:	270-678-4143					
Air Permit Contact for	Source					
Name:	Candice Baker, MPH, CS	SM		-		
Title:	Safety/Environmental Ma	anager				
Mailing Address:	Street or P.O. Box:	125 Beaver Trail Road				
	City:	Glasgow	State:	KY	Zip Code:	42141
Email:	cbaker@felkerbrothers.co	om				
Phone:	270-678-4143					
	· · · · · · · · · · · · · · · · · · ·	Par	ge 3 of 7			

Section AI.3: Ov	vner Information			
✓ Owner same	as applicant			
Name:				
Title:				
Moiling Address	Street or P.O. Box:			
Mailing Address:	City:	State:	Zip Code:	
Email:				
Phone:				
List names of owners a	nd officers of the company who have an i	nterest in the company of 5% or more.		
	Name		Position	
	Thomas Umhoefer		CE0 - Owner	
	Lois Umhoefer	Boar	rd Secretary - Owner 2011 Trust	
				

Section AI.4: Ty	pe of	Application								
Current Status:			nal Major	State-Origin		General Permi	t \square	Registration		None
		Name Change	Initial Regist	tration	Significant F	Revision		Administrativ	ve Permit An	nendment
	V	Renewal Permit	Revised Reg	istration	Minor Revis	ion		Initial Source	e-wide Opera	ntingPermit
Requested Action: (check all that apply)		502(b)(10)Chang	Extension Re	equest \square	Addition of	New Facility		Portable Plar	nt Relocation	Notice
(check an mai apply)		Revision	Off Permit C	Change \square	Landfill Alte	ernate Compliance S	Submittal 🗆	Modification	of Existing	Facilities
		Ownership Chan	Closure							
Requested Status:			nal Major 🗆	State-Origin	□ PSI	D 🗆 NSR		Other:		
Is the source request	ting a l	imitation of potential	emissions?		Yes 🗹	No				
Pollutant:			Requested Lim	nit:		Pollutant:		Re	quested Lin	nit:
☐ Particulate Mat	tter					Single HAP				
☐ Volatile Organ	ic Comp	oounds (VOC)			. 0	Combined HA	Ps	_		
☐ Carbon Monox	ride					Air Toxics (40	CFR 68, Subpa	art F)		
☐ Nitrogen Oxide	es				. 0	Carbon Dioxic	le			
☐ Sulfur Dioxide	:		_			Greenhouse G	ases (GHG)			
☐ Lead						Other	_	Ma	intain current	permit limits
For New Constr	uction:									
Proposed St	tart Dat (MM/Y	e of Construction: YYYY)			Propose	d Operation Start-	Up Date: (MM	·/ <i>YYYY</i>)		
For Modification	ns:									
Proposed St	tart Dat	e of Modification: (YYY)			Proposeo	d Operation Start-	Up Date: (MM			
			.,, \Box	Ves 🗸			on-applicable			
Applicant is seek	ing cov	erage under a permit sh	ieid. U	1 63	No e 5 of 7	sough	t on a separate	e attachment to	o the applic	ation.

Indicate the docur	nents atta	ched as part of this application:
DEP7007A Indirect Heat Exchangers and Turbines		DEP7007CC Compliance Certification
DEP7007B Manufacturing or Processing Operations		DEP7007DD Insignificant Activities
DEP7007C Incinerators and Waste Burners		DEP7007EE Internal Combustion Engines
DEP7007F Episode Standby Plan		DEP7007FF Secondary Aluminum Processing
DEP7007J Volatile Liquid Storage		DEP7007GG Control Equipment
DEP7007K Surface Coating or Printing Operations		DEP7007HH Haul Roads
DEP7007L Mineral Processes		Confidentiality Claim
DEP7007M Metal Cleaning Degreasers		Ownership Change Form
DEP7007N Source Emissions Profile		Secretary of State Certificate
DEP7007P Perchloroethylene Dry Cleaning Systems		Flowcharts or diagrams depicting process
DEP7007R Emission Offset Credit		Digital Line Graphs (DLG) files of buldings, roads, etc.
DEP7007S Service Stations		Site Map
DEP7007T Metal Plating and Surface Treatment Operations		Map or drawing depicting location of facility
DEP7007V Applicable Requirements and Compliance Activities		Safety Data Sheet (SDS)
DEP7007Y Good Engineering Practice and Stack Height Determination		Emergency Response Plan
DEP7007AA Compliance Schedule for Non-complying Emission Units	\checkmark	Other:Emission Calculations
DEP7007BB Certified Progress Report		
Section AI.6: Signature Block		
I, the undersigned, hereby certify under penalty of law, that I the information submitted in this document and all its attachm obtaining the information, I certify that the information is on penalties for submitting false or incomplete information, inclu	nents. Bas knowledge	1-11-2024
I, the undersigned, hereby certify under penalty of law, that I the information submitted in this document and all its attachn obtaining the information, I certify that the information is on	nents. Bas knowledge	sed on my inquiry of those individuals with primary responsibility for e and belief, true, accurate, and complete. I am aware that there are significant ossibility of fine or imprisonment.

11/2018

Section Al.7: Notes, Comments, and Explanations
No changes to processes since last permit issuance except for the following:
1. Off Permit submittal for replacing the acid pickling tank (EP 01 T-2,T-3) with similar tank was submitted on 12/10/2021 and approved on 2/2/2022.
2. Off Permit submittal for replacing the Scanacon SA 70 Acid Manager System with a Luova AC200 Acid Controller System was submitted on 9/29/2022 and approved on 11/1/2022.
3. Approval for updating the Hydrofluoric acid emission factor for the acid pickling tank, and rinse tank (EP 01 T-2,T-3) based on the 2020 stack test for the Air Emission Inventory was submitted via email on 4/6/2022. The emission was changed and was used for RY 2022 Air Emission Inventory calculations and the current emission calculations submitted with this form.
Updated PTE calculations with updated HF emission factor are included with this renewal application. In addition, a revised approach for calculating emissions for the Saw Cutting EP03 is presented for review and approval. This revised approach does not impact the air permitting status of the facility, but was completed to represent emissions more accurately from 98 Mill which uses a plasma cutting instead of a standard saw.
The emissions for the standard saw cutting mills and the plasma saw cutting are presented separately and then combined in the facility total.
Please also note that the acid pickling line has always included a 7,200-gallon clean rinse tank (in addition to the 6,000-gallon rinse tank) but it has never been listed in the air permit. Very few, if any, emissions are expected from this tank, but it is vented to the scrubber and therefore any emissions have been included in the periodic emission tests. The facility requests that it be included in the process description.
Updated PTE calculations with updated HF emission factor and revised 98 Mill calculations are included with this renewal application.
These calculations confirm that the facility can remain a Conditional Major maintaining the existing permit limits.

Division for Air Quality

300 Sower Boulevard Frankfort, KY 40601 (502) 564-3999

DEP7007N

Source Emissions Profile

__ Section N.1: Emission Summary

__ Section N.2: Stack Information

__ Section N.3: Fugitive Information

Section N.4: Notes, Comments, and Explanations

Additional	Dogumentation
Additional	Documentation

Complete DEP7007AI

Source	Name:
--------	-------

Felker Brothers Corporation

KY EIS (AFS) #:

21- 009-00064

Permit #:

F-19-016

Agency Interest (AI) ID:

71

Date:

1.10.24

N.1: Emission Summary

Emission	Emission	Process	Process	Control Device	Control Device	Stack	Maximum Design	Pollutant	Uncontrolled Emission	Emission Factor Source	Capture	Control	Hourly E	missions	Annual E	missions
Unit #	Unit Name	ID	Name	Name	ID	ID	Capacity (SCC Units/hour)	ronutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency	(%)	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontrolled Potential (tons/yr)	Controlled Potential (tons/yr)
							See attached Emission calculations for each permitted Emission source along with facility summary									
												-				

