	Protectio 40601 On Re				L USE ONLY. DO IN THIS SPACE				
,		1. Permi		-					
Agency Interest Number fo	r WWTP:	Name of WWT	P:						
If more than one WWTP, as Attachment 1.	provide information	KPDES Numb	er:						
Agency Interest Number fo		Pe	ermittee Name:						
Address:									
City:	State:			Zip Code:					
Phone Number: () -		Email:							
		2. Biosolids Ma	anagem	ent Information					
Type of management of b	biosolids			Quantity (choose one)	% solids		
Treated and land appli	ied, sold, or given a	way	(Ga	llons, Yd³, or Wet Tons)		Dry metric tons			
☐ Sent to landfill (Includ is located in Attachment	county & state it		Gallons		Dry metric tons				
Sent to another permit facility name and county			Gallons			Dry metric tons			
☐ Long term storage at t drying bed)	reatment facility (e.	g., lagoon,	Gallons			Dry metric tons			
Other (Describe method	od of disposition as	Attachment 2)		Gallons		Dry metric tons			
		3. Biosolids /	Analysis	s Information					
Monitoring frequency	Once per year	Once per quarter		Once per 60 c	lays	Once	per month		
Metric tons	Less than 290	290 or greate less than 1,5			but less than	ess than Equal to or greate 15,000			
US tons	Less than 319	319 or greate less than 1,6		1,650 or greater but less than 16,500		Equal to 16,500	Equal to or greater than 16,500		
Date(s) of sampling:									
1									
Paramete		rage of Reporting Y We	ear An Ut Weigl	<u>alyses Summary </u> ht	Table	Dry Weig	jht		
pH Total Solids Content			SI %						
Volatile Solids Content			%)					
Total Potassium Total Phosphorous			ppi ppi		ppm ppm				
Total Kjeldahl Nitrogen			ppi		ppm				
Ammonium Nitrogen (NH ₄ -	N)		ppi				om N/ka		
Nitrate Nitrogen (NO ₃ -N) Arsenic			mg. mg				g/kg g/kg		
Cadmium			mg	/L			g/kg		
Copper			mg)/kg		
Lead Mercury			mg.				g/kg		
Molybdenum			mg. mg				g/kg g/kg		
Nickel	mg/L				mg/kg				

