IA Scanning Batch Sheet

11/2018							DEP7007A
Division	for Air Ou	ality		DEP7)07AI		Additional Documentation
Ac			Admi	nistrative	e Information		
300 Sov	wer Boulevard	d	Sect	ion AI.1: S	ource Information	Ac	ditional Documentation attached
Frankfo	ort, KY 40601		Sect	ion AI.2: A	pplicant Information	n	
(502	2) 564-3999		Sect	ion AI.3: C ion AI.4: T	Owner Information Type of Application		
			Sect	ion AI.5: C ion AI.6: S	Other Required Informignature Block	mation	DECEIVED
			Sect	ion AI.7: N	lotes, Comments, an	d Explanations	DEC 2 7 2021
Source Name:		Owensbor	o Specialty Polymers In	ıc.			Division for Air Quality
KY EIS (AFS) #:		21- 059-00155					SCANNED
Permit #:		F-17-032					IAN 0 5 2022
Agency Interest (AI)	ID:	972					JAN 0 J 2022
Date:							QUALITY CHECK
Section AI.1: S	ource Info	rmation					
Physical Location	Street:	5529 HWY	. 2830				(0000
Address:	City: Street or	Owensboro)	_ County:	Daviess	Zip Cod	42303
Mailing Address:	P.O. Box:	5529 HWY	7. 2830				
_	City:	Owensbord)	State:	Kentucky	Zip Cod	le: <u>42303</u>
			Standard Coo	ordinates fo	or Source Physical 1	Location	
Longitude:		87.02.58	(decimal degrees)		Latitude:	37.48.38	(decimal degrees)
Primary (NAICS) Ca	tegory:	Plastics M Manufactu	aterials and Resins ring	_	Primary NAICS #:	325211	

Classification (SIC) (Categ	ory:	Plastics Material	s and resi	ns		Primary SIC #:	2821	
Briefly discuss the ty conducted at this site	pe of :	business	Manufacturing of	latex polyr	ners for food	packaging	g, sealents, adhesives.		
Description of Area Surrounding Source:		Rural Area Urban Area	□ Industrial□ Industrial	Par k □ Area	Residenti Commerc	al Area vial Area	Is any part of the source located on federal land?	□ Yes ☑ No	Number of Employees: 40
Approximate distance to nearest residence of commercial property	e or v:	1000	ft		Property Area:	9.	1 acres	Is this source portable? \Box	Yes No
	What other environmental permits or registrations does this source currently hold or need to obtain in Kentucky?								
NPDES/KPDES:	7	Currently Ho	old	Need		N/A			
Solid Waste:		Currently Ho	□	Need	V	N/A			
RCRA:	7	Currently Ho	□	Need		N/A			
UST:		Currently Ho	old	Need	Ø	N/A			
Type of Regulated		Mixed Wast	e Generator	7	Generato	r	Recycler	Other:	-
Waste Activity:		U.S. Importe	er of Hazardous W	aste	Transpor	ter	Treatment/Storage/Disposa	I Facility N/A	4

Section AI.2: App	olicant Informatio	n				
Applicant Name:	Owensboro Specialty P	olymers Inc.				
Title: (if individual)						
	Street or P.O. Box:	5529 highway 2830				
Mailing Address:	City:	Owensboro	State:	Kentucky	Zip Code:	42303
Email: (if individual)						
Phone:	270-663-1416					
Technical Contact						
Name:	Barry Sparks					
Title:	Enviromental Specialist					
Mailing Address:	Street or P.O. Box:			5529 highway 2830		
Maning Address.	City: Owensb	oro	State:	Kentucky	Zip Code:	42303
Email:	Barry.Sparks@Millike	en.com				
Phone:	270-663-1422					
Air Permit Contact for S	Source					
Name:	Barry Sparks					
Title:	Enviromental Specialist					
Mailing Addungs	Street or P.O. Box:			5529 highway 2830		
Maning Address:	City: Owensb	ooro	State:	Kentucky	Zip Code:	42303
Email:	Barry.Sparks@Millike	en.com				
Phone:	270-663-1422					

Section AI.3: Ow	vner Information				
☑ Owner same	as applicant				
Name:					
Title:					
	Street or P.O. Box:				
Mailing Address:	City:		State:	Zip Code:	
Email:					
Phone:					
List names of owners a	nd officers of the company who have a	an interest in the com	pany of 5% or more	е.	
	Name			Position	

Section AI.4: Ty	pe of	Applicati	ion										
Current Status:		Title	Condition	al Major	State-Origin			General Permit		Registratio	on 🗌		None
Requested Action: (check all that apply) Requested Status:		Name Cha Renewal P 502(b)(10) Revision Ownership Title 🗌	nge ermit Chang Chang Chang	Initial Regist Revised Regi Extension Re Off Permit C Closure nal Major 🔽	ration	Signific Minor F Additio Landfill	ant Rev Revision n of Nev Alterna PSD	ision v Facility Ite Compliance Subm	nittal	Administra Initial Sou Portable P Modificati	ative Permit rce-wide Oj lant Reloca on of Existi	Ame perati tion N ing Fa	endment ngPermit Notice acilities
Is the source request Pollutant: Particulate Mat Volatile Organi Carbon Monox Nitrogen Oxide Sulfur Dioxide Lead	ting a li tter ic Comp kide es	mitation of	potential (- - -	emissions? Requested Lim	it:	Yes 		No Pollutant: Single HAP Combined HAPs Air Toxics (40 CF) Carbon Dioxide Greenhouse Gases Other	R 68, Subpa (GHG)	1 art F) 	Requested		::
For New Constru Proposed St	tart Dat (<i>MM/Y</i>	e of Construc YYY)	tion:			Pro	posed O	peration Start-Up I	Date: (MM				
For Modification Proposed St	ns: tart Dat <i>(MM/Y</i>	e of Modifica YYY)	ition:			Pro	posed O	peration Start-Up I	Date: (MM	//YYYY)			
Applicant is seek	king cove	erage under a	a permit shi	eld.	Yes 🗸	No		Identify any non-a sought on	applicable a separate	requiremen e attachmen	ts for whic t to the app	h per olicat	mit shield is ion.

Section AI.5 Other Required Information							
Indicate the documents attached as part of this application:							
DEP7007A Indirect Heat Exchangers and Turbines		DEP7007CC Compliance Certification					
DEP7007B Manufacturing or Processing Operations		DEP7007DD Insignificant Activities					
DEP7007C Incinerators and Waste Burners		DEP7007EE Internal Combustion Engines					
DEP7007F Episode Standby Plan		DEP7007FF Secondary Aluminum Processing					
DEP7007J Volatile Liquid Storage		DEP7007GG Control Equipment					
DEP7007K Surface Coating or Printing Operations		DEP7007HH Haul Roads					
DEP7007L Mineral Processes		Confidentiality Claim					
DEP7007M Metal Cleaning Degreasers		Ownership Change Form					
DEP7007N Source Emissions Profile		Secretary of State Certificate					
DEP7007P Perchloroethylene Dry Cleaning Systems		Flowcharts or diagrams depicting process					
DEP7007R Emission Offset Credit		Digital Line Graphs (DLG) files of buldings, roads, etc.					
DEP7007S Service Stations		Site Map					
DEP7007T Metal Plating and Surface Treatment Operations		Map or drawing depicting location of facility					
DEP7007V Applicable Requirements and Compliance Activities		Safety Data Sheet (SDS)					
DEP7007Y Good Engineering Practice and Stack Height Determination		Emergency Response Plan					
DEP7007AA Compliance Schedule for Non-complying Emission Units		Other:					
DEP7007BB Certified Progress Report							

Section AI.6: Signature Block

I, the undersigned, hereby certify under penalty of law, that I am a responsible official*, and that I have personally examined, and am familiar with, the information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the information is on knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false or incomplete information, including the possibility of fine or imprisonment.

Authorized Signature

David Beets

Type or Printed Name of Signatory

*Responsible official as defined by 401 KAR 52:001.

12/15/2021 Date

Plant Manager

Title of Signatory

Section AI.7: Notes, Comments, and Explanations					

From:	Barry Sparks
То:	Patil, Durga D (EEC)
Cc:	Scott Goldblatt
Subject:	Permit Questions
Date:	Wednesday, February 12, 2025 11:26:15 AM
Attachments:	EU 18 Emergency Generator Emissions Kenvirons 2025.xlsx
	List of Non-Applicable Requirements permit 2025.docx

This Message Originated from Outside the Organization This Message Is From an External Sender.

Report Suspicious

1. Patil

I am responding back to the questions that you sent, hope you are having a good day as the weather is still quite gloomy. Let me know if there are any other questions. Thanks and have a good day.

1. Details of the diesel fired emergency generator 423 HP. I do not have the emissions profile in the database. Please provide the hourly fuel usage, manufacture date and installation date of the generator and emission profile based on 500 hours of operation.

Hourly Fuel Usage – 21 gallons per hour Manufacture Date – 2005 Installation Date – 2005 Emissions – Please refer to attached spreadsheet.

2. With regards of the Raw Material Tank MMA 512, please revisit the applicability of Kb. NSPS Kb has been updated recently and has many alternate compliance options if NSPS is indeed applicable to EU 16. Please provide the capacity of the tank, along with throughput and the vapor pressure of the Methyl methacrylate being stored in the tank, the last MSDS sheet was submitted in 2006.

Since the MMA Raw Material Tank is greater than 75 m³ and less than 151 m³ and constructed after July 23, 1984 but before October 4, 2023, the tank is technically subject to NSPS Subpart Kb. However, as shown in the attached spreadsheet, the maximum true vapor pressure is less than 15 kPa. Therefore, no specific requirements under NSPS Kb apply to EU 16.

3. I have found applications with permit shield request in the past but no attachment with the non-applicable regulations for which permit shield is being requested, please let me know if permit shield is being requested and for which regulations and the justification for those regulations being non-applicable.

The source is formally requesting a permit shield, and the non-applicable regulations are presented in the attached Word document. These regulations are non-applicable to the facility based on several factors including, but not limited to, (a) being an area source of HAPs, (b) not meeting the definitions associated with applicability within these regulations, (c) not processing or emitting specific chemicals listed within these regulations, (d) not falling within the applicable construction or operation commencement dates within these regulations, and (e) qualifying for a specific exemption from these regulations. We did not attempt to list all regulations that were obviously non-applicable (for example, regulations applying to utilities, coke ovens, and others applicable to different source categories), but rather those that apply to chemical manufacturing sources and related sources.

Barry Sparks Owensboro Specialty Polymers Inc. a Milliken Company Office: 270-663-1422 Cell: 270-315-8056

Privacy Terms:

Our Data Protection Notices meet the high data protection standards set by the European General Data Protection Regulation ("GDPR"). You have the right to object to the processing of personal data for direct marketing purposes at any time. For more information about our data protection practices and to view a copy of our Data Protection Notices please refer to our <u>Privacy</u> page.

Confidentiality and Commercial Terms and Conditions Notice:

This message may contain privileged or confidential information and is intended only for the use of the addressee. Please advise immediately if you or your employer do not consent to e-mail for messages of this kind. If you are not the addressee, or person responsible for delivering this message to the person addressed, you may not copy or deliver this to anyone else. If you receive this message by mistake, please notify the sender immediately by return e-mail. All commercial transactions, offers and acceptances are exclusively subject/limited to and conditioned upon our terms posted at our <u>Terms and Conditions</u> page. We object to and reject any additional/different terms and conditions unless we expressly agree to them in writing.

