BACTERIOLOGICAL AND BIOLOGICAL ASSESSMENT OF THE GREEN RIVER AND TRADEWATER RIVER WATERSHEDS

Final Report:

Project Period: July 1, 2001 - June 30, 2003

Project Number 00-07 (Bacteriological and Biological Monitoring of the Green River and Tradewater River Watersheds), per U.S.E.P.A. Section §319(h) Nonpoint Source Implementation Program Cooperative Agreement (#C9994861-00) and NREPC MOASTATE-01 for FFY 2000 to:

COMMONWEALTH OF KENTUCKY
NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
KENTUCKY DEPARTMENT FOR ENVIRONMENTAL PROTECTION
KENTUCKY DIVISION OF WATER
14 REILLY RD.
FRANKFORT, KY 40601

Prepared by:

Scott A. Grubbs Center For Biodiversity Studies Western Kentucky University Bowling Green, KY 42101 scott.grubbs@wku.edu

8 August 2003

"The Natural Resources and Environmental Protection Cabinet (NREPC) and Western Kentucky University do not discriminate on the basis of race, color, national origin, sex, age, religion, or disability. The NREPC and Western Kentucky University will provide, on request, reasonable accommodations including auxiliary aids and services necessary to afford an individual with a disability an equal opportunity to participate in all services, programs and activities. To request materials in an alternative format, contact the Kentucky Division of Water, 14 Reilly Road, Frankfort, KY 40601 or call (502) 564-3410 or contact Western Kentucky University. Kentucky state agencies, please include the following: Hearing- and speech-impaired persons can contact the agency by using the Kentucky Relay Service, a toll-free telecommunications device for the deaf (TDD). For voice to TDD, call 800-648-6057. For TDD to voice, call 800-648-6056.

Funding for this project Bacteriological and Biological Monitoring of the Green River and Tradewater River Watersheds was provided in part by a grant from the U.S. Environmental Protection Agency (USEPA) through the Kentucky Division of Water, Nonpoint Source Section, to Western Kentucky University as authorized by the Clean Water Act Amendments of 1987, §319(h) Nonpoint Source Implementation Grant #C9994861-00. The contents of this document do not necessarily reflect the views and policies of the USEPA, KDOW or Western Kentucky University nor does the mention of trade names or commercial products constitute endorsement. This document was printed on recycled paper."

Table of Contents

Acknowledgments	vii
List of Tables	ix
List of Figures	xi
Executive Summary	1
I. Introduction	2
II. Description of Study Area	4
General Description	4
III. Materials and Methods	10
Field Sampling: Macroinverbrates	
IV. Results and Discussion	23
High-Gradient Sites: Green River Basin High-Gradient Sites: Tradewater River Basin High-Gradient Sites: Ohio River Tributaries Low-Gradient Sites: Green River Basin Low-Gradient Sites: Tradewater River Basin Low-Gradient Sites: Ohio River Tributaries Ordinations Fecal Coliform Bacteria	
V. Summary and Conclusions	48
Literature Cited	49
Appendices	50
Appendix A. Financial and administrative closeout	50
Appendix A. Cont	51
Appendix A. Cont	52
Appendix A. Cont	53

Grubbs, 2003. Bacteriological and Biological Assessment	
Appendix A. Cont54	
Appendix B. DOW-approved Quality Assurance / Quality-Control Plan (QA/QC)55	
Appendix I. Taxa list for GRBOO-004 (West Fork Pond River) based on high-gradient, kicknet	
sampling	t
sampling	SU OC
Appendix III. Stream usage assessment for GRBOO-004	JU
sampling.	32
Appendix V. Taxa list for GRBOO-008 (Indian Camp Creek) based on high-gradient, multihabitat	,_
sampling.	64
Appendix VI. Stream usage assessment for GRBOO-008.	36
Appendix VII. Taxa list for GRBOO-022 (unnamed tributary to Wiggington Creek) based on high-	
gradient, kicknet sampling6	36
Appendix VIII. Taxa list for GRBOO-022 (unnamed tributary to Wiggington Creek) based on high-	
gradient, multihabitat sampling	
Appendix IX. Stream usage assessment for GRBOO-022.	
Appendix X. Taxa list for GRBOO-024 (Bull Run) based on high-gradient kicknet sampling	
Appendix XI. Taxa list for GRBOO-024 (Bull Run) based on high-gradient multihabitat sampling7 Appendix XII. Stream usage assessment for GRBOO-024	
Appendix XIII. Taxa list for GRBOO-025 (Deer Creek) based on high-gradient kicknet sampling 8	
Appendix XIV. Taxa list for GRBOO-025 (Deer Creek) based on high-gradient multihabitat sampling	
Appendix XV. Stream usage assessment for GRBOO-025	3 -
Appendix XVI. Taxa list for GRBOO-030 (Pond Creek) based on high-gradient kicknet sampling	
Appendix XVII. Taxa list for GRBOO-030 (Pond Creek) based on high-gradient multihabitat	
sampling	
Appendix XVIII. Stream usage assessment for GRBOO-030	
Appendix XIX. Taxa list for GRBOO-036 (unnamed tributary to Pond Creek) based on high-gradien	
kicknet sampling.	
Appendix XX. Taxa list for GRBOO-036 (unnamed tributary to Pond Creek) based on high-gradient	-
multihabitat sampling	ال ا
Appendix XII. Taxa list for GRBOO-040 (unnamed tributary to West Fork Lewis Creek) based on	5 Z
high-gradient kicknet sampling	
Appendix XXIII. Taxa list for GRBOO-040 (unnamed tributary to West Fork Lewis Creek) based on	
high-gradient multihabitat sampling	
Appendix XXIV. Stream usage assessment for GRBOO-040	97
Appendix XXV. Taxa list for GRBOO-049 (Old Panther Creek) based on high-gradient kicknet	
sampling	
Appendix XXVI. Taxa list for GRBOO-049 (Old Panther Creek) based on high-gradient multihabitat	
sampling	00
Appendix XXVII. Stream usage assessment for GRBOO-049	
Appendix XXVIII. Taxa list for GRBOO-064 (Ward Creek) based on high-gradient, kicknet sampling	
	JS
sampling) 5
Appendix XXX. Stream usage assessment for GRBOO-064	วอ
Appendix XXXI. Taxa list for GRBOO-067 (Crooked Creek) based on high- gradient, kicknet	,,
sampling	38
Appendix XXXII. Taxa list for GRBOO-067 (Crooked Creek) based on high-gradient, multihabitat	-
sampling	10

Appendix XXXIII. Stream usage assessment for GRBOO-0671	112
Appendix XXXIV. Taxa list for GRBOO-068 (East Branch Pond River) based on high-gradient,	
kicknet sampling	114
Appendix XXXV. Taxa list for GRBOO-068 (East Branch Pond River) based on high-gradient,	
multihabitat sampling	116
Appendix XXXVI. Stream usage assessment for GRBOO-068	118
Appendix XXXVII. Taxa list for GRBOO-087 (unnamed tributary to Flat Creek) based on high-	•
gradient, kicknet sampling	120
Appendix XXXVIII. Taxa list for GRBOO-087 (unnamed tributary to Flat Creek) based on high-	120
gradient, multihabitat sampling1	121
Appendix XXXIX. Stream usage assessment for GRBOO-087	121 122
Appendix XXXIX: Stream dsage assessment for GRBOO-007	
kicknet sampling	
Appendix XLI. Taxa list for GRBOO-088 (unnamed tributary to Mays Run) based on high-gradient	
multihabitat sampling	
Appendix XLII. Stream usage assessment for GRBOO-088.	
Appendix XLIII. Taxa list for GRBOO-089 (West Fork Drakes Creek) based on high-gradient, kick	
sampling.	130
Appendix XLIV. Taxa list for GRBOO-089 (West Fork Drakes Creek) based on high-gradient,	
multihabitat sampling 1	132
Appendix XLV. Stream usage assessment for GRBOO-0891	134
Appendix XLVI. Taxa list for GRBOO-097 (Beaverdam Creek) based on high-gradient, kicknet	
sampling 1	
Appendix XLVII. Taxa list for GRBOO-097 (Beaverdam Creek) based on high-gradient, multihabit	at
sampling	
Appendix XLVIII. Stream usage assessment for GRBOO-0971	141
Appendix XLIX. Taxa list for GRBOO-102 (Bear Creek) based on high-gradient, kicknet sampling.	
Appendix L. Taxa list for GRBOO-102 (Bear Creek) based on high-gradient, multihabitat sampling	
Appendix LI. Stream usage assessment for GRBOO-102	
Appendix LII. Taxa list for GRBOO-103 (Sycamore Branch) based on high-gradient, kicknet	
sampling	140
Appendix LIII. Taxa list for GRBOO-103 (Sycamore Branch) based on high-gradient, kicknet	143
	150
1 0	
Appendix LIV. Stream usage assessment for GRBOO-103.	131
Appendix LV. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient,	4 = 0
	153
kicknet sampling	
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient,	155
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling	157
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling	
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling	
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling	159
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling	159
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling.	161
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling.	161
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient,	161 162
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LX. Stream usage assessment for GRBOO-109.	161 162 J.
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LX. Stream usage assessment for GRBOO-109. Appendix LXI. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, kicknet sampling.	161 162 J.
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LX. Stream usage assessment for GRBOO-109. Appendix LXI. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, kicknet sampling. Appendix LXII. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, multihabitat	161 162 J. 164
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LX. Stream usage assessment for GRBOO-109. Appendix LXI. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, kicknet sampling. Appendix LXII. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, multihabitat sampling.	161 162 J. 164
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LX. Stream usage assessment for GRBOO-109. Appendix LXI. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, kicknet sampling. Appendix LXII. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, multihabitat sampling. Appendix LXIII. Stream usage assessment for GRBOO-110.	161 162 J. 164 166
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LX. Stream usage assessment for GRBOO-109. Appendix LXI. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, kicknet sampling. Appendix LXII. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, multihabitat sampling. Appendix LXIII. Stream usage assessment for GRBOO-110. Appendix LXIV. Taxa list for GRBOO-001 (Old Panther Creek) based on low- gradient, multihabitat sampling.	161 162 J. 164 166 167 at
Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LVII. Stream usage assessment for GRBOO-106. Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling. Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling. Appendix LX. Stream usage assessment for GRBOO-109. Appendix LXI. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, kicknet sampling. Appendix LXII. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, multihabitat sampling. Appendix LXIII. Stream usage assessment for GRBOO-110.	161 162 J. 164 166 167 at