Selenium		mg/L		mg/kg		
Zinc Other:		mg/L mg/L		mg/kg mg/kg		
Other:		mg/L	mg/kg			
Other:		mg/L		mg/kg		
Attachment 3. Submit a copy of the actual lab What Class are the biosolids?	oratory analysis sneets	Class A		Class B		
Alternative used to me	et Class A or Class B	pathogen reduction purs	suant to 40	CFR 503.32		
Class A Alternatives			Class B A	ternatives		
Biosolids have been tested for: fecal coliform salmonella Alternative 1: Thermally treated biosolids Alternative 2: Biosolids treated in a high pH process Alternative 3: Biosolids treated in other process Alternative 3: Biosolids treated in other process Alternative 4: Biosolids treated in unknown enteric virus and helminth ova criteria Alternative 5: Use of a Process to Further F a) Composting b) Heat drying c) Heat treatment d) Thermophilic aerobic digestion e) Beta ray irradiation g) Pasteurization d) Alternative 6: Use of a process equivalent to Further Reduce Pathogens. Identify:	cesses that meet processes that meet Reduce Pathogens	the density of fecal colifo option met) Less than 2 solids (dry weig Less than 2 total solids (dry Alternative 2: Biosoli Significantly Reduce Pat a) Aerobic b) Air dryin c) Anaerob d) Compos e) Lime sta	orm of sever 2 million Mo ght basis) 2 million Co y weight bas ids treated i thogens: digestion g ic digestion sting abilization ids treated i	n one of the Processes to n a process that is equivalent to a		
Option used to a	neat vector attraction	reduction requirement o		02.22		
		-				
In-plant options: □ Option 1: 38 percent reduction in volatile so □ Full mass balance equation □ Approximate mass balance equation □ Van Kleeck equation □ Volatile solids loss across all sewate □ Option 2: Bench-scale anaerobic digestion for □ Option 3: Bench-scale aerobic digestion for □ Option 4: SOUR test at 20 degrees Celsius □ Option 5: Aerobic treatment for at least 14 d □ Option 6: Alkali addition to raise pH to at leas greater than or equal to 11.5 for 22 additior □ Option 7: Drying with no unstabilized (primation of the second	on age sludge treatment pro- for 40 additional days at 30 additional days at 20 (only for material with le ays over 40 degrees Ce ast 12 at 25 degrees Ce ist 12 at 25 degrees Ce ist 12 at 25 degrees Ce solids to at least 75% solids to at least 90% s on land surface 1 hour	30 degrees Celsius to 37 degrees Celsius ss than 2 percent solids v lsius with an average terr sius, maintain a pH greate solids blids	vith no diluti aperature of er than or er bsolids only	on) over 45 degrees Celsius qual to 12 for 2 hours, and a pH - injection within 8 hours of		
 Option 1: 38 percent reduction in volatile so Full mass balance equation Approximate mass balance equati Van Kleeck equation Volatile solids loss across all sewa Option 2: Bench-scale anaerobic digestion for Option 3: Bench-scale aerobic digestion for Option 4: SOUR test at 20 degrees Celsius Option 5: Aerobic treatment for at least 14 d Option 6: Alkali addition to raise pH to at leas greater than or equal to 11.5 for 22 additior Option 7: Drying with no unstabilized (primal Option 8: Drying with unstabilized (primary) Site management options: Option 9: Injection with no biosolids present pathogen reduction) 	on age sludge treatment pro- for 40 additional days at 30 additional days at 20 (only for material with le ays over 40 degrees Ce (only for materi	30 degrees Celsius to 37 9 degrees Celsius 9 ss than 2 percent solids v 9 slius with an average terr 9 slius, maintain a pH greate 6 solids 9 blids 1 after injection (Class A bio 1 blids only- incorporation w 1 Yes. 1 f yes, provide a descript	vith no diluti aperature of er than or en osolids only ithin 8 hour tion of the	on) over 45 degrees Celsius qual to 12 for 2 hours, and a pH - injection within 8 hours of		
 Option 1: 38 percent reduction in volatile so Full mass balance equation Approximate mass balance equati Van Kleeck equation Volatile solids loss across all sewa Option 2: Bench-scale anaerobic digestion for Option 3: Bench-scale aerobic digestion for Option 4: SOUR test at 20 degrees Celsius Option 5: Aerobic treatment for at least 14 d Option 6: Alkali addition to raise pH to at leas greater than or equal to 11.5 for 22 additior Option 7: Drying with no unstabilized (primary) Site management options: Option 9: Injection with no biosolids present pathogen reduction) Option 10: Incorporation within 6 hours of ap 	on age sludge treatment pro- for 40 additional days at 30 additional days at 20 (only for material with le ays over 40 degrees Ce (only for materi	30 degrees Celsius to 37 degrees Celsius ss than 2 percent solids v elsius with an average terr sius, maintain a pH greate 6 solids blids after injection (Class A bio blids only- incorporation w	vith no diluti aperature of er than or en osolids only ithin 8 hour tion of the remedial	on) over 45 degrees Celsius qual to 12 for 2 hours, and a pH - injection within 8 hours of s of pathogen reduction)		