Owensboro Specialty Polymers, Inc. List of Non-Applicable Requirements for Conditional Major Air Permit Renewal Application

- 40 CFR 60, Subpart K Standards of Performance for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978
- 40 CFR 60, Subpart Ka Standards of Performance for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984
- 40 CFR 60, Subpart Kc Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After October 4, 2023
- 40 CFR 60, Subpart VV Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After October 4, 2023
- 40 CFR 60, Subpart VVa Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced After November 7, 2006, and on or Before April 25, 2023
- 40 CFR 60, Subpart VVb Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced After April 25, 2023
- 40 CFR 60, Subpart DDD Standards of Performance for Volatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry
- 40 CFR 60, Subpart RRR Subpart RRR—Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes After June 29, 1990, and on or Before April 25, 2023
- 40 CFR 60, Subpart RRRa Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes for Which Construction, Reconstruction, or Modification Commenced After April 25, 2023
- 40 CFR 63, Subpart A General Provisions
- 40 CFR 63, Subpart G National Emission Standards for Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater
- 40 CFR 63, Subpart H National Emission Standards for Hazardous Air Pollutants for Equipment Leaks and Fenceline Monitoring for All Emission Sources
- 40 CFR 63, Subpart I National Emission Standards for Hazardous Air Pollutants for Certain Processes Subject to the Negotiated Regulation for Equipment Leaks
- 40 CFR 63, Subpart J National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production

- 40 CFR 63, Subpart U National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins
- 40 CFR 63, Subpart PP National Emission Standards for Containers
- 40 CFR 63, Subpart QQ National Emission Standards for Surface Impoundments
- 40 CFR 63, Subpart RR National Emission Standards for Individual Drain Systems
- 40 CFR 63, Subpart SS National Emission Standards for Closed Vent Systems, Control Devices, Recovery Devices and Routing to a Fuel Gas System or a Process
- 40 CFR 63, Subpart TT National Emission Standards for Equipment Leaks— Control Level 1
- 40 CFR 63, Subpart UU National Emission Standards for Equipment Leaks— Control Level 2 Standards
- 40 CFR 63, Subpart VV National Emission Standards for Oil-Water Separators and Organic-Water Separators
- 40 CFR 63, Subpart WW National Emission Standards for Storage Vessels (Tanks)—Control Level 2
- 40 CFR 63, Subpart JJJ National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins
- 40 CFR 63, Subpart FFFF National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing
- 40 CFR 63, Subpart DDDDD National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters
- 40 CFR 63, Subpart DDDDDD National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production Area Sources
- 40 CFR 63, Subpart JJJJJJ National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources
- 40 CFR 63, Subpart VVVVV National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources
- 40 CFR 63, Subpart BBBBBBB National Emission Standards for Hazardous Air Pollutants for Area Sources: Chemical Preparations Industry
- 40 CFR 63, Subpart HHHHHHH National Emission Standards for Hazardous Air Pollutant Emissions for Polyvinyl Chloride and Copolymers Production
- 401 KAR 63:015 Flares

Burberry, Stephanie (EEC)

From:	CHRIS WATHEN < CWATHEN@kenvirons.com>
Sent:	Monday, April 21, 2025 4:44 PM
То:	Patil, Durga D (EEC)
Cc:	Barry Sparks; Ross, Dakota D (EEC)
Subject:	Re: Follow-Up Questions for OSP Modeling Report
Attachments:	Owensboro Specialty Polymers AI 972 Air Toxics Modeling Report Revised.pdf;
	Emissions Breakdown by Process Unit - Rev1.xlsx

CAUTION PDF attachments may contain links to malicious sites. Please contact the COT Service Desk ServiceCorrespondence@ky.gov for any assistance.

This Message Originated from Outside the Organization

Report Suspicious

This Message Is From an External Sender.

Durga,

Please see below our responses to the remaining two questions after Barry answered the PVA process question. I've attached a revised emissions breakdown spreadsheet and a revised modeling report (only Table 3 of the modeling report has been revised as specified below). As always, please reach out if you have any questions or need anything additional. Thanks!

Christopher P. Wathen, P.E. Vice President 770 Wilkinson Boulevard | Frankfort, KY 40601 Office (502) 695-4357 | Cell (502) 592-2617 Celebrating 50 Years! (1975-2025)

From: Patil, Durga D (EEC)
Sent: Wednesday, April 16, 2025 11:29 AM
To: CHRIS WATHEN
Cc: Barry Sparks; Ross, Dakota D (EEC)
Subject: RE: Follow-Up Questions for OSP Modeling Report

Good morning Chris:

I have gone through the excel data sheet submitted and compared the PTE of emissions from the initial F permit or Title V permit applications. While in most cases the PTE are changed slightly or there is an increase in PTE(resulting in an update to the KYEIS), there are instances where the PTE has reduced as shown below: <u>EU 009 Daran reactor train:</u> PTE of Methyl Methacrylate was 3.002 tpy in the F permit application and is now 2.47 tpy PTE of Vinylidene chloride was 15.02 in the initial F permit application and is now 12.035 tpy. Please confirm that the PTE is to be reduced in the KYEIS and the reason for this change.

The spreadsheet we sent you separated emissions associated with vent ID VT-1308-1 to reflect emissions separately from EU08, EU09, and EU10 since that vent is shared within those three emission units. That was based on your question regarding that vent ID in the modeling report, specifically in Table 3 of the modeling report. We realized that there is another vent that is shared between EU08 and EU09, vent ID VT-1301-1 that we did not break down the emissions from that vent between the two emission units. The result is that Methyl Methacrylate and Vinylidene Chloride emissions were higher than they should have been for EU08 and lower than they should have been for EU09 in the spreadsheet that was sent to you. The attached revised spreadsheet with the emissions from VT-1301-1 separated between EU08 and EU09 shows potential emissions of Methyl Methacrylate of 3.00 tons/year and potential emissions of Vinylidene Chloride of 15.029 tons/year for EU09. Therefore, no changes should be necessary for EU09 potential emissions. Table 3 of the modeling report (revised version attached) has been updated to reflect that VT-1301-1 has emissions from both EU08 and EU09.

EU 010Daran reactor train:

PTE of Acrylic acid was 0.0241 tpy in the F permit application and is now 0.0199 tpy Please confirm that the PTE is to be reduced in the KYEIS and the reason for this change.

For Acrylic Acid emissions from EU10, the Conditional Major application we referenced (APE20060003) shows potential emissions of 0.02 tons/year instead of 0.024 tons/year, equivalent to what we modeled. Accordingly, we don't believe a change in the EIS is necessary.

EU 013 PVA process PVA reactor train R-157

There is no PTE listed in the OSP modeling performed and the writeup states that the equipment is no longer in service. If so, do you want me to remove it from the permit and KYEIS? If the unit is idled and the facility may use it in the future, then I have to remodel with an additional 10.55 tpy of Vinyl acetate, which is the PTE in the initial F application.

Please let me know. Thanks Durga Patil

From: CHRIS WATHEN <CWATHEN@kenvirons.com>
Sent: Thursday, April 10, 2025 11:55 AM
To: Patil, Durga D (EEC) <Durga.Patil@ky.gov>
Cc: Barry Sparks <Barry.Sparks@Milliken.com>
Subject: Follow-Up Questions for OSP Modeling Report

Durga,

I apologize for the delay in responding from our conversation last Friday regarding the Owensboro Specialty Polymers modeling report but the flooding pushed us back a few days from being able to access our office. As discussed, I have attached a spreadsheet showing the breakdown of what was modeled, which shows potential emissions in tons per year for each HAP/air toxic compound from each process unit and each modeled vent within each process unit.

Regarding the PVA process line, that process line is currently out of service but there is still equipment on-site. If the process becomes operational again, vinyl acetate is no longer used at the facility and there are no other HAPs/air toxics that would be emitted from that process.

Please let me know if you have any questions. Thanks!

Christopher P. Wathen, P.E. Vice President 770 Wilkinson Boulevard | Frankfort, KY 40601 Office (502) 695-4357 | Cell (502) 592-2617 Celebrating 50 Years! (1975-2025)

				Acrylic		Methyl	Methyl	Vinylidene			
				Acid	Acrylonitrile	Acrylate	Methacrylate	Chloride	Cumene	HCI	Xylene
Emissions				Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
Unit	Process	Vent ID	Description	tons/year	tons/year	tons/year	tons/yhear	tons/year	tons/yr	tons/yr	tons/yr
08	DARAN	VT 1301-1	Manual/Emergency vent on tanks V-201 and V- 211	0.0151		0.281	0.566	2.839			
08	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	0.0152		0.362	0.573	2.873			
08	DARAN	VT-1308-3	Steam Ejector (Vacuum) Vent for S200 (A Stripper)	0.0397		0.740	1.491	7.478			
09	DARAN	VT 1301-1	Manual/Emergency vent on tanks V-201 and V- 211	0.0143		0.359	0.534	2.677			
09	DARAN	VT-1301-3	Manual/Emergency Vent on R210	0.000054		0.0014	0.0020	0.0101			
09	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	0.0144		0.463	0.541	2.709			
09	DARAN	VT-1308-4	Steam Ejector (Vacuum) Vent for S210 (B Stripper)	0.0513		1.293	1.923	9.633			
10	DARAN	VT-1301-4	Manual/Emergency Vent on V221	0.0032	0.0080		0.138	0.690			
10	DARAN	VT-1301-5	Manual/Emergency Vent on R220	0.00075	0.0019		0.0323	0.161			
10	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	0.0024	0.0061		0.105	0.526			
10	DARAN	VT-1308-5	Steam Ejector (Vacuum) Vent for S220 (C Stripper)	0.0136	0.034		0.585	2.923			
11	DARAN	VT-1304-1	Steam Ejector Vent for R230	0.000039		0.303	0.000039	0.000039			
12	SPECIALTY R-1117	VT-6001-2	Vent on R650		0.67	2.09					
14	SPECIALTY R-1117	VT-1604-1	Vent on R460		1.27	1.15					
16	RAW MATERIAL TANKS	VT-3000-1	Methyl acrylate storage tank (V-521)			0.40					
16	RAW MATERIAL TANKS	VT-3000-11	Acrylonitrile storage tank (V-511)		0.163						
16	RAW MATERIAL TANKS	VT-3000-5	Methyl methacrylate storage tank (V-512)				0.448				
17	WW TREATMENT		Wastewater Treatment Emissions	0.0194	0.052	0.166	0.421	2.295			
18	DARAN	VT-1101-1	Steam out Vent from R51 (VT-1104-12) to Dilution Blower	0.000026			0.000026	0.000026			
			Plantwide Fugitives	0.0057	0.695	0.338	0.117	0.517			
			Product Storage	0.00058			0.0053	0.078			
21	N-Serve	EP-21	Aromatic 100 Storage						0.00073		0.0015
22	N-Serve	EP-22	Xylene Storage Tank								0.0369
24	N-Serve	EP-24	Blend Vessel						0.0024	0.0014	0.0354
	N-Serve		Fugitives						0.00393	0.0183	0.16

OWENSBORO SPECIALTY POLYMERS, INC.

HAP/AIR TOXIC MODELING REPORT

Prepared For:

OWENSBORO SPECIALTY POLYMERS, INC.

Prepared By:

Kenvirons, LLC

Project Number 2025038

March 2025

Introduction

Owensboro Specialty Polymers (OSP), located in Daviess County in Owensboro, Kentucky, is a manufacturer of specialty polymers and holds a current air permit in Kentucky, Conditional Major Permit No. F-17-032. A timely permit renewal application was submitted by the facility to the Kentucky Division for Air Quality (KDAQ), and during the course of the permit review process KDAQ requested that OSP provide an analysis of ambient air impacts of Hazardous Air Pollutants (HAPs) and non-HAP air toxic compounds to demonstrate that emissions from the facility will not result in adverse exposure to the residential population surrounding the plant site.

In order to perform this analysis, dispersion modeling for emissions of HAPs/air toxics at OSP was performed by Kenvirons, LLC. In order to perform this modeling, it was necessary to employ an EPA-approved air quality dispersion model.

Since some of the terrain within the modeling domain is above the stack heights at the plant, the terrain is classified as complex, and as such, a model appropriate for use in complex terrain must be used. In accordance with the Guideline on Air Quality Models (GAQM, Appendix W to 40 CFR Part 51), the appropriate model for application to this domain is the EPA AERMOD dispersion model. For this modeling analysis, the latest version of the AERMOD model (version 24142) was used for predicting ambient air impacts for each modeled pollutant. The specific model user interface used for the modeling was AERMOD-View by Lakes Environmental (Ontario, Canada).

Application of the AERMOD model to evaluate air quality impacts from OSP requires setting model control options, processing the appropriate meteorological and terrain data, setting receptor grids, determining background concentrations, inputting source emission and stack parameter data, and generating output necessary for the proper impact evaluation.

AERMOD Model Options

For all modeling runs conducted for the evaluation of the plant's air quality impacts, the regulatory default option in AERMOD was selected.

In order to include building wake effects, the Building Profile Input Program, PRIME version (BPIP-PRIME, version 04274) was used to calculate downwash parameters for the modeled emission sources by using building, structure, and tank dimensions and heights relative to the modeled sources. None of the point sources exceed Good Engineering Practice (GEP) stack heights.

