

F (614) 863-0475

August 16, 2024

Kentucky Division for Air Quality Permit Support Section 300 Sower Blvd., 2nd Floor Frankfort, KY 40601

RE: Marzetti Manufacturing Company,

1000 Top Quality Drive, Horse Cave, Kentucky Conditional Major Permit Renewal Application

Source I.D. #21-099-00035 Agency Interest # 71651 Permit I.D. F-19-030 (R2)

To Whom It May Concern:

Please find enclosed the Conditional Major Permit Renewal Application for the Marzetti Manufacturing Company. The permit is set to expire February 2nd, 2025 therefore Marzetti Manufacturing Company is submitting the timely permit renewal application, given an approved extension by Troy Tabor (Kentucky Division for Air Quality, Environmental Control Supervisor) to submit by August 16th, 2024. The permit renewal application incorporates all changes made since the most recent significant revision.

In accordance with Kentucky Regulation 401 KAR 52:030 Sections 4 and 12, we are submitting the required DEP7007 application forms and accompanying information for the Renewal.

If you have questions or comments regarding this submittal or the enclosed information, please feel free to contact Andrew Wehr (614) 671-6523 or myself (614) 256-0363.

Thank you,

Lisa Schweder

Lisa Schweder, P.E.

Staff Environmental Engineer

Terracon Consultants, Inc.

David C. Reynolds, P.E.

Authorized Project Reviewer

Terracon Consultants, Inc.

Marzetti Manufacturing Company Representative:

Patrick S. Mullen

Patrick S. Mullen

Sr Dir Plant Operations

PERMIT RENEWAL APPLICATION FOR

CONDITIONAL MAJOR PERMIT F-14-030 R3

(Per 401 KAR 52:030 Sections 4 and 12)

FOR

T. MARZETTI COMPANY HORSE CAVE, KENTUCKY

PREPARED FOR:

T. MARZETTI COMPANY

1000 TOP QUALITY DRIVE

HORSE CAVE, KENTUCKY 42749

PREPARED BY:

TERRACON CONSULTANTS, INC.
72 POINTE CIRCLE
GREENVILLE, SC 29607

AUGUST 2024

Introduction

Marzetti Manufacturing Company (Marzetti), located in Horse Cave, Kentucky, is currently operating a food product manufacturing facility. The facility operates under SIC code 2035, pickled fruits and vegetables, vegetable sauces and seasonings, and salad dressings, and under Air Permit Number F-19-030 R2. The permit is set to expire February 2nd, 2025, therefore Marzetti is submitting this permit renewal application incorporating all changes made since the most recent significant revision. No changes to currently permitted sources have occurred since the most recent significant revision, nor will any additional sources be added during this renewal period without revision.

Changes to the permit since the most recent source wide permit action:

- Calculations for the potential-to-emit (PTE) values have been updated to more accurately model emissions, with no change to operation of the facility, including:
 - Removal of the Rotoclone control device from the Volatile Organic Compounds (VOC) emission source calculations associated with alcohol use during production to reflect the Rotoclone controlling particulate matter, not VOC's. Refer to DEP7007N for calculations.
 - Change of category for the VOC emissions from controlled to uncontrolled to more accurately reflect the site's conditions. Refer to DEP7007N for calculations.
 - Change of Emissions Unit 10, Ink Jet and Spray Stencil, from emitting through a stack to emitting as a fugitive source. The Emissions Unit vents to the interior of the facility. Refer to DEP7007N for calculations.

DEP7007 PERMIT APPLICATION FORMS DEP7007AI

DEP7007AI Additional Documentation Division for Air Quality **Administrative Information** Section AI.1: Source Information Additional Documentation attached 300 Sower Boulevard Section AI.2: Applicant Information Frankfort, KY 40601 (502) 564-3999 Section AI.3: Owner Information ____ Section AI.4: Type of Application Section AI.5: Other Required Information ___ Section AI.6: Signature Block Section AI.7: Notes, Comments, and Explanations **Source Name: Marzetti Manufacturing Company** KY EIS (AFS) #: 21- 099-00035 Permit #: F-19-030 R3 **Agency Interest (AI) ID:** 71651 8/16/2024 Date: Section AI.1: Source Information 1000 Top Quality Drive **Street: Physical Location** Address: Horse Cave City: 42749 County: Hart Zip Code: Street or 1000 Top Quality Drive P.O. Box: **Mailing Address:** Horse Cave State: Hart 42749 City: Zip Code: **Standard Coordinates for Source Physical Location** Longitude: 37.156472 (decimal degrees) Latitude: -85.917528 (decimal degrees) Mayonnaise, Dressing, and Other Prepared Sauce Manufacturing Primary (NAICS) Category: **Primary NAICS #:** 311941

