Technical Subcommittee Report on Water Loss

August 12, 2020

To Protect and Enhance Kentucky’s Environment
Technical Subcommittee

• Subcommittee Members
 • Paul Miller, Director Division of Water
 • Kent Chandler, Vice-Chairman Public Service Commission
 • Craig Miller, General Manager Alliance Water Resources
 • Lindell Ormsbee; PE, PH, PhD, D.WRE University of Kentucky
 • Gary Larimore, Executive Director Kentucky Rural Water Association
 • Ben Hale, Executive Director Big Sandy Area Development District

• Support staff
 • DEP – Deputy Commissioner John Lyons
 • DOW – Asst. Director Carey Johnson, Tammi Hudson, Alicia Jacobs, and Jory Becker
 • KRWA – Joe Burns
Why Water Loss?

• Water loss and failing infrastructure are nationwide issues.
• The average water loss for a drinking water system in Kentucky is 24%*.
• Martin County Water District reports an average of 70% water loss.
• A water system in rural Kentucky produces a monthly average of 20M gallons for a population of approximately 9,000 people.
• MCWD produces an average of 52.5M gallons per month, and sells 14.6M gallons.
• Every gallon produced costs money to treat and pump.

*ASCE 2018 Report
Causes of Water Loss

• Water loss is a red flag of operational, managerial, and financial difficulties.

• Operational difficulties - line breaks; water theft; excessive or varying pipe pressures; inconsistency in daily tasks; insufficient maintenance; outdated operating procedures.

• Managerial concerns - faulty and failing infrastructure; inadequate planning for longevity; lack of properly trained staff.

• Financial struggles - poor billing system; excessive debt; disproportionate operating costs; shortage of funds.
Effects of Water Loss

Increased Production Cost
- Electricity
- Chemicals
- Personnel
- Maintenance and repair
- Replacement of equipment

Lost Revenue
- Inaccurate meters
- Misread meters
- Billing system errors
Immediate and Ongoing Actions

• Administrative improvements
 • Keeping and retaining reliable records.
 • Converting billing software and training employees on use.
 • Regularly and uniformly assessing fees.
 • Informing public of utility changes that impact them.
 • Update website to enhance customer relations.

• Operational improvements
 • Training and educating employees on proper maintenance and repair.
 • Locating and mapping lines, meters, and leaks.
 • Creating consistency in processes such as meter reading.
 • Using Standard Operating Procedures.
 • Conducting a vulnerability assessment and emergency plan.
 • Prosecuting for water theft.
What Does Water Theft Look Like?

- **Stolen Meter is Used**
- **Un-Metered Connection**
 - illegal by-pass with professional installation
 - Un-Metered Connection

Jumper Connections

- **Jumper installed after meter was removed**
- **Hose used as Jumper Connection**
- **Un-Metered Connection**
 - connections

- **Stolen Meter is Used**
 - Meter register was removed and radio transmitter wire was cut
Long Term Actions

• Improve revenue and available funds.
 • Reduce water loss which reduces excess treatment of unused water.
 • Require more training for operators.
 • Evaluate spending and operational costs.
 • Implement asset management plan.

• Understand distribution system.
 • Develop a 5-year construction improvement plan.
 • Replace and improve infrastructure.
 • Purchase more leak detection equipment and utilize appropriately.
 • Purchase equipment for distribution repair crew.
 • Implement paperless workflow tracking.
 • Install and use radio meter-read system for all customers.
Understanding a Distribution System and Line Breaks
Hydraulic Model

• Two Different Hydraulic Models
 • Bell Engineers
 • To be used for evaluating upgrades to the system
 • KWRRI
 • To be used for evaluating:
 • Operations (24 hour simulations)
 • Water quality
 • Pressure transients

• Model Status
 • Both models are unvalidated/uncalibrated
 • KWRRI model is running
 • 24 hour simulations ("reasonable" pressures)
 • Water quality
 • Pressure transients

• Future Work
 • Continue model validation
 • Continue model calibration
Next Steps for Distribution System

• Continue locating, mapping, and repairing leaks.
• Finalize hydraulic model.
• Review ongoing construction projects and their impact on the distribution system.
• Use hydraulic model to identify and prioritize future projects.
• Determine solutions based on cost and standard industry practices.
Questions?