A necessary step in preparing a modeling exercise with AERMOD is the proper classification of land use in the immediate vicinity of the plant such that the appropriate dispersion coefficients are employed (urban versus rural). As specified in Section 5.1 of the AERMOD Implementation Guide and in Section 7.2.1.1.b of the GAQM, land use within a 3 km radius around the plant property is analyzed to determine the percentage of each of the land use categories within the 3 km area. The Auer land use method was employed to determine the percentage of each of the plant. If land use types from the Developed, Low Intensity, Developed, Medium Intensity, and Developed, High Intensity categories exceed 50% or more of the land use types from those listed categories is less than 50%, then rural dispersion coefficients must be used. If the land use types from those listed categories is less than 50%, then rural dispersion coefficients must be used. In order to determine these percentages, an online tool from the South Carolina Department of

Environmental Services (SCDES) was used by specifying the center of the plant location in latitude-longitude and specifying a 3 km radius around those coordinates¹. This tool then calculated the percentages of each of the land use categories from the Land Cover Database present in the area. Table 1 shows the percentage of each of the land use categories present in the area. As this table shows, 87.5% of the land use within the 3-km radius of the plant is classified as rural. Therefore, rural dispersion coefficients were used for all AERMOD runs.

Landuse	Area(m ²)	Percent	Classification
Open Water	5,481,900	19.4	Rural
Developed Open Space	1,354,500	4.8	Rural
Developed Low Intensity	1,326,600	4.7	Urban
Developed Medium Intensity	1,276,200	4.5	Urban
Developed High Intensity	924,300	3.3	Urban
Barren Land	87,300	0.3	Rural
Deciduous Forest	2,609,100	9.2	Rural
Evergreen Forest	16,200	0.1	Rural
Mixed Forest	293,400	1	Rural
Shrub Scrub	3,600	0	Rural
Herbaceous	9,000	0	Rural
Hay Pasture	1,993,500	7.1	Rural
Cultivated Crops	12,272,400	43.5	Rural
Woody Wetlands	498,600	1.8	Rural
Total Urban		12.5%	
Total Rural		87.5%	

Table 1 - Land Use within 3 km of OSP

Meteorological Data

Pre-processed AERMOD-ready meteorological data required for the modeling is provided by the Kentucky Division for Air Quality (KDAQ). The Division recommends which surface stations and upper air stations should be selected based on the county in which the source being modeled is located. Since OSP is located in Daviess County, Kentucky, KDAQ recommends the following surface and upper air stations for modeling sources in that location²:

Surface Station:	Evansville, Indiana
Upper Air Station:	Nashville, Tennessee

The most recent five years of available meteorological data from these stations, which cover the period from 2019 through 2023, was used for the modeling.

¹ https://gis.dhec.sc.gov/landcover/

² https://eec.ky.gov/Environmental-Protection/Air/Pages/Modeling%20and%20Meteorology.aspx

Terrain Processing and Receptor Input

Receptor coordinates, elevations, and hill height scales were produced by the latest version of the AERMAP terrain processing program for input into AERMOD. USGS Digital Elevation Models (DEMs) were utilized by AERMAP to determine the terrain elevation at each receptor, the hill height scales, and source elevations (if necessary). The DEMs were obtained from the USGS National Elevation Database (NED) in GeoTIFF format, with a resolution of 1/3 arc second (approximately 10 meters) and extend beyond the modeling domain. All source and receptor coordinates were specified in terms of UTM coordinates in NAD83, with UTM Zone 16 set as the base zone for the modeling domain.

The receptor grid used for the assessment of impacts from OSP consists of a Cartesian receptor grid out to 5 km from the plant site, with receptors placed at 100 meter intervals. Modeling was conducted using the Tier 2 procedures described in EPA's Air Toxics Risk Assessment Reference Library, Volume 2³. In accordance with the EPA guidance, The Tier 2 approach shifts from the maximum offsite ambient concentration to the concentrations within Census blocks (i.e., where people actually reside). The nearest residential location to OSP is 1000 meters from the center of the sources of emissions at the plant (See Figure 1). Therefore, only receptors greater than 1000 meters from the plant site were included in the modeling. That procedure provides a conservative approach since most of the area where receptors are 1000 meters away from OSP are not in residential areas.

Source Inputs

In order to complete the modeling setup for air toxics evaluation, it was necessary to identify the emission points and associated subject HAPs/Air Toxic compounds for inclusion in the modeling. Permit F-17-032, Section J identifies the reaction processes and associated vents at the plant. Many of these vents are no longer in service, and many of the vents specified in the permit do not emit HAPs or air toxic compounds or do not have any associated emissions during normal operations. The DAXAD process listed as Emission Point 07 in the permit has been out of service for some time and would require some construction and associated permitting to put that process train back in service. Therefore, DAXAD sources were not included in the modeling. Table 2 lists the vents for each process unit in Section J of the permit and specifies which vents are included in the modeling, which vents are no longer in service at the plant, which vents that are still in service that do not emit HAPs/air toxics, and which vents that are still in service that do not emit HAPs/air toxics, and which vents that are still in Service that have no emissions during normal operation. It should be noted that compounds that are not listed in EPA's RSL tables for residential air impacts were not included in the modeling. However, all HAPs emitted by the process units were included in the modeling.

Table 3 shows the potential emissions of HAPs/air toxics from each vent within each of the reaction process units, including raw material storage tank emissions, fugitive emissions and wastewater treatment emissions. All potential emissions from the process units and associated tanks/fugitives were accounted for in the modeling. Table 4 shows potential emissions of HAPs from the emergency generator at the plant, and Table 5 shows potential emissions of HAPs from the recently-permitted natural gas-fired boiler. While the emergency generator and boiler have trivial emissions of HAPs, their emissions were nonetheless included in the modeling using the Multi-Chemical option in the Lakes AERMOD software for those HAPs only emitted by the boiler or emergency generator.

³ EPA-453-K-04-001B, April 2004

Table 2 - Sources	Included	in	Modeling
-------------------	----------	----	----------

- · · · · · ·					
Emission Unit	Vent ID		Description	Modeling?	Notes
EU 07 DAXAD	VT 1501	1	Manual Vent on R360 via Condenser H-R360	No	No longer in service
	VT 1504	2	Emorgonov Vont for P260	NO	No longer in service
	VT 1504	3	Steam Elector Vent of P360	NO	No longer in service
	VT 1504	2	Vent on 50% Methanol storage tank V304	No	No longer in service
	VT 1501	3	Pohoilor of distillation still BO 342 with yont	NO	No longer in service
	VT 1501	2		INU	
	VT 1504	4	Breather Vent on Distillation Still Condenser (H-D342)	No	No longer in service
	VT 1504	5	Vent on Tank 343 (overhead receiver)	No	No longer in service
	VT 3001	2	Remeth tank (V341)	No	No longer in service
EU 08 DARAN R-200	VT 1301	1	Manual/Emergency vent on tanks V-201 and V-211	Yes	
			Steam Ejector (Vacuum) Vent for Monomer Mix Tanks		
	VT 1308	1	V201, 211, 221 and R200, 210, 220	Yes	
	None		DESM tank V-205 (open top)	No	Does not emit HAP/air toxics
	None		Vent on continuous catalyst tank A (V203)	No	Does not emit HAP/air toxics
	None	6	SEDAR tank V-207 with vent	No	Does not emit HAP/air toxics
	VT 1301	2	Manual/Emergency Vent on R200		No longer in service
	VT 1308	6	Manual Vent on V241, 242 (PSLT 1 and 2)		No longer in service
	VT 1308	3	Steam Ejector (Vacuum) Vent for S200 (A Stripper)	Yes	
			Steam ejector (vacuum) vent for V251, 252, 253, 254		
	VT 1308	8	(SLT 1, 2, 3, 4)	No	Does not emit HAP/air toxics
	VT 1308	12	Vents on V251 and V252 (SLT 1 and 2)	No	Does not emit HAP/air toxics
EU 09 DARAN R-210	VT 1301	1	Manual/Emergency vent on tanks V-201 and V-211	Yes	
			Steam Ejector (Vacuum) Vent for Monomer Mix Tanks		
	VT 1308	1	V201, 211, 221 and R200, 210, 220	Yes	
	None		DESM tank V-205 (open top)	No	Does not emit HAP/air toxics
	VT 1308	11	Vent on continuous catalyst tank B (V213)	No	Does not emit HAP/air toxics
	None	6	SEDAR lank V-207 with vent	No	Does not emit HAP/air toxics
	VT 1301	3		Yes	
	VT 1209	4	Steam Fiector (Vacuum) Vent for S210 (B Stringer)	Voc	
	VI 1300	4	Steam ejector (vacuum) vent for V251, 252, 253, 254	Tes	
	VT 1308	8	(SIT 1 2 3 4)	No	Does not emit HAP/air toxics
	VT 1308	13	Vents on V253 and V254 (SLT 3 and 4)	No	Does not emit HAP/air toxics
	111000	10		110	
EU 10 DARAN R-220	VT 1301	4	Manual/Emergency Vent on V221	Yes	
		· ·	Steam Elector (Vacuum) Vent for Monomer Mix Tanks	100	
	VT 1308	1	V201, 211, 221 and R200, 210, 220	Yes	
	VT 1308	9	Vent on V225 (C DESM tank)	No	Does not emit HAP/air toxics
	None	-	C continuous catalyst tank V-223	No	Does not emit HAP/air toxics
	None	6	SEDAR tank V-207 with vent	No	Does not emit HAP/air toxics
	VT 1301	5	Manual/Emergency Vent on R220	Yes	
	VT 1308	5	Steam Ejector (Vacuum) Vent for S220 (C Stripper)	Yes	
	VT 1308	2	Manual vent on S220 (C Stripper)	No	No emissions under normal operation
EU 11 DARAN R-230	VT 1104	18	Emergency Vent from Monomer Mix Tank V231	No	No emissions under normal operation
	VT 1104	23	Manual Vent on Monomer Mix Tank V231	No	No emissions under normal operation
	VT 1304	2	Vent on continuous catalyst tank (V233)	No	Does not emit HAP/air toxics
	None	6	SEDAR tank V-207 with vent	No	Does not emit HAP/air toxics
	VT 1301	7	Manual/Emergency Vent on R230	No	No emissions under normal operation
	VT 1304	1	Steam Ejector Vent for R230	Yes	
EU 18 DARAN R-51	VT 1104	2	Steam Ejector Vent for reactor 51	No	No emissions under normal operation
	VT 1104	12	Steam out Vent from R51 to Dilution Blower	Yes	Vents to Dilution Blower VT1101-1
	VT 1104	22	Manual Vent on Monomer Mix Tank V-34	No	No emissions under normal operation
	VT 1104	25	Manual/Emergency Vent from R51	No	No emissions under normal operation
	VT 1104	38	Steamout Vent #3 from R51	No	No longer in service
	None		Vacuum receiver VR-R51 with vent	No	No emissions under normal operation

				Include in	
Emission Unit	Vent ID		Description	Modeling?	Notes
EU 12 SPECIALTY R-650	VT 6004	3	Manual Vent on V652 (Monomer Mix Tank)	No	No emissions under normal operation
	VT 6004	1	Continuous feed tank V-653 with vent	No	Does not emit HAP/air toxics
	VT 6004	2	Continuous feed tank V-654 with vent	No	Does not emit HAP/air toxics
	VT 6001	1	Manual Vent on R650	No	No emissions under normal operation
	VT 6001	2	Emergency Vent on R650	Yes	
			Steam ejector vent (to create vacuum on R450, 460 and		
EU 14 SPECIALTYT R-450	VT 1604	3	V451)	No	No longer in service
	VT 1604	1	R450 and R460 Manual Vent	Yes	
	VT 1604	4	Sampling hood vent from R50, 51, 53, 450 and 460	No	No longer in service
	VT 1603	1	Exhaust Fan Vent in Hypol Packaging Area	No	No longer in service
EU 13 PVA R-157	VT 3404	1	Vent on Monomer Mix Tank (V130)	No	No longer in service
	VT 3404	2	Vent on styrene addition tank V130	No	No longer in service
	VT 3404	3	Vent from feed tanks V120, V121	No	No longer in service
	VT 3404	4	Vent on styrene addition tank SB-R157	No	No longer in service
	VT 3404	8	Vent on emulsifier tanks 128 and 129 to exhaust fan	No	No longer in service
			Steam Ejector Vent for R157 (through vacuum receiver		
	VT 3404	5	and condenser)	No	No longer in service
	VT 3401	1	Steam Ejector Vent for R157	Yes	
			Manual Vent for Condenser and Vacuum Receiver on		
	VT 3404	6	R157	No	No longer in service
Tanks	VT 3000	1	Methyl acrylate storage tank (V-521)	Yes	
	VT 3000	2	n-Butyl acrylate storage tank (V-525)	No	Does not emit HAP/air toxics
	VT 3000	3	2-Ethyl hexyl acrylate storage tank (V-522)	No	Does not emit HAP/air toxics
	VT 3000	4	di-n-butyl maleate storage tank (V-514)	No	No longer in service
	VT 3000	5	Methyl methacrylate storage tank (V-512)	Yes	
	VT 3000	6	Methanol storage tank (V-513)*	No	No longer in service
	VT 3000	7	Vinylidene chloride storage tank (V-531)	No	No emissions
	VT 3000	8	Hexylene glycol storage tank (V-516)	No	No longer in service
	VT 3000	9	Ethyl acrylate storage tank (V-515)	No	No longer in service
	VT 3000	10	Styrene storage tank (V-533)	No	No longer in service
	VT 3000	11	Acrylonitrile storage tank (V-511)	Yes	
	VT 3000	12	Vinyl acetate storage tank (V-532)	No	No longer in service