Appendix LXVI. Taxa list for GRBOO-009 (Deer Creek) based on low- gradient, multihabitat	
sampling	
Appendix LXVII. Stream usage assessment for GRBOO-009	174
Appendix LXVIII. Taxa list for GRBOO-016 (Little Muddy Creek) based on low-gradient, multihab	oitat
sampling	. 176
Appendix LXIX. Stream usage assessment for GRBOO-016	. 178
Appendix LXX. Taxa list for GRBOO-035 (Deer Creek) based on low-gradient, multihabitat	
sampling	. 180
Appendix LXXI. Stream usage assessment for GRBOO-035	. 182
Appendix LXXII. Taxa list for GRBOO-057 (Tyson Branch) based on low-gradient, multihabitat	
sampling	. 184
Appendix LXXIII. Stream usage assessment for GRBOO-057	. 186
Appendix LXXIV. Taxa list for GRBOO-061 (Piney Creek) based on low-gradient, multihabitat	
sampling.	. 188
Appendix LXXV. Stream usage assessment for GRBOO-061	
Appendix LXXVI. Taxa list for GRBOO-069 (Highland Creek) based on low-gradient, multihabita	t
sampling	
Appendix LXXVII. Stream usage assessment for GRBOO-069	
Appendix LXXVIII. Taxa list for GRBOO-073 (Narge Creek) based on low- gradient, multihabitat	
sampling.	
Appendix LXXIX. Stream usage assessment for GRBOO-073	. 197
Appendix LXXX. Taxa list for GRBOO-076 (Gilles Ditch) based on low-gradient, multihabitat	
sampling.	
Appendix LXXXI. Stream usage assessment for GRBOO-076	201
Appendix LXXXII. Taxa list for GRBOO-100 (Deer Creek) based on low-gradient, multihabitat	
sampling.	
Appendix LXXXIII. Stream usage assessment for GRBOO-100	
Appendix LXXXIV. Taxa list for GRBOO-104 (North Branch South Fork Panther Creek) based or	n
low-gradient, multihabitat sampling.	
Appendix LXXXV. Stream usage assessment for GRBOO-104.	
Appendix LXXXVI. Taxa list for GRBOO-105 (Wolf Lick Creek) based on low-gradient, multihabit	
sampling.	
Appendix LXXXVII. Stream usage assessment for GRBOO-105.	213
Appendix LXXXVIII. Taxa list for GRBOO111 (West Fork Pond River) based on low-gradient,	
multihabitat sampling	
Appendix LXXXIX. Stream usage assessment for GRBOO-111.	
Appendix XC. Taxa list for GRBOO-112 (Goose Pond Ditch) based on low-gradient, multihabitat	
sampling.	
Appendix XCI. Stream usage assessment for GRBOO-112	. 220
Appendix XCII. Number of fecal coliform bacteria colonies (per 100 ml). Dry indicates lack of wa	ater
at stream site at time of sampling. Values in parentheses represent duplicate counts. Refer to Ta	able
IV for site code information.	. 222

Acknowledgments

I need to signify the immense amount of work undertaken by Jason Taylor, who was responsible for coordinating and conducting the lion's share of field sampling and laboratory identifications of macroinvertebrates. Carrie Brooks was also instrumental with every phase of this project, and used the resulting data and subsequent analyses to fulfill her commitments towards earning a Master's of Science Degree at Western Kentucky University. Assistance with a variety of field and laboratory duties was provided by Mike Burchett, Joe Ferguson, Ben Hutchins, Brian Lewis, David Minnis, Robert O'Daniel, William Oliver, and Mike Romans. I am grateful to Greg Pond, Kentucky Division of Water (KDOW), for an endless seam of conversations and assistance with macroinvertebrate identifications. A number of additional KDOW personnel all provided assistance when needed, namely Terry Anderson, Gary Beck, Skip Call, Steve McMurray, Randy Payne, Rodney Pierce, Mike Reed, and Corinne Wells.

Table I. General location data for 35 stream sites in the Green River and Tradewater River Basins.
Table II. Hydrologic and specific location data for 35 stream sites in the Green River and Tradewater
River Basins. 71a = Interior Plateau (IP)/Crawford-Mammoth Cave Uplands; 71e = IP/Western
Pennroyal Karst Plain; 71g = IP/Eastern Highland Rim; 72a = Interior River Valley and Hills (IRVH)/
Wabash-Ohio Bottomlands; 72c = IRVH/Green River-Southern Wabash Lowlands; 72h = IRVH/
Caseyville Hills. See Table I forsite code information. Sites organized as in Table I6
Table III. Characterization of 35 stream sites in the Green River and Tradewater River Basins as low-
(= lacking riffles) or high- gradient (= with at least one natural riffle). See Table I for site code
information. Sampling sites GRBOO-076 and higher were surrogate sites. Sites organized as in Table
I7
Table IV. Location data and reasons for 28 stream sites not sampled for macroinvertebrates8
Table V. Sampling location of 50 FC stream sites. All stream sites were located in the Green River
Basin except Greasy Creek (FC-T12), Tradewater River (FC-sta.no.50) (both in Tradewater River
Basin) and Canoe Creek (FC-T02) (Ohio River tributary)9
Table VI. Water chemistry data for 21 stream sites characterized as high-gradient. See Table I for site
code information. n.a. = no data available12
Table VII. Water chemistry data for 14 stream sites characterized as low-gradient. See Table I for site
code information. n.a. = no data available13
Table VIII. Habitat data for 21 stream sites treated as high-gradient. See Table I for site code
information. EpSb = epifaunal substrate/available cover; Emb = embeddedness; VIDp = velocity/depth
regime; SdDp = sediment deposition; Chan = channel flow status; ChAl = channel alteration; FqBn =
frequency of riffles; Stb-L = left bank stability; Stb-R = right bank stability; Prt-L = left bank vegetation
protection; Prt-R = right bank vegetation protection; Rip-L = left bank riparian protection; Rip-R = right
bank riparian protection. See Table I for site code information14

Table IX. Habitat data for 14 stream sites treated as low-gradient. See Table I for site code
information. EpSb = epifaunal substrate/available cover; PISb = pool substrate characterization; PIVr =
pool variability = velocity/depth regime; SdDp = sediment deposition; Chan = channel flow status; ChAl
= channel alteration; ChSn = channel sinuosity; Stb-L = left bank stability; Stb-R = right bank stability;
Prt-L = left bank vegetation protection; Prt-R = right bank vegetation protection; Rip-L = left bank
riparian protection; Rip-R = right bank riparian protection. See Table I for site code information.15
Table X. Geomorphic characteristics for 21 stream sites characterized as high-gradient. See Table I
for site code information. Bedr = bedrock, bldr= boulder, cobl = cobble, grvl = gravel. n.a. = no data
available16
Table XI. Geomorphic characteristics for 14 stream sites characterized as low-gradient. See Table I
for site code information. Bedr = bedrock, bldr= boulder, cobl = cobble, grvl = gravel. n.a. = no data
available17
Table XII. Multimetric Biotic Index (MBI) scoring method for both genus- and family-level taxonomy. X
= metric value, except for %Oligochaeta (= Y). Both GMBI and FMBI arecalculated as the average of
the six individual values. Individual values > 100 and < 0 are scored as 100 and 0, respectively, prior to
calculation of MBI. %C+%O = % Chironomidae + % Oligochaeta, % Clng = % Clingers19
Table XIII. Accumulated precipitation (in inches) at three U.S.G.S. streamflow location two and four
days prior to each monthly FC sampling period22
Table XIV. Individual metric values and multimetric (G-MBI) index values at genus-level resolution for
21 stream sites characterized as high-gradient. See Table I for site code information. Values in bold
represent individual components of the G-MBI24
Table XV. Individual metric values and multimetric (F-MBI) index values at genus-level resolution for
21 stream sites characterized as high-gradient. See Table I for site code information. Values in bold
represent individual components of the F-MBI.
Table XVI. Individual metric values and multimetric (G-MBI) index values at genus-level resolution for
14 stream sites characterized as low-gradient. See Table I for site code information. Values in bold
represent individual components of the G-MBI34

Grubbs, 2003. Bacteriological and Biological Assessment	
Table XVII. Individual metric values and multimetric (F-MBI) index values at genus-lev	el resolution for
14 stream sites characterized as low-gradient. See Table I for site code information.	Values in bold
represent individual components of the F-MBI.	36
Table XVIII. Summary of CCA eigenvalues and cumulative percentage of species da	ta explained on
the first three canonical axes	43

Grubbs, 2003. Bacteriological and Biological Assessment List of Figures

data. A = DCA plot with sites coded as either high-gradient or low gradient; B = DCA plot of sites
coded as either located in Level III Ecoregion 71 (Interior Plateau) or Ecoregion 72 (Interior River Valley
and Hills)41
Figure II. Detrended correspondence analysis (DCA) ordination plot of sites according to
macroinvertebrate data. A = DCA plot with sites coded as either high-gradient or low gradient; B =
DCA plot of sites coded as either located in Level III Ecoregion 71 (Interior Plateau) or Ecoregion 72
(I
(Interior River Valley and Hills)42
Figure III. Canonical correspondence analysis (CCA) biplots. A = CCA biplot with sites coded as either
Figure III. Canonical correspondence analysis (CCA) biplots. A = CCA biplot with sites coded as either
Figure III. Canonical correspondence analysis (CCA) biplots. A = CCA biplot with sites coded as either high-gradient or low gradient; B = CCA biplot of sites coded as either located in Level III Ecoregion 71
Figure III. Canonical correspondence analysis (CCA) biplots. A = CCA biplot with sites coded as either high-gradient or low gradient; B = CCA biplot of sites coded as either located in Level III Ecoregion 71 (Interior Plateau) or Ecoregion 72 (Interior River Valley and Hills)

Executive Summary

A biological assessment using macroinvertebrates within a probabilistic monitoring strategy and a bacteriological assessment using fecal coliform bacteria of the Green River and Tradewater River Basins, Kentucky, U.S.A., was performed in conjunction with Standards and Specifications Section of the Kentucky Division of Water (KDOW). Thirty-five wadable stream sites, ranging in size from 1st to 6th order, were sampled for macroinvertebrates using a multihabitat approach between June and August 2001 from both high-gradient (= riffle-bearing) and low-gradient (= lacking riffles) reaches. The objective was to expand the number of probabilistic monitoring sites from 40 to 75 and use the resulting macroinvertebrate data to assess stream usage, extrapolate the results to cover the entire watershed, and estimate non-point source pollution impacts on streams throughout each basin. Fifty stream sites were monitored for fecal coliform bacteria from June through October 2001 to assess water quality conditions during the contact season. All sites were selected by KDOW personnel and were located at bridges. Fecal coliform analyses followed Standard Methods.

