FORMULA & CONVERSION SHEET for DRINKING WATER TREATMENT & DISTRIBUTION

CONVERSTIONS			FLOW AND VELOCITY	WATER-BRAKE-MOTOR HORSEPOWER
1 psi	=	2.31 ft. of head	"Q" = FLOW expressed in	WHP = $\underline{\text{GPM x Total Head (ft)}}$
1 ft. of head	=	.433 psi	cubic ft per sec. (cfs)	3960
1 cuft of water	=	7.48 gallons		
1 cuft of water	=	62.4 lbs.		BHP = $\underline{GPM \times Total Head (ft)}$
1 gallon	=	8.34 lbs.	"V" = VELOCITY expressed in	3960 x E _p
1 gallon	=	3,785 ml	ft per second (fps)	
1 Liter	=	1,000 ml		$MHP = \underline{GPM \times Total Head (ft)}$
1 Liter	=	1,000 grams		3960 x E _p x E _m
1 mg/L	=	8.34 lbs/MG	"A" = AREA expressed in square	
1 ppm	=	1 mg/L	feet (sqft)	E_p = Pump Efficiency (%)
1 ml	=	1 gram		$E_m = Motor Efficiency (\%)$
1 pound	=	453.6 grams		
1 pound	=	7,000 grains		CONVERSION OF TEMPERATURES
1 kilogram	=	1,000 grams	$\mathbf{Q} = \mathbf{A} \mathbf{x} \mathbf{V}$	
1 cuft/sec	=	448.8 gpm		$^{\circ}F = (^{\circ}C \ge 1.8) + 32$
1 MGD	=	1.55 cuft/sec	$\mathbf{V} = \mathbf{Q} \div \mathbf{A}$	
1 MGD	=	694.5 gpm		$\circ \mathbf{C} = (\circ \mathbf{F} - 32)$
1 HP	=	33,000 ft.lbs./min	$\mathbf{A} = \mathbf{Q} \div \mathbf{V}$	1.8
1 HP	=	.746 kilowatt		Check your work: water freezes at 32°F and 0°C
1 mile	=	5,280 feet		water boils at 212°F and 100°C
<u>OBJECT</u>	1	AREA (ft ²)	VOLUME (ft ³)	
Rectangle]	Length' x Width'	Length' x Width' x Height'	FILTRATION RATE = Flow (gpm) ÷ Surface Area (sqft)
Circle		.785 x D' x D'	6	BACKWASH RATE = Flow (gpm) ÷ Surface Area (sqft)
Triangle	1	l/2 (Base' x Altitude')		SURFACE OVERFLOW RATE = Flow (gpm) ÷ Area (sqft)
Cylinder		· · · · ·	.785 x D' x D' x Length'	DETENTION TIME = Volume (gals) ÷ Flow (gpm)
Sphere			.5236 x D' x D' x D'	WEIR OVERFLOW RATE = Flow (gpm) ÷ Feet of weir
				SPECIFIC CAPACITY = <u>Well yield (gpm)</u>
Diameter (D) = $2 x$ radius			Circumference = $3.14 \times D$	Drawdown (feet)
			1 - C'.1	FILTRATION RATE: for every 1.6 in./min. of rise or fall = 1 gpm/ft^2
Fermieter – Sum of the			ine Sides	
Lbs. of chemical = $ppm \ge 8.34 \ge MG$				Specific Gravity = <u>wt. of a particular liquid</u>
% purity				equivalent wt. of water
			C_{12} Dosage = Demand + Residual	
$ppm = \underline{10s. of chemical x \% purity}$				Strength of Solution = $\underline{\text{wt. of chemical}}$
8.34 x MG				wt. of solution