Table 3 - Pollutants and Potential Emissions for Modeling from Process Sources

				Acrylic		Methyl	Methyl	Vinylidene			
				Acid	Acrylonitrile	Acrylate	Methacrylate	Chloride	Cumene	HCI	Xylene
Emissions				Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
Unit	Process	Vent ID	Description	tons/year	tons/year	tons/year	tons/yhear	tons/year	tons/yr	tons/yr	tons/yr
08, 09	DARAN	VT 1301-1	Manual/Emergency vent on tanks V-201 and V- 211	0.0293		0.640	1.100	5.516			
08, 09, 10	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	0.0321	0.0061	0.825	1.219	6.108			
08	DARAN	VT-1308-3	Steam Ejector (Vacuum) Vent for S200 (A Stripper)	0.0397		0.740	1.491	7.478			
09	DARAN	VT-1301-3	Manual/Emergency Vent on R210	0.000054		0.0014	0.00202	0.0101			
09	DARAN	VT-1308-4	Steam Ejector (Vacuum) Vent for S210 (B Stripper)	0.0513		1.293	1.923	9.633			
10	DARAN	VT-1301-4	Manual/Emergency Vent on V221	0.0032	0.0080		0.138	0.690			
10	DARAN	VT-1301-5	Manual/Emergency Vent on R220	0.00075	0.0019		0.0323	0.161			
10	DARAN	VT-1308-5	Steam Ejector (Vacuum) Vent for S220 (C Stripper)	0.0136	0.034		0.585	2.923			
11	DARAN	VT-1304-1	Steam Ejector Vent for R230	0.000039		0.303	0.000039	0.000039			
12	SPECIALTY R-1117	VT-6001-2	Vent on R650		0.67	2.09					
14	SPECIALTY R-1117	VT-1604-1	Vent on R460		1.27	1.15					
16	RAW MATERIAL TANKS	VT-3000-1	Methyl acrylate storage tank (V-521)			0.40					
16	RAW MATERIAL TANKS	VT-3000-11	Acrylonitrile storage tank (V-511)		0.163						
16	RAW MATERIAL TANKS	VT-3000-5	Methyl methacrylate storage tank (V-512)				0.448				
17	WW TREATMENT		Wastewater Treatment Emissions	0.0194	0.052	0.166	0.421	2.295			
18	DARAN	VT-1101-1	Steam out Vent from R51 (VT-1104-12) to Dilution Blower	0.000026			0.000026	0.000026			
			Plantwide Fugitives	0.0057	0.695	0.338	0.117	0.517			
			Product Storage	0.00058			0.0053	0.078			
21	N-Serve	EP-21	Aromatic 100 Storage						0.00073		0.0015
22	N-Serve	EP-22	Xylene Storage Tank								0.0369
24	N-Serve	EP-24	Blend Vessel						0.0024	0.0014	0.0354
	N-Serve		Fugitives						0.00393	0.0183	0.16
Total Modele	ed Emissions, tons per yea	ır		0.20	2.90	7.95	7.48	35.41	0.0070	0.020	0.23

Engine Power		Emission	Potential	Potential
Rating		Factor	Emissions	Emissions
HP	Pollutant	lb/mgal ¹	lb/hr	tons/yr ²
423	Benzene	1.06E-01	2.23E-03	5.58E-04
	Toluene	3.85E-02	8.08E-04	2.02E-04
Fuel Usage	Xylene	2.64E-02	5.55E-04	1.39E-04
gal/hr	Formaldehyde	1.08E-02	2.27E-04	5.67E-05
21	Acetaldehyde	3.45E-03	7.25E-05	1.81E-05
	Acrolein	1.08E-03	2.27E-05	5.67E-06
	Naphthalene	1.78E-02	3.74E-04	9.35E-05
	Acenaphthylene	1.26E-03	2.66E-05	6.64E-06
	Acenaphthene	6.41E-04	1.35E-05	3.37E-06
	Fluorene	1.75E-03	3.68E-05	9.21E-06
	Phenanthrene	5.59E-03	1.17E-04	2.93E-05
	Anthracene	1.69E-04	3.54E-06	8.85E-07
	Fluoranthene	5.52E-04	1.16E-05	2.90E-06
	Pyrene	5.08E-04	1.07E-05	2.67E-06
	Benz(a)anthracene	8.52E-05	1.79E-06	4.47E-07
	Chrysene	2.10E-04	4.40E-06	1.10E-06
	Benzo(b)fluoranthene	1.52E-04	3.19E-06	7.98E-07
	Benzo(k)fluoranthene	2.99E-05	6.27E-07	1.57E-07
	Benzo(a)pyrene	3.52E-05	7.39E-07	1.85E-07
	Indeno(1,2,3-cd)pyrene	5.67E-05	1.19E-06	2.98E-07
	Dibenze(a,h)anthracene	4.74E-05	9.95E-07	2.49E-07
	Benzo(g,h,l)perylene	7.62E-05	1.60E-06	4.00E-07

Table 4Diesel Generator Hazardous Air Pollutant Emissions

¹Emission Factors from AP-42 Chapter 3.4-3 and 3.4-4, conversion factor of 137,000 Btu/gal.

²Maximum of 500 hours per year of operation

Natural		Emission	Potential	Potential
Gas Usage		Factor	Emissions	Emissions
mmft ³ /hr	Pollutant	lb/mmft ³	lb/hr	tons/year
0.021	2-Methylnaphthalene	2.40E-05	5.04E-07	2.21E-06
	3-Methylchloranthrene	1.80E-06	3.78E-08	1.66E-07
	7,12-Dimethylbenz(a)anthracene	1.60E-05	3.36E-07	1.47E-06
	Acenaphthene	1.80E-06	3.78E-08	1.66E-07
	Acenaphthylene	1.80E-06	3.78E-08	1.66E-07
	Anthracene	2.40E-06	5.04E-08	2.21E-07
	Arsenic	2.00E-04	4.20E-06	1.84E-05
	Benz(a)anthracene	1.80E-06	3.78E-08	1.66E-07
	Benzene	2.10E-03	4.41E-05	1.93E-04
	Benzo(a)pyrene	1.20E-06	2.52E-08	1.10E-07
	Benzo(b)fluoranthene	1.80E-06	3.78E-08	1.66E-07
	Benzo(g,h,i)perylene	1.20E-06	2.52E-08	1.10E-07
	Benzo(k)fluoanthene	1.80E-06	3.78E-08	1.66E-07
	Beryllium	1.20E-05	2.52E-07	1.10E-06
	Cadmium	1.10E-03	2.31E-05	1.01E-04
	Chromium	1.40E-03	2.94E-05	1.29E-04
	Chrysene	1.80E-06	3.78E-08	1.66E-07
	Cobalt	8.40E-05	1.76E-06	7.73E-06
	Dibenzo(a,h)anthracene	1.20E-06	2.52E-08	1.10E-07
	Dichlorobenzene	1.20E-03	2.52E-05	1.10E-04
	Fluoranthene	3.00E-06	6.30E-08	2.76E-07
	Fluorene	2.80E-06	5.88E-08	2.58E-07
	Formaldehyde	7.50E-02	1.58E-03	6.90E-03
	Hexane	1.80E+00	3.78E-02	1.66E-01
	Indo(1,2,3-c,d)pyrene	1.80E-06	3.78E-08	1.66E-07
	Lead	5.00E-04	1.05E-05	4.60E-05
	Manganese	3.80E-04	7.98E-06	3.50E-05
	Mercury	2.60E-04	5.46E-06	2.39E-05
	Naphthalene	6.10E-04	1.28E-05	5.61E-05
	Nickel	2.10E-03	4.41E-05	1.93E-04
	Phenanthrene	1.70E-05	3.57E-07	1.56E-06
	Pyrene	5.00E-06	1.05E-07	4.60E-07
	Selenium	2.40E-05	5.04E-07	2.21E-06
	Toluene	3.40E-03	7.14E-05	3.13E-04

Table 5Natural Gas Boiler Hazardous Air Pollutant Emissions

Emission Factors from AP-42 Tables 1.4-3 and 1.4-4

Finally, Table 6 presents the coordinates and stack parameters for point sources included in the modeling. Fugitive emissions were modeled as rectangular area sources that encompass raw material storage, process areas, and product storage. Product storage emissions were included in the fugitive emissions. Wastewater treatment emissions were also modeled as a rectangular area source. Figure 2 shows the locations of the modeled sources within the plant.

Modeling Results

Having compiled the necessary data, AERMOD modeling was conducted using potential emissions of each HAP/air toxic compound. The annual averaging period was chosen for each pollutant model run, with the highest predicted impact over the five (5) year of meteorological data reported for comparison with the relevant thresholds.

Once the modeling for each pollutant was completed, the cancer risk for carcinogens and the chronic non-cancer hazard for non-carcinogens were calculated to determine whether emissions of any of the modeled compounds pose a risk or hazard. In order to perform this evaluation, the relevant Inhalation Risk Unit (IUR) values and Reference Concentration (RfC) values from the EPA Regional Screening Level (RSL) Resident Ambient Air Table (TR=1E-06, HQ=1), November 2024, were used.

For those carcinogens with a specified IUR, the risk was calculated as follows:

Risk = Modeled Concentration (ug/m³) x IUR (1/ug/m³)

If the calculated risk is greater than the IUR, then impacts from the subject pollutant could pose a cancer risk to the exposed population and further analysis/emission reductions could be warranted.

For those pollutants with a specified RfC, the hazard potential was calculated as follows:

Hazard = Modeled Concentration (ug/m³) / RfC (ug/m³)

If the calculated hazard potential is greater than the RfC, then impacts from the subject pollutant could pose a noncancer hazard to the exposed population and further analysis/emission reductions could be warranted.

Table 7 presents the results of the modeling showing the maximum annual modeled impacts and the calculated cancer risk and noncancer hazard potential. As these results show, none of the modeled pollutants will pose a cancer risk or hazard potential to the exposed population. These results should be overly conservative since potential emissions were used in the modeling. Owensboro Specialty Polymers is classified as a Conditional Major source of emissions with emission limits for individual HAPs of 9 tons per year each and a total HAP emission limit of 22.5 tons per year. Total modeled HAP emissions are more than twice the permitted limit, and one HAP (vinylidene chloride) was modeled at potential emissions of over 35 tons per year. Therefore, this modeling program demonstrates emissions of HAPs/air toxics from Owensboro Specialty Polymers will not result in adverse impacts to the exposed population.

Modeling files are being provided electronically to KDAQ.