I. Introduction

Water quality in the Green River and Tradewater River Basins, Kentucky, U.S.A., has been historically monitored through a limited ambient monitoring program. The Kentucky Watershed Management Framework increased the number of monitoring sites within each basin in 2001. The Kentucky Division of Water (KDOW) has initiated, also under the watershed management approach, an effort to increase aquatic life use assessments in more streams. Several subbasins in the Green River and Tradewater River Basins are listed as high-priority, non-point source (NPS) impacted. The Green and Tradewater River Basins cover a large area and contain more streams than KDOW staff can monitor. In the summer of 2001 several agencies, including Western Kentucky University (WKU), collaborated on a watershed-scale bioassessment of both basins using macroinvertebrates and fecal coliform bacteria (FC)

Within the past several decades biological monitoring, or biomonitoring for short, has become a common method of assessing water quality of streams and rivers (Rosenberg and Resh, 1993). Physical and chemical parameters, such as pH, turbidity, and nutrient concentrations, are typically measured. Yet time- and point-specific data may not reveal water quality conditions averaged over longer temporal periods (i.e., one year) (Barbour et al., 1999). Therefore, biomonitoring is often preferred because of the ability of aquatic biota to assimilate cumulative effects of multiple environmental stressors (Ohio EPA, 1999). Biomonitoring using algae, fish or macroinvertebrates are relatively inexpensive and results may be obtained more quickly than by testing physical and chemical parameters (Barbour et al., 1999). Aquatic macroinvertebrates are particularly useful because they are ubiquitous, occur in large numbers, generally have a sedentary nature, exhibit relatively long life cycles, and they can be sampled with fairly simple and inexpensive equipments.

A variety of macroinvertebrate community data measures, or metrics, have been created to evaluate water quality. In theory, each metric should contribute relevant and necessary information about the stream quality of a site and be able to summarize data so that managers and other decision makers have an understanding of the health of the aquatic community (Barbour et al., 1992; Resh & Jackson, 1993). Environmental Protection Agency (EPA) rapid bioassessment protocols

Grubbs, 2003. Bacteriological and Biological Assessment (RBP) suggest 14 metrics as the "best candidate" metrics. These include measures of richness, composition, tolerance, feeding, and habitat. Each metric has been tested for its ability to distinguish stream impairments.

The specific purpose of this study was four-fold: (1) expand the number of probabilistic monitoring sites from 40 to 75 and use the resulting macroinvertebrate data to assess stream usage, extrapolate the results to cover the entire watershed, and estimate NPS impacts on streams throughout the study area. Probabilistic monitoring is a survey design by EPA for surveying non-tidal streams and rivers, and incorporating benthic macroinvertebrate sampling is one of the ways this is accomplished. The use of a restricted random sampling scheme can be expected to reflect environmental conditions throughout the basins; (2) determine recreational use support in targeted NPS-impacted subbasins and compare FC levels to non-NPS impacted subbasins, (3) attempt to pinpoint sources of NPS impacts, and (4) use FC data to determine if further sampling should be performed to develop swimming advisories.

II. Description of Study Area

General Description

The Green River and Tradewater River Basins drain 23,906 km² and 2,442 km², respectively, of the Interior Plateau and Interior Valley and Hills Level III Ecoregions. Both rivers drain into the Ohio River and each basin are impacted by a variety of land use practices including agriculture, coal mining, oil drilling, and forest and commercial use (Burr & Warren, 1986). The impact of these practices on stream quality within these basins has not been studied in great detail.

Macroinvertebrate Sampling Sites

In total, 35 wadable streams sites (Tables I-III) were sampled for benthic macroinvertebrates. Site selection was based on randomized coordinates derived from the E.P.A. EMAP database. However, because the probabilistic design included random sites that were either inaccessible or were dry at the planned time of sampling, these sites were removed and replaced with surrogate sites (Table IV). In particular, 21 high-gradient stream sites and 14 low-gradient stream sites were assessed by WKU using standard biomonitoring procedures according to KDOW Methods for Assessing Biological Integrity of Surface Waters (KDEP, 1993) and Barbour et al. (1999).

Fecal Coliform Bacteria Sampling Sites

Fifty stream sites (Table V) were selected for fecal coliform monitoring by KDOW personnel. All sites were located at bridges. Forty-seven sites were located in the Green River Basin, two sites in the Tradewater River Basin, and the remaining site (Canoe Creek) categorized as an Ohio River tributary. A global positioning system (Garmin Vista Etrex) was used to record sampling site coordinates in decimal degrees.

4

Table I. General location data for 35 stream sites in the Green River and Tradewater River Basins.

Basin	Stream name	Site code	County	Location
Green	Old Panther Creek	GRBOO-001	Daviess	3 km NE Moseleyville
	West Fork Pond River	GRBOO-004	Christian	4 km SE White Plains
	Indian Camp Creek	GRBOO-008	Butler	9 km N Morgantown
	Deer Creek	GRBOO-009	Webster	9 km NW Slaughters
	Little Muddy Creek	GRBOO-016	Butler	4 km SW Woodbury
	unnamed tributary to Wiggington Creek	GRBOO-022	Logan	7 km NW Auburn
	Bull Run	GRBOO-024	Ohio	7 km NE Rochester
	Deer Creek	GRBOO-025	Webster	7 km E Dixon
	Pond Creek	GRBOO-030	Muhlenberg	7 km S Greenville
	Deer Creek	GRBOO-035	Crittenden	6 km E Carrsville
	unnamed tributary to Pond Creek	GRBOO-036	Muhlenberg	4 km E Cleaton
	unnamed tributary to West Fork Lewis Creek	GRBOO-040	Ohio	5 km N Rockport
	Old Panther Creek	GRBOO-049	Daviess	2 km N Moseleyville
	East Fork Pond River	GRBOO-068	Christian	7 km N Kirkmansville
	Narge Creek	GRBOO-073	Hopkins	10 km SSW Jewel City
	Gilles Ditch	GRBOO-076	Daviess	6 km N Rome
	unnamed tributary to Flat Creek	GRBOO-087	Hopkins	5 km SE Madisonville
	unnamed tributary to Mays Run	GRBOO-088	Hardin	13 km SW Vine Grove
	West Fork Drakes Creek	GRBOO-089	Simpson	5 km NE Franklin
	Beaverdam Creek	GRBOO-097	Edmonson	4 km E Chalybeate
	Deer Creek	GRBOO-100	Webster	6 km SSW Sebree
	Bear Creek	GRBOO-102	Grayson	17 km SE Caneyville
	Sycamore Branch	GRBOO-103	Edmonson	5 km WNW Kyrock
	North Branch South Fork Panther Creek	GRBOO-104	Hancock	10 km SSE Fordsville
	Wolf Lick Creek	GRBOO-105	Logan	3 km NW Lewisburg
	South Fork Little Barren River	GRBOO-106	Metcalfe	8 km NNW Edmonton
	East Fork Little Barren River	GRBOO-109	Metcalfe	10.5 km SE Edmonton
	West Fork Pond River	GRBOO-111	Christian	7 km E Crofton
Tradewater	Tyson Branch Tradewater River	GRBOO-057	Caldwell	4 km E Shady Grove
	Piney Creek	GRBOO-061	Crittenden	10 km SE Marion
	Ward Creek	GRBOO-064	Caldwell	7 km E Princeton
Ohio River	Crooked Creek	GRBOO-067	Crittenden	13 km E Tolu
tributary	Highland Creek	GRBOO-069	Union	3 km W Uniontown
-	Bayou Creek	GRBOO-110	Livingston	8 km N Birdsville
	Goose Pond Ditch	GRBOO-112	Union	16 km W Morganfield

Table II. Hydrologic and specific location data for 35 stream sites in the Green River and Tradewater River Basins. 71a = Interior Plateau (IP)/Crawford-Mammoth Cave Uplands; 71e = IP/Western Pennyroyal Karst Plain; 71g = IP/Eastern Highland Rim; 72a = Interior River Valley and Hills (IRVH)/ Wabash-Ohio Bottomlands; 72c = IRVH/Green River-Southern Wabash Lowlands; 72h = IRVH/ Caseyville Hills. See Table I for site code information. Sites organized as in Table I.