Classification (SIC) Category:				ruits and Veg d Seasonings		_			Primary SIC #:	2025		
Briefly discuss the type conducted at this site:		business						prepa	aration operations with associ	2035 aited process equipment	t.	
Description of Area Surrounding Source:		Rural Area Urban Area		lustrial Park lustrial Area		Residential Commercia			Is any part of the source located on federal land?	□ Yes ☑ No	Number of Employees:	650
Approximate distance to nearest residence o commercial property:	r	100 feet, ac esidence to 1	•	-	I	Property Area:	67	7.4 a	cres	Is this source portab	le? Yes N	No
		What other	er environi	mental pern	its o	r registrati	ons do	es th	is source currently hold o	or need to obtain in l	Kentucky?	
NPDES/KPDES:	7	Currently Ho	ld	□ Need			N/A					
Solid Waste:		Currently Ho	ld	□ Need		V	N/A					
RCRA:		Currently Ho	ld	□ Need		7	N/A					
UST:		Currently Ho	ld	□ Need		V	N/A					
Type of Regulated		Mixed Waste	Generator			Generator			Recycler [□ Other:		
Waste Activity:		U.S. Importe	r of Hazardo	ous Waste		Transporter	r		Treatment/Storage/Disposal	Facility	N/A	

Section AI.2: App	plicant In	nformation							
Applicant Name:	Marzetti M	Ianufacturing Company							
Title: (if individual)									
Mailing Address:	Street or P.	O. Box:		1000 Top Quality Drive					
Wanning Address.	City:	Horse Cave	State:	Kentucky	Zip Code:	42749			
Email: (if individual)						_			
Phone:									
Technical Contact									
Name:	Daivd Jacks	son							
Title:	EHS Manag	ger							
Mailing Address:	Street or P	.O. Box:		1000 Top Quality Drive					
iviumig riuuressv	City:	Horse Cave	State:	Kentucky	Zip Code:	42749			
Email:	david.jacks	son@marzetti.com							
Phone:									
Air Permit Contact for	Source								
Name:	Daivd Jacks	son				_			
Title:	EHS Manag	ger							
Mailing Address:	Street or P	.O. Box:		1000 Top Quality D	rive				
Wanning Address.	City:	Horse Cave	State:	Kentucky	Zip Code:	42749			
Email:	david.jacks	son@marzetti.com							
Phone:									

Section AI.3: Ov	vner Information				
☑ Owner same	as applicant				
Name:					
Title:					
Mailing Address:	Street or P.O. Box:				
Willing Muliciss.	City:		State:	Zip Code:	
Email:					
Phone:					
List names of owners a	nd officers of the company who	have an interest in the con	npany of 5% or more		
	Name			Position	
-					

Section	on AI.4: Type	of Application									
Curren	t Status:	□ Title V ☑ Conditional Major □ State-Origin □ General Permit □ Registration □ None									
		□ Name Change □ Initial Registration □ Significant Revision □ Administrative Permit Amendment									
ъ	. 1	☑ Renewal Permit □ Revised Registration □ Minor Revision □ Initial Source-wide OperatingPermit									
_	ted Action: all that apply)	□ 502(b)(10)Change □ Extension Request □ Addition of New Facility □ Portable Plant Relocation Notice									
		□ Revision □ Off Permit Change □ Landfill Alternate Compliance Submittal □ Modification of Existing Facilities									
		□ Ownership Change □ Closure									
Reques	ted Status:	□ Title V ☑ Conditional Major □ State-Origin □ PSD □ NSR □ Other:									
Is the source requesting a limitation of potential emissions? □ Yes □ No											
P	ollutant:	Requested Limit: Pollutant: Requested Limit:									
	Particulate Matter	Single HAP									
V	Volatile Organic C	mpounds (VOC) 90 tpy Combined HAPs									
	Carbon Monoxide	☐ Air Toxics (40 CFR 68, Subpart F)									
	Nitrogen Oxides	Carbon Dioxide									
	Sulfur Dioxide	☐ Greenhouse Gases (GHG)									
	Lead	□ Other									
F	or New Construction	:									
	Proposed Start Date of Construction: (MM/YYYY) Proposed Operation Start-Up Date: (MM/YYYY)										
F	or Modifications:										
	_	ate of Modification: Proposed Operation Start-Up Date: (MM/YYYY) ————————————————————————————————									
	Identify any non-applicable requirements for which permit shield is Applicant is seeking coverage under a permit shield. Yes No sought on a separate attachment to the application.										
A	ppiicani is seeking (verage under a permit shield. Yes No sought on a separate attachment to the application.									