Table 6 - Stack Parameters for Modeling

				UTM	UTM	Stack	Stack	Stack	Stack Gas
Emissions				East	North	Height	Diameter	Temperature	Velocity
Unit	Process	Vent ID	Description	m	m	ft	ft	F	ft/sec
08	DARAN	VT 1301-1	Manual/Emergency vent on tanks V-201 and V-211	495468.9	4184860.8	13	0.25	70	0.1
08, 09, 10	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	495502.1	4184848.4	51	0.25	225	0.09
08	DARAN	VT-1308-3	Steam Ejector (Vacuum) Vent for S200 (A Stripper)	495503.4	4184850.6	51	0.25	225	0.24
09	DARAN	VT-1301-3	Manual/Emergency Vent on R210	495468.3	4184859.9	13	0.25	90	0.02
09	DARAN	VT-1308-4	Steam Ejector (Vacuum) Vent for S210 (B Stripper)	495503.1	4184850.1	51	0.25	225	0.32
10	DARAN	VT-1301-4	Manual/Emergency Vent on V221	495467.2	4184858.2	13	0.25	70	0.08
10	DARAN	VT-1301-5	Manual/Emergency Vent on R220	495468.1	4184859.4	13	0.25	90	0.019
10	DARAN	VT-1308-5	Steam Ejector (Vacuum) Vent for S220 (C Stripper)	495506.2	4184838.3	51	0.25	225	0.35
11	DARAN	VT-1304-1	Steam Ejector Vent for R230	495504.7	4184877.7	29	0.25	225	0.09
12	SPECIALTY R-1117	VT-6001-2	Vent on R650	495536.7	4184931.9	16	0.33	125	0.02
14	SPECIALTY R-1117	VT-1604-1	Vent on R460	495525.3	4184891.2	43	0.333	125	0.00009
16	RAW MATERIAL TANKS	VT-3000-1	Methyl acrylate storage tank (V-521)	495374.3	4184859.7	28.2	0.667	70	0.0013
16	RAW MATERIAL TANKS	VT-3000-11	Acrylonitrile storage tank (V-511)	495378.5	4184857.8	28.2	0.667	70	0.0013
16	RAW MATERIAL TANKS	VT-3000-5	Methyl methacrylate storage tank (V-512)	495383.3	4184866.9	29.4	0.25	70	0.01
17	WW TREATMENT		Wastewater Treatment Emissions	Modeled as a re	ectangular area s	ource wit	h a ground-le	vel release height	
18	DARAN	VT-1101-1	Steam out Vent from R51 (VT-1104-12) to Dilution Blower	495538.8	4184944.3	30	0.1667	125	0.014
			Plantwide Fugitives	Modeled as a rectangular area source with a 10 ft. release height					
			Product Storage	Included with fugtive emissions					
21	N-Serve	EP-21	Aromatic 100 Storage	495461.6	4184894.5	35	1.167	70	0.57
22	N-Serve	EP-22	Xylene Storage Tank	495467.4	4184892.9	24	1	70	0.18
24	N-Serve	EP-24	Blend Vessel	495461.6	4184892.9	24	1.167	70	0.15
	N-Serve		Fugitives	Modeled as a re	ectangular area s	source wit	h a 10 ft. rele	ase height	

Figure 2 – Source Locations for AERMOD Modeling

Table 7 - Results of HAP/Air Toxic Modeling

			Carcinogentic	Noncancer	Concentration at				Pick at maximally	Hazard at the		
		Source of	Target Risk (TR)	Hazard Index	maximally impacted		Inhalation	Reference	impacted residential	maximally impacted		
	Averaging	Screening	Value (ug/m ³) =	(HI) Value	residential receptor	Concentration >	Risk Unit	Concentration	receptor	residential receptor		
Pollutant	Time	Number	1E-06	(ug/m ³) = 1	(ug/m³)	RSL value?	(IUR)	(RfC)	IUR*[concentration]	[concentration]/RfC	Risk?	Hazard?
Acrylonitrile	Annual	RSL	4.10E-02	2.10E+00	3.90E-01	Yes	6.80E-05	2.00E+00	2.65E-05	1.95E-01	No	No
Acrylic Acid	Annual	RSL		2.10E-01	2.10E-02	No		2.00E-01		1.05E-01	No	No
Methyl Acrylate	Annual	RSL		2.10E+01	9.60E-01	No		2.00E+01		4.80E-02	No	No
Methyl Methacrylate	Annual	RSL		7.30E+02	8.10E-01	No		7.00E+02		1.16E-03	No	No
Vinylidene Chloride	Annual	RSL		4.10E+00	3.75E+00	No		3.96E+00		9.47E-01	No	No
Xylene	Annual	RSL		1.00E+02	1.70E-01	No		1.00E+02		1.70E-03	No	No
Cumene	Annual	RSL		4.20E+02	1.20E-03	No		4.00E+02		3.00E-06	No	No
HCI	Annual	RSL		2.10E+01	3.50E-03	No		2.00E+01		1.75E-04	No	No
3-Methylchloranthrene	Annual	RSL	1.60E-04		3.10E-09	No	6.30E-03		1.95E-11		No	No
7,12-Dimethylbenz(a)anthracene	Annual	RSL	1.40E-05		2.70E-08	No	7.10E-02		1.92E-09		No	No
Acetaldehyde	Annual	RSL	1.30E+00	9.40E+00	7.50E-07	No	2.20E-06	9.00E+00		8.33E-08	No	No
Acrolein	Annual	RSL		2.10E-02	2.30E-07	No		2.00E-02		1.15E-05	No	No
Arsenic	Annual	RSL	6.50E-04	1.60E-02	3.40E-07	No	4.30E-03	1.50E-02	1.46E-09	2.27E-05	No	No
Benz(a)anthracene	Annual	RSL	1.70E-02		2.00E-08	No	6.00E-05				No	No
Benzene	Annual	RSL	3.60E-01	3.10E+01	2.50E-05	No	7.80E-06	3.00E+01	1.95E-10	8.33E-07	No	No
Benzo(a)pyrene	Annual	RSL	1.70E-03	2.10E-03	8.50E-09	No	6.00E-04	2.00E-03		4.25E-06	No	No
Benzo(b)fluoranthene	Annual	RSL	1.70E-02		3.40E-08	No	6.00E-05		2.04E-12		No	No
Benzo(k)fluoanthene	Annual	RSL	1.70E-01		7.90E-09	No	6.00E-06				No	No
Beryllium	Annual	RSL	1.20E-03	2.10E-02	2.00E-08	No	2.40E-03	2.00E-02	4.80E-11	1.00E-06	No	No
Cadmium	Annual	RSL	1.60E-03	1.00E-02	1.90E-06	No	1.80E-03	1.00E-02	3.42E-09	1.90E-04	No	No
Chromium	Annual	RSL		6.30E-02	2.40E-06	No		6.00E-02		4.00E-05	No	No
Chrysene	Annual	RSL	1.70E+00		4.70E-08	No	6.00E-07		2.82E-14		No	No
Cobalt	Annual	RSL	3.10E-04	6.30E-03	1.40E-07	No	9.00E-03	6.00E-03	1.26E-09	2.33E-05	No	No
Dibenzo(a,h)anthracene	Annual	RSL	1.70E-03		1.10E-08	No	6.00E-04		6.60E-12		No	No
Dichlorobenzene	Annual	RSL	2.60E-01	8.30E+02	2.00E-06	No	1.10E-05	8.00E+02	2.20E-11	2.50E-09	No	No
Formaldehyde	Annual	RSL	1.40E-01	7.30E+00	1.30E-04	No	7.40E-06	7.00E+00	9.62E-10	1.86E-05	No	No
Hexane	Annual	RSL		7.30E+02	3.10E-03	No		7.00E+02		4.43E-06	No	No
Indo(1,2,3-c,d)pyrene	Annual	RSL	1.70E-02		1.40E-08	No	6.00E-05				No	No
Lead	Annual	RSL		1.50E-01	8.50E-07	No					No	No
Manganese	Annual	RSL		5.20E-02	6.50E-07	No		5.00E-02		1.30E-05	No	No
Mercury	Annual	RSL		3.10E-01	4.40E-07	No		3.00E-01		1.47E-06	No	No
Naphthalene	Annual	RSL	8.30E-02	3.10E+00	4.30E-06	No	3.40E-05	3.00E+00	1.46E-10	1.43E-06	No	No
Nickel	Annual	RSL	1.10E-02	1.00E-02	3.60E-06	No	2.60E-04	1.00E-02	9.36E-10	3.60E-04	No	No
Selenium	Annual	RSL		2.10E+01	4.10E-08	No		2.00E+01		2.05E-09	No	No
Toluene	Annual	RSL		5.21E+03	1.20E-05	No		5.00E+03		2.40E-09	No	No

Permit question

From Barry Sparks < Barry.Sparks@Milliken.com>

Date Mon 4/21/2025 3:04 PM

- To Patil, Durga D (EEC) < Durga.Patil@ky.gov>
- Cc CHRIS WATHEN <CWATHEN@kenvirons.com>

This Message Originated from Outside the Organization

This Message Is From an External Sender.

Report Suspicious

Patil

Please move forward with the permit excluding the PVA R157 process which contains the Vinyl acetate as Owensboro Specialty Polymers does not intend to make this in the future.

Barry Sparks Owensboro Specialty Polymers Inc. a Milliken Company Office: 270-663-1422 Cell: 270-315-8056

Confidentiality and Commercial Terms and Conditions Notice:

This message may contain privileged or confidential information and is intended only for the use of the addressee. Please advise immediately if you or your employer do not consent to e-mail for messages of this kind. If you are not the addressee, or person responsible for delivering this message to the person addressed, you may not copy or deliver this to anyone else. If you receive this message by mistake, please notify the sender immediately by return e-mail. All commercial transactions, offers and acceptances are exclusively subject/limited to and conditioned upon our terms posted at our <u>Terms</u> and <u>Conditions</u> page. We object to and reject any additional/different terms and conditions unless we expressly agree to them in writing.

Privacy Terms:

Our Data Protection Notices meet the high data protection standards set by the European General Data Protection Regulation ("GDPR"). You have the right to object to the processing of personal data for direct marketing purposes at any time. For more information about our data protection practices and to view a copy of our Data Protection Notices please refer to our <u>Privacy</u> page.

				Acrylic		Methyl	Methyl	Vinylidene			
				Acid	Acrylonitrile	Acrylate	Methacrylate	Chloride	Cumene	HCI	Xylene
Emissions				Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
Unit	Process	Vent ID	Description	tons/year	tons/year	tons/year	tons/yhear	tons/year	tons/yr	tons/yr	tons/yr
08	DARAN	VT 1301-1	Manual/Emergency vent on tanks V-201 and V- 211	0.0151		0.281	0.566	2.839			
08	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	0.0152		0.362	0.573	2.873			
08	DARAN	VT-1308-3	Steam Ejector (Vacuum) Vent for S200 (A Stripper)	0.0397		0.740	1.491	7.478			
09	DARAN	VT 1301-1	Manual/Emergency vent on tanks V-201 and V- 211	0.0143		0.359	0.534	2.677			
09	DARAN	VT-1301-3	Manual/Emergency Vent on R210	0.000054		0.0014	0.0020	0.0101			
09	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	0.0144		0.463	0.541	2.709			
09	DARAN	VT-1308-4	Steam Ejector (Vacuum) Vent for S210 (B Stripper)	0.0513		1.293	1.923	9.633			
10	DARAN	VT-1301-4	Manual/Emergency Vent on V221	0.0032	0.0080		0.138	0.690			
10	DARAN	VT-1301-5	Manual/Emergency Vent on R220	0.00075	0.0019		0.0323	0.161			
10	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	0.0024	0.0061		0.105	0.526			
10	DARAN	VT-1308-5	Steam Ejector (Vacuum) Vent for S220 (C Stripper)	0.0136	0.034		0.585	2.923			
11	DARAN	VT-1304-1	Steam Ejector Vent for R230	0.000039		0.303	0.000039	0.000039			
12	SPECIALTY R-1117	VT-6001-2	Vent on R650		0.67	2.09					
16	RAW MATERIAL TANKS	VT-3000-1	Methyl acrylate storage tank (V-521)			0.40					
16	RAW MATERIAL TANKS	VT-3000-11	Acrylonitrile storage tank (V-511)		0.163						
16	RAW MATERIAL TANKS	VT-3000-5	Methyl methacrylate storage tank (V-512)				0.448				
17	WW TREATMENT		Wastewater Treatment Emissions	0.0194	0.052	0.166	0.421	2.295			
18	DARAN	VT-1101-1	Steam out Vent from R51 (VT-1104-12) to Dilution Blower	0.000026			0.000026	0.000026			
			Plantwide Fugitives	0.0057	0.695	0.338	0.117	0.517			
			Product Storage	0.00058			0.0053	0.078			
21	N-Serve	EP-21	Aromatic 100 Storage						0.00073		0.0015
22	N-Serve	EP-22	Xylene Storage Tank								0.0369
24	N-Serve	EP-24	Blend Vessel						0.0024	0.0014	0.0354
	N-Serve		Fugitives						0.00393	0.0183	0.16

OWENSBORO SPECIALTY POLYMERS, INC.

HAP/AIR TOXIC MODELING REPORT

Prepared For:

OWENSBORO SPECIALTY POLYMERS, INC.