Site code	Latitude	Longitude	Level IV Ecoregion	Strahler Order	Distance to source (km)	Basin area (km²)
GRBOO-001	37.6835	87.1791	72c	5	51.66	298.89
GRB00-004	37.1361	87.3654	72c	5	33.25	46.28
GRBOO-008	37.3065	86.6902	72c	5	18.18	62.23
GRBOO-009	37.5464	87.5770	72c	5	15.34	41.74
GRBOO-016	37.1593	86.6610	72h	4	15.42	35.77
GRB00-022	36.8733	86.7717	71a	3	5.28	10.56
GRB00-024	37.2671	86.8597	72c	2	2.02	4.52
GRB00-025	37.5065	87.6120	72c	5	15.47	41.92
GRB00-030	37.1462	87.1601	72c	3	6.21	6.67
GRB00-035	37.3976	88.3184	72a	5	25.49	63.39
GRBOO-036	37.2422	87.0649	72c	2	5.18	3.52
GRB00-040	37.3777	87.0026	72c	1	1.44	0.53
GRBOO-049	37.6775	87.2049	72c	5	45.95	302.46
GRBOO-068	37.0710	87.2727	72h	5	44.74	148.64
GRB00-073	37.4440	87.3878	72c	3	3.33	2.69
GRBOO-076	37.7681 37.2859	87.1886	72a	3	5.34	2.53
GRB00-087		87.4298	72c	3	4.30 2.14	7.32
GRB00-088	37.7391	86.0833	71a	3		5.22
GRBOO-089 GRBOO-097	36.7533 37.1218	86.5489 86.1936	71e 71a	4	40.19 4.62	122.64 4.89
GRBOO-100	37.1216	87.5451	71a 72c	3 4	10.45	18.74
GRBOO-100 GRBOO-102	37.3617	86.3021	72b	4	23.20	57.77
GRB00-102 GRB00-103	37.2738	86.3128	72h	1	1.41	0.30
GRB00-103	37.7299	86.7300	72h	4	11.46	13.00
GRBOO-104	37.0097	86.9644	7211 71a	5	34.70	111.27
GRBOO-106	37.0430	85.6408	71a	4	32.02	78.63
GRBOO-109	36.9439	85.5011	71g	3	5.94	4.79
GRB00-111	37.0543	87.4097	719 72h	5	14.56	32.16
CRECO III	01.00.10	07.1007		Ü	1 1.00	02.10
GRBOO-057	37.3321	87.8410	72c	3	5.26	4.66
GRBOO-061	37.3044	87.9689	72h	5	11.94	11.33
GRBOO-064	37.1001	87.8070	71a	3	7.97	6.79
GRBOO-067	37.4312	88.0938	71a	4	32.82	40.97
GRBOO-069	37.7813	87.8933	72a	6	46.06	223.62
GRB00-110	37.2872	88.4718	71a	4	21.65	35.69
GRB00-112	37.6240	88.1305	72a	4	18.26	29.87

6

Table III. Characterization of 35 stream sites in the Green River and Tradewater River Basins as low- (= lacking riffles) or high- gradient (= with at least one natural riffle). See Table I for site code information. Sampling sites GRBOO-076 and higher were surrogate sites. Sites organized as in Table I.

Site code	High-gradient	Low-gradient
GRBOO-001		X
GRBOO-004	X	
GRBOO-008	X	
GRBOO-009		X
GRBOO-016		Х
GRBOO-022	X	
GRBOO-024	X	
GRBOO-025	X	
GRBOO-030	X	
GRBOO-035		X
GRBOO-036	X	
GRBOO-040	X	
GRBOO-049	X	
GRBOO-068	X	
GRB00-073		X
GRBOO-076		X
GRBOO-087	X	
GRBOO-088	X	
GRBOO-089	X	
GRBOO-097	Х	v
GRBOO-100 GRBOO-102	v	Х
GRBOO-102 GRBOO-103	X X	
GRBOO-103 GRBOO-104	^	X
GRBOO-104 GRBOO-105		X
GRBOO-106	Х	^
GRBOO-109	X	
GRB00-111	X	х
GRBOO-057		Х
GRBOO-061		Х
GRBOO-064	X	
GRBOO-067	X	
GRBOO-069		X
GRBOO-110	X	
GRB00-112		X

Table IV. Location data and reasons for 28 stream sites not sampled for macroinvertebrates

Stream name	Site code	Latitude	Longitude	County	Reason
Brushy Fork	GRBOO-003	37.3826	88.0147	Crittenden	Dry
Hogan Slough	GRBOO-005	37.8712	87.8334	Henderson	•
unnamed tributary to Craborchard Creek	GRBOO-012	37.1652	87.4850	Hopkins	Dry
Twomile Creek	GRBOO-017	37.6011	87.0714	Daviess	Dry
unnamed tributary to Pond River	GRBOO-020	37.2438	87.3645		Inaccessible by foot/boat
Clear Fork	GRBOO-026	36.9728	86.6257	Warren	Landowner denied
unnamed tributary to Hurricane Creek	GRBOO-029	37.3456	88.1419	Crittenden	Dry
unnamed tributary to East Fork	GRBOO-032	37.1300	87.7866	Caldwell	Dry
unnamed tributary to Lick Creek	GRBOO-037	37.8125	87.4409	Henderson	Dry
unnamed tributary to Otter Creek	GRBOO-041	37.4583	87.4301	Hopkins	Dry
unnamed tributary to Clifty Creek	GRBOO-046	37.0118	87.0466	Logan	Dry
unnamed tributary to Piney Creek	GRBOO-048	37.0599	87.7056	Caldwell	Dry
unnamed tributary to Clear Creek	GRBOO-052	37.2809	87.5069	Hopkins	Dry
Hickory Camp Creek	GRBOO-056	37.1817	86.8147	Butler	Dry
Hazel Creek	GRB00-062	37.1427	87.0068	Muhlenberg	Landowner denied
unnamed tributary to East Fork Barren River	GRB00-086	36.7547	85.6531	Monroe	Dry
unnamed tributary to Casey Creek	GRB00-090	37.2585	85.1639	Adair	Dry
Little Claylick Creek	GRB00-091	37.1515	86.5892	Warren	Dry
unnamed tributary to Pond Drain	GRB00-092	37.4530	87.2384	McLean	Dry
unnamed tributary to South Fork Nolin River	GRB00-093	37.5216	85.7658	Larue	Dry
Cave Creek	GRB00-094	37.2542	88.5041	Pope (IL)	Dry
Jarrels Creek	GRB00-095	37.1409	87.2358	Muhlenberg	Dry
unnamed tributary to Muddy Gut Creek	GRB00-096	37.9497	86.7983	Hancock	Dry
Crooked Creek	GRB00-098	37.2598	85.1466	Adair	Dry
unnamed stream	GRB00-099	37.3327	86.9021	Ohio	Dry
unnamed tributary to Difficult Creek	GRB00-101	36.8356	86.1582	Allen	Dry
Sugar Creek	GRB00-107	37.1779	87.8163	Caldwell	Dry
unnamed stream	GRB00-108	37.4987	86.9415	Ohio	Dry

Table V. Sampling location of 50 FC stream sites. All stream sites were located in the Green River Basin except Greasy Creek (FC-T12), Tradewater River (FC-sta.no.50) (both in Tradewater River Basin) and Canoe Creek (FC-T02) (Ohio River tributary).