DEP7007N

Emission	Emission	Process	Process	Control	Control	Stack	Maximum Design		Uncontrolled Emission		Capture	Control	ency	ourly Emissions Annual Emis		nissions
Unit#	Unit Name	ID	Name	Name	Device ID	ID	Capacity (SCC Units/how)	Pollutant	Factor (lb/SCC Units)	Factor Source (e.g. AP-42, Stack Test, Mass Balance)	(%)	Efficiency (%)	Uncontrolled Potential (lh/hr)	Controlled Potential (lb/hr)	Uncontrolled Potential (tons/yr)	Controlled Potential (tons/yr)

Section N.2: Stack Information

UTM Zone:

Carab III	Identify all Emission Units (with Process ID) and	Sta	ck Physical D	ata	Stack UTM	Coordinates	Stack Gas Stream Data				
Stack ID	Control Devices that Feed to Stack	Equivalent Diameter	Height	Base Elevation (ft)	Northing (m)	Easting (m)	Flowrate (acfm)	Temperature (°F)	Exit Velocity (ft/sec)		
	See attached				1						

Section N.3: Fugitive Information

UTM Zone:

			Area Physic	cal Data	Area UTM (Coordinates	Area Release Data		
Emission Unit #	Emission Unit Name	Process ID	Length of the X Side	Length of the Y Side (ft)	Northing (m)	Easting (m)	Release Temperature	Release Height	
	NA :		V						

Section N.4: Notes, Comments, and Explanations
A set of emission calculations are attached to this application. The emission factor for the pickling tank and rinse tank were revised to
reflect the results of the 2020 stack test. This change was previously communicated with the DEP and incorporated into the air emission
survey for the past several years of reporting.
In addition, a revised approach for calculating emissions for the Saw Cutting EP03 is presented for review and approval. This revised
approach does not impact the air permitting status of the facility, but was completed to represent emissions more accurately from 98
Mill which uses a plasma saw instead of a standard saw.
All the stack information remains the same as presented in the air emission survey with the exception that the release height of the cut
off saws should be 33 ft instead of 23 feet to match the release height of the welding (all emissions for these processes are filtered
through dust control and then released inside the building through the roof)

Felker Brothers Corporation 125 Beaver Trail Road, Glasgow KY 42141 Facility-Wide Permit Limits:

Chromium VI: 0.582 lb/hr monthly avg

Facility ID: 2100900064 AI ID: 71

PM/PM₁₀: 90 tons/yr 12-month rolling basis 23,808.31 tons of pipe and tube produced/yr on 12-month rolling basis (for pickling process) HF: 0.7 tons/yr based on 12-month rolling basis

State Plant Classification

Principal Product -Stainless Steel Pipe & Tube

0, Conditional Major

SIC Code: <u>3317</u> SIC Description

Steel Pipe & Tube

NAIC Code

33121

NAICS Description

Iron & Steel Pipe and Tube Manufacturing from Purchased Steel

Facility Wide Emissions Summary

	racility volue Emissi	ons summary				
Pollutant ID/CAS	Description	Actual Emissions	Uncontrolled "Actual Emissions"	Title V PTE Emissions (with control but no Limits on Pipe & Tube Processed)	PTE Emissions (Using Control & Permit Limit on Pipe & Tube Processed of 23,808.31 Tons/yr))	Facility-Wide Emissior Permit Limits
		(Tons/Year)	(Tons/Year)	(Tons/Year)	(Tons/Year)	lb/hr
7429-90-5	Aluminum	0.000214	0.007127	0.000919924	0.000577	
71-43-2	Benzene	0.0000164	0.0000164	0.000087	0.000087	
124-38-9	Carbon Dioxide	940	940	4,973	4,973	
7440-47-3	Chromium	0.0131	0.1976	0.0563720	0.0354	
18540-29-9	Chromium VI and Compounds	0.0000124	0.0001365	0.0000535	0.00003357	0.582 Monthly average
630-08-0	CO (Carbon Monoxide)	0.658	0.658	3.481	3.481	
50-00-0	Formaldehyde	0.000587	0.000587	0.003108	0.003108	
110-54-3	Hexane; N-Hexane	0.0141	0.0141	0.0746	0.0746	
7664-39-3	Hydrofluoric Acid	0.130	2.543	1.864	0.350	
7439-92-1	Lead, Total (as Pb)	0.00000392	0.00000392	0.00002072	0.00002072	
7439-96-5	Manganese	0.0003066	0.0102207	0.0013213	0.0008288	
74-82-8	Methane	0.0180	0.0180	0.0953	0.0953	-
7440-02-0	Nickel; Nickel (Total and Dissolved)	0.00249	0.08290	0.01072	0.00672	
7697-37-2	Nitric Acid	6.54	11.76	93.97	17.64	
10024-97-2	Nitrous Oxide	0.0172	0.0172	0.0912	0.0912	
10102-44-0	NO2 (Nitrogen Dioxide)	0.740	0.740	3.878	3.817	
PM10-FIL	PM10 (Particulate Matter - 10 Microns Or Less)	1.84	20.24	25.35	5.22	
PM25-FIL	PM2.5 (Particulate Matter - 2.5 Microns Or Less)	0.302	3.436	4.070	1.091	
PM-FIL	PT (Particulate Matter)	1.84	20.24	25.35	5.22	
7446-09-5	SO2 (Sulfur Dioxide)	0.00470	0.00470	0.02486	0.02486	
108-88-3	Toluene	0.0000266	0.0000266	0.0001409	0.0001409	
VOC	VOC (Volatile Organic Compounds)	0.0431	0.0431	0.2279	0.2279	
1314-13-2	Zinc (Fume Or Dust)	0.000227	0.000227	0.000429	0.001202	

Pipe and Tube Produced Permit Limit Listed in Pickling Process Section B- EP-01 1.b (page 2 of permit) 23,808.31

12-month rolling average

125 Beaver Trail Road, Glasgow KY 42141

Diameter Stack Height (ft) (ft)

Velocity (Acfm) (ft/sec) 34608

Exit T, (F)

Stack information from Air Survey- Unchanged

Stack

Facility ID: 2100900064

Maximum Hourly Operating Rate

(Tons/Hr)

ALID: 71

EQPT 001 Equipment ID:

Current Operating Schedule

Hours/Day Days/Week Weeks/Year 52 16

Equipment Description: Acid Pickling Tank (EP01) (T-2, T-3)

One 12,193 gallon HF/HNO3 pickling tank and one 6,000-gallon rinse tank and one 7,200 gallon clean rinse tank

Capacity: Unit 1: 14.5 tons/hr of stainless steel tube/pipe Controls: One ESCO Plate Scrubber, One C&E Custom Scrubber

Tank replaced in 2022 with similar tank. Replacement authorized as 401 KAR 52:030, Section 17 Off-Permit and 502(b)(10) Changes

Maximum **Operating Rate**

Maximum (Tons/Year) (Max Permit Limit Permit Limit 2022 Annual Throughput Operating Hrs rate (ton/hr) x for HF Acid (Tons/Yr) (Tons/Year) (Hrs/Yr) 8760 hr/yr} steel/Yr)

14.4774 8822.0 8760 126.822 23.808.31 Facility-Wide Permit Limits:

Based on Max Hourly Rate x

8760 hrs/yr

Chromium VI: 0.582 lb/hr monthly avg PM/PM₁₀: 90 tons/yr 12-month rolling basis

23,808.31 tons of pipe and tube produced/yr

on 12-month rolling basis (for pickling process) HF: 0.7 tons/yr based on 12-month rolling basis

