Bottled Water Formula Sheet | Bottled Water Formula Sheet | | | | |--|---|--|--| | → multiply_ | Conversions divide | Flow and Velocity | Other Formulas | | 1 psi
1 ft ³ of water | = 2.31 ft of head
= 7.48 gallons | "Q" = FLOW, ft³/sec | Specific Capacity = $\frac{flow, gpm}{drawdown, ft}$ | | 1 ft ³ of water
1 gallon | = 62.4 lbs
= 8.34 lbs | "V" = VELOCITY, f/s | | | 1 ppm 1ft ³ /sec | = 1 mg/L
= 448.8 gpm | "A" = AREA, ft ² | Drawdown = Pumping level, ft - Static water level, ft Water lost, gallons | | 1 MGD
1 MGD
1 HP | = 1.55 ft ³ /sec
= 694.5 gpm
= 0.746 kilowatt | $Q = A \times V$ | % water loss = $\frac{Water\ lost,\ gallons}{Water\ treated,\ gallons} \times 100$ | | 1 mile
1 day | = 5280 ft
= 1440 minutes | $V=Q\div A$ | | | 1 lb
1 yd ³ | = 453.6 g (ml water)
= 27 ft ³ | $A = Q \div V$ | | | 1% solution | = 10,000 ppm | | Lbs (of chemical) | | Area ft ² Rectangle Circle | length $ft \times width ft$
$0.785 \times D ft \times D ft$ | Diameter (D) = $2 \times Radius$
Circumference = $3.14 \times D$
Perimeter = $sum\ of\ the\ sides$ | Flow or Dose or | | Volume ft ³ Cube Cylinder | Length $ft \times width ft \times height ft$
$0.785 \times D ft \times D ft \times length ft$ | Dosage = Demand + Residual
Residual = Dosage - Demand
Demand = Dosage - Residual | Volume Concentration (ppm or mg/L) 8.34 | | lbs of chemica | $al = \frac{ppm \times 8.34 \times MGD}{\% Purity}$ | gallons = $\frac{\text{ppm x 8.34 x MGD}}{\text{% purity x SG x 8.34}}$ | $Specific Gravity = \frac{wt \ of \ a \ liquid}{equivalent \ wt \ of \ water}$ | | Dose (ppm) = Ignore % purity | $= \frac{\text{lbs of chemical} \times \% \text{ Purity}}{\text{MGD} \times 8.34}$ if not given in formula. | Use this formula if gallons are asked for in a math problem. Substitute weight of solution for SG x 8.34 if given. | $Strength of Solution = \frac{wt \ of \ chemical}{wt \ of \ solution} \ x \ 100$ |