Site Code	Stream	County	Location	Latitude	Longitude
GRBEX-01	Glens Fork, Russell Creek	Adair	Rte. 55, 6 km SE Columbia	37.0520	-85.2643
GRBEX-02	Russell Creek	Adair	nr. Rte. 206, 1 km E Columbia	37.1053	-85.2883
GRBEX-03	Butlers Fork, Russell Creek	Adair	Rte. 80, Bliss	37.0810	-85.3725
GRBEX-04	Sulphur Creek	Adair	Taylors Ford Rd., 6 km ENE Columbia	37.1128	-85.2339
GRBEX-05	Pettys Fork, Russell Creek	Adair	Rte. 61, 3.5 km W Columbia	37.0974	-85.3340
GRBEX-06	Big Creek	Adair	Rte. 80, Gradyville	37.0624	-85.4295
GRBEX-07	Poplar Grove Branch	Taylor	Union Church Rd., 14 km SE Buffalo	37.4338	-85.5714
GRBEX-08	Upper Brush Creek	Green	Union Church Rd., 14 km SE Buffalo	37.4311	-85.5849
GRBEX-09	Big Reedy Creek	Butler	Rte. 238, 4 km NWN Roundhill	37.2725	-86.4431
GRBEX-10	Claylick Creek	Warren	Old Rte. 263, 3 km W Riverside	37.1556	-86.5722
GRBEX-11	Wolf Lick Creek	Logan	Duncan Ridge Rd., 3 km W Lewisburg	36.9872	-86.9953
GRBEX-12	Indian Camp Creek	Butler	U.S. 231, 9 km N Morgantown	37.2855	-86.7183
GRBEX-13	Bat East Creek	Muhlenberg	Rte. 1163, 8.5 km SE Greenville	37.1560	-87.0973
GRBEX-14	Plum Creek	•	U.S. 431/Rte. 70, 1 km NW Drakesboro	37.2318	-87.0512
GRBEX-15	Lewis Creek	Ohio	U.S. 62, 2 km NE Rockport	37.3475	-86.9843
GRBEX-16	Caney Creek	Grayson	Goffs-Neafus Rd., 10.5 km W Caneyville	37.4228	-86.6105
GRBEX-17	Caney Creek	Ohio	U.S. 62, 8 km ENE Rosine	37.4640	-86.6555
GRBEX-18	McGrady Creek	Ohio	Shiloh Rd., 16 km WNW Caneyville	37.4885	-86.6490
GRBEX-19	Muddy Creek	Ohio	Rte. 505, 19.5 km WNW Caneyville	37.5009	-86.6853
GRBEX-20	Deserter Creek	Daviess	nr. Deserter Creek Rd., 6 km SW Whitesville	37.6362	-86.9016
GRBEX-21	South Fork Panther Creek	Daviess	Rte. 762, 8.5 km SW Whitesville	37.6284	-86.9434
GRBEX-22	East Fork Pond River	Muhlenberg	Lone Star Rd., 7 km N Kirkmansville	37.0695	-87.2546
GRBEX-23	Buck Fork, East Fork Pond River	_	Froghop Rd., 5 km SW Kirkmansville	36.9925	-87.2986
GRBEX-24	Buck Creek	Christian	Rte. 189, 1 km E Fearsville	36.9813	-87.3522
GRBEX-25	Jarrels Creek	Muhlenberg	Greens Chapel Rd., 6 km SE White Plains	37.1573	-87.3171
GRBEX-26	E. Branch West Fork Pond River	_	Johnson Mille Rd., 7.5 km SE Crofton	37.0247	-87.4032
GRBEX-27	Elk Pond Creek	Muhlenberg	Greens Chapel Rd., 10.5 km WSW Greenville	37.1618	-87.2885
GRBEX-28	Craborchard Creek	Hopkins	U.S. 41, 4 km S Nortonville	37.1577	-87.4644
GRBEX-29	Pleasant Run	Hopkins	U.S. 41, Nortonville	37.1918	-87.4523
GRBEX-30	Flat Creek	Hopkins	Rte. 813, 3 km NE Mortons Gap	37.2506	-87.4547
FC-G51	Billy Creek	Hardin	Peterson Drive, Elizabethtown	37.6824	-85.8956
FC-G59	Valley Creek	Hardin	U.S.31W Bypass/U.S. 62, Elizabethtown	37.6901	-85.8671
FC-G60	Valley Creek	Hardin	Rte. 222, 3 km NW Glendale	37.6127	-85.9311
FC-T02	Canoe Creek	Henderson	nr. U.S. 41 ALT/U.S. 60, Henderson	37.8087	-87.6201
FC-T12	Greasy Creek	Hopkins	Rte. 262, 3 km W Madisonville	37.3352	-87.5332
FC-T25	Plum Creek	Muhlenberg	Rte. 70, 1 km E Browder	37.1983	-87.0316
FC-T34	Rough River	Ohio	Rte. 69, 2 km SW Hartford	37.1903	-86.9280
FC-T34 FC-T35	Mill Creek	Ohio	Rte. 54, 3 km W Fordsville	37.6364	-86.7566
FC-T36	Deserter Creek	Daviess	Rte. 764, 5 km SSW Whitesville	37.6465	-86.8835
FC-T37	South Fork Panther Creek	Ohio	Rte. 764, 8 km S Whitesville	37.6188	-86.8867
FC-T37 FC-T41	North Fork Panther Creek			37.7249	
		Daviess	Rte. 142, 12 km NW Whitesville		-86.9915
FC-T47	Knoblick Creek	Daviess	Berry Rd., 3 km SSE Curdsville	37.7117	-87.3205
FC-T48	Crooked Creek	Daviess	Crooked Creek Rd., 5 km SE Curdsville	37.7242	-87.2795
FC-sta.no.44		Hopkins Webster	Rte. 138/ Rte. 281, Jewel City	37.5272	-87.3542
	5 Deer Creek	Webster	Rte. 370, 7 km SE Sebree	37.5730	-87.4651
	Wolf Lick Creek	Logan	Iron Mountain Rd., 6 km N Lewisburg	37.0417	-86.9541
FC-sta.no.47		Logan	Rte. 1153, 8.5 km NE Lewisburg	37.0486	-86.9060
	3 Gasper River	Warren	U.S. 231, 1 km SE Hadley	37.0533	-86.5963
	Russell Creek	Green	U.S. 68/Rte. 70, 4 km S Greensburg	37.2278	-85.5114
FC-sta.no.50	Tradewater River	Caldwell	U.S. 62, 1 km SW Dawson Springs	37.1608	-87.7040

III. Materials and Methods

Field Sampling: Macroinverbrates

At each site, the proportion of aquatic habitats within a 100-m reach of the stream was visually determined and sampling was based upon these habitats. For high gradient (riffle-bearing) sites, macroinvertebrate samples were collected from riffles using a 0.5 m 2 kick-seine with a mesh size of 800 x 900 μ m. Two one-minute kick samples were collected from two separate riffles within the 100-m reach, composited, and rinsed through a 500- μ m sieve. Large objects, such as twigs, leaves and rocks were washed, visually inspected and picked for macroinvertebrates, and removed from the sample.

The high gradient multihabitat sample was comprised of all remaining stream habitat types. If cobble to small boulder-sized rocks were present, 30 rocks were visually inspected and washed into a bucket with care to remove all organisms from the surface. If bedrock was present, a 500-μm mesh D-frame net was placed on the surface and a 0.1 m² area above the net was disturbed to detach organisms. This was completed three times and the samples were composited in a bucket. When undercut banks were present, the D-frame net was jabbed into the root mass and shaken vigorously in three different sections. At streams with the presence of *Justacia americana*, the D-frame net was jabbed into the plants in three 1-m sections. The same procedure was followed for other aquatic vegetation. For submerged wood, a total of 6 m in length, ranging between 5 and 25 cm in diameter, was inspected and washed into a bucket. Sediment was sampled by filling a 2-mm mesh sieve with sediment from three areas along the streambed. In addition, a 250-μm mesh sieve was dragged lightly along the streambed in three different places and these samples were added to the rest of the sediment sample.

At low gradient multihabitat sites, the proportion of each habitat type was visually determined within the 100-m reach. A total of 20 sample units were collected from available habitats based upon the proportion of the total habitat that they comprised. For each sample unit of submerged wood, undercut banks, and aquatic vegetation habitats, a D-frame net was thrust into the habitat for

Grubbs, 2003. Bacteriological and Biological Assessment approximately 1 m. If large cobble sized rocks were present, each rock was considered a sample unit and all organisms were picked from the surface and washed into a bucket. Sediment was collected and processed as described above with the high gradient sites. All samples from all habitats were preserved in 95% ethanol and later transferred to 70% ethanol.

Selected in-stream physical and chemical parameters were obtained with an YSI 6820 multiprobe sonde (Tables VI-VII). In-stream, stream bank, and riparian habitat features were quantified following standard EPA guidelines (Barbour et al., 1999) (Tables VIII-XI). Specifically, % sand, % silt, and % clay were combined into one variable (% fines).

Laboratory Methods: Macroinvertebrates

Riffle samples were full sorted at 7x magnification. Rock-pick, wood, undercut bank, sediment, bedrock and aquatic plant samples from both high-gradient multihabitat and low gradient sites were composited prior to sorting. Both sets of multihabitat samples were sorted using a fixed-count subsampling of 300 organisms at 7x. This method used a higher fixed-count value than the surveyed results found by Carter and Resh (2001) for EPA Region 4 and was a moderate value for the United States. All macroinvertebrates were identified to genus with the exceptions of Chironomidae, Hydracarina, and Oligochaeta and some damaged and juvenile individuals that could not be identified below family or order.

Data Analysis: Macroinvertebrates

Data were categorized into six groups based on taxonomic level (family, genus) and habitat (single habitat-riffle, multihabitat-all habitats excluding riffle, and low gradient-all habitats). All juvenile individuals that could not be identified to at least family level were removed from the analysis. Six metrics were calculated for each data group: taxa richness, Ephemeroptera, Plecoptera and Trichoptera (EPT) Richness, the modified Hilsenhoff Biotic Index (HBI), modified % EPT (minus Cheumatopsyche), and % Chironomidae+Oligochaeta, and % clingers. The tolerance values used to calculate the HBI were obtained from Barbour et al. (1999), Lenat

Table VI. Water chemistry data for 21 stream sites characterized as high-gradient. See Table I for site code information. n.a. = no data available.

Site code	рН	Conductivity
		_
GRB00-004	7.36	271
GRB00-008	7.17	178
GRB00-022	7.24	163
GRB00-024	7.44	1308
GRB00-025	7.45	195
GRB00-030	7.39	340
GRB00-036	7.12	952
GRB00-040	7.22	164
GRB00-049	7.70	132
GRB00-064	6.97	193
GRB00-067	7.10	162
GRB00-068	7.33	211
GRB00-087	7.28	1123
GRB00-088	7.38	311
GRB00-089	7.52	300
GRB00-097	7.45	152
GRB00-102	7.35	220
GRB00-103	n.a.	n.a.
GRB00-106	7.57	283
GRB00-109	8.02	246
GRB00-110	7.48	152

Table VII. Water chemistry data for 14 stream sites characterized as low-gradient. See Table I for site code information. n.a. = no data available.

Site code	рН	Conductivity
ODD00 004	7.70	400
GRB00-001	7.70	132
GRB00-009	7.51	201
GRB00-016	6.92	290
GRB00-035	7.17	178
GRB00-057	n.a.	n.a.
GRB00-061	7.45	167
GRB00-069	7.40	216
GRB00-073	7.35	393
GRB00-076	7.43	310
GRB00-100	7.51	201
GRB00-104	7.36	126
GRB00-105	7.31	223
GRB00-111	7.20	228
GRB00-112	6.48	181

Table VIII. Habitat data for 21 stream sites treated as high-gradient. See Table I for site code information. EpSb = epifaunal substrate/available cover; Emb = embeddedness; VIDp = velocity/depth regime; SdDp = sediment deposition; Chan = channel flow status; ChAI = channel alteration; FqBn = frequency of riffles; Stb-L = left bank stability; Stb-R = right bank stability; Prt-L = left bank vegetation protection; Prt-R = right bank vegetation protection; Rip-L = left bank riparian protection; Rip-R = right bank riparian protection. See Table I for site code information.