 Option 1: 38 percent reduction in volatile so Full mass balance equation Approximate mass balance equati Van Kleeck equation Volatile solids loss across all sewa Option 2: Bench-scale anaerobic digestion for Option 3: Bench-scale aerobic digestion for Option 4: SOUR test at 20 degrees Celsius Option 5: Aerobic treatment for at least 14 d Option 6: Alkali addition to raise pH to at leas greater than or equal to 11.5 for 22 additior Option 7: Drying with no unstabilized (primary) Site management options: Option 9: Injection with no biosolids present pathogen reduction) Option 10: Incorporation within 6 hours of ap 	on age sludge treatment pro- for 40 additional days at 30 additional days at 20 (only for material with le ays over 40 degrees Cel- sal hours ry) solids to at least 759 solids to at least 90% s on land surface 1 hour oplication (Class A biose 401 KAR Chapter	30 degrees Celsius to 37 9 degrees Celsius 9 ss than 2 percent solids v 9 slius with an average terr 9 slius, maintain a pH greate 6 solids 9 blids 1 after injection (Class A bio 1 blids only- incorporation w 1 Yes. 1 f yes, provide a descript 1 non-compliance(s) and r	vith no diluti aperature of er than or en osolids only ithin 8 hour tion of the remedial	on) over 45 degrees Celsius qual to 12 for 2 hours, and a pH - injection within 8 hours of s of pathogen reduction)		
 Option 1: 38 percent reduction in volatile so Full mass balance equation Approximate mass balance equati Van Kleeck equation Volatile solids loss across all sewa Option 2: Bench-scale anaerobic digestion for Option 3: Bench-scale aerobic digestion for Option 4: SOUR test at 20 degrees Celsius Option 5: Aerobic treatment for at least 14 d Option 6: Alkali addition to raise pH to at leas greater than or equal to 11.5 for 22 additior Option 7: Drying with no unstabilized (primary) Site management options: Option 9: Injection with no biosolids present pathogen reduction) Option 10: Incorporation within 6 hours of ap 	on age sludge treatment pro- for 40 additional days at 30 additional days at 20 (only for material with le ays over 40 degrees Cel- sal hours ry) solids to at least 759 solids to at least 90% s on land surface 1 hour oplication (Class A biose 401 KAR Chapter	30 degrees Celsius to 37 degrees Celsius ss than 2 percent solids v elsius with an average terr sius, maintain a pH greate solids after injection (Class A bio olids only- incorporation w Selids only- incorporation w	vith no diluti aperature of er than or en osolids only ithin 8 hour tion of the remedial	on) over 45 degrees Celsius qual to 12 for 2 hours, and a pH - injection within 8 hours of s of pathogen reduction)		
 Option 1: 38 percent reduction in volatile so Full mass balance equation Approximate mass balance equati Van Kleeck equation Volatile solids loss across all sewa Option 2: Bench-scale anaerobic digestion for Option 3: Bench-scale aerobic digestion for Option 4: SOUR test at 20 degrees Celsius Option 5: Aerobic treatment for at least 14 d Option 6: Alkali addition to raise pH to at leas greater than or equal to 11.5 for 22 additior Option 7: Drying with no unstabilized (primation of the prime of	on age sludge treatment pro- for 40 additional days at 30 additional days at 20 (only for material with le ays over 40 degrees Cel- sal hours ry) solids to at least 759 solids to at least 90% s on land surface 1 hour oplication (Class A biose 401 KAR Chapter	30 degrees Celsius to 37 degrees Celsius ss than 2 percent solids v elsius with an average terr sius, maintain a pH greate solids after injection (Class A bio olids only- incorporation w Selids only- incorporation w	vith no diluti aperature of er than or en osolids only ithin 8 hour tion of the remedial	on) over 45 degrees Celsius qual to 12 for 2 hours, and a pH - injection within 8 hours of s of pathogen reduction)		