										Hou	rly Emissions	Annual Emiss		Hourly	Emissions	Annual	Emissions
Pollutant ID	Description	Emission Factor (lbs/Ton Pickled)	IEmission Earton	Control Equipment Description	Actual Ctrl. Eff.	PTE Ctrl. Eff.	Actual Emissions (TPY) ^{2,3}	Unctrl. Actual Emissions (TPY)	Max Operating Rate PTE Emissions (TPY) ⁴	Potential	Controlled Potential	Uncontrolled Potential (TPY)	Potential	Uncontrolled Potential (lb/hr)	Potential (lb/hr) s	(TPY)	Potential (TPY)
7664-39-3	Hydrofluoric Acid	0.551200	2020 stack test	Wet Scrubber	94.90	94.90	0.12399850	2.43134320	1.78255964	7.9799	0.40697709	34.95214981	1.78255964	7.9799	0.40697709	6.56157024	0.33464008
7697-37-2	Nitric Acid	2.538400	KEIS	Wet Scrubber	44.40	44.40	6.22546661	11.19688240	89.49515715	36.7494	20.43268428	160.96251286	89.49515 715	36.7494	20.43268428	30.217507 05	16.80093392
PM10-FIL	PM10 (Particulate Matter - 10 Microns Or Less)	3.691500	KEIS	Wet Scrubber	90.0	90.0	1.62832065	16.28320650	23.40817508	53.4433	5.34433221	234.08175080	23.40817508	53.4433	5.34433221	43.94418818	4.39441882
PM25-FIL	PM2.5 (Particulate Matter - 2.5 Microns Or Less)	0.553725	KEIS	Wet Scrubber	90.0	90.0	0.24424810	2.44248098	3.51122626	8.0165	0.80164983	35.11226262	3.51122626	8.0165	0.80164983	6.59162823	0.65916282
PM-FIL	PT (Particulate Matter)	3.691500	KEIS	Wet Scrubber	90.0	90.0	1.62832065	16.28320650	23.40817508	53.4433	5.34433221	234.08175080	23.40817508	53.4433	5.34433221	43.94418818	4.39441882

No Control

1. Emission factors (before Control) are Department previously approved factors from Air Emission Survey. Control Eff Unchanged.

In actuality, the monthly emissions for HF will vary depending upon the % HF measured in the pickling tank.

The HF measurements during the 2020 test were 3.36% and 3.4% - for an average of 3.38 HF % during the performance test

Per Permit- HF Emissions (lbs/Month) = tons produced/month * EF lb HF/ton produced * avg monthly % HF/3.38%

- 2. Actual emissions represent emission estimates for 2022 as reported in the annual air survey
- 3. Actual Emissions TPY = EF (lbs/ton) x Actual Annual Tons/yr x ((1-Ctrl. Eff.)/100))/2000 lbs/ton
- 4. PTE Emissions & Controlled Potential (TPY) = max hourly rate (ton/hr)x 8760 hour/yr x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton
- 5. Controlled Potential (lb/hr) = max tons/hr x EF (lb/ton) x ((1-Ctrl. Eff.)/100))
- 6. Controlled Potential (TPY) with Permit Limit = Permit Limit (tons/yr) x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton

JJS

12.5.23

No Control

No Control

No Control

Emissions with Permit Limit of 23,808.31 Tons Steel/Yr

Pickling also has a HF limit of 0.7 tons/year The steel throughput limit, however, results in lower PTE

No Control

1/10/20243:25 PM Felker Glasgow PTE Calcs 1.9.24.rev.jjs.1.10.24

125 Beaver Trail Road, Glasgow KY 42141

Facility ID: 2100900064 AI ID: 71

Equipment ID: EQPT 001 - 2

Current Operating Schedule

Hours/Day Days/Week Weeks/Year 52

Stack Stack Stack Diameter Flow Velocity Stack Height (ft) (ft) (Acfm) (ft/sec) Exit T, (F) 33 3.9 34608 48.28 tack information from Air Survey- Unchanged

Equipment Description: Acid Pickling - Immersion Rinse Tank (EP01) (T-2, T-3)

One 12,193 gallon HF/HNO3 pickling tank and one 6,000-gallon rinse tank and one 7,200 gallon clean rinse tank

Capacity: Unit 1:14.5 tons/hr of stainless steel tube/pipe Controls: One ESCO Plate Scrubber, One C&E Custom Scrubber Chromium VI: 0.582 lb/hr monthly avg

The steel throughput limit, however, results in lower PTE

Facility-Wide Permit Limits:

PM/PM₁₀: 90 tons/yr 12-month rolling basis

23,808.31 tons of pipe and tube produced/yr

on 12-month rolling basis (for pickling process)

HF: 0.7 tons/yr based on 12-month rolling basis

Emissions with Permit

Maximum Hourly		Maximum	Maximum	Permit	Permit Limit
Operating Rate		Operating Hrs	Operating Rate	Limit (Tons	for HF Acid
(Tons/Hr)	Annual Throughput (Tons/Year)	(Hrs/Yr)	(Tons/Year)	Steel/Yr)	(Tons/Yr)
14.4774	8822.0	8760	126,822	23,808.31	0.7

												Based on Max x 8760				Limit of 23,8 Stee	808.31 Tons el/Yr
										Hor	urty Emissions	Annual Emiss		Hourly E	nissions	Annual F	Emissions
Pollutant ID	Description	Emission Factor (lbs/Ton Pickled)		Control Equipment Description	Actual Ctrl. Eff.	PTE Ctrl. Eff.	Actual Emissions (TPY) 2,3	Unctrl. Actual Emissions (TPY)	PTE Emissions (TPY) ⁴	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr) ⁵	Uncontrolled Potential (TPY)	Controlled Potential (TPY) 4	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr) ⁵	Uncontrolled Potential (TPY)	Controlled Potential (TPY) ⁶
7664-39-3	Hydrofluoric Acid	0.025300	2020 stack test	Wet Scrubber	94.90	94.90	0.00569151	0.11159830	0.08181923	0.3663	0.01868019	1.60429860	0.08181923	0.3663	0.01868019	0.30117512	0.01535993
7697-37-2	Nitric Acid	0.1269200	KEIS	Wet Scrubber	44.40	44.40	0.31127333	0.55984412	4.47475786	1.8375	1.02163421	8.04812564	4.47475786	1.8375	1.02163421	1.51087535	0.84004670
PM10-FII	PM10 (Particulate Matter - 10 Microns Or Less)	0.1845750	KEIS	Wet Scrubber	90.0	90.0	0.08141603	0.81416033	1.17040875	2.6722	0.26721661	11.70408754	1.17040875	2.6722	0.26721661	2.19720941	0.21972094
PM25-FIL	PM2.5 (Particulate Matter - 2.5 Microns Or Less)	0.0276860	KEIS	Wet Scrubber	90.0	90.0	0.01221229	0.12212295	0.17555973	0.4008	0.04008213	1.75559728	0.17555973	0.4008	0.04008213	0.32957844	0.03295784
PM-FII	PT (Particulate Matter)	0.1845750	KEIS	Wet Scrubber	90.0	90.0	0.08141603	0.81416033	1.17040875	2.6722	0.26721661	11.70408754	1.17040875	2.6722	0.26721661	2.19720941	0.21972094
								No Control		No Control		No Control	<u> </u>	No Control		No Control	

No Control No Control 1. Emission factors (before Control) are Department previously approved factors from Air Emission Survey. Control Eff Unchanged. Pickling also has a HF limit of 0.7 tons/year

In actuality, the monthly emissions for HF will vary depending upon the % HF measured in the pickling tank.