Site code	EpSb	Emb	VIDp	SdDp	Chan	ChAl	FqBn	Stb -L	Stb -R	Prt- L	Prt- R	Rip -L	Rip -R	TOTAL
GRB00-004	11	8	12	13	17	13	8	6	5	7	4	7	5	116
GRB00-008	11	13	13	12	15	13	5	5	4	6	5	4	4	110
GRB00-022	8	8	8	8	7	18	13	5	5	4	4	3	5	96
GRB00-024	6	8	8	13	14	13	18	9	9	9	9	7	7	130
GRB00-025	11	13	13	8	8	8	7	7	2	5	2	7	1	92
GRB00-030	9	13	9	7	9	10	9	5	5	4	4	2	2	88
GRB00-036	13	16	10	13	8	13	17	7	7	6	6	9	7	132
GRB00-040	9	14	6	7	8	20	8	7	7	7	7	9	9	118
GRB00-049	8	2	8	8	8	13	2	6	6	5	5	6	5	82
GRB00-064	13	18	13	15	8	18	10	9	9	9	9	6	7	144
GRB00-067	11	16	13	16	16	14	3	6	7	5	6	8	6	127
GRB00-068	13	18	13	13	7	13	13	8	8	7	7	3	4	127
GRB00-087	9	5	8	15	8	10	2	8	8	8	8	8	8	105
GRB00-088	10	11	12	8	10	18	15	4	4	5	5	4	4	110
GRB00-089	18	16	18	13	13	16	16	7	7	9	9	9	9	160
GRB00-097	14	15	13	18	13	18	18	8	7	8	7	3	4	146
GRB00-102		16	18	15	9	14	13	6	6	6	6	3	3	115
GRB00-103	9	18	10	15	13	18	19	6	7	4	5	1	6	131
GRB00-106	15	16	18	13	8	18	18	8	8	9	9	8	8	156
GRB00-109	10	20	7	19	8	18	5	9	9	9	9	2	2	127
GRB00-110	13	13	8	13	13		8	7	7	7	7	7	10	113

Table IX. Habitat data for 14 stream sites treated as low-gradient. See Table I for site code information. EpSb = epifaunal substrate/available cover; PISb = pool substrate characterization; PIVr = pool variability = velocity/depth regime; SdDp = sediment deposition; Chan = channel flow status; ChAl = channel alteration; ChSn = channel sinuosity; Stb-L = left bank stability; Stb-R = right bank stability; Prt-L = left bank vegetation protection; Prt-R = right bank vegetation protection; Rip-L = left bank riparian protection; Rip-R = right bank riparian protection. See Table I for site code information.

Site code	EpSb	PISb	PIVr	SdDp	Chan	ChAl	ChSn	Stb-L	Stb-R	Prt-L	Prt-R	Rip-L	Rip-R	TOTAL
-														
GRB00-001	3	7	2	8	7	7	7	7	7	7	5	8	4	79
GRB00-009	6	7	7	8	12	10	5	3	3	3	3	3	1	71
GRB00-016	11	11	13	16	19	11	8	4	4	4	4	6	6	117
GRB00-035	10	12	13	16	19	17	8	5	5	6	6	9	9	135
GRB00-057	2	8	3	3	13	6	1	2	2	2	2	1	1	46
GRB00-061	10	7	10	10	15	10	5	2	2	3	3	5	2	84
GRB00-069	12	9	14	18	18	17	18	5	4	5	4	10	2	136
GRB00-073	3	6	3	5	0	6	1	3	3	5	5	2	2	44
GRB00-076	3	9	4	7	8	9	2	6	6	7	7	1	1	70
GRB00-100	6	7	7	8	12	10	5	4	4	5	5	5	2	80
GRB00-104	13	11	13	11	15	13	10	5	5	6	6	3	3	114
GRB00-105	6	7	13	18	18	13	5	6	6	5	5	7	5	114
GRB00-111	8	8	13	8	18	11	6	5	5	6	6	5	9	108
GRB00-112	3	8	3	3	8	6	3	4	4	6	6	1	4	59

Table X. Geomorphic characteristics for 21 stream sites characterized as high-gradient. See Table I for site code information. Bedr = bedrock, bldr= boulder, cobl = cobble, grvl = gravel. n.a. = no data available.

Site code	% riffle	% run	% pool	% bedr	% bldr	% cobl	% grvl	% sand	% silt	% clay
GRB00-004	5.0	30.0	65.0	0	0	15	22.5	0	7.5	55
GRB00-004 GRB00-008	5.0	10.0	85.0	0	2.5	7.5	12.5	32.5	30	15
GRB00-022	22.5	45.0	32.5	0	0	0	37.5	57.5	5	0
GRB00-024	35.0	60.0	5.0	0	0	15	32.5	12.5	0	40
GRB00-025	5.0	10.0	85.0	0	0	12.5	25	50	10	2.5
GRB00-030	20.0	27.5	52.5	0	2.5	7.5	22.5	17.5	40	10
GRB00-036	37.5	35.0	27.5	0	0	27.5	47.5	15	10	0
GRB00-040	5.0	27.5	67.5	0	0	0	10	55	35	0
GRB00-049	5.0	45.0	50.0	0	0	0	0	10	90	0
GRB00-064	17.5	65.0	17.5	50	5	22.5	22.5	0	0	0
GRB00-067	10.0	22.5	67.5	0	0.5	9.5	22.5	10	25	32.5
GRB00-068	n.a.	n.a.	n.a.	35	2.5	17.5	5	0	40	0
GRB00-087	2.0	78.0	20.0	0	2.5	7.5	5	10	55	20
GRB00-088	15.0	47.5	37.5	0	2.5	27.5	20	5	45	0
GRB00-089	15.0	60.0	25.0	30	0	20	30	10	5	5
GRB00-097	27.5	27.5	45.0	22.5	2.5	57.5	15	2.5	0	0
GRB00-102	35.0	30.0	35.0	0	7.5	47.5	25	15	12.5	0
GRB00-103	67.5	32.5	0.0	0	0	57.5	17.5	15	10	0
GRB00-106	12.5	62.5	25.0	50	0	21.25	11.25	10	7.5	0
GRB00-109	7.5	82.5	10.0	47.5	0	20.15	17.65	11.75	2.95	0
GRB00-110	12.5	35.0	52.5	0	5	35	10	15	20	15

Table XI. Geomorphic characteristics for 14 stream sites characterized as low-gradient. See Table I for site code information. Bedr = bedrock, bldr= boulder, cobl = cobble, grvl = gravel.

Site code	% riffle	% run	% pool	% bedr	% bldr	% cobl	% grvl	% sand	% silt	% clay
0000000	0.0	00.0	00.0	0	0	0	0	•	50	50
GRB00-001	0.0	20.0	80.0	0	0	0	0	0	50	50
GRB00-009	0.0	82.5	17.5	0	0	1	2.5	70	26.5	0
GRB00-016	0.0	0.0	100.0	0	0	5	0	10	10	75
GRB00-035	0.0	0.0	100.0	0	0	0	0	0	20	80
GRB00-057	0.0	0.0	100.0	0	0	0	0	50	50	0
GRB00-061	0.0	0.0	100.0	0	0	0	0	10	40	50
GRB00-069	0.0	0.0	100.0	0	0	0	0	0	10	90
GRB00-073	5.0	15.0	80.0	2.5	0	2.5	7.5	0	0	87.5
GRB00-076	0.0	100.0	0.0	0	0	0	0	0	0	100
GRB00-100	0.0	75.0	25.0	0	0	0	0	75	12.5	12.5
GRB00-104	2.5	10.0	87.5	0	0	7.5	15	27.5	37.5	12.5
GRB00-105	0.0	0.0	100.0	0	0	0	0	30	30	40
GRB00-111	0.0	0.0	100.0	0	0	0	0	33.3	33.3	33.3
GRB00-112	0.0	100.0	0.0	0	0	5	0	30	35	30

Grubbs, 2003. Bacteriological and Biological Assessment (1993), and the KDOW Ecological Data Application System (EDAS (vKY3.0), 2001). Lastly, a multimetric macroinvertebrate index (MBI) was calculated for riffle and low-gradient data. The MBI incorporates each of the six equally-weighted metrics (Table XII).

To assess potential differences between sites both according to environmental parameters and macroinvertebrate assemblages, data were exposed to detrended correspondence analysis (DCA) (PC-ORD, Version 4.17 for Windows, MjM Software, 1999). Environmental data (Tables VI – XI) were left untransformed and macroinvertebrate data were transformed as log 1+x, where x = abundance of a taxon for a given composite sample. For the macroinvertebrate DCA, I chose to both include and downweight rare species. Macroinvertebrates that could not be identified below the level of family, but included individuals of that family taken to genus or species, were omitted.

Two DCA plots were prepared per analysis, one coding sites as either high-gradient or low-gradient, and the second coding sites as residing either within Level III Ecoregion 71 (Interior Plateau) or Ecoregion 72 (Interior River Valley and Hills). DCA was chosen because this ordination technique can handle large, complex datasets and uncover extremely long gradients. Species-site data are typically non-linear and unimodal and thus DCA is considered superior to other ordination techniques (e.g., Principal Components Analysis) when analyzing community data (McGarigal et al., 2000).

Canonical correspondence analysis (CCA) (PC-ORD, 1999) was used to address which environmental variables were attributable for potentially distinct macroinvertebrate assemblages. CCA (ter Braak 1986) ordinates a first matrix (by reciprocal averaging) and constrains it by a multiple regression on environmental variables (e.g., pH) within a second overlapping matrix. Due to a high degree of multicollinearity among geomorphic variables, % gravel and % fines were combined as one variable, and % cobble and % boulder were also consolidated as a single variable.

Table XII. Multimetric Biotic Index (MBI) scoring method for both genus- and family-level taxonomy. X = metric value, except for %Oligochaeta (= Y). Both GMBI and FMBI were calculated as the average of the six individual values. Individual values > 100 and < 0 are scored as 100 and 0, respectively, prior to calculation of MBI. %C+%O = % Chironomidae + % Oligochaeta, % Clng = % Clingers.

		Metric and scor	ing criteria				
Taxonomic level		Taxa richness	EPT richness	Modified HBI	Modified %EPT	%C+%O	%Clng
Genus (GMBI)	=	(X/65)*100	(X/31)*100	((10-X)/7.75)*100	(X/77)*100	((52-(X + Y))/51.1)*100	(X/74)*100
Family (FMBI)	=	(X/40.25)*100	(X/19.7)*100	((10-X)/6.56)*100	(X/77)*100	((52-(X + Y))/51.1)*100	(X/74)*100

Stream Usage Assessments

An assessment was performed for each sampling site as according to EPA-delineated guidelines 305(b) reporting for water quality (e.g., Appendix IV). The National Water Quality Inventory Report to Congress (305(b) report) is the primary vehicle for informing Congress and the public about general water quality conditions.