Phone Number: () -

3

5. Biosolids Application Summary for Reporting Year									
Agency Interest Number for Permit	ttee:								
O hadat Nambar	Grand Total Biosolids Applied	Total Amount Per Hectare	Approved Rate Per Hectare						
Subplot Number	Dry Metric Tons	Dry Metric Tons	Dry Metric Tons						

6. Land Application - Application Log								
Biosolids Generator(s): Subplot Number:								
Subplot size in Hectares	s:	Monitoring Year:	Agency Intere	Agency Interest Number:				
Date of Application	Application Qu	antity in Metric tons	Applier's Initials	Date of Analysis				
	Y							

7. Residual Nitrogen Worksheet Table 1						
		Org	anic Nitrogen C	ontent of Bioso	lids	
	2.0	2.5	3.0	3.2	4.0	4.5
Number of years since last application of biosolids		Pounds of I	N released per l	JS ton of biosol	ids applied	
1	1.0	1.2	1.4	1.7	1.9	2.2
2	0.9	1.2	1.4	1.6	1.8	2.1
3	0.9	1.1	1.3	1.5	1.7	2.0
Calc	ulations should	be done for each	subplot which ha	s received biosol	lids	
x=R <u>Two years ago:</u> Lbs. of Nitrogen release x=R <u>Three years ago:</u> Lbs. of Nitrogen release x=R	ed per ton of bio esidual N (two y ed per ton of bio	solids x tons of bio vears) solids x tons of bio		·		
Total Residual Nitrogen: Residual N (one year) + Residual N (two years) + Residual N (three years) = Total Residual Nitrogen += = Total Residual Nitrogen Note: To calculate Residual Nitrogen for year 2 and 3 you must find the organic nitrogen content of biosolids from each year. Refer to your previous annual reviews for organic nitrogen content.						

8	. Worksheet for Cald	culating A	pplication Rate	S	401 KAF
Subplot Number:		Crop:		•	
•	Composition (Param	<u> </u>	om or mg/kg ÷ 1	0,000 = %)	
Nutrient	Amount in ppm or mg/kg	÷	10,000	=	%
Total Kjeldahl Nitrogen (TKN)		÷	10,000	=	
Ammonium Nitrogen (NH4-N)		÷	10,000	=	
Nitrate Nitrogen (NO3-N)		÷	10,000	=	
Total Phosphorus		÷	10,000	=	
Total Potassium		÷	10,000	=	
(a) Incorporation: (%NH4Nx20) + (%NO3Nx20) + (x20) + (x20) + ((b) Surface Application: (%NH4Nx10) + (%NO3Nx20) + (x10) + (x20) + (x4) = lbs. av	vailable N/ I x 4) = lbs	ton . available N/ton		
3. Residual Nitrogen (N):					
(Calculated Residual N by utilizing the for	mulas found on the Re	esidual N	worksheet)		
4. Annual Application Rate: (a) (Crop N requirement – Resid () ÷ =	-	vailable N,	′ton = Dry Tons/a	icre	
(b) 0.44 lbs. of available Cd/acr		ample X 0	.002) = Dry Tons	/acre	
÷ (x0.002) =					
Annual Application Rate: (LOWE Annual Application Rate =					
**Nitrogen Required – (lbs. available N/tol (additional nitrogen may be needed by fer	n X maximum tons wa				tilizer nitrogen appliec
5. Conversion Formula: Dry Tons to Wet ((Tons of biosolids x 2000) ÷ (8.3				re	
(x2000) ÷ (8.34x) =	wet gallons/ac	re			

Тал	Phosphorus (P2O5) in waste:
TON	ns waste/acre (from 4a or 4b) x % P in waste x 45.8 = lbs. P2O5 added/acre
	xx45.8 =lbs. P2O5 added/acre
(b) /	Additional P2O5 fertilizer needed:
Tota	al phosphorous (92O5) needed/acre – P2O5 added from biosolids = lbs. P2O5/acre
	= lbs. of additional P2O5 needed/acre
*A r	negative answer means no additional P2O5 fertilizer is needed.
	Potassium (K2O) in waste: is waste (from 4a or 4b) /acre x % K in waste x 24 = lbs. K2O added/acre
	xx24 = lbs. K2O added/acre
(d)	Additional K2O fertilized needed"
Tota	al K2O needed/acre – K2O added from biosolids = lbs. K2O/acre
	= lbs. of additional K2O needed/acre
* ^ -	negative answer mean no additional K2O fertilizer is needed.

9. Certification							
"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure the qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violation."							
Name (<i>Print</i>)		Signature:					
Title/Position:		Date: / /					
Name of Permittee:							
Subscribed and sworn to before me by							
Notary public signature							
My commission expires	1 1						

IMPORTANT NOTE: All information submitted on this form will be subject to public disclosure to the extent provided by Kentucky law. Persons filing this form may make claims of confidentiality in accordance with 400 KAR 1:060.

