Groundwater Formula Sheet

⇒ multiply_	Conversions \leftarrow divide	Flow and Velocity	Water - Brake - Motor Horsepower
1 psi 1 ft ³ of water	= 2.31 ft of head= 7.48 gallons	"Q" = FLOW, ft ³ /sec	$WHP = \frac{gpm \times total \ head \ ft}{3960}$
1 ft ³ of water 1 gallon 1 ppm	= 62.4 lbs = 8.34 lbs = 1 mg/L	"V" = VELOCITY, f/s	$BHP = \frac{gpm \times total \ head \ ft}{3,960 \times Ep}$
1ft ³ /sec 1 MGD	= 448.8 gpm = 1.55 ft ³ /sec	"A" = AREA, ft ²	$MHP = \frac{gpm \times total \ head \ ft}{3,960 \times Ep \times Em}$
1 MGD 1 HP	= 694.5 gpm= 0.746 kilowatt	$Q = A \times V$	$3,960 \times Ep \times Em$ $E_p = Pump Efficiency \% E_m = Motor Efficiency \%$
1 mile 1 day 1 lb	= 5280 ft = 1440 minutes = 453.6 g (ml water)	$V=Q\div A$	Specific Capacity = $\frac{flow,gpm}{drawdown,ft}$
1 yd ³ 1% solution	= 27 ft ³ = 10,000 ppm	$A = Q \div V$	drawdown,ft
Area ft ² Rectangle	length $ft \times width ft$	Diameter (D) = $2 \times Radius$ Circumference = $3.14 \times D$	Drawdown = Pumping level, ft - Static water level, ft Water lost, gallons
Circle	$0.785 \times D \ ft \times D \ ft$	Perimeter = $sum \ of \ the \ sides$	% water loss = $\frac{Water\ lost,\ gallons}{Water\ treated,\ gallons} \times 100$
Cylinder	Length $ft \times width ft \times height ft$ $0.785 \times D ft \times D ft \times length ft$	Dosage = Demand + Residual Residual = Dosage - Demand Demand = Dosage - Residual	Equivalent Flow Rate = $\frac{Actual\ flow\ rate}{C-factor} \times 100$
lbs of chemica	$1 = \frac{ppm \times 8.34 \times MGD}{\% Purity}$	gallons = $\frac{\text{ppm x 8.34 x MGD}}{\text{% purity x SG x 8.34}}$	$Specific Gravity = \frac{wt of a liquid}{equivalent wt of water}$
Dose (ppm) =	MGD X 8.34	Use this formula if gallons are asked for in a math problem. Substitute weight of solution for SG x 8.34 if given.	Strength of Solution = $\frac{\text{wt of chemical}}{\text{wt of solution}} \times 100$
Ignore % purity if not given in formula.			

Groundwater Formula Sheet