Field Sampling and Laboratory Analyses: FC Bacteria

Water samples were obtained monthly from June through October 2001. Samples were collected at bridges by hand-submerging a sterile Thomas Scientific clear plastic bottle and filling to the 100-ml mark. All bottles were immediately placed on ice in a cooler. Duplicate samples were obtained for 10% of all sites each month. Samples were returned to the Western Kentucky University Ogden Environmental Water Quality Laboratory and analyzed within six hours of the sample collection. All samples were analyzed by the Fecal Coliform Membrane Filter Procedure (Section 9222 D; APHA, 1998). Three appropriate dilutions of sample were filtered through 0.45-µm membrane filters and placed on mFC medium (agar or broth with nutrient pad) and incubated at 44.5°C for 22-26 hours. Blue colonies are counted as fecal coliforms and the counts of the three dilutions are averaged to produce a concentration reported in colony forming units per 100 mL.

Data Analysis: FC Bacteria

Because of the inherent variability of FC colony counts associated with discharge, precipitation data (Table 4) available through the U.S.G.S. (U.S.G.S., 2002) were obtained at locations on three different major rivers in the Green River Basin. This data reflected accumulated precipitation two days and four days prior to a given sampling event (Table XIII). Fecal coliform data was plotted as (a) number of sites that exceeded 2000 colonies per 100 ml, and (b) number of sites less than 200 colonies per 100 ml, against both the two- and four-day precipitation data.

20

Quality Assurance /Quality Control

Biological Assessment

All standard quality assurance/quality control (QA/QC) procedures, as outlined in APHA (1998) and KDOW Quality Assurance Guideline (1986), were followed. Selected and random WKU macroinvertebrate collections were examined by SSS personnel to ensure consistency with taxonomic identifications. The internal KDOW protocols and QA guidelines mentioned above are part of the then-approved EPA-approved Kentucky Department of Environmental Protection (DEP) QA/QC plan. A QA/QC plan had been submitted to the KDOW for approval. All monitoring activities that were conducted as part of this project were consistent with the approved QA/QC plan.

Bacteriological Assessment

All standard QA/QC procedures, as outlined in APHA (1998) and KDOW Quality Assurance Guidelines (1986), were followed. A duplicate number of samples (5, or 10%) were analyzed monthly. All data was submitted on a monthly basis. The internal KDOW protocols and QA guidelines mentioned above are part of the then-approved EPA-approved Kentucky Department of Environmental Protection (DEP) QA/QC plan. A QA/QC plan had been submitted to the KDOW for approval. All monitoring activities that were conducted as part of this project were consistent with the approved QA/QC plan.

Table XIII. Accumulated precipitation (in inches) at three U.S.G.S. stream flow locations two and four days prior to each monthly FC sampling period.

River	Station Number	Location	County	Latitude	Longitude	Month	2 d	4 d
			,					
Barren River	03314500	Bowling Green	Warren	37.0031	-86.4304		0.65	
						Jul	0.00	0.00
						Aug		
						•	0.00	
						Oct	0.01	0.01
Green River	03311500	Lock & Dam # 6	Edmonson	37.2062	-86.2608	Jun	0.59	0.59
		2 km NE Brownsville				Jul	0.00	
						Aug	0.01	0.01
						Sept	0.00	0.26
						Oct	0.01	0.01
David Diva	00040040	na Falla af Davish	Dun aldendalara	07.5000	00 5547	1	0.77	0.77
Rough River	03318010	nr. Falls of Rough	Breckinridge	37.5896	-86.5517		0.77	
							0.00	
						_	0.32 0.16	
							0.00	
						Oct	0.00	0.00
Mean across	three U.S.G.S. sta	tions				Jun	0.67	0.67
						Jul	0.00	
							0.11	
						_	0.05	
						•	0.07	

IV. Results and Discussion

High-Gradient Sites: Green River Basin

The composite riffle sample of GRBOO-004 (West Fork Pond River) was dominated by individuals of two taxa (*Cheumatopsyche* sp. and *Stenelmis* sp), comprising 91% of the total sample (Appendix I). The multihabitat sample contributed an additional 8 taxa (*Palaemonetes* sp., *Hyalella azteca*, *Callibaetis* sp., *Choroterpes* sp., *Enallagma* sp., Corixidae, *Peltodytes* sp., and *Stratiomys* sp.; Appendix II). Both the individual metric scores and the MBI values are indicative of a stream of only fair water quality (Tables XIV-XV), yet designated as non-supportive according to the macroinvertebrate assemblage (Appendix III). This site was characterized by slightly alkaline pH (7.36; Table VI), moderate conductivity (271; Table VI), and a stream reach with a mediocre total habitat score (116; Table VIII) and with meager riffle coverage that was composed of cobble-gravel mix (Table X).

The composite riffle sample of GRBOO-008 (Indian Camp Creek) was dominated by four taxa (*Cheumatopsyche* sp., *Caecidotea* sp., Chironomidae, and *Stenelmis* sp.), comprising 94% of the total sample (Appendix IV). The multihabitat sample contributed an additional 10 taxa (Oligochaeta, *Hyalella azteca, Pisidium* sp., *Centroptilum* sp., *Caenis* sp., *Basiaeschna* sp., *Enallagma* sp., *Neurocordulia* sp., *Hydropsyche* sp., and *Bezzia/Palpomyia* sp.; Appendix V). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XIV-XV), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix VI). This site was characterized by slightly alkaline pH (7.17; Table VI), moderately-low conductivity (178; Table VI), and a stream reach with a mediocre total habitat score (110; Table VIII) and with meager riffle coverage that was composed of cobble-gravel-sand mix (Table X).

The composite riffle sample of GRBOO-022 (unnamed tributary to Wiggington Creek) was dominated by two taxa (Chironomidae and *Elimia* sp.), comprising 61% of the total sample (Appendix VII). The multihabitat sample contributed an additional 10 taxa (Cambaridae, *Baetis* sp., Gerridae, *Sialis* sp., Leptoceridae, *Lype diversa*, *Dubiraphia* sp., *Hygrotus* sp., *Atrichopogon*

Table XIV. Individual metric values and multimetric (G-MBI) index values at genus-level resolution for 21 stream sites characterized as high-gradient. See Table I for site code information. Values in bold represent individual components of the G-MBI.

Modifie %EP		Modified HBI			EPT Richness		Taxa Richness		Site code
1.4	1.13	49.51	3.84	6.16	22.58	7	40.00	26	GRB00-004
2.9	2.27	49.74	3.86	6.15	16.13	5	29.23	19	GRB00-008
5.9	4.54	58.17	4.51	5.49	12.90	4	46.15	30	GRB00-022
15.5	11.98	48.46	3.76	6.24	16.13	5	33.85	22	GRB00-024
12.9	9.99	38.86	3.01	6.99	16.13	5	41.54	27	GRB00-025
0.0	0.00	50.17	3.89	6.11	3.23	1	23.08	15	GRB00-030
89.8	69.17	49.61	3.85	6.16	6.45	2	9.23	6	GRB00-036
0.5	0.43	35.99	2.79	7.21	6.45	2	27.69	18	GRB00-040
2.5	1.99	36.18	2.80	7.20	3.23	1	20.00	13	GRB00-049
6.9	5.32	43.29	3.36	6.65	12.90	4	43.08	28	GRB00-064
8.6	6.65	49.96	3.87	6.13	16.13	5	44.62	29	GRB00-067
32.0	24.66	60.26	4.67	5.33	38.71	12	41.54	27	GRB00-068
1.2	0.93	24.63	1.91	8.09	6.45	2	15.38	10	GRB00-087
12.3	9.47	61.97	4.80	5.20	22.58	7	50.77	33	GRB00-088
64.7	49.82	61.63	4.78	5.22	25.81	8	35.38	23	GRB00-089
4.0	3.12	60.76	4.71	5.29	51.61	16	66.15	43	GRB00-097
0.1	0.14	48.31	3.74	6.26	12.90	4	35.38	23	GRB00-102
0.0	0.00	42.01	3.26	6.74	3.23	1	23.08	15	GRB00-103
15.2	11.72	57.96	4.49	5.51	25.81	8	32.31	21	GRB00-106
5.3	4.10	53.15	4.12	5.88	29.03	9	43.08	28	GRB00-109
0.0	0.00	36.25	2.81	7.19	3.23	1	27.69	18	GRB00-110
	G-MBI		%Clng		%C+%O				
	51.94		100.00	91.96	98.11	1.87	0.27	1.60	GRB00-004
	40.87		74.20	54.91	72.95	14.72	0.00	14.72	GRB00-008
	27.44		18.19	13.46	23.31	40.09	2.27	37.82	GRB00-022
	46.48		84.93	62.85	79.96	11.14	0.09	11.05	GRB00-024
	46.19		91.53	67.73	76.09	13.12	2.05	11.07	GRB00-025
	29.24		63.81	47.22	35.19	34.02	1.39	32.63	GRB00-030
	59.19		100.00	81.06	100.00	0.00	0.00	0.00	GRB00-036
	24.71		30.81	22.80	46.75	28.11	3.47	24.64	GRB00-040
	10.40		0.38	0.28	0.00	55.96	3.98	51.98	GRB00-049
	19.94		13.47	9.97	0.00	54.48	0.00	54.48	GRB00-064
	37.03		68.00	50.32	34.83	34.20	2.25	31.95	GRB00-067
	59.13		100.00	83.19	82.27	9.96	2.43	7.53	GRB00-068
	21.12		6.26	4.63	72.78	14.81	12.96	1.85	GRB00-087
	47.74		71.76	53.10	67.06	17.73	0.63	17.10	GRB00-088
	60.50		79.07	58.51	96.39	2.75	0.87	1.88	GRB00-089
	32.57		12.84	9.50	0.00	84.57	2.16	82.41	GRB00-097
	32.83		75.11	55.58	25.11	39.17	0.06	39.11	GRB00-102
	24.01		52.11	38.56	23.62	39.93	0.00	39.93	GRB00-103
	43.21		75.14	55.60	52.84	25.00	0.55	24.45	GRB00-106
	26.13		26.22	19.40	0.00	53.91	0.37	53.54	GRB00-109
	21.96		0.27	0.20	64.32	19.13	3.49	15.64	GRB00-110

sp., and *Chelifera* sp.; Appendix VIII). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XIV-XV) and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix IX). This site was characterized by slightly alkaline pH (7.24; Table VI), moderately-low conductivity (163; Table VI), and a stream reach with a mediocre total habitat score (96; Table VIII) and with meager riffle coverage that was composed of gravel-sand mix (Table X).