Prepared By:

Kenvirons, LLC

Project Number 2025038

March 2025

Introduction

Owensboro Specialty Polymers (OSP), located in Daviess County in Owensboro, Kentucky, is a manufacturer of specialty polymers and holds a current air permit in Kentucky, Conditional Major Permit No. F-17-032. A timely permit renewal application was submitted by the facility to the Kentucky Division for Air Quality (KDAQ), and during the course of the permit review process KDAQ requested that OSP provide an analysis of ambient air impacts of Hazardous Air Pollutants (HAPs) and non-HAP air toxic compounds to demonstrate that emissions from the facility will not result in adverse exposure to the residential population surrounding the plant site.

In order to perform this analysis, dispersion modeling for emissions of HAPs/air toxics at OSP was performed by Kenvirons, LLC. In order to perform this modeling, it was necessary to employ an EPA-approved air quality dispersion model.

Since some of the terrain within the modeling domain is above the stack heights at the plant, the terrain is classified as complex, and as such, a model appropriate for use in complex terrain must be used. In accordance with the Guideline on Air Quality Models (GAQM, Appendix W to 40 CFR Part 51), the appropriate model for application to this domain is the EPA AERMOD dispersion model. For this modeling analysis, the latest version of the AERMOD model (version 24142) was used for predicting ambient air impacts for each modeled pollutant. The specific model user interface used for the modeling was AERMOD-View by Lakes Environmental (Ontario, Canada).

Application of the AERMOD model to evaluate air quality impacts from OSP requires setting model control options, processing the appropriate meteorological and terrain data, setting receptor grids, determining background concentrations, inputting source emission and stack parameter data, and generating output necessary for the proper impact evaluation.

AERMOD Model Options

For all modeling runs conducted for the evaluation of the plant's air quality impacts, the regulatory default option in AERMOD was selected.

In order to include building wake effects, the Building Profile Input Program, PRIME version (BPIP-PRIME, version 04274) was used to calculate downwash parameters for the modeled emission sources by using building, structure, and tank dimensions and heights relative to the modeled sources. None of the point sources exceed Good Engineering Practice (GEP) stack heights.

A necessary step in preparing a modeling exercise with AERMOD is the proper classification of land use in the immediate vicinity of the plant such that the appropriate dispersion coefficients are employed (urban versus rural). As specified in Section 5.1 of the AERMOD Implementation Guide and in Section 7.2.1.1.b of the GAQM, land use within a 3 km radius around the plant property is analyzed to determine the percentage of each of the land use categories within the 3 km area. The Auer land use method was employed to determine the percentage of each of the plant. If land use types from the Developed, Low Intensity, Developed, Medium Intensity, and Developed, High Intensity categories exceed 50% or more of the land use types from those listed categories is less than 50%, then rural dispersion coefficients must be used. If the land use types from those listed categories is less than 50%, then rural dispersion coefficients must be used. In order to determine these percentages, an online tool from the South Carolina Department of

Environmental Services (SCDES) was used by specifying the center of the plant location in latitude-longitude and specifying a 3 km radius around those coordinates¹. This tool then calculated the percentages of each of the land use categories from the Land Cover Database present in the area. Table 1 shows the percentage of each of the land use categories present in the area. As this table shows, 87.5% of the land use within the 3-km radius of the plant is classified as rural. Therefore, rural dispersion coefficients were used for all AERMOD runs.

Landuse	Area(m ²)	Percent	Classification
Open Water	5,481,900	19.4	Rural
Developed Open Space	1,354,500	4.8	Rural
Developed Low Intensity	1,326,600	4.7	Urban
Developed Medium Intensity	1,276,200	4.5	Urban
Developed High Intensity	924,300	3.3	Urban
Barren Land	87,300	0.3	Rural
Deciduous Forest	2,609,100	9.2	Rural
Evergreen Forest	16,200	0.1	Rural
Mixed Forest	293,400	1	Rural
Shrub Scrub	3,600	0	Rural
Herbaceous	9,000	0	Rural
Hay Pasture	1,993,500	7.1	Rural
Cultivated Crops	12,272,400	43.5	Rural
Woody Wetlands	498,600	1.8	Rural
Total Urban		12.5%	
Total Rural		87.5%	

Table 1 - Land Use within 3 km of OSP

Meteorological Data

Pre-processed AERMOD-ready meteorological data required for the modeling is provided by the Kentucky Division for Air Quality (KDAQ). The Division recommends which surface stations and upper air stations should be selected based on the county in which the source being modeled is located. Since OSP is located in Daviess County, Kentucky, KDAQ recommends the following surface and upper air stations for modeling sources in that location²:

Surface Station:	Evansville, Indiana
Upper Air Station:	Nashville, Tennessee

The most recent five years of available meteorological data from these stations, which cover the period from 2019 through 2023, was used for the modeling.

¹ https://gis.dhec.sc.gov/landcover/

² https://eec.ky.gov/Environmental-Protection/Air/Pages/Modeling%20and%20Meteorology.aspx

Terrain Processing and Receptor Input

Receptor coordinates, elevations, and hill height scales were produced by the latest version of the AERMAP terrain processing program for input into AERMOD. USGS Digital Elevation Models (DEMs) were utilized by AERMAP to determine the terrain elevation at each receptor, the hill height scales, and source elevations (if necessary). The DEMs were obtained from the USGS National Elevation Database (NED) in GeoTIFF format, with a resolution of 1/3 arc second (approximately 10 meters) and extend beyond the modeling domain. All source and receptor coordinates were specified in terms of UTM coordinates in NAD83, with UTM Zone 16 set as the base zone for the modeling domain.

The receptor grid used for the assessment of impacts from OSP consists of a Cartesian receptor grid out to 5 km from the plant site, with receptors placed at 100 meter intervals. Modeling was conducted using the Tier 2 procedures described in EPA's Air Toxics Risk Assessment Reference Library, Volume 2³. In accordance with the EPA guidance, The Tier 2 approach shifts from the maximum offsite ambient concentration to the concentrations within Census blocks (i.e., where people actually reside). The nearest residential location to OSP is 1000 meters from the center of the sources of emissions at the plant (See Figure 1). Therefore, only receptors greater than 1000 meters from the plant site were included in the modeling. That procedure provides a conservative approach since most of the area where receptors are 1000 meters away from OSP are not in residential areas.

Source Inputs

In order to complete the modeling setup for air toxics evaluation, it was necessary to identify the emission points and associated subject HAPs/Air Toxic compounds for inclusion in the modeling. Permit F-17-032, Section J identifies the reaction processes and associated vents at the plant. Many of these vents are no longer in service, and many of the vents specified in the permit do not emit HAPs or air toxic compounds or do not have any associated emissions during normal operations. The DAXAD process listed as Emission Point 07 in the permit has been out of service for some time and would require some construction and associated permitting to put that process train back in service. Therefore, DAXAD sources were not included in the modeling. Table 2 lists the vents for each process unit in Section J of the permit and specifies which vents are included in the modeling, which vents are no longer in service at the plant, which vents that are still in service that do not emit HAPs/air toxics, and which vents that are still in service that do not emit HAPs/air toxics, and which vents that are still in Service that have no emissions during normal operation. It should be noted that compounds that are not listed in EPA's RSL tables for residential air impacts were not included in the modeling. However, all HAPs emitted by the process units were included in the modeling.

Table 3 shows the potential emissions of HAPs/air toxics from each vent within each of the reaction process units, including raw material storage tank emissions, fugitive emissions and wastewater treatment emissions. All potential emissions from the process units and associated tanks/fugitives were accounted for in the modeling. Table 4 shows potential emissions of HAPs from the emergency generator at the plant, and Table 5 shows potential emissions of HAPs from the recently-permitted natural gas-fired boiler. While the emergency generator and boiler have trivial emissions of HAPs, their emissions were nonetheless included in the modeling using the Multi-Chemical option in the Lakes AERMOD software for those HAPs only emitted by the boiler or emergency generator.

³ EPA-453-K-04-001B, April 2004

Table 2 - Sources Included in Modeling

Emission Unit	Vent ID		Description	Include in Modeling?	Notes		
	VT 1501	1	Manual Vent on R360 via Condenser H-R360	No.	No longer in service		
	VT 1501	1	Manual Vent on R360 via Condenser H-R360	No	No longer in service		
	VT 1504	2	Emergency Vent for R360	No	No longer in service		
	VT 1504	3	Steam Elector Vent of P360	NO	No longer in service		
	VT 1504	2	Vent on 50% Methanol storage tank V204	NO	No longer in service		
	VT 1501	3	Deheiler of distillation still DO 242 with went	NO	No longer in service		
	VT 1501	2	Reporter of distillation still BO-342 with vent	NO	No longer in service		
	VT 1504	4	Breather Vent on Distillation Still Condenser (H-D342)	No	No longer in service		
	VT 1504	5	Vent on Tank 343 (overhead receiver)	No	No longer in service		
	VT 3001	2	Remeth tank (V341)	No	No longer in service		
EU 08 DARAN R-200	VT 1301	1	Manual/Emergency vent on tanks V-201 and V-211	Yes			
	VT 1308	1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	Yes			
	None	<u> </u>	DESM tank V-205 (open top)	No	Does not emit HAP/air toxics		
	None		Vent on continuous catalyst tank A (V203)	No	Does not emit HAP/air toxics		
	None	6	SEDAR tank V-207 with vent	No	Does not emit HAP/air toxics		
	VT 1201	2	Manual/Emergency Vent on R200	NO	No longer in convice		
	VT 1301	2	Manual Vont on V241, 242 (PSLT 1 and 2)		No longer in service		
	VI 1308	0	Manual Vent OII V241, 242 (POLT Tanu 2)		No longer in service		
	VT 1308	3	Steam Ejector (Vacuum) Vent for S200 (A Stripper)	Yes			
	VT 1308	8	Steam ejector (vacuum) vent for V251, 252, 253, 254 (SLT 1, 2, 3, 4)	No	Does not emit HAP/air toxics		
	VT 1308	12	Vents on V251 and V252 (SLT 1 and 2)	No	Does not emit HAP/air toxics		
EU 09 DARAN R-210	VT 1301	1	Manual/Emergency vent on tanks V-201 and V-211 Steam Eiector (Vacuum) Vent for Monomer Mix Tanks	Yes			
	VT 1308	1	V201, 211, 221 and R200, 210, 220	Yes			
	None	<u> </u>	DESM tank V-205 (open top)	No	Does not emit HAP/air toxics		
	VT 1308	11	Vent on continuous catalyst tank B (V213)	No	Does not emit HAP/air toxics		
	None	6	SEDAR tank V-207 with vent	No	Does not emit HAP/air toxics		
	VT 1301	3	Manual/Emergency Vent on R210	Ves			
	V1 1001			103			
	VT 1308	4	Steam Ejector (Vacuum) Vent for S210 (B Stripper)	Yes			
	VT 1308	8	Steam ejector (vacuum) vent for V251, 252, 253, 254 (SLT 1, 2, 3, 4)	No	Does not emit HAP/air toxics		
	VT 1308	13	Vents on V253 and V254 (SLT 3 and 4)	No	Does not emit HAP/air toxics		
EU 10 DARAN R-220	VT 1301	4	Manual/Emergency Vent on V221	Yes			
	VT 1308	1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks	Ves			
	VT 1308	à	Vent on V225 (C DESM tank)	No	Does not emit HAP/air toxics		
	None	3	C continuous catalyst tank V-223	No	Does not emit HAP/air toxics		
	None	6	SEDAR tank V-207 with vent	No			
	VT 1201	5	Manual/Emergency Vent on R220	Voc			
	VT 1501	5		163			
	VT 1209	5	Steam Figster (Vacuum) Vant for \$220 (C. Stripper)	Vee			
	VT 1300	2	Manual yent on \$220 (C Stripper)	No	No omissions under normal operation		
	VT 1500	2		INU			
	VT 1104	10	Emorgonou) (ont from Monomor Mix Tonk) (221	Ne	No emissione under normal energian		
EU TI DARAN R-230	VT 1104	10	Energency vent norm monomer Mix Tank V231	NO	No emissions under normal operation		
	VT 1104	23		NO	No emissions under normal operation		
	VI 1304	2	CEDAD tenk (2007 with yent	NO	Does not emit HAP/air toxics		
		6	SEDAR talik V-207 Will Vent	INO			
	VT 1301		Nanual/Emergency vention R230	INO	ivo emissions under normal operation		
	VT 1304	1	Steam Ejector Ventior R230	res			
	VI 6004	1	Continuous feed tank V-653 With Vent	No	Does not emit HAP/air toxics		
	VI 6004	2	Continuous teed tank V-654 with vent	No	Does not emit HAP/air toxics		
	1 /mm	-	Otean Fielder Marth				
EU 18 DARAN R-51	V î 1104	2	Steam Ejector Vent for reactor 51	No	No emissions under normal operation		
	VT 1104	12	Steam out Vent from R51 to Dilution Blower	Yes	Vents to Dilution Blower VT1101-1		
	VT 1104	22	Manual Vent on Monomer Mix Tank V-34	No	No emissions under normal operation		
	VT 1104	25	Manual/Emergency Vent from R51	No	No emissions under normal operation		
	VT 1104	38	Steamout Vent #3 from R51	No	No longer in service		
	None		Vacuum receiver VR-R51 with vent	No	No emissions under normal operation		