			Cumul	ative P	ollutant Loadin	g Rates (C	PLR)				
Subplot Number: Subplot latitude and longitude:											
Agency Interest Number for Permittee: Permittee Name:											
Subplot Size in	Hectares:				A	pplication r	rate in metrio	c tons/h	ectare:		
Reporting Year	:										
Regulatory Allowable Calculation for determining cumulative loading CPLR in kg/ha											
Pollutant	100%	90%	Concentration in Class B biosolids in mg/kg (dry weight)	Class B biosolids in mg/kg (dry X application rate X conver + Applied Since = Pollutants conver + Applied Since = Pollutant					Total Amount of Pollutant Applied to Date (kg/ha)		
Arsenic	41	37		x		X	0.001	+		=	
Cadmium	39	35		x		x	0.001	+		=	
Copper	1,500	1,350		x		x	0.001	+		=	<u>.</u>
Lead	300	270		x		X	0.001	+		=	
Mercury	17	15		x		X	0.001	+		=	
Nickel	420	378		x		x	0.001	+		=	
Selenium	100	90		X X 0.001 + =							
Zinc	2,800	2,520		x		x	0.001	+		=	5

GENERAL INSTRUCTIONS Annual Biosolids Land Application Report

Instructions provided are for the DEP 4506, Annual Biosolids Land Application Report form. For any questions regarding any section of this form, please call the Division of Waste Management's Solid Waste Branch (SWB). This form must be completed either by typing or by printing legibly with black ink.

If a previous year's report is needed, request a copy by completing an open records request through the Department of Environmental Protection at (502) 564-3999 or <u>EEC.KORA@ky.gov</u>.

All sections of this form must be completed to be accepted by the cabinet. Be sure to include all information for every location permitted, even if this information was previously submitted on previous reports. For any future changes in permit information, an amended application form shall be submitted pursuant to 401 KAR 45:105.

Submit DEP 4506 form via mail to the following address:

Kentucky Department for Environmental Protection Division of Waste Management Solid Waste Branch 300 Sower Boulevard, Second Floor Frankfort, KY 40601 Phone: (502) 564-6716

Submit DEP 4506 electronically using the eForms portal: <u>https://dep.gateway.ky.gov/eForms/Account/Home.aspx</u>

Conversion Factors					
1 acre = 0.404686 hectare	1 hectare = 2.47105 acres				
1 pound = 0.453592 kilogram	1 kilogram = 2.20462 pounds				
1 US ton = 0.907185 metric ton	1 metric ton = 1.10231 US ton				

Section	1.	Permittee Information
		 Agency Interest Number for WWTP: Provide the Agency Interest Number assigned to the wastewater treatment facility that is the biosolids source. Name of WWTP: Provide the name of the wastewater treatment facility that is the source of the biosolids to be land applied. If more than one wastewater treatment plant provides biosolids to this land application site, provide a list of all facilities with their Agency Interest and KPDES numbers as Attachment 1. KPDES Number: Provide the Kentucky Pollutant Discharge Elimination System number assigned to the facility that is the biosolids source. Agency Interest Number for Permittee: Provide the Agency Interest Number for the entity that holds the permit for the land application site. Permittee Name: Provide the name of the entity that is the permittee for the biosolids land application permit as well as the address and contact information for the permittee
Section	2.	 Biosolids Management Information- Complete the table for biosolids that were managed in the reporting year. Type of Management: Check the box or boxes that correspond to how biosolids were managed. Quantity: Provide amount of biosolids managed by the method listed in each checked row in either dry metric tons or gallons. % solids: Provide the percent solids result for the biosolids managed using the method of each checked row.
Section	3.	 Biosolids Analysis Information Monitoring frequency: Check the box that corresponds to the required monitoring frequency for biosolids analysis. Refer to the rows for metric tons or US tons to determine the appropriate monitoring frequency. Dates of sampling: Provide the dates when biosolids samples were taken. Average of Reporting Year Analyses Summary Table: Provide the averages of all samples taken in wet and dry weight. Do not complete boxes that are grayed out. If required by facility permit to monitor additional parameters beyond those listed, provide name of parameter in "other" row and enter analysis date in table for the parameter. Attachment 3: Provide the laboratory reports for all required analyses. What Class are the biosolids? Check the box indicated whether the biosolids are Class A or Class B Alternative used to meet Class A or Class B pathogen reduction pursuant to 40 CFR 503.32: Check the box(es) that correspond to the pathogen reduction alternative(s) used. If an equivalent process was used, describe the process. Option used to meet vector attraction requirement of 40 CFR 503.33: Check the box(es) that correspond to the method used to meet the vector attraction requirement used.