The HF measurements during the 2020 test were 3.36% and 3.4% - for an average of 3.38 HF % during the performance test

Per Permit- HF Emissions (lbs/Month) = tons produced/month * EF lb HF/ton produced * avg monthly % HF/3.38%

- 2. Actual emissions represent emission estimates for 2022 as reported in the annual air survey
- 3. Actual Emissions TPY = EF (lbs/ton) x Actual Annual Tons/yr x ((1-Ctrl. Eff.)/100))/2000 lbs/ton
- 4. PTE Emissions & Controlled Potential (TPY) = max hourly rate (ton/hr)x 8760 hour/yr x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton
- 5. Controlled Potential (lb/hr) = max tons/hr x EF (lb/ton) x ((1-Ctrl. Eff.)/100))
- 6. Controlled Potential (TPY) with Permit Limit Permit Limit (tons/yr) x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton

Checked

12.5.23

1/10/20243:25 PM Felker Glasgow PTE Calcs 1.9.24.rev.jjs.1.10.24

125 Beaver Trail Road, Glasgow KY 42141

125 Beaver (rail Road, Glasgow KY 42141

Facility ID: 2100900064

A I ID: 71

Stack Height (ft)	Stack Diameter (ft)	Stack Flow (Acfm)	Stack Velocity (ft/sec)	Exit T, (F)
30	1.6	989	8.2	350
Stack information from Air S	lurvey- Unchanged			

Equipment ID: EQPT 002

Current Operating Schedule

 Hours/Day
 Days/Week
 Weeks/Year

 16
 5
 52

Equipment Description: NG Fired Indirect Heat Exchange Units (EP 02)

Titan Air Rotation Units I & 2

Capacity: Unit 1: 4.356 MMBtu/hr; Unit 2: 3.334 MMBtu/hr

Controls: Fabric Filter / Baghouse

Facility-Wide Permit Limits:
Chromium VI: 0.582 lb/hr monthly avg
PM/PM₁₀: 90 tons/yr 12-month rolling basis
23,803.31 tons of pipe and tube produced/yr
on 12-month rolling basis (for pickling process)
HF: 0.7 tons/yr based on 12-month rolling basis

 Maximum Hourly Operating Rate (MMscf/Hr)
 Maximum Operating Rate (MMscf/Hr)
 Maximum Operating Rate (Mmscf/Hr)
 Maximum Operating Rate (Hrs/Hr)
 Maximum Operating Rate (Mmscf/Hr)
 Maximum Operating Rate (Mmscf/Hr)
 Maximum Operating Rate (Mmscf/Hr)
 Rate (Mmscf/Hr)
 0,0075 mmScF/Hr x
 8760 hr/yr}
 8760 hr/yr}
 65.

										11000	ry cirriamons	Ainter C	
Pollutant ID	Description	Emission Factor (lbs/MMscf) ¹	Emission Factor Source	Control Equipment Description ³	Actual Ctrl. Eff.	PTE Ctrl. Eff.		Unctrl. Actual Emissions (TPY)	PTE Emissions (TPY) 3	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr) 3	Uncontrolled Potential (TPY)	Controlled Potential (TPY) ³
71-43-2	Benzene	0.0021	AP42		0.0%	0.0%	0.0000131	0.0000131	0.0000690	0.00001575	0.00001575	0.00007	0.00007
124-38-9	Carbon Dioxide	120000.00	KEIS		0.0%	0.0%	745.8000000	745.8000000	3942.0000000	900	900	3942.000	3942.000
630-08-0	CO (Carbon Monoxide)	84.00	KEIS		0.0%	0.0%	0.5220600	0.5220600	2.7594000	0.63	0.63	2.75940	2.75940
50-00-0	Formaldchyde	0.08	KEIS	· · · · · · · · · · · · · · · · · · ·	0.0%	0.0%	0.0004661	0.0004661	0.0024638	0.0005625	0.0005625	0.00246	0.00246
110-54-3	Hexane; N-Hexane	1.80	KEIS		0.0%	0.0%	0.0111870	0.0111870	0.0591300	0.0135	0.0135	0.05913	0.05913
7439-92-I	Lead, Total (as Pb)	0.0005	KEIS		0.0%	0.0%	0.0000031	0.0000031	0.0000164	0 00000375	0.00000375	0.00002	0.00002
74-82-8	Methane	2.30	KEIS	-	0.0%	0.0%	0.0142945	0.0142945	0.0755550	0.01725	0.01725	0.07556	0.07556
10024-97-2	Nitrous Oxide	2.20	KEIS		0.0%	0.0%	0.0136730	0.0136730	0.0722700	0.0165	0.0165	0.07227	0.07227
10102-44-0	NO2 (Nitrogen Dioxide)	100.00	KEIS		0.0%	0.0%	0.6215000	0.6215000	3.2850000	0.75	0.75	3.28500	3.28500
PM10-FIL	PM10 (Particulate Matter - 10 Microns Or Less)	7.60	KEIS	Fabric Filter / Baghouse	70.0%	70.0%	0.0141702	0.0472340	0.2496600	0.057	0.0570000	0.24966	0.24966
PM25-FII.	PM2.5 (Particulate Matter - 2.5 Microns Or Less)	7.60	KEIS	Fabric Filter / Baghouse	70.0%	70.0%	0.0141702	0.0472340	0.2496600	0.057	0.0570000	0.24966	0.24966
PM-FII.	PT (Particulate Matter)	7.60	KEIS	Fabric Filter / Baghouse	70.0%	70.0%	0.0141702	0.0472340	0.2496600	0.057	0.0570000	0.24966	0.24966
7446-09-5	SO2 (Sulfur Dioxide)	0.60	KEIS		0.0%	0.0%	0.0037290	0.0037290	0.0197100	0.0045	0.0045	0.01971	0.01971
108-88-3	Toluene	0.00	AP42		0.0%	0.0%	0.0000211	0.0000211	0.0001117	0.0000255	0.0000255	0.00011	0.00011
VOC	VOC (Volatile Organic Compounds)	5.50	KEIS		0.0%	0.0%	0.0341825	0.0341825	0.1806750	0.04125	0.04125	0.18068	0.18068
1314-13-2	Zinc (Fume Or Dust)	0.029	AP42	**	0.0%	0.0%	0.0001802	0.0001802	0.0009527	0.0002175	0.0002175	0.00095	0.00095

1. Emission factors are Department previously approved factors from Air Emission Survey . These are from AP-42 Section 1.4 Natural Gas Combustion

Added benzene, toluene, and zinc to match EFs that are in the air survey for the HW heaters (natural gas combustion)

The annual air survey assumes that PM in the exhaust is removed by being filters by baghouse- filters. The internal air is filtered by Robovent units but to be conservative, removed the control from PTE calculations for this summary Stack information from Air Survey- Unchanged

Prepared JJS

Checked Ma

12.5.23

1/10/20243:25 PM

^{2.} Actual emissions represent emission estimates for 2022 as reported in the annual air survey =annual thruput in MMScf x EF 2000lb/ton

 $^{3.\} PTF\ Emissions\ \&\ Controlled\ Potential\ (TPY) = max\ hourly\ rate\ (MMscf)hr)x\ 8760\ hour/yt\ x\ EF\ (lbs/MMscf)\ /2000\ lbs/ton$

125 Beaver Trail Road, Glasgow KY 42141

Stack Height Diameter Stack Flow Velocity Release (ft) (Acfm) (ft/sec) Exit T, (F)

tack information from An Survey-Indicated 23 It release height. Should match welding (33 it) since all processes exhaust inside and then out via root vents

Equipment ID: EQPT 003

Facility ID: 2100900064

ALID: 71

Equipment Description: Sawing (Five Cut-off Saws) (EP 03)- MINUS 98 MILL (Represents 4 saws) Max tons/yr (pro-Max tons/yr (at 8760 rated to permit Capacity: 4.33 tons/stainless steel pipes/hr total 4,529 2.841 Capacity 35 Mill 0.517 Tons/Hour 36 Mill 0.55 Tons/Hour 4.818 3.022 45 Mill 0.806 Tons/Hour 7,061 4,429 75 Mill 0.914 Tons/Hour 8.007 5.022

2.787 Tons/Hour

on 12-month rolling basis (for pickling process)

HF: 0.7 tons/yr based on 12-month rolling basis 24,414 15,314

Facility-Wide Permit Limits:

Chromium VI: 0.582 lb/hr monthly avg

PM/PM₁₀: 90 tons/yr 12 month rolling basis

23,808.31 tons of pipe and tube produced/yr

98 Mill Total Controls: Enclosure & Dust Collecto

Emissions from dust collectors and controls are exhausted inside

Current Operating Schedule

Hours/Day Days/Week Weeks/Year

98 Milli cutting uses a plasma cutter, instead of a traditional saw. Separate emission factors for plasma cutter have been created and presented in separate sheet.