Section AI.5 Other Required Information		
Indicate the documents	attach	ed as part of this application:
☐ DEP7007A Indirect Heat Exchangers and Turbines		DEP7007CC Compliance Certification
☐ DEP7007B Manufacturing or Processing Operations		DEP7007DD Insignificant Activities
☐ DEP7007C Incinerators and Waste Burners		DEP7007EE Internal Combustion Engines
□ DEP7007F Episode Standby Plan		DEP7007FF Secondary Aluminum Processing
□ DEP7007J Volatile Liquid Storage	4	DEP7007GG Control Equipment
☐ DEP7007K Surface Coating or Printing Operations		DEP7007HH Haul Roads
□ DEP7007L Mineral Processes		Confidentiality Claim
□ DEP7007M Metal Cleaning Degreasers		Ownership Change Form
☑ DEP7007N Source Emissions Profile		Secretary of State Certificate
□ DEP7007P Perchloroethylene Dry Cleaning Systems		Flowcharts or diagrams depicting process
□ DEP7007R Emission Offset Credit		Digital Line Graphs (DLG) files of buldings, roads, etc.
☐ DEP7007S Service Stations		Site Map
☐ DEP7007T Metal Plating and Surface Treatment Operations		Map or drawing depicting location of facility
□ DEP7007V Applicable Requirements and Compliance Activities		Safety Data Sheet (SDS)
☐ DEP7007Y Good Engineering Practice and Stack Height Determination		Emergency Response Plan
☐ DEP7007AA Compliance Schedule for Non-complying Emission Units		Other:
□ DEP7007BB Certified Progress Report		
Section AI.6: Signature Block		
the information submitted in this document and all its attachments.	Based edge a	and belief, true, accurate, and complete. I am aware that there are significant
Patrick S. Mullon		08/16/2024
Authorized Signature		Date
Patrick S. Mullen		Sr Dir Plant Operations
Type or Printed Name of Signatory		Title of Signatory
*Responsible official as defined by 401 KAR 52:001.		

Section AI.7: Notes, Comments, and Explanations								

DEP7007 PERMIT APPLICATION FORMS DEP7007GG

Division for Air Quality

DEP7007GGControl Equipment

__ Complete Sections GG.1 through GG.12, as applicable

__ Attach manufacturer's specifications for each control device

__ Complete DEP7007AI

300 Sower Boulevard Frankfort, KY 40601 (502) 564-3999

Source Name:	Marzetti Manufacturing Company
KY EIS (AFS) #: 2	1- 099-0003
Permit #:	F-19-030 R3
Agency Interest (AI) ID:	71651
Date:	

Control Device ID	Control Device	Cost	Manufacturer	Model Name/	Date		Inlet Gas Stream Data For <u>All</u> Control Devices				Cond Afterb	Gas Stream Da lensers, Adsor urners, Incine Oxidizers <u>Onl</u> y	bers, rators,	Equipment Operational Data For <u>All</u> Control Devices		
#	Name	Cost		Serial #	Installed	Temperature (°F)	Flowrate (scfm @ 68 °F)	Average Particle Diameter	Particle Density (lb/ft³) or Specific Gravity	Gas Density (lb/ft ³)	Gas Moisture Content (%)	Gas Composition	Fan Type	Pressure Drop Range (in. H ₂ O)	Pollutants Collected/ Controlled	Pollutant Removal
09-01	Rotoclone 1		AAF International	1655182-004	Prior to 2019	Ambient					N/A	N/A	N/A		PM	99%
21-01	Rotoclone 1		AAF International	1655182-004	Prior to 2019	Ambient					N/A	N/A	N/A		PM	99%
08	Rotoclone 2		AAF International	131896-014	Prior to 2019	Ambient					N/A	N/A	N/A		PM	99%
								D 1 12								

Section GG.2:	Flare Source Information					
Control Device ID #	Identify all Emission Units and Control Devices that Feed to Flare	Type of Flare (e.g. steam-assisted, air-assisted, nonassisted)	Process Gas Flowrate (acfm)	Net Heating Value of Stream(s) (Btu/scf)	Removal Efficiency (%)	Flare Rated Capacity (MMBtu/hr)
N/A						

Section	1 GG.3: Cyclone										
Control Device ID #	Identify all Emission Units and Control Devices that Feed to Cyclone	Identify Number of Cyclones: Single or Multiple	Identify Type: High-Efficiency, Conventional, or High-Throughput	Inlet Height	Inlet Width (ft)	Bottom Cone Height	Body Height	Body Diameter	Dust Outlet Tube Diameter (ft)	Gas Outlet Tube Diameter	Vortex Finder Height
N/A											