The composite riffle sample of GRBOO-024 (Bull Run) was dominated by four taxa (*Cheumatopsyche* sp., *Hydropsyche* sp., Chironomidae and *Corbicula fluminea*), comprising 74% of the total sample (Appendix X). The multihabitat sample contributed an additional 8 taxa (*Lirceus* sp., *Tricorythodes* sp., *Argia* sp., *Sialis* sp., *Oecetis* sp., *Dubiraphia* sp., *Macronychus glabratus*, and *Dasyhelea* sp.; Appendix XI). Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), yet designated as non-supportive according to the macroinvertebrate assemblage (Appendix XII). This site was characterized by moderately-alkaline pH (7.44; Table VI), high conductivity (1308; Table VI), and a stream reach with a mediocre total habitat score (130; Table VIII) and with meager riffle coverage that was composed of cobble-gravel-sand mix (Table X).

The composite riffle sample of GRBOO-025 (Deer Creek) was dominated by four taxa (*Stenelmis* sp., *Cheumatopsyche* sp., Chironomidae, and *Caenis* sp.), comprising 87% of the total sample (Appendix XIII). The multihabitat sample contributed an additional 9 taxa (*Dugesia* sp., *Pisidium* sp., *Callibaetis* sp., *Stenacron* sp., *Argia* sp., *Enallagma* sp., Libellulidae, Gerridae, and *Gyrinus* sp.; Appendix XIV). Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), yet designated as non-supportive according to the macroinvertebrate assemblage (Appendix XV). This site was characterized by moderately-alkaline pH (7.40; Table VI), moderately-low conductivity (195; Table VI), and a stream reach with a mediocre total habitat score (92; Table VIII) and with meager riffle coverage that was composed of gravel-sand mix (Table X).

Table XV. Individual metric values and multimetric (F-MBI) index values at genus-level resolution for 21 stream sites characterized as high-gradient. See Table I for site code information. Values in bold represent individual components of the F-MBI.

Modified %EP		Modified HBI			EPT Richness		Taxa Richness		Site code
1.4	1.13	62.65	4.11	5.89	30.46	6	49.69	20	GRB00-004
2.9	2.27	68.14	4.47	5.53	20.30	4	39.75	16	GRB00-008
5.9	4.54	64.79	4.25	5.75	15.23	3	57.14	23	GRB00-022
15.5	11.98	61.59	4.04	5.96	20.30	4	47.20	19	GRB00-024
12.9	9.99	41.77	2.74	7.26	25.38	5	59.63	24	GRB00-025
0.0	0.00	60.37	3.96	6.04	5.08	1	37.27	15	GRB00-030
89.8	69.17	70.73	4.64	5.36	5.08	1	12.42	5	GRB00-036
0.5	0.43	41.77	2.74	7.26	10.15	2	44.72	18	GRB00-040
2.5	1.99	36.74	2.41	7.59	5.08	1	32.30	13	GRB00-049
6.9 ⁻	5.32	42.99	2.82	7.18	15.23	3	57.14	23	GRB00-064
8.6	6.65	62.20	4.08	5.92	25.38	5	57.14	23	GRB00-067
32.0	24.66	74.39	4.88	5.12	45.69	9	57.14	23	GRB00-068
1.2	0.93	40.40	2.65	7.35	10.15	2	22.36	9	GRB00-087
12.3	9.47	71.65	4.70	5.30	25.38	5	64.60	26	GRB00-088
64.7	49.82	69.97	4.59	5.41	35.53	7	49.69	20	GRB00-089
4.0	3.12	67.07	4.40	5.60	60.91	12	79.50	32	GRB00-097
0.18	0.14	59.15	3.88	6.12	15.23	3	52.17	21	GRB00-102
0.0	0.00	61.74	4.05	5.95	5.08	1	29.81	12	GRB00-103
15.2	11.72	68.75	4.51	5.49	30.46	6	47.20	19	GRB00-106
5.3	4.10	60.21	3.95	6.05	35.53	7	59.63	24	GRB00-109
0.0	0.00	39.02	2.56	7.44	5.08	1	39.75	16	GRB00-110
	F-MBI		%Clng		%C + %O				
	57.06		100.00	91.96	98.11	1.87	0.27	1.60	GRB00-004
	46.38		74.20	54.91	72.95	14.72	0.00	14.72	GRB00-008
	30.76		18.19	13.46	23.31	40.09	2.27	37.82	GRB00-022
	51.59		84.93	62.85	79.96	11.14	0.09	11.05	GRB00-024
	51.23		91.53	67.73	76.09	13.12	2.05	11.07	GRB00-025
	33.62		63.81	47.22	35.19	34.02	1.39	32.63	GRB00-030
	63.01		100.00	81.06	100.00	0.00	0.00	0.00	GRB00-036
	29.13		30.81	22.80	46.75	28.11	3.47	24.64	GRB00-040
	12.85		0.38	0.28	0.00	55.96	3.98	51.98	GRB00-049
	22.62		13.47	9.97	0.00	54.48	0.00	54.48	GRB00-064
	42.70		68.00	50.32	34.83	34.20	2.25	31.95	GRB00-067
	65.25		100.00	83.19	82.27	9.96	2.43	7.53	GRB00-068
	25.52		6.26	4.63	72.78	14.81	12.96	1.85	GRB00-087
	52.12		71.76	53.10	67.06	17.73	0.63	17.10	GRB00-088
	65.89		79.07	58.51	96.39	2.75	0.87	1.88	GRB00-089
	37.40		12.84	9.50	0.00	84.57	2.16	82.41	GRB00-097
	37.82		75.11	55.58	25.11	39.17	0.06	39.11	GRB00-102
	28.73		52.11	38.56	23.62	39.93	0.00	39.93	GRB00-103
	48.27		75.14	55.60	52.84	25.00	0.55	24.45	GRB00-106
	31.15		26.22	19.40	0.00	53.91	0.37	53.54	GRB00-109
	24.74		0.27	0.20	64.32	19.13	3.49	15.64	GRB00-110

The composite riffle sample of GRBOO-030 (Pond Creek) was dominated by three taxa (Chironomidae *Cheumatopsyche* sp., and *Stenelmis* sp.), comprising 79% of the total sample (Appendix XVI). The multihabitat sample contributed an additional 7 taxa (*Centroptilum* sp., *Stenonema* sp., *Boyeria* sp., *Hetaerina* sp., *Enallagma* sp., Libellulidae, and *Dubiraphia* sp.; Appendix XVII). Individual metric scores and the MBI values, combined with the fact that only 144 individuals were retrieved from the sample, are indicative of a stream of very poor water quality (Tables XIV-XV), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix XVIII). This site was characterized by moderately-alkaline pH (7.39; Table VI), moderate conductivity (340; Table VI), and a stream reach with a mediocre total habitat score (88; Table VIII) and with moderate riffle coverage that was composed mainly of cobble-gravel mix (Table X).

The composite riffle sample of GRBOO-036 (unnamed tributary to Pond Creek) was dominated by two taxa (*Hydropsyche* sp. and *Caecidotea* sp), comprising 87% of the total sample (Appendix XIX). The multihabitat sample failed to provide additional taxa (Appendix XX). Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), yet designated as non-supportive according to the macroinvertebrate assemblage (Appendix XXI). This site was characterized by slightly-alkaline pH (7.12; Table VI), high conductivity (952; Table VI), and a stream reach with a mediocre total habitat score (132; Table VIII) and with meager riffle coverage that was composed of gravel-sand mix (Table X).

The composite riffle sample of GRBOO-040 (unnamed tributary to West Fork Lewis Creek) was dominated by three taxa (*Caecidotea* sp., Chironomidae and *Cheumatopsyche* sp.), comprising 86% of the total sample (Appendix XXII). The multihabitat sample contributed an additional 3 taxa (*Lirceus* sp., *Somatochlora* sp., and *Hydroporus* sp.; Appendix XXIII). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XIV-XV), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix XXIV). This site was characterized by slighty-alkaline pH (7.22; Table VI), moderately-low conductivity (164; Table VI),

Grubbs, 2003. Bacteriological and Biological Assessment and a stream reach with a mediocre total habitat score (118; Table VIII) and with moderate riffle coverage that was composed mainly of gravel-sand mix (Table X).

The composite riffle sample of GRBOO-049 (Old Panther Creek) was dominated by two taxa (Chironomidae and *Lirceus* sp.), comprising 79% of the total sample (Appendix XXV). The multihabitat sample contributed an additional 3 taxa (*Caecidotea* sp., *Enallagma* sp., and *Tropisternus* sp.; Appendix XVIII). Individual metric scores and the MBI values are indicative of a stream of very poor water quality (Tables XIV-XV), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix XXVII). This site was characterized by alkaline pH (7.70; Table VI), low conductivity (130; Table VI), and a stream reach with a poor total habitat score (82; Table VIII) and with meager riffle coverage that was composed mainly of sand mix (Table X).

The composite riffle sample of GRBOO-068 (East Branch Pond River) was dominated by four taxa (*Stenelmis* sp., *Cheumatopsyche* sp., *Chimarra* sp., and Chironomidae), comprising 89% of the total sample (Appendix XXXIV). The multihabitat sample contributed