Permit Limit Maximum Maximum Operating Permit Limit (tons/yr less Operating Rate Throughput Operating Hrs Rate: Max hourly rate x 8760 hr/yr (Tons/Yr) (Tons 98 Mill (Tons/year) (Hrs/Yr) Steel/Yr) capacity) (Tons/Hr)

2.78/	5,674	8760		24,414		23,808.31	15,314	1		Potential based on ma	x hourly open	ating rate and	8760 hrs/yr	Emission	ens Permit L	lmit of 15,314	ton/yr pro-rated
	pro-rated to remi	ove 98 Mill								Hourly Emiss	ions	Ann	ual Emissions	Hourly Er	nissions	Annu	al Emissions
Pollutant ID	Description	Emission Factor	Emission Factor Source 1	Control Equipment Description	Actual Ctrl. Eff.	PTE Ctrl. Eff.	Actual Emissions (TPY) ^{2,5}	Unctrl. Actual Emissions (TPV)	PTE Emissions (TPY) ⁶	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontrolled Potential (TPY)	Controlled Potential (TPY) ⁶	Uncontrolled Potential (lb/hr) 7	Controlled Potential (lb/hr)	Uncontrolled Potential (TPY)	Controlled Potential (TPY)
7429-90-5	Aluminum	0.0025120	KEIS	Cyclone / Centrifugal Collector	97.0%	97.00	0.00021381	0.00712697	0.00091992	0.007001	0.00021003	0.03066413	0.00091992	0.007001	0.00021003	0.01923386	0.00057702
7440-47-3	Chromium	0.0316360	KEIS	Cyclone / Centrifugal Collector	97.0%	97.0%	0.00269270	0.08975671	0.01158548	0.088170	0.00264509	0.38618255	0.01158548	0.088170	0.00264509	0.24223027	0.00726691
18540-29-9	Chronium VI and Compounds	0.0000040	KEIS	Cyclone / Centrifugal Collector	97.0%	97.0%	0.00000034	0.00001135	0.00000146	0.000011	0.00000033	0.00004883	0.00000146	0.000011	0.00000033	0.00003063	0.00000092
7439-96-5	Manganese	0.0007390	KEIS	Cyclone / Centrifugal Collector	97.0%	97.0%	0.00006290	0.00209667	0.00027063	0.002060	0.00006179	0.00902102	0.00027063	0.002060	0.00006179	0.00565837	0.00016975
7440-02-0	Nickel; Nickel (Total and Dissolved)	0.0091770	KEIS	Cyclone / Centrifugal Collector	97.0%	97.0%	0.00078110	0.02603671	0.00336073	0.025576	0.00076729	0.11202419	0.00336073	0.025576	0.00076729	0.07026638	0.00210799
PM10-FIL	PM10 (Particulate Matter - 10	0.9267000	KEIS	Cyclone / Centrifugal Collector	97.0%	97.0%	0.07887616	2.62920531	0.33936848	2.582713	0.07748139	11.31228250	0.33936848	2.582713	0.07748139	7.09554920	0.21286648
PM25-FIL	PM2.5 (Particulate Matter - 2.5 Microns Or Less)	0.1390050	KEIS	Cyclone / Centrifugal Collector	97.0%	97.0%	0.01183142	0.39438080	0.05090527	0.387407	0.01162221	1.69684238	0.05090527	0.387407	0.01162221	1.06433238	0.0319299*
PM-FIL	PT (Particulate Matter)	0.9267000	KEIS	Cyclone / Centrifugal Collector	97.0%	97.0%	0.07887616	2.62920531	0.33936848	2.582713	0.07748139	11.31228250	0.33936848	2.582713	0.07748139	7.09554920	0.21286648

1. Emission factors (before Control) are Department previously approved factors from Air Emission Survey. Control Eff Unchanged.

2. Actual emissions represent emission estimates using emission factors (lb/ton) and tons/yr for 2022 pro-rated for all mills minus 98 Mill.

3. Emissions are routed to Camfill and Robovent air filtering systems connected to each mill (with min MERV 15 filters) and then exhausted inside the facility. Used % control from KEIS. Actual ** removal is likely higher.

4. Conservatively assumes that all emissions exit facility (even though some may settle on surfaces)

5. Actual Emissions TPY - EF (lbs-ton) x Actual Annual Tons/yr x ((1-Ctrl. Eff.//100))/2000 lbs-ton

6. PTE Emissions & Controlled Potential (TPY) - max hourly rate (ton hr)x 8760 hour/yr x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton

7. Controlled Potential (lb/hr) - max tons/hr x EF (lb/ton) x ((1-Ctrl. Eff. v100))

8. Controlled Potential (TPY) with Permit Limit Permit Limit (tons/yr) x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton

Stack information from Air Survey- Unchanged

Checked

1/10/20243:25 PM Felker Glasgow PTE Calcs 1.9.24.rev.jjs.1.10.24

125 Beaver Trail Road, Glasgow KY 42141

Facility ID: 2100900064 ALID: 71

Equipment ID: EQPT 003

Stack Height

Release (ft)

Diameter Stack Flow Stack Velocity (ft) (Acfm) (ft/sec) Exit T, (F)

33 77 ack information from Air Survey- Indicated 21 & release height. Should match welding 133 & since all processes exhaust inside and then out via roof vents -

Equipment Description: Sawing (Plasma Cutting) (EP 03)- 98 MILL ONLY

tons/yr (at Max tons/yr (pro-8760 rated to permit hrs/yr) limit) Capacity: 4.33 tons/stainless steel pipes/hr total

Capacity 35-Mill 0.517 Tons/Hour 36 Mill 0.55 Tons/Hour 45.444 0.806 Tons/Hour 75 Mill 0.914 Tons/Hour 98 Mill 1.546 Tons/Hour Total

13,543 8,495 1.546 Tons/Hour

Controls: Enclosure & Dust Collector

Emissions from dust collectors and controls are exhausted inside

Current Operating Schedule

Hours/Day Days/Week Weeks/Year

Actual Annual Operating Rate Throughput

Operating Hrs

Permit Limit

Maximum Operating Permit Limit Pro-rated Rate: Max hourly rate (Tons (tons/yr just 98

(Hrs/Yr) Steel/Yr) Mill capacity)- (23,808°1.546/4.333=8,495)
23.808 31 8.495 (Tons/Hr) (Tons/year) x 8760 hr/yr (Tons/Yr) 8760 13,543

	pro-rated just for	98 Mill								Hourly Emis	ssions	Ann	ual Emissions	Hourly E	missions	Ann	ual Emissions
Pollutant ID		Emission Factor (lbs/ton)	Emission Factor Source ¹	Control Equipment Description	Actual Ctrl. Eff.		Emissions (TPY)		Emissions (TPV) ⁶	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr) ⁷	Uncontrolled Potential (TPY)	Controlled Potential (TPY) ⁶	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontrolled Potential (TPY)	Controlled Potential (TPY) ⁶
7429-90-5	Aluminum		see Mill 98 plasma cutting worksheet	Cyclone / Centrifugal Collector	97.0%	97.00	0.00000000	0.00000000	0.00000000	0.000000	0.00000000	0.00000000	0.00000000	0.000000	0.00000000	0.00000000	0.00000000
7440-47-3	Chronnum	0.0517198	see Mill 9x plasma cutting worksheet	Cyclone / Centrifugal Collector	97.0%	97.0%	0.00243721	0.08124018	0.01050658	0.079959	0.00239876	0.35021937	0.01050658	0.079959	0.00239876	0.21967262	0.00659018
18540-29-9	Chromium VI and Compounds	0.0000600	see Mill 98 plasma cutting worksheet	Cyclone / Centrifugal Collector	97.0%	97.0%	0.00000283	0.00009430	0.00001220	0.000093	0.00000278	0.00040650	0.00001220	0.000093	0.00000278	0.00025498	0.00000765
7439-96-5	Manganese	0.0051720	see Mill 9x plasma cutting worksheet	Cyclone / Centrifugal Collector	97.0%	97.0%	0.00024372	0.00812402	0.00105066	0.007996	0.00023988	0.03502194	0.00105066	0.007996	0.00023988	0.02196726	0.00065902
7440-02-0	Nickel: Nickel (Total and Dissolved)	0.0362038	see Mill 98 plasma cutting worksheet	Cyclone / Centrifugal Collector	97.0%	97.0%	0.00170604	0.05686×12	0.00735461	0.055971	0.00167913	0.24515356	0.00735461	0.055971	0.00167913	0.15377084	0.00461313
10102-14-0	NOX	0.0241286	see Mill 98 planns cutting worksheet	NA	NA.	NA	0.03790060	0.03790060	0.1633×621	0.037303	0.03730279	0.16338621	0.16338621	0.037303	0.03730279	0.10248285	0.10248285
PM10-FIL	PM10 (Particulate Matter - 10 Microns Or Less)	0.2585988	see Mill 98 plasma cutting worksheet	Cyclone / Centrifugal Collector	97.0%	97.0%	0.01218603	0.40620088	0.05253291	0.399794	0.01199381	1.75109685	0.05253291	0.399794	0.01199381	1.09836311	0.03295089
PM25-FIL	PM2.5 (Particulate Matter - 2.5 Microns Or Less)	0.2585988	see Mill 98 plasma eutting worksheet	Cyclone / Centrifugal Collector	97.0%	97.0%	0.01218603	0.40620088	0.05253291	0.399794	0.01199381	1.75109685	0.05253291	0.399794	0.01199381	1.09836311	0.03295089
PM-FIL	PT (Particulate Matter)	0.2585988	see Mill 9X plasma cutting worksheet	Cyclone / Centrifugal Collector	97.0%	97.0%	0.01218603	0.40620088	0.05253291	0.399794	0.01199381	1.75109685	0.05253291	0.399794	0.01199381	1.09836311	0.03295089