Section	Section GG.4: Electrostatic Precipitator (ESP)														
Control Device ID#	Identify all Emission Units and Control Devices that Feed to ESP	Identify Type: Dry negative corona or Wet negative corona Wet positive corona	Number of Stages	Number of Plates per Stage	Plate Spacing (in)	ESP Total Width (ft)	ESP Total Height	Collection Plate Height (ft)	Length of Collection Plate (ft)	Particle Migration (Drift) Velocity (specify units)	Particle Resistivity (specify units)	Primary and Secondary Voltage Across Plates (volts)	and Secondary		
N/A															
10/11															

Section	Section GG.5: Scrubber																	
Control	Identify all Emission Units and Control	or per apper.	For Venturi Scrubbers:	For Pac Scrub		For Spra	y Towers:	Identify Type of Flow:	Direction	Cross- Sectional	Venturi Throat	М	ist Eliminat	or		Scru	bbing Liqui	d
Device ID #	Devices that Feed to Scrubber	Venturi, Packed Bed, Spray Tower, or Other (specify)	Identify Throat Type: Fixed or Adjustable	Identify Packing Type	Packing Height	Number of Nozzles	Nozzle Pressure (psig)	Concurrent, Countercurrent, <u>or</u> Crossflow	of Gas Flow (ft)	Area (ft²)	Velocity (ft/s)	Identify Type: Mesh or Vane	Cross- Sectional Area (ft²)	Pressure Drop (in. H ₂ O)	Chemical Composition	Flowrate (gal/min)	Fresh Liquid Makeup Rate (gal/min)	Describe Disposal Method of Scrubber Effluent
N/A																		
32																		

Section G	G.6: Filter													
Control	Identify all Emission Units and Control	Identify Type of Filter Unit: Baghouse, Cartridge	Identify Type of Filtering Material: Fabric, Paper, Synthetic, or	Total Filter Area	Effective Air-to-	Continuous Monitoring Instrumentation	Introduced in Sys	nt Materials nto the Control stem e, carbon)	Identify Cleaning Method: Shaker, Pulse Air,	Identify Gas Cooling Method: Ductwork, Heat Exchanger, Bleed-in	For Du	ctwork:	For Bleed- in Air:	For Water Spray:
Device ID #	Devices that Feed to Filter	Collector, or Other (specify)	Fabric, Paper, Synthetic, or Other (specify)	(ft ²)	Filter Ratio (acfm/ft ²)	(e.g. COMS, BLDS, none)	Material	Injection Rate	Reverse Air, Pulse Jet, or	Exchanger, Bleed-in Air, Water Spray, or Other (specify)	Length (ft)	Diameter (ft)	Flowrate (scfm @ 68°F)	Flowrate (gal/min)
N/A														

Section	Section GG.7: Afterburner/Incinerator/Oxidizer																
Control	Identify all Emission Units and Control	Identify Type:	Number	Burner	Dimensions of	Residence	Combustion Chamber	Type of	Type of Heat			I	Auxiliary Fu	ıel			Composition and Quantities
Device ID#	Devices that Feed to Afterburner/Incinerator/ Oxidizer	Afterburner, Incinerator, Oxidizer, or Other (specify)	of Burners	Rating (BTU/hr)	Combustion Chamber (specify units)	Time (sec)	Temperature (°F)	Catalyst (if applicable)	Exchanger (if applicable)	Identify Fuel Type	Higher Heating Value (MMBtu/scf)	Hourly Fuel Usage (scf/hr)	% Sulfur (Maximum)	% Sulfur (Average)	% Ash (Maximum)	% Ash (Average)	of Combusted Waste
N/A																	

Section	Section GG.8: Adsorber													
Control Device ID#	Identify all Emission Units and Control Devices that Feed to	Identify Adsorbate	Identify Adsorbent: Activated carbon, Activated alumina, Silica Gel, Synthetic Polymers, Zeolite, or	Thickness in	Dimensions of I	Weight of		Type of Regeneration: Replacement, Steam, or	Regeneration Time (minutes)	Method of Regeneration: Alternate Use of Beds, Source Shutdown, or	Time On-line Before Regeneration			
15 "	Adsorber		Other (specify)	Direction of Gas Flow (in)	Sectional Area (in²)	Adsorbent per Bed (lb)	Number of Beds	Other (specify)	(//////////////////////////////////////	Other (specify)	(minutes)			
N/A														

Section G	G.9: Condenser									
Control Device ID #	Identify all Emission Units and Control Devices that Feed to	Identify Type of Condenser: Spray Tower, Jet Ejector, Barometric, Single- Pass Shell-and-Tube, <u>or</u> Multi-Pass Shell-and-	Identify Type of Coolant: Water, Brine, Liquid Nitrogen, CFC/HFC, or Other (specify)	Coolant Te	emperature	Coolant Liquid Flowrate	Coolant Gas Flowrate	Condensing Surface Area	Outlet Gas Temperature	Outlet Gas Composition
Device ID#	Condenser	Tube (if multi-pass, indicate number of passes)	CFC/HFC, or Other (specify)	Inlet (°F)	Outlet (°F)	(gpm)	(scfm @ 68 °F)	(specify units)	(°F)	
N/A										