Emission Unit Vent ID			Description	Include in Modeling?	Notos		
		2	Manual Vent on V652 (Monomer Mix Tank)	No	Notes		
EU 12 SPECIALTT R-050	VT 6004	1	Continuous feed tank V-653 with vent	No			
	VT 6004	2	Continuous feed tank V-654 with vent	No			
	VT 6004	2	Manual Vent on R650	No	No omissions under normal operation		
	VT 6001	2	Emergency Vent on R650	Voc			
	VT 0001	2		165			
			Steam elector yent (to create vacuum on R450, 460 and				
	VT 1604	2		No	No longor in convico		
EU 14 SPECIALITTI R-430	VT 1604	1	R450 Manual Vent	No	No longer in service		
	V1 1004			NU	No longer in service		
	VT 1604	4	Sampling bood vent from R50, 51, 53, 450 and 460	No	No longer in service		
	VT 1603	1	Exhaust Ean Vent in Hypol Packaging Area	No	No longer in service		
	V1 1005			110			
EU 13 PVA R-157	VT 3404	1	Vent on Monomer Mix Tank (V130)	No	No longer in service		
	VT 3404	2	Vent on styrene addition tank V130	No	No longer in service		
	VT 3404	3	Vent from feed tanks V120 V121	No	No longer in service		
	VT 3404	4	Vent on styrene addition tank SB-R157	No	No longer in service		
	110101	<u> </u>		110			
	VT 3404	8	Vent on emulsifier tanks 128 and 129 to exhaust fan	No	No longer in service		
			Steam Ejector Vent for R157 (through vacuum receiver				
	VT 3404	5	and condenser)	No	No longer in service		
	VT 3401	1	Steam Ejector Vent for R157	Yes			
			Manual Vent for Condenser and Vacuum Receiver on				
	VT 3404	6	R157	No	No longer in service		
Tanks	VT 3000	1	Methyl acrylate storage tank (V-521)	Yes			
	VT 3000	2	n-Butyl acrylate storage tank (V-525)	No	Does not emit HAP/air toxics		
	VT 3000	3	2-Ethyl hexyl acrylate storage tank (V-522)	No	Does not emit HAP/air toxics		
	VT 3000	4	di-n-butyl maleate storage tank (V-514)	No	No longer in service		
	VT 3000	5	Methyl methacrylate storage tank (V-512)	Yes			
	VT 3000	6	Methanol storage tank (V-513)*	No	No longer in service		
	VT 3000	7	Vinylidene chloride storage tank (V-531)	No	No emissions		
	VT 3000	8	Hexylene glycol storage tank (V-516)	No	No longer in service		
	VT 3000	9	Ethyl acrylate storage tank (V-515)	No	No longer in service		
	VT 3000	10	Styrene storage tank (V-533)	No	No longer in service		
	VT 3000	11	Acrylonitrile storage tank (V-511)	Yes			
	VT 3000	12	Vinyl acetate storage tank (V-532)	No	No longer in service		
	VT 3004	1	Glacial methacrylate storage tank V-701	No	No longer in service		

Table 2 - Sources Included in Modeling

Table 3 - Pollutants and Potential Emissions for Modeling from Process Sources

				Acrylic		Methyl	Methyl	Vinylidene			
				Acid	Acrylonitrile	Acrylate	Methacrylate	Chloride	Cumene	НСІ	Xylene
Emissions				Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
Unit	Process	Vent ID	Description	tons/year	tons/year	tons/year	tons/yhear	tons/year	tons/yr	tons/yr	tons/yr
08, 09	DARAN	VT 1301-1	Manual/Emergency vent on tanks V-201 and V- 211	0.0293		0.640	1.100	5.516			
08, 09, 10	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	0.0321	0.0061	0.825	1.219	6.108			
08	DARAN	VT-1308-3	Steam Ejector (Vacuum) Vent for S200 (A Stripper)	0.0397		0.740	1.491	7.478			
09	DARAN	VT-1301-3	Manual/Emergency Vent on R210	0.000054		0.0014	0.00202	0.0101			
09	DARAN	VT-1308-4	Steam Ejector (Vacuum) Vent for S210 (B Stripper)	0.0513		1.293	1.923	9.633			
10	DARAN	VT-1301-4	Manual/Emergency Vent on V221	0.0032	0.0080		0.138	0.690			
10	DARAN	VT-1301-5	Manual/Emergency Vent on R220	0.00075	0.0019		0.0323	0.161			
10	DARAN	VT-1308-5	Steam Ejector (Vacuum) Vent for S220 (C Stripper)	0.0136	0.034		0.585	2.923			
11	DARAN	VT-1304-1	Steam Ejector Vent for R230	0.000039		0.303	0.000039	0.000039			
12	SPECIALTY R-1117	VT-6001-2	Vent on R650		0.67	2.09					
16	RAW MATERIAL TANKS	VT-3000-1	Methyl acrylate storage tank (V-521)			0.40					
16	RAW MATERIAL TANKS	VT-3000-11	Acrylonitrile storage tank (V-511)		0.163						
16	RAW MATERIAL TANKS	VT-3000-5	Methyl methacrylate storage tank (V-512)				0.448				
17	WW TREATMENT		Wastewater Treatment Emissions	0.0194	0.052	0.166	0.421	2.295			
18	DARAN	VT-1101-1	Steam out Vent from R51 (VT-1104-12) to Dilution Blower	0.000026			0.000026	0.000026			
			Plantwide Fugitives	0.0057	0.695	0.338	0.117	0.517			
			Product Storage	0.00058			0.0053	0.078			
21	N-Serve	EP-21	Aromatic 100 Storage						0.00073		0.0015
22	N-Serve	EP-22	Xylene Storage Tank								0.0369
24	N-Serve	EP-24	Blend Vessel						0.0024	0.0014	0.0354
	N-Serve		Fugitives						0.00393	0.0183	0.16
Total Modele	d Emissions, tons per yea	r		0.20	1.63	6.80	7.48	35.41	0.0070	0.020	0.23

Engine Power		Emission	Potential	Potential
Rating		Factor	Emissions	Emissions
HP	Pollutant	lb/mgal ¹	lb/hr	tons/yr ²
423	Benzene	1.06E-01	2.23E-03	5.58E-04
	Toluene	3.85E-02	8.08E-04	2.02E-04
Fuel Usage	Xylene	2.64E-02	5.55E-04	1.39E-04
gal/hr	Formaldehyde	1.08E-02	2.27E-04	5.67E-05
21	Acetaldehyde	3.45E-03	7.25E-05	1.81E-05
	Acrolein	1.08E-03	2.27E-05	5.67E-06
	Naphthalene	1.78E-02	3.74E-04	9.35E-05
	Acenaphthylene	1.26E-03	2.66E-05	6.64E-06
	Acenaphthene	6.41E-04	1.35E-05	3.37E-06
	Fluorene	1.75E-03	3.68E-05	9.21E-06
	Phenanthrene	5.59E-03	1.17E-04	2.93E-05
	Anthracene	1.69E-04	3.54E-06	8.85E-07
	Fluoranthene	5.52E-04	1.16E-05	2.90E-06
	Pyrene	5.08E-04	1.07E-05	2.67E-06
	Benz(a)anthracene	8.52E-05	1.79E-06	4.47E-07
	Chrysene	2.10E-04	4.40E-06	1.10E-06
	Benzo(b)fluoranthene	1.52E-04	3.19E-06	7.98E-07
	Benzo(k)fluoranthene	2.99E-05	6.27E-07	1.57E-07
	Benzo(a)pyrene	3.52E-05	7.39E-07	1.85E-07
	Indeno(1,2,3-cd)pyrene	5.67E-05	1.19E-06	2.98E-07
	Dibenze(a,h)anthracene	4.74E-05	9.95E-07	2.49E-07
	Benzo(g,h,l)perylene	7.62E-05	1.60E-06	4.00E-07

Table 4Diesel Generator Hazardous Air Pollutant Emissions

¹Emission Factors from AP-42 Chapter 3.4-3 and 3.4-4, conversion factor of 137,000 Btu/gal.

²Maximum of 500 hours per year of operation

Natural		Emission	Potential	Potential
Gas Usage		Factor	Emissions	Emissions
mmft ³ /hr	Pollutant	lb/mmft ³	lb/hr	tons/year
0.021	2-Methylnaphthalene	2.40E-05	5.04E-07	2.21E-06
	3-Methylchloranthrene	1.80E-06	3.78E-08	1.66E-07
	7,12-Dimethylbenz(a)anthracene	1.60E-05	3.36E-07	1.47E-06
	Acenaphthene	1.80E-06	3.78E-08	1.66E-07
	Acenaphthylene	1.80E-06	3.78E-08	1.66E-07
	Anthracene	2.40E-06	5.04E-08	2.21E-07
	Arsenic	2.00E-04	4.20E-06	1.84E-05
	Benz(a)anthracene	1.80E-06	3.78E-08	1.66E-07
	Benzene	2.10E-03	4.41E-05	1.93E-04
	Benzo(a)pyrene	1.20E-06	2.52E-08	1.10E-07
	Benzo(b)fluoranthene	1.80E-06	3.78E-08	1.66E-07
	Benzo(g,h,i)perylene	1.20E-06	2.52E-08	1.10E-07
	Benzo(k)fluoanthene	1.80E-06	3.78E-08	1.66E-07
	Beryllium	1.20E-05	2.52E-07	1.10E-06
	Cadmium	1.10E-03	2.31E-05	1.01E-04
	Chromium	1.40E-03	2.94E-05	1.29E-04
	Chrysene	1.80E-06	3.78E-08	1.66E-07
	Cobalt	8.40E-05	1.76E-06	7.73E-06
	Dibenzo(a,h)anthracene	1.20E-06	2.52E-08	1.10E-07
	Dichlorobenzene	1.20E-03	2.52E-05	1.10E-04
	Fluoranthene	3.00E-06	6.30E-08	2.76E-07
	Fluorene	2.80E-06	5.88E-08	2.58E-07
	Formaldehyde	7.50E-02	1.58E-03	6.90E-03
	Hexane	1.80E+00	3.78E-02	1.66E-01
	Indo(1,2,3-c,d)pyrene	1.80E-06	3.78E-08	1.66E-07
	Lead	5.00E-04	1.05E-05	4.60E-05
	Manganese	3.80E-04	7.98E-06	3.50E-05
	Mercury	2.60E-04	5.46E-06	2.39E-05
	Naphthalene	6.10E-04	1.28E-05	5.61E-05
	Nickel	2.10E-03	4.41E-05	1.93E-04
	Phenanthrene	1.70E-05	3.57E-07	1.56E-06
	Pyrene	5.00E-06	1.05E-07	4.60E-07
	Selenium	2.40E-05	5.04E-07	2.21E-06
	Toluene	3.40E-03	7.14E-05	3.13E-04

Table 5Natural Gas Boiler Hazardous Air Pollutant Emissions

Emission Factors from AP-42 Tables 1.4-3 and 1.4-4

Finally, Table 6 presents the coordinates and stack parameters for point sources included in the modeling. Fugitive emissions were modeled as rectangular area sources that encompass raw material storage, process areas, and product storage. Product storage emissions were included in the fugitive emissions. Wastewater treatment emissions were also modeled as a rectangular area source. Figure 2 shows the locations of the modeled sources within the plant.

Modeling Results

Having compiled the necessary data, AERMOD modeling was conducted using potential emissions of each HAP/air toxic compound. The annual averaging period was chosen for each pollutant model run, with the highest predicted impact over the five (5) year of meteorological data reported for comparison with the relevant thresholds.