1 Emission factors (before Control) are calculated in Spreadsheet for Mill 98 Plasma Cutting, 3041 and 3161, do not contain aluminum, and therefore emission factors for aluminum have not been created for 98 Mill.

2 Actual emissions represent emission estimates using emission factors and 2022 pro-rated tons/yr for 98 Mill.

4. Conservatively assumes that all emissions exit facility (even though some may settle on surfaces)

Stack information from Air Survey- Unchanged

JJS Prepared Checked

Mar 1.8 24

Felker Glasgow PTE Calcs 1.9.24 rev.jjs.1.10.24 1/10/20243:25 PM

Facility-Wide Permit Limits:

Potential based on max hourly operating rate and 8760 hrs/yr Emissions with Permit Limit of 8495 ton/yr pro-rated

Chromium VI: 0.582 lb/hr monthly avg

PM/PM₁₀: 90 tons/yr 12-month rolling basis

23,808.31 tons of pipe and tube produced/yr

on 12-month rolling basis (for pickling process)

HF: 0.7 tons/yr based on 12-month rolling basis

^{3.} Emissions are routed to Camfill and Robovent air filtering systems connected to each mill (with min MERV 15 filters) and then exhausted inside the facility. Used % control from KEIS. Actual % removal is likely higher

^{5.} Actual Emissions TPY EF (lbs/ton) x Actual Annual Tons/yr x ((1-Ctrl. Eff.) 100)) 2000 lbs/ton 6. PTE Emissions & Controlled Potential (TPY) = max bourly rate (ton/hr)x 8760 hoursyr x EF (lbs/ton) x ((1-Ctrl. Eff.y/100))/2000 lbs/ton

⁷ Controlled Potential (lb/hr) max tons hr x EF (lb/ton) x ((1-Ctrl. Eff.) 100))

^{8.} Controlled Potential (TPY) with Permit Limit = Permit Limit (tons/yr) x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton

			Mill 98 Plasma Cutting - Emission Fact	or Creation			
Il 98 is a saw cut line that uses p	lasma cutting instead of tra	aditional saw cutting			L		
eated separate emission factors	for Mill 98. These are sligh	ntly different than the emission fa	ctors historically used for saw cutting and	d also include NOx emissi	ons from the plas	ma cutting.	
		Max Process 98 Mill rate (total					
PERATING PARAMETERS		steel)=	1.546	Tons/hr	x 8760 hours/year	13542.9	96 Max Tons/yr Processed
Earned Hours/yr		Max Hours Available					
Time Study Factor			ime required to load, unload, move and set up pi				
Max cutting HRS/YR:	2,190	Represents max hours possible cutting	g at maximum rate- actual cut time is a small per	centage of total hours			
	Cutting speed =		linear inches/min				
	Strip width		inches				
	2 cuts/3 minutes		inches per 3 minutes				
	piece cuts/hr max		Limited due to time for piece set up etc.				
	inches cut/hr		inches per hour cut (5*150)				
	linear feet cut/hr		ft cut/hr (inches/12) inches	-			
	kerf (cut) width					-	
	Density of stainless	0.2781779 0.219					
	Pipe thickness cut		inches in ³ cut/hr (750 inches x 1.25 inches x 0.219 inch	-c1			
	in3 cut/hr		lb /hr (20.53 in ³ cut/hr * 0.2781779 lb/in3)	E31			
	lbs of steel removed/hr	5./1	10 /111 (20.33 III CU(III 0.2/01//3 ID/III3)				
OLLUTANT				EMISSION		EMISSION	EMISSION
	Thruput		EMISSION	FACTOR	MAX	FACTOR (BEFORE CONTROL)	FACTOR
		UNITS	FACTOR (Before Control)	UNITS	(LB/HR CUT)	Converted to lb/ton	UNITS
					=max lbs		
Calculation			For PM and Metals Assume 7% of wt cut removed en	nitted as fumes	removed/hr*EF	=Max (lb/hr) / max (ton/hr processed)	Before Control
			For NOX (see below)				
PARTICULATE, PM, PM10, PM2.5- Assume all	Ì						
he same		lb cut-removed/hr		lb/lb steel removed	0.400	0.258598836	lb/ton processed
hromium		lb cut-removed/hr		lb/lb steel removed	0.080	0.051719767	lb/ton processed
hromium VI		lb cut-removed/hr		lb/lb steel removed	0.0001	6.00319E-05	lb/ton processed
Manganese		lb cut-removed/hr		lb/lb steel removed	0.008	0.005171977 0.036203837	lb/ton processed
Nickel		lb cut-removed/hr		lb/lb steel removed	0.037		
iox	5.71	lb cut-removed/hr	0.0065	lb/lb steel removed	0.037	0.024128582	lb/ton processed
Towns of Emission Footons							
ource of Emission Factors							
PARTICULATE EMISSIONS:	National Discourse Complete Control	Less Constant Mild Const			-		
missions of Fume, Nitrogen Oxides and I							
Broman B. et al, The Swedish Institute of					-		+
isted in AP-42 Chapter 12 Metallurgical I		ictor Documents					+
ook data for "Dry" (no water under cut		m/min cutting const (107 to 177)	into				
200 amp, 8 mm (0.31 inches) stainless, D	ry, air as piasma gas, 2.7 to 4.5	mymm cutting speed (107 to 177 ln/m	mute)		+		
30-40 g PM/min emitted	25	August of 2.7.4.5 m/s	26	m/min	-		
Average of 30-40 g/min=	35	Average of 2.7-4.5 m/min=	3.6	mymin			
verage of 107 to 177 in/minute		in/min					
erf width 3-4 mm - avg=3.5 M Emitted:		inches	lb PM/min emitted			<u> </u>	
rea canned.	35 g/min *lb/454g=						
	0.24 inches v 442 inches v 6	1 4.4 inches v 0 278 lh/in2 /dan-ih. a4	1661-	4 74	Illa etainlace etaal •	emoved/min	
Bs of SS steel cut:	0.31 inches x 142 inches x 0	0.14 inches x 0.278 lb/in3 (density of	(SS)=	1.71	Ib stainless steel	emoved/min	