Section GG.10: Selective Catalytic Reduction (SCR) / Selective Non-catalytic Reduction (SNCR)

						sign		Reagent				SCR	Only	
Control Device	Identify all Emission Units and Control	Туре	Gas	Injection Grid	Ra	erature nge		Injectio	on Rate	Maximum Design		Cata	alyst	
ID#	Devices that Feed to SCR/SNCR	(SCR/SNCR)	Composition	Design (e.g. honeycomb)	Min	Max	Туре			Ammonia Slip (ppm)	Composition	Volume	Weight	Replacement
					(°F)	(°F)		Min (lb/hr)	Max (lb/hr)		•	(ft³)	(lb)	Schedule
N/A														

Section GG.11: Other Control Equipment

Control Device ID #	Identify all Emission Units and Control Devices that Feed to Control Equipment	Type of Control Equipment (provide description and a diagram with dimensions)
Rotoclone 1	EU 09 (09-01 and 09-02) and EU 21 (21-01 and 21-02)	AAF International Roto Clone, model 1655182-004. Wet dust collector, combining a dust collector with a centrifugal fan an a fine water film on the impeller blades to trap fine particles.
Rotoclone 2	EU 08	AAF International Roto Clone, model 131896-014. Wet dust collector, combining a dust collector with a centrifugal fan an a fine water film on the impeller blades to trap fine particles.

ection GG.12: Notes, Comments, and Explanations	

DEP7007 PERMIT APPLICATION FORMS DEP7007N

Division for Air Quality

300 Sower Boulevard Frankfort, KY 40601 (502) 564-3999

DEP7007N

Source Emissions Profile

__ Section N.1: Emission Summary

__ Section N.2: Stack Information

__ Section N.3: Fugitive Information

__ Section N.4: Notes, Comments, and Explanations

Additional Documentation	
Complete DEP7007AI	

Source Name: Marzetti Manufacturing Company

KY EIS (AFS) #: 21- 099-00035

Permit #: F-19-030 R3

Agency Interest (AI) ID: 71651

Date: 8/16/2024

N.1: Emission Summary

Emission	Emission	Process	Process	Control Device	Control Device	Stack ID	Maximum Design	Pollutant	Uncontrolled Emission	Emission Factor Source	Capture	Control	Hourly E	missions		Emissions
Unit #	Unit Name	ID	Name	Name	ID	Stack ID	Capacity (SCC Units/hour)	ronutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency (%)	Efficiency (%)	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontro lled Potential	Controlled Potential (tons/yr)
1	Three Natural Gas-Fired Indirect Heat Exchangers	1	Three Natural Gas-Fired Indirect Heat Exchangers	N/A	N/A	1	20.9 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOX (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.15 SOx - 0.012 VOC - 0.11 NOx - 1.94 CO- 1.63	N/A	PM - 0.64 SOx - 0.051 VOC - 0.47 NOx - 8.47 CO- 7.12	N/A

1172010																DEI 700711
Emission	Emission	Process	Process	Control Device	Control Device	Stack ID	Maximum Design	Pollutant	Uncontrolled Emission	Emission Factor Source	Capture	Control	Hourly E	Emissions		Emissions
Unit #	Unit Name	ID	Name	Name	ID	Stack ID	Capacity (SCC Units/hour)	ronutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency (%)	Efficiency (%)	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontro lled Potential	Controlled Potential (tons/yr)
2	Three Natural Gas-Fired Indirect Heat Exchangers	2	Three Natural Gas-Fired Indirect Heat Exchangers	N/A	N/A	1	20.9 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.15 SOx - 0.012 VOC - 0.11 NOx - 1.94 CO- 1.63	N/A	PM - 0.64 SOx - 0.051 VOC - 0.47 NOx - 8.47 CO- 7.12	N/A
3	Four Natural Gas-Fired Indirect Heat Exchangers	3	Four Natural Gas-Fired Indirect Heat Exchangers	N/A	N/A	2	1.095 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.0080 SOx - 0.00063 VOC - 0.0058 NOx - 0.105 CO- 0.089	N/A	PM - 0.035 SOx - 0.0028 VOC - 0.025 NOx - 0.46 CO- 0.39	N/A
4	Four Natural Gas-Fired Indirect Heat Exchangers	4	Four Natural Gas-Fired Indirect Heat Exchangers	N/A	N/A	2	1.095 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.0080 SOx - 0.00063 VOC - 0.0058 NOx - 0.105 CO- 0.089	N/A	PM - 0.035 SOx - 0.0028 VOC - 0.025 NOx - 0.46 CO- 0.39	NI/A

