PFAS Drinking Water Rule: Calculating the Hazard Index

The Hazard Index (HI) calculations in this document evaluate a single sample's HI value. This value informs monitoring frequency. For MCL compliance beginning April 26, 2029, utilities will calculate a running annual average Hazard Index by using results from the previous four quarters of sampling.

- A Hazard Index (HI) is a tool used by the EPA to account for the increased health risk from mixtures of PFAS that may be found in drinking water.
- ➤ The PFAS National Primary Drinking Water Regulation (NPDWR) includes a Hazard Index maximum contaminant level (MCL) of 1 for mixtures of PFHxS, PFNA, HFPO-DA, and PFBS.
- > To calculate the Hazard Index, testing must detect at least two of the four PFAS.

Hazard Index Formula

The Hazard Index formula uses sampling results of each PFAS divided by their Health-Based Water Concentration (HBWC). The HBWC is the level below which no negative health effects are known or expected for that PFAS.

$$\text{Hazard Index} = \left(\frac{[\text{PFHxS}]}{[\text{10 ppt}]}\right) + \left(\frac{[\text{PFNA}]}{[\text{10 ppt}]}\right) + \left(\frac{[\text{HFPO-DA}]}{[\text{10 ppt}]}\right) + \left(\frac{[\text{PFBS}]}{[\text{2000 ppt}]}\right)$$

Where [PFHxS] = sample results of PFHxS (ppt)

[PFNA] = sample results of PFNA (ppt)

[HFPO-DA] = sample results of HFPO-DA (ppt)

[PFBS] = sample results of PFBS (ppt)

Significant Figures

- ➤ All Hazard Index calculations are rounded to one significant figure because the MCL of 1 has one significant figure.
- A Hazard Index must be at least 1.5 before rounding to one significant figure to be an MCL exceedance.
- A Hazard Index of 1.499 would round down to 1, and therefore would not be an MCL exceedance.

Hazard Index Calculation: Example 1

Step 1: Check if at least two of the four HI PFAS were detected.

HI PFAS	Results (ppt)
PFHxS	Non-detect
PFNA	Non-detect
HFPO-DA	2.02
PFBS	4.7

Non-detects will be written as zero in the formula

Step 2: Enter the results of each PFAS into the formula.

$$HI = \left(\frac{[0 \text{ ppt}]}{[10 \text{ ppt}]}\right) + \left(\frac{[0 \text{ ppt}]}{[10 \text{ ppt}]}\right) + \left(\frac{[2.02 \text{ ppt}]}{[10 \text{ ppt}]}\right) + \left(\frac{[4.7 \text{ ppt}]}{[2000 \text{ ppt}]}\right)$$

Step 3: Divide the results for each PFAS by the HBWC. The units cancel out.

$$HI = (0) + (0) + (0.202) + (0.00235)$$

Step 4: Add the values together.

$$HI = 0.20435$$

Step 5: Round to 1 significant figure.

$$HI = 0.2$$

Since the rounded Hazard Index of 0.2 is less than the MCL of 1, this is not an MCL exceedance.

Hazard Index Calculation: Example 2

Step 1: Check if at least two of the four HI PFAS were detected.

HI PFAS	Results (ppt)
PFHxS	6
PFNA	Non-detect
HFPO-DA	5.05
PFBS	2.3

Step 2: Enter the results of each PFAS into the formula.

$$\mathsf{HI} = \left(\frac{[6 \; \mathsf{ppt}]}{[10 \; \mathsf{ppt}]}\right) \; + \; \left(\frac{[0 \; \mathsf{ppt}]}{[10 \; \mathsf{ppt}]}\right) \; + \; \left(\frac{[5.05 \; \mathsf{ppt}]}{[10 \; \mathsf{ppt}]}\right) \; + \; \left(\frac{[2.3 \; \mathsf{ppt}]}{[2000 \; \mathsf{ppt}]}\right)$$

Step 3: Divide the results for each PFAS by the HBWC. The units cancel out.

$$HI = (0.6) + (0) + (0.505) + (0.00115)$$

Step 4: Add the values together.

$$HI = 1.01615$$

Step 5: Round to 1 significant figure.

$$HI = 1$$

Since the rounded Hazard Index of 1 is equal to the MCL of 1, this is not an MCL exceedance.

Although this is not a single sample MCL exceedance, it is a trigger level exceedance (HI trigger level=1/2 MCL= 0.5). If this was an initial monitoring sample, the utility would not be eligible for reduced monitoring and would be on quarterly monitoring starting April 27, 2027.

Hazard Index Calculation: Example 3

Step 1: Check if at least two of the four HI PFAS were detected.

HI PFAS	Results (ppt)
PFHxS	2
PFNA	14.2
HFPO-DA	Non-detect
PFBS	9.7

Step 2: Enter the results of each PFAS into the formula.

$$HI = \left(\frac{[2 \text{ ppt}]}{[10 \text{ ppt}]}\right) + \left(\frac{[14.2 \text{ ppt}]}{[10 \text{ ppt}]}\right) + \left(\frac{[0]}{[10 \text{ ppt}]}\right) + \left(\frac{[9.7 \text{ ppt}]}{[2000 \text{ ppt}]}\right)$$

Step 3: Divide the results for each PFAS by the HBWC. The units cancel out.

$$HI = (0.2) + (1.42) + (0) + (0.00485)$$

Step 4: Add the values together.

$$HI = 1.62485$$

Step 5: Round to 1 significant figure.

$$HI = 2$$

Since the rounded Hazard Index of 2 is greater than the MCL of 1, this is an MCL exceedance.

Single sample MCL exceedances will result in increased monitoring frequency.

After April 26, 2027, utilities on reduced monitoring with a single sample MCL exceedance will begin monitoring quarterly. Utilities on quarterly monitoring will calculate the running annual average (RAA) to determine MCL compliance beginning April 27, 2029.

Check out these resources to learn more!

- EPA Hazard Index Quick Reference Guide
- EPA NPDWR Per- and Polyfluoroalkyl Substances (PFAS)
- Drinking Water Compliance Kentucky Energy and Environment Cabinet

Contact us at PFAS@KY.GOV