Mill 98 Plasma Cutting- Emission Factor Creation-

		1 lb stainless steel/min cut					
	4.59	% of steel cut is emitted					
The document posted on AP 42 (na	tial document) however indi	icates that for dry stainless and 8mm t	thickness that 7% of weight of steel cu	t is emitted as fumes. Therefore	to be conservative	ve use 7% instead of 4.5%.	
The document posted of Al 42 (par	tial document, nowever, ma	traction dry stanness and drinn	The control of the co				
SPECIATED METALS EMISSIONS:							
304L Steel spec is 2% Mn, 18-20% Cr, 8	· · · · · · · · · · · · · · · · · · ·				% x 5.71 lb/hr cu	ıt	
Mill Line 98 cuts ~70% 304 and 30% 31	6 but as conservative approach u	used worst case of the both the metal type	es				_
Chromium:	Assume fumes are in same ra	atio as chromium in stainless steel - 20%;	lbs cut/hr particulate * 0.20=		1.14227	lb cut/hr	
Manganese:	Assume fumes are in same ra	atio as manganese in stainless steel - 2%; I	bs cut/hr particulate * 0.02=		0.11423	lb cut/hr	
Nickel:	Assume fumes are in same ra	atio as nickel in stainless steel - 14%; lbs cu	ut/hr particulate * 0.14=		0.800	lb cut/hr	
Chromium VI:	See below- multiplied ratio of	f Cr VI+/total PM collected during IH Study	y; lbs cut/hr particulate * 0.0002321		0.0013258	lb cut/hr	
1- This ratio is based on of Cr VI+ to tot	al PM collected for 1 samples col	ellected during IH Testing completed 4/20/	/22 for the plasma cutting at the facility				
				Hex Chromium as percent of			
Sample Number	Sample location	Hexavalent Chromium (mg/m3)	Total Fume Collected (mg PM/m3)	total PM			
sample Number	Jampie location						
sample Number	Plasma Table operator-	Tienavaiene emonium (mg/ms)	rotal rame concerca (mg : m/ma)				
sample Number		Treatment (ing ins)	Total Fallic Concesses (ing 1 th) may				
	Plasma Table operator-				*		
M4836-3512	Plasma Table operator-	0.00013		0.02321	%		
M4836-3512	Plasma Table operator- sample	0.00013		0.02321	1		
M4836-3512	Plasma Table operator- sample			0.02321	1		
M4836-3512	Plasma Table operator- sample	0.00013		0.02321	1		
#4836-3512 Note: Aluminum emissions have been	Plasma Table operator- sample traditionally reported for the sa	0.00013 ow cut lines. 304L and 316L do not contain	n aluminum, and therefore emission facto	0.02321	1		
M4836-3512	Plasma Table operator- sample traditionally reported for the sa	0.00013	n aluminum, and therefore emission facto	0.02321	1		
#4836-3512 Note: Aluminum emissions have been	Plasma Table operator- sample traditionally reported for the sa Used Swedish Study reference	0.00013 ow cut lines. 304L and 316L do not contain	n aluminum, and therefore emission facto	0.02321	1		
Note: Aluminum emissions have been NOX EMISSION FACTOR: Took data for "Dry" (no water under o	Plasma Table operator- sample traditionally reported for the samulationally reported for the samulation of the samulati	0.00013 ow cut lines. 304L and 316L do not contain	n aluminum, and therefore emission factor r two test types for "Dry" (no water unde	0.02321	1		
Note: Aluminum emissions have been NOX EMISSION FACTOR: Took data for "Dry" (no water under o	Plasma Table operator- sample traditionally reported for the samulationally reported for the samulation of the samulati	0.00013 ow cut lines. 304L and 316L do not contain ced above and took average from data for	n aluminum, and therefore emission factor r two test types for "Dry" (no water unde	0.02321	1		
Note: Aluminum emissions have been NOX EMISSION FACTOR: Took data for "Dry" (no water under o	Plasma Table operator- sample traditionally reported for the samulationally reported for the samulation of the samulati	0.00013 ow cut lines. 304L and 316L do not contain ced above and took average from data for	n aluminum, and therefore emission factor r two test types for "Dry" (no water unde	0.02321	1		
Note: Aluminum emissions have been NOX EMISSION FACTOR: Took data for "Dry" (no water under or 200 amp, 8 mm (0.31 inches) stainless, 4.1-5.4 L NOx/min	Plasma Table operator- sample traditionally reported for the same Used Swedish Study reference utting) Dry, air as plasma gas, 2.7 to 4.5	0.00013 ow cut lines. 304L and 316L do not contain ced above and took average from data for m/min cutting speed (107 to 177 in/min	n aluminum, and therefore emission factor r two test types for "Dry" (no water unde	0.02321	1		
Note: Aluminum emissions have been NOX EMISSION FACTOR: Took data for "Dry" (no water under c 200 amp, 8 mm (0.31 inches) stainless, 4.1-5.4 L NOX/min 4.1-5.4 L NOX/min avg	Plasma Table operator- sample traditionally reported for the same Used Swedish Study reference utting) Dry, air as plasma gas, 2.7 to 4.5	0.00013 ow cut lines. 304L and 316L do not contain ced above and took average from data for m/min cutting speed (107 to 177 in/min L NOX/min	n aluminum, and therefore emission factor r two test types for "Dry" (no water unde	0.02321	1		
Note: Aluminum emissions have been NOX EMISSION FACTOR: Took data for "Dry" (no water under of 200 amp, 8 mm (0.31 inches) stainless, 4.1-5.4 L NOX/min 4.1-5.4 L NOX/min avg Ib stainless steel cut/min (from calcs	Plasma Table operator- sample traditionally reported for the sa Used Swedish Study reference utting) Dry, air as plasma gas, 2.7 to 4.5 4.75	0.00013 ow cut lines. 304L and 316L do not contain ced above and took average from data for a contain or m/min cutting speed (107 to 177 in/min L NOX/min ib stainless steel cut/min	n aluminum, and therefore emission factor r two test types for "Dry" (no water unde	0.02321	1	as NOX	

125 Beaver Trail Road, Glasgow KY 42141

Days/Week

Current Operating Schedule

8822

Facility ID: 2100900064

AI ID: 71

Hours/Day

Maximum

4.33

33 na na na 77 Sueck information from Air Surv ey- Uh, hanged Ethausti innisk

Stack

Velocity

(ft/sec)

Exit T, (F)

Equipment ID: EQPT 004 Equipment Description: Pipe Mill Welding Mills 1 -5 (EP 04)

Weeks/Year

8760

Capacity 35 Mill 0.517 Tons/Hour 36 Mill 0.55 Tons/Hour 45 Mill 0.866 Tons/Hour 75 Mill 0.914 Tons/Hour 98 Mill 1.546 Tons/Hour

Stack

(ft)

Diameter Stack Flow

(Acfm)

Total 4.33 Tons/Hour

Controls: Enclosure & Dust Collector

Emissions from dust collectors and controls are exhausted inside

Maximum

Stack Height

Release (ft)

Operating Rate:

37,931 23,808.31

Facility-Wide Permit Limits:
Chromium VI: 0.582 lb/hr monthly avg
PM/PM₁₀: 90 tons/yr 12-month rolling basis
23,808.31 tons of pipe and tube produced/yr
on 12-month rolling basis (for pickling process)
HF: 0.7 tons/yr based on 12-month rolling basis