11/2010																DEI /00/11
Emission	Emission	Process	Process	Control	Control		Maximum Design		Uncontrolled Emission	Emission Factor Source	Capture	Control	Hourly E	Emissions	Annual	Emissions
Unit #	Unit Name	ID	Name	Device Name	Device ID	Stack ID	Capacity (SCC Units/hour)	Pollutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency (%)	Efficiency (%)	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontro lled Potential	Controlled Potential (tons/yr)
5	Four Natural Gas-Fired Indirect Heat Exchangers	5	Four Natural Gas-Fired Indirect Heat Exchangers	N/A	N/A	2	2.58 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.019 SOx - 0.0015 VOC - 0.014 NOx - 0.25 CO- 0.21	N/A	PM - 0.083 SOx - 0.007 VOC - 0.060 NOx - 1.09 CO- 0.91	N/A
6	Four Natural Gas-Fired Indirect Heat Exchangers	9	Four Natural Gas-Fired Indirect Heat Exchangers	N/A	N/A	2	2.58 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 Ibs./MMscf), PM2.5 (7.6 Ibs./MMscf), PM10 (7.6 Ibs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 Ibs./MMscf), Nox (100 Ibs./MMscf), CO (84 Ibs./MMscf)	AP-42	N/A	N/A	PM - 0.019 SOx - 0.0015 VOC - 0.014 NOx - 0.25 CO- 0.21	N/A	PM - 0.083 SOx - 0.007 VOC - 0.060 NOx - 1.09 CO- 0.91	N/A
8	Spice Room	8	Spice Room	Rotoclone 2	Rotoclone 2	Rotoclone 2	54.8 tons/hr	PM, PM2.5, PM10	PM (3.1 kg/bbl/yr)	AP-42	N/A	99	PM - 42.97	PM - 0.28	PM - 188.19	PM - 0.61
9	Cook Kitchen Cooking Vessels	9	Cook Kitchen Cooking Vessels	Rotoclone 1	Rotoclone 1	Rotoclone 1	See 09-01 and 09-02 below	PM, PM2.5, PM10, VOC	PM (3.1 kg/bbl/yr)	AP-42	N/A	99	N/A	See Below	N/A	See Below
09-01	Propriety Spice Mixture/Dry Ingredient Transfer	09-01	Propriety Spice Mixture/Dry Ingredient Transfer		Rotoclone 1	Rotoclone 1	54.8 tons/hr	PM, PM2.5, PM10	PM (3.1 kg/bbl/yr)	AP-42	N/A	99	PM - 55.25	PM - 0.36	PM - 241.99	PM - 0.78
09-02	Various Proof Distillate Alcohols/Distilla te Cooking	09-02	Various Proof Distillate Alcohols/Distill ate Cooking	Rotoclone 1	Rotoclone 1	Rotoclone 1	42.67 gallons/hr	VOC	VOC (0.1242 kg/bbl/yr)	AP-42	N/A	N/A	VOC - 5.302	N/A	VOC - 23.22	N/A