Once the modeling for each pollutant was completed, the cancer risk for carcinogens and the chronic non-cancer hazard for non-carcinogens were calculated to determine whether emissions of any of the modeled compounds pose a risk or hazard. In order to perform this evaluation, the relevant Inhalation Risk Unit (IUR) values and Reference Concentration (RfC) values from the EPA Regional Screening Level (RSL) Resident Ambient Air Table (TR=1E-06, HQ=1), November 2024, were used.

For those carcinogens with a specified IUR, the risk was calculated as follows:

Risk = Modeled Concentration (ug/m³) x IUR (1/ug/m³)

If the calculated risk is greater than the IUR, then impacts from the subject pollutant could pose a cancer risk to the exposed population and further analysis/emission reductions could be warranted.

For those pollutants with a specified RfC, the hazard potential was calculated as follows:

Hazard = Modeled Concentration (ug/m³) / RfC (ug/m³)

If the calculated hazard potential is greater than the RfC, then impacts from the subject pollutant could pose a noncancer hazard to the exposed population and further analysis/emission reductions could be warranted.

Table 7 presents the results of the modeling showing the maximum annual modeled impacts and the calculated cancer risk and noncancer hazard potential. As these results show, none of the modeled pollutants will pose a cancer risk or hazard potential to the exposed population. These results should be overly conservative since potential emissions were used in the modeling. Owensboro Specialty Polymers is classified as a Conditional Major source of emissions with emission limits for individual HAPs of 9 tons per year each and a total HAP emission limit of 22.5 tons per year. Total modeled HAP emissions are more than twice the permitted limit, and one HAP (vinylidene chloride) was modeled at potential emissions of over 35 tons per year. Therefore, this modeling program demonstrates emissions of HAPs/air toxics from Owensboro Specialty Polymers will not result in adverse impacts to the exposed population.

Modeling files are being provided electronically to KDAQ.

Table 6 - Stack Parameters for Modeling

				UTM	UTM	Stack	Stack	Stack	Stack Gas	
Emissions				East	North	Height	Diameter	Temperature	Velocity	
Unit	Process	Vent ID	Description	m	m	ft	ft	F	ft/sec	
08, 09	DARAN	VT 1301-1	Manual/Emergency vent on tanks V-201 and V-211	495468.9	4184860.8	13	0.25	70	0.1	
08, 09, 10	DARAN	VT-1308-1	Steam Ejector (Vacuum) Vent for Monomer Mix Tanks V201, 211, 221 and R200, 210, 220	495502.1	4184848.4	51	0.25	225	0.09	
08	DARAN	VT-1308-3	Steam Ejector (Vacuum) Vent for S200 (A Stripper)	495503.4	4184850.6	51	0.25	225	0.24	
09	DARAN	VT-1301-3	Manual/Emergency Vent on R210	495468.3	4184859.9	13	0.25	90	0.02	
09	DARAN	VT-1308-4	Steam Ejector (Vacuum) Vent for S210 (B Stripper)	495503.1	4184850.1	51	0.25	225	0.32	
10	DARAN	VT-1301-4	Manual/Emergency Vent on V221	495467.2	4184858.2	13	0.25	70	0.08	
10	DARAN	VT-1301-5	Manual/Emergency Vent on R220	495468.1	4184859.4	13	0.25	90	0.019	
10	DARAN	VT-1308-5	Steam Ejector (Vacuum) Vent for S220 (C Stripper)	495506.2	4184838.3	51	0.25	225	0.35	
11	DARAN	VT-1304-1	Steam Ejector Vent for R230	495504.7	4184877.7	29	0.25	225	0.09	
12	SPECIALTY R-1117	VT-6001-2	Vent on R650	495536.7	4184931.9	16	0.33	125	0.02	
16	RAW MATERIAL TANKS	VT-3000-1	Methyl acrylate storage tank (V-521)	495374.3	4184859.7	28.2	0.667	70	0.0013	
16	RAW MATERIAL TANKS	VT-3000-11	Acrylonitrile storage tank (V-511)	495378.5	4184857.8	28.2	0.667	70	0.0013	
16	RAW MATERIAL TANKS	VT-3000-5	Methyl methacrylate storage tank (V-512)	495383.3	4184866.9	29.4	0.25	70	0.01	
17	WW TREATMENT		Wastewater Treatment Emissions	Modeled as a re	ectangular area s	ource wit	h a ground-le	vel release height		
18	DARAN	VT-1101-1	Steam out Vent from R51 (VT-1104-12) to Dilution Blower	495538.8	4184944.3	30	0.1667	125	0.014	
			Plantwide Fugitives	Modeled as a re	ectangular area s	ource wit	h a 10 ft. rele	ase height		
			Product Storage	Included with fu	gtive emissions					
21	N-Serve	EP-21	Aromatic 100 Storage	495461.6	4184894.5	35	1.167	70	0.57	
22	N-Serve	EP-22	Xylene Storage Tank	495467.4	4184892.9	24	1	70	0.18	
24	N-Serve	EP-24	Blend Vessel	495461.6	4184892.9	24	1.167	70	0.15	
	N-Serve		Fugitives	Modeled as a rectangular area source with a 10 ft. release height						

Figure 2 – Source Locations for AERMOD Modeling

Table 7 - Results of HAP/Air Toxic Modeling

			Carcinogentic	Noncancer	Concentration at				Risk at maximally	Hazard at the		
		Source of	Target Risk (TR)	Hazard Index	maximally impacted		Inhalation	Reference	impacted residential	maximally impacted		
	Averaging	Screening	Value (ug/m ³) =	(HI) Value	residential receptor	Concentration >	Risk Unit	Concentration	receptor	residential receptor		
Pollutant	Time	Number	1E-06	(ug/m ³) = 1	(ug/m³)	RSL value?	(IUR)	(RfC)	IUR*[concentration]	[concentration]/RfC	Risk?	Hazard?
Acrylonitrile	Annual	RSL	4.10E-02	2.10E+00	2.60E-01	Yes	6.80E-05	2.00E+00	1.77E-05	1.30E-01	No	No
Acrylic Acid	Annual	RSL		2.10E-01	2.10E-02	No		2.00E-01		1.05E-01	No	No
Methyl Acrylate	Annual	RSL		2.10E+01	8.40E-01	No		2.00E+01		4.20E-02	No	No
Methyl Methacrylate	Annual	RSL		7.30E+02	8.10E-01	No		7.00E+02		1.16E-03	No	No
Vinylidene Chloride	Annual	RSL		4.10E+00	3.75E+00	No		3.96E+00		9.47E-01	No	No
Xylene	Annual	RSL		1.00E+02	4.00E-02	No		1.00E+02		4.00E-04	No	No
Cumene	Annual	RSL		4.20E+02	1.20E-03	No		4.00E+02		3.00E-06	No	No
HCI	Annual	RSL		2.10E+01	3.50E-03	No		2.00E+01		1.75E-04	No	No
3-Methylchloranthrene	Annual	RSL	1.60E-04		3.10E-09	No	6.30E-03		1.95E-11		No	No
7,12-Dimethylbenz(a)anthracene	Annual	RSL	1.40E-05		2.70E-08	No	7.10E-02		1.92E-09		No	No
Acetaldehyde	Annual	RSL	1.30E+00	9.40E+00	7.50E-07	No	2.20E-06	9.00E+00		8.33E-08	No	No
Acrolein	Annual	RSL		2.10E-02	2.30E-07	No		2.00E-02		1.15E-05	No	No
Arsenic	Annual	RSL	6.50E-04	1.60E-02	3.40E-07	No	4.30E-03	1.50E-02	1.46E-09	2.27E-05	No	No
Benz(a)anthracene	Annual	RSL	1.70E-02		2.00E-08	No	6.00E-05				No	No
Benzene	Annual	RSL	3.60E-01	3.10E+01	2.50E-05	No	7.80E-06	3.00E+01	1.95E-10	8.33E-07	No	No
Benzo(a)pyrene	Annual	RSL	1.70E-03	2.10E-03	8.50E-09	No	6.00E-04	2.00E-03		4.25E-06	No	No
Benzo(b)fluoranthene	Annual	RSL	1.70E-02		3.40E-08	No	6.00E-05		2.04E-12		No	No
Benzo(k)fluoanthene	Annual	RSL	1.70E-01		7.90E-09	No	6.00E-06				No	No
Beryllium	Annual	RSL	1.20E-03	2.10E-02	2.00E-08	No	2.40E-03	2.00E-02	4.80E-11	1.00E-06	No	No
Cadmium	Annual	RSL	1.60E-03	1.00E-02	1.90E-06	No	1.80E-03	1.00E-02	3.42E-09	1.90E-04	No	No
Chromium	Annual	RSL		6.30E-02	2.40E-06	No		6.00E-02		4.00E-05	No	No
Chrysene	Annual	RSL	1.70E+00		4.70E-08	No	6.00E-07		2.82E-14		No	No
Cobalt	Annual	RSL	3.10E-04	6.30E-03	1.40E-07	No	9.00E-03	6.00E-03	1.26E-09	2.33E-05	No	No
Dibenzo(a,h)anthracene	Annual	RSL	1.70E-03		1.10E-08	No	6.00E-04		6.60E-12		No	No
Dichlorobenzene	Annual	RSL	2.60E-01	8.30E+02	2.00E-06	No	1.10E-05	8.00E+02	2.20E-11	2.50E-09	No	No
Formaldehyde	Annual	RSL	1.40E-01	7.30E+00	1.30E-04	No	7.40E-06	7.00E+00	9.62E-10	1.86E-05	No	No
Hexane	Annual	RSL		7.30E+02	3.10E-03	No		7.00E+02		4.43E-06	No	No
Indo(1,2,3-c,d)pyrene	Annual	RSL	1.70E-02		1.40E-08	No	6.00E-05				No	No
Lead	Annual	RSL		1.50E-01	8.50E-07	No					No	No
Manganese	Annual	RSL		5.20E-02	6.50E-07	No		5.00E-02		1.30E-05	No	No
Mercury	Annual	RSL		3.10E-01	4.40E-07	No		3.00E-01		1.47E-06	No	No
Naphthalene	Annual	RSL	8.30E-02	3.10E+00	4.30E-06	No	3.40E-05	3.00E+00	1.46E-10	1.43E-06	No	No
Nickel	Annual	RSL	1.10E-02	1.00E-02	3.60E-06	No	2.60E-04	1.00E-02	9.36E-10	3.60E-04	No	No
Selenium	Annual	RSL		2.10E+01	4.10E-08	No		2.00E+01		2.05E-09	No	No
Toluene	Annual	RSL		5.21E+03	1.20E-05	No		5.00E+03		2.40E-09	No	No

Owensboro Specialty Polymers Pre-Draft Permit

From CHRIS WATHEN <CWATHEN@kenvirons.com>

Date Thu 5/15/2025 9:32 AM

To Patil, Durga D (EEC) < Durga.Patil@ky.gov>

Cc Davis, Kevin D (EEC) <Kevin.Davis@ky.gov>; Barry Sparks

barry.sparks@milliken.com>

This Message Originated from Outside the Organization

This Message Is From an External Sender.

Report Suspicious

Durga,

Based on our very helpful and appreciated discussion with the KDAQ modeling group last week, Owensboro Specialty Polymers has been evaluating refinements to the air toxics modeliing, specifically for acrylonitrile as mentioned in my email last Friday. In the interest of getting the permit process wrapped up, OSP has elected to revert back to the original modeling report submitted to the Division where the acrylonitrile allowable emission rate was set at 0.58 tons per year. Therefore, on behalf of OSP, the original pre-draft permit you provided to us on April 22 along with our minor comments submitted by email on May 2 can be issued with the following clarifications:

OSP would like to keep Emission Point 014: Specialty R-1117 (Reactor Train R-450) in the permit.

OSP has confirmed that the following emission units from the previous permit, Permit No. F-17-032, can be removed from the permit:

Emission Point 007: DAXAD (Reactor Train R-360) - no longer in service

Emission Unit 013: PVA (Reactor Train R-157) – no longer in service

New York Shipley Boiler - was not constructed

I have copied Barry Sparks of OSP on this email. Thank you for your time and understanding throughout this process. Please reach out if you have any additional questions.

Christopher P. Wathen, P.E. Vice President 770 Wilkinson Boulevard | Frankfort, KY 40601 Office (502) 695-4357 | Cell (502) 592-2617 Celebrating 50 Years! (1975-2025)