Potential based on max hourly operating rate and 8760 hrs/yr

Emissions with Permit Limit of 23,808.31 Tons/Ve

										Hourly E	missions	Ann	ual Emissions	Hourly	Emissions	Annual E	missions
Pollutant ID	Description	Emission Factor	Emission Factor Source	Control Equipment Description	Actual Ctrl. Eff.	PTE Ctrl. Eff.	Actual Emissions (TPY) ^{2,5}	L	Emissions (TPY) ⁶	Uncontrolled Potential (lb/hr)	Potential	Uncontrolled Potential (TPY)	Controlled Potential (TPY)	Uncontrolled Potential (lb/hr) ⁷	Controlled Potential (lb/hr)	Uncontrolled Potential (TPY)	Controlled Potential (TPY) 8
7440-47-3	Chromium	0.0060250	KEIS	Process Enclosed	70.0%	70.0%	0.00797288	0.026576275	0.03427996	0.026088	0.00782648	0.11426654	0.03427996	0.026088	0.00782648	0.07172253	0.02151676
18540-29-9	Chromium VI and Compounds	0.0000070	KEIS	Process Enclosed	70.0%	70.0%	0.00000926	0.000030877	0.00003983	0.000030	0.00000909	0.00013276	0.00003983	0.000030	0.00000909	0.00008333	0.00002500
PM10-FIL	PM10 (Particulate Matter - 10 Microns Or Less)	0.0119300	KEIS	Process Enclosed	70.0%	70.0%	0.01578697	0.052623230	0.06787717	0.051657	0.01549707	0.22625722	0.06787717	0.051657	0.01549707	0.14201657	0.04260497
PM25-FIL	PM2.5 (Particulate Matter - 2.5 Microns Or Less)	0.0053685	KEIS	Process Enclosed	70.0%	70.0%	0.00710414	0.023680454	0.03054472	0.023246	0.00697368	0.10181575	0.03054472	0.023246	0.00697368	0.06390746	0.01917224
PM-FIL	PT (Particulate Matter)	0.0119300	KEIS	Process Enclosed	70.0%	70.0%	0.01578697	0.052623230	0.06787717	0.051657	0.01549707	0.22625722	0.06787717	0.051657	0.01549707	0.14201657	0.04260497
							_	No Control		No Control		No Control		No Control		No Control	

1. Emission factors (before Control) are Department previously approved factors from Air Emission Survey. Control Eff Unchanged.

- 3. Emissions are routed to a Robovent air filtering system (min 15 MERV filters) and then exhausted inside the facility, Used *e control from KEIS, It represents the overall removal efficiency, Actual % removal is likely higher.
- 4. Conservatively assumes that all emissions exit facility (even though some may settle on surfaces)
- 5. Actual Emissions TPY EF (lbs/ton) x Actual Annual Tons yr x ((1-Ctrl. Eff.)/100))/2000 lbs/ton
- 6. PTE Emissions & Controlled Potential (TPY) = max hourly rate (ton hr)x 8760 hour/yr x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton
- 7. Controlled Potential (lb/hr) max tons/hr x EF (lb/ton) x ((1-Ctrl. Eff.)/100))
- 8. Controlled Potential (TPY) with Permit Limit = Permit Limit (tons yr) x EF (lbs/ton) x ((1-Ctrl. Eff.)/100))/2000 lbs/ton

Stack information from Air Survey- Unchanged

pared .

hecked Mar

12.5.23

1/10/20243:25 PM Felker Glasgow PTE Calcs 1.9.24.rev.jjs.1.10.24

^{2.} Actual emissions represent emission estimates for 2022 as reported in the annual air survey

125 Beaver Trail Road, Glasgow KY 42141

Facility ID: 2100900064 AI ID: 71

Maximum Hourly

(MMscf/Hr)

0.001961

Stack Stack
Diameter Stack Flow Velocity
Stack Height (ft) (ft) (Acfm) (ft/sec) Exit T, (F)
30 0.25 150 50.93 120
Stack information from All Survey-Unchanged

Equipment ID: EQPT 005

 Current Operating Schedule

 Hours/Day
 Days/Week
 Weeks/Year

 16
 5
 52

Operating Rate Annual Throughput Operating Hrs

(MMscf)

Maximum

(Hrs/Yr)

Equipment Description: Two (2) Hot Water Heaters each at 1.0 MMBtu/hr

Model: Evolution EVS-1000-1

Capacity: Unit 1: 1.0 MMBtu/hr each

Controls: None

Insignificant Activity

Maximum
Operating Rate
(MMscf/Yr)
{0.001961
mmSCF/hr x 8760
hr/yr}

Facility-Wide Permit Limits:

Chromium VI: 0.582 lb/hr monthly avg

PM/PM₁₀: 90 tons/yr 12-month rolling basis

23,808.31 tons of pipe and tube produced/yr

on 12-month rolling basis (for pickling process)

HF: 0.7 tons/yr based on 12-month rolling basis

										Hourly Emissions		Annual Emissions	
Pollutant ID	Description	Emission Factor (lbs/MMscf) ¹	Emission Factor Source	Control Equipment Description	Actual Ctrl. Eff.	PTE Ctrl. Eff.	Actual Emissions (TPY) ²	Unctrl. Actual Emissions (TPY)	PTE Emissions (TPY) ³	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontrolled Potential (TPY)	Controlled Potential (TPY)
21-43-2	Benzene	0 00210	KEIS	None	0.0	0.0	0.00000339	0.00000339	0.00001804	0.0000041	0.0000041	0.4660418	5 Differ 2 S
124-38-9	Carbon Dioxide	120000.0	KEIS	None	0.0	0.0	193.8000	193.8000	1030.70160	235.3200	235.3200	1030.7016	1030 7016
630-08-0	CO (Carbon Monoxide)	84 000	KEIS	None	0.0	0.0	0.13566000	0.13566000	0.72149112	0.1647240	0.1647240	0.72149	0.721491
50-00-0	Formaldehyde	0.075	KEIS	Nonc	0.0	0.0	0.00012113	0.00012113	0.00064419	0.0001471	0.0001471	0.00064	0.000644
110-54-3	Hexane: N-Hexane	1.800	KEIS	None	0.0	0.0	0.00290700	0.00290700	0.01546052	0.0035298	0.0035298	0.01546	0.015461
7439-92-1	Lead, Total (as Ph)	0.0005	KEIS	Nonc	0.0	0.0	0.00000081	0.00000081	0.00000429	0.0000010	0.0000010	0.00000	0.000004
74-82-8	Methane	2.300	KEIS	None	0.0	0.0	0.00371450	0.00371450	0.01975511	0.0045103	0.0045103	0.01976	0 019755
10024-97-2	Nitrous Oxide	2.200	KEIS	None	0.0	0.0	0.00355300	0.00355300	0.01889620	0.0043142	0.0043142	0.01890	0.018896
10102-44-0	NO2 (Nitrogen Dioxide)	50,000	KEIS	None	0.0	0.0	0.08075000	0.08075000	0.42945900	0.0980500	0.0980500	0.42946	0.429459
PM10-FII.	PM10 (Particulate Matter - 10 Microns Or Less)	7.600	KEIS	None	0.0	0.0	0.01227400	0.01227400	0.06527777	0.0149036	0.0149036	0.06528	0.065278
PM25-FIL	PM2.5 (Particulate Matter - 2.5 Microns Or Less)	7.600	KEIS	None	0.0	0.0	0.01227400	0.01227400	0.06527777	0.0149036	0.0149036	0.06528	0.065278
PM-FII	PT (Particulate Matter)	7.600	KEIS	None	0.0	0.0	0.01227400	0.01227400	0.06527777	0.0149036	0.0149036	0.06528	0.065278
7446-09-5	SO2 (Sulfur Dioxide)	0.600	KEIS	None	0.0	0.0	0.00096900	0.00096900	0.00515351	0.0011766	0.0011766	0.00515	0.005154
108-88-3	Toluene	0.0034	KEIS	None	0.0	0.0	0.00000549	0.00000549	0.00002920	0.0000067	0.0000067	0.00003	0.000029
VOC	VOC (Volatile Organic Compounds)	5.500	KEIS	None	0.0	0.0	0.00888250	0.00888250	0.04724049	0.0107855	0.0107855	0.04724	0.047240
1314-13-2	Zinc (Fume Or Dust)	0 029	KFIS	None	0.0	0.0	0.00004684	0.00004684	0.00024909	0.0000569	0.0000569	0.00025	0.000249

- 1. Emission factors are Department previously approved factors from Air Emission Survey. These are from AP-42 Section 1.4 Natural Gas Combustion The EF for NO2 is for low NOx and small unit heaters
- 2. Actual emissions represent emission estimates for 2022 as reported in the annual air survey –annual thruput in MMScf x EF/2000lb/ton
- 3. PTE Emissions & Controlled Potential (TPY) = max hourly rate (MMscf/hr)x 8760 hour/yr x EF (lbs/MMscf) /2000 lbs/ton

Stack information from Air Survey- Unchanged

Prepared JJS

Checked Mar 12.5.23