Emission Unit#	Emission Unit Name	Process ID	Process Name	Control Device Name	Control Device ID	Stack ID	Maximum Design Capacity (SCC	Pollutant	Uncontrolled Emission Factor	Emission Factor Source (e.g. AP-42, Stack	Capture Efficiency	Control Efficiency	Uncontrolled	Potential Potential		Annual Emissions Uncontro lled Potential	
							Units/hour)		(lb/SCC Units)	Test, Mass Balance)			Potential (lb/hr)	Potential (lb/hr)	Potential (tons/vr)	Potential (tons/yr)	
10	Ink Jet and Spray Stencil	10	Ink Jet and Spray Stencil	N/A	N/A	Vents to interior	See 10a-d below	VOC	N/A	AP-42	N/A	N/A	See Below	N/A	See Below	N/A	
10a	Video Jet Ink Usage	10a	Video Jet Ink Usage	N/A	N/A	Vents to interior	0.1268 gallons/hr	VOC	VOC (5.72 lb/gal)	AP-42	N/A	N/A	VOC - 0.73	N/A	VOC - 3.18	N/A	
10b	Video Jet Make- up Fluid Usage	10b	Video Jet Make-up Fluid Usage	N/A	N/A	Vents to interior	0.2536 gallons/hr	VOC	VOC (6.59 lb/gal)	AP-42	N/A	N/A	VOC - 1.67	N/A	VOC - 7.32	N/A	
10c	Video Jet Clean-up Solvent	10c	Video Jet Clean-up Solvent	N/A	N/A	Vents to interior	0.0076 gallons/hr	VOC	VOC (8.42 lb/gal)	AP-42	N/A	N/A	VOC - 0.064	N/A	VOC - 0.28	N/A	
10d	Marsh Ink Usage	10d	Marsh Ink Usage	N/A	N/A	Vents to interior	0.3170 gallons/hr	VOC	VOC (7.6 lb/gal)	AP-42	N/A	N/A	VOC - 2.41	N/A	VOC - 10.55	N/A	
11	Diesel-Fired Emergency Generator	11	Diesel-Fired Emergency Generator	N/A	N/A	4	1.52 MMBtu/hr	X, PM	NOX(4.41 lb/mmbtu) CO (0.95 lb/mmbtu) SOX(0.29 lb/mmbtu) PM (0.31 lb/mmbtu)	AP-42	N/A	N/A	PM - 2.34 NOx - 33.25 CO - 7.16 SOx - 2.19	N/A	PM - 0.58 NOx - 8.31 CO - 1.79 SOx - 2.19	N/A	
12	Natural Gas- Fired Water Heater	12	Natural Gas- Fired Water Heater	N/A	N/A	12(01)	15 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (50 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.11 SOx - 0.0087 VOC - 0.079 NOx - 1.44 CO- 1.21	N/A	PM - 0.48 SOx - 0.038 VOC - 0.35 NOx - 6.33 CO- 5.31	N/A	

11/2016																DEI /00/IN
Emission	Emission	Process	Process	Control	Control	Stook ID	Maximum Design	Pollutant	Uncontrolled Emission	Emission Factor Source	Capture	Control	Hourly E	Emissions		Emissions
Unit #	Unit Name	ID	Name	Device Name	Device ID	Stack ID	Capacity (SCC Units/hour)	Ponutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency (%)	Efficiency (%)	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontro lled Potential	Controlled Potential (tons/yr)
16	Three Natural Gas-Fired Indirect Heat Exchangers	16	Three Natural Gas-Fired Indirect Heat Exchangers	N/A	N/A	1	20.9 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.15 SOx - 0.012 VOC - 0.11 NOx - 2.01 CO- 1.69	N/A	PM - 0.67 SOx - 0.053 VOC - 0.49 NOx - 8.82 CO- 7.41	N/A
17	Four Natural Gas-Fired Space Heaters	17	Four Natural Gas-Fired Space Heaters	N/A	N/A	3	1.095 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.008 SOx - 0.0006 VOC - 0.0058 NOx - 0.11 CO- 0.89	N/A	PM - 0.035 SOx - 0.003 VOC - 0.025 NOx - 0.46 CO- 0.39	N/A
18	Four Natural Gas-Fired Space Heaters	18	Four Natural Gas-Fired Space Heaters	N/A	N/A	3	1.095 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.008 SOx - 0.0006 VOC - 0.0058 NOx - 0.11 CO- 0.89	N/A	PM - 0.035 SOx - 0.003 VOC - 0.025 NOx - 0.46 CO- 0.39	N/A

					•											
Emission	Emission	Process	Process	Control	Control	C. L.	Maximum Design		Uncontrolled Emission	Emission Factor Source	Capture	Control	Hourly E	Emissions	Annual	Emissions
Unit #	Unit Name	ID	Name	Device Name	Device ID	Stack ID	Capacity (SCC Units/hour)	Pollutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency (%)	Efficiency (%)	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontro lled Potential	Controlled Potential (tons/yr)
19	Four Natural Gas-Fired Space Heaters	19	Four Natural Gas-Fired Space Heaters	N/A	N/A	3	2.58 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.019 SOx - 0.0015 VOC - 0.014 NOx - 0.25 CO- 0.21	N/A	PM - 0.083 SOx - 0.007 VOC - 0.060 NOx - 1.09 CO- 0.91	N/A
20	Four Natural Gas-Fired Space Heaters	20	Four Natural Gas-Fired Space Heaters	N/A	N/A	3	2.58 MMBtu/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 lbs./MMscf), PM2.5 (7.6 lbs./MMscf), PM10 (7.6 lbs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 lbs./MMscf), Nox (100 lbs./MMscf), CO (84 lbs./MMscf)	AP-42	N/A	N/A	PM - 0.019 SOx - 0.0015 VOC - 0.014 NOx - 0.25 CO- 0.21	N/A	PM - 0.083 SOx - 0.007 VOC - 0.060 NOx - 1.09 CO- 0.91	N/A
21	New Kitchen - Cooking Vessels, Sets #3, #4, & #5	21	New Kitchen - Cooking Vessels, Sets #3, #4, & #5	Rotoclone 1	Rotoclone 1	Rotoclone 1	See 21-01 and 21-02 below	PM, PM2.5, PM10, VOC	PM (3.1 kg/bbl/yr)	AP-42	N/A	99	N/A	See Below	N/A	See Below
21-01	Propriety Spice Mixture/Dry Ingredient Transfer	21-01	Propriety Spice Mixture/Dry Ingredient Transfer	Rotoclone 1	Rotoclone 1	Rotoclone 1	82.2 tons/hr	PM, PM2.5, PM10	PM (3.1 kg/bbl/yr)	AP-42	N/A	99	PM - 55.25	PM - 0.36	PM - 241.99	PM - 0.78
21-02	Various Proof Distillate Alcohols/Distilla te Cooking	21-02	Various Proof Distillate Alcohols/Distill ate Cooking	Rotoclone 1	Rotoclone 1	Rotoclone 1	64 gallons/hr	VOC	VOC (0.1242 kg/bbl/yr)	AP-42	N/A	99	VOC - 7.953	N/A	VOC - 34.8	N/A