		Did any non-compliance with 40 CFR 503 or 401 KAR Chapter 45 occur during this reporting period? Check the box that indicates whether any non-compliance occurred. If yes, provide a description of the non- compliances(s) and remedial actions taken as Attachment 4.
Section	4.	Laboratory Information: Provide the name, address, and phone number for the laboratory that analyzed the biosolids samples.
Section	5.	 Biosolids Application Summary Agency Interest Number for Permittee- Provide the Agency Interest number for the biosolids land application site. Grand Total Biosolids Applied- Provide the total amount of biosolids applied for each subplot where biosolids were land applied in the reporting year. Check US tons or gallons to indicate the unit of the amount reported. Total Amount Per Acre- Provide the total amount of biosolids applied per acre for each subplot where biosolids were land applied in the reporting year. Check US tons or gallons to indicate the unit of the amount reported. Total Amount Per Acre- Provide the total amount of biosolids applied per acre for each subplot where biosolids were land applied in the reporting year. Check US tons or gallons to indicate the unit of the amount reported. Approved Rate Per Acre: Provide the amount in US Tons or Gallons that is allowed to be applied per the approved permit application and permit. Check the box indicating the unit for the amount reported.
Section	6.	 Land Application - Application Log- If the land application has more than one subplot, copy this page and provide a copy for each subplot. Biosolids Generator(s): Provide the name of the generator(s) of biosolids that were applied for the subplot. Subplot Number: Provide the identification number for the subplot that received biosolids. Subplot Acreage: Provide the acreage of the subplot Monitoring Year: Provide the year for which this data is supplied. Agency Interest Number: Provide the Agency Interest Number assigned to the biosolids land application permit. Date of Application: For each day that biosolids were applied to the subplot on the date identified in US tons. Applier's Initials: Provide the initials of the person who applied the biosolids. Check the box or boxes that correspond to the type of site where biosolids will be land applied. Date of Analysis: Provide the date the analysis was done for the biosolids that were land applied. If the land application site has more than one subplot, provide separate log for each subplot as Attachment 5.
Section	7.	Residual Nitrogen Worksheet: Complete the residual nitrogen worksheet using the formulas provided to calculate residual nitrogen for each subplot.
Section	8.	Worksheet for Calculating Application Rates: Complete the application rate worksheet for each subplot and crop to determine the nutrients applied.
Section	9.	Certification- Complete the certification statement(s) that apply to the type of biosolids management.
Section	10.	 Cumulative Pollutant Loading Rates- Complete the worksheet for each subplot. Subplot Number: Provide the number of the subplot. Subplot latitude and longitude: Provide the latitude and longitude of the subplot. Agency Interest Number for Permittee: Provide the Agency Interest Number for the biosolids land application site. Permittee Name: Provide the name of the biosolids land application permittee. Subplot Size in Hectares: Provide the size of the subplot in hectares. Application rate in metric tons/hectare: Provide the approved application rate in metric tons/hectare. Reporting Year: Provide the year for which data are provided. Concentration in Class B biosolids in mg/kg (dry weight): Provide the concentration of each pollutant in milligrams per kilogram dry weight. Class B biosolids application rate in metric tons/hectare: Provide the approved application rate in metric tons/hectare. Amount of Pollutants Applied Since July 20, 1993 in kg/ha: Provide the total amount of each pollutant applied to the land application site since July 20, 1993. Total Amount of Pollutant Applied to Date (kg/ha): Multiply the concentration in mg/kg by the amount in metric tons per hectare and the conversion factor. Add this amount to the amount applied since July 20, 1993 to get the total amount of pollutant applied to date.