11/2010																DEI /00/1
Emission		Process	Process	Control	Control	l l	Maximum Design	Dollutout	Uncontrolled Emission	Emission Factor Source	Capture	Control	Hourly Emissions		Annual Emissions	
Unit #	Unit Name ID Name Device Name ID Stack ID Capacity (SCC Units/hour)		(SCC	Pollutant	Factor (e.g. AP-42, Stack Test, Mass Balance)		Efficiency (%)	Efficiency (%)	Uncontrolled Potential (lb/hr)	Controlled Potential (lb/hr)	Uncontro lled Potential	Controlled Potential (tons/yr)				
22	Natural Gas- Fired Emergency Generator	22	Natural Gas- Fired Emergency Generator	N/A	N/A	5	1873.5 scf/hr	PM, PM2.5, PM10, SO2, SOx, VOC, Nox, CO	PM (7.6 Ibs./MMscf), PM2.5 (7.6 Ibs./MMscf), PM10 (7.6 Ibs./MMscf), SO2 (0.6lbs./MMscf), SOx (0.6bs./MMscf), VOC(5.5 Ibs./MMscf), Nox (100 Ibs./MMscf), CO (84 Ibs./MMscf)	AP-42	N/A	N/A	NOx - 2.04 CO - 4.082 VOC - 4.082	N/A	NOx - 0.035 CO - 0.069 VOC - 0069	N/A

Section N.2: Stack Information

UTM Zone:

	Identify all Emission Units (with Process ID) and	St	ack Physical Da	ata	Stack UTM	Coordinates	Stack Gas Stream Data				
Stack ID	Control Devices that Feed to Stack	Equivalent Diameter	Height (ft)	Base Elevation (ft)	Northing (m)	Easting (m)	Flowrate (acfm)	Temperature (°F)	Exit Velocity (ft/sec)		
1	1, 2, 16	No change since previous permit									
2	3, 4, 5, 6,	No change since previous permit									
3	17, 18, 19, 20	No change since previous permit									
4	11	No change since previous permit									
5	22	No change since previous permit									
Rotoclone 1	09-01, 21-01	No change since previous permit									
Rotoclone 2	8	No change since previous permit									
12(01)	12	No change since previous permit									

Section N.3: Fugitive Information

UTM Zone:

			Area Physic	cal Data	Area UTM	Coordinates	Area Release Data		
Emission Unit #	Emission Unit Name	Process ID	Length of the X Side	Length of the Y Side (ft)	Northing (m)	Easting (m)	Release Temperature (°F)	Release Height	
10	Ink Jet and Spray Stencil	10	No change since previous permit						

Section N.4: Notes, Comments, and Explanations
Calculations in this sources emissions profile are based on AP-42 factors, maximum design capacity for each unit, and 8760 hours/year.
Actual emissions are below these potential emissions based on lower usage and lesser hours per year. No changes to permitted sources
has occured during this renewal period since the last recent significant revision.
Updates to calculations include: Removal of the Rotoclone control device from the VOC emission source calculations associated with alcohol use during production since PM is controlled and VOC is not controlled by Rotoclone device.
Updates also include: Change of category for the VOC emissions from controlled to uncontrolled to more accurately reflect the site's conditions.
For emission units EU09-01, EU21-01, and EU08, the total reported emissions are uncontrolled emissions. These emission units are controlled with Rotoclones. EU09-01, and EU21-01 are controlled by model number 1655182-004, and EU08 is controlled by a Rotoclone with model number 131896-014. Both of these have a removal efficiency of 99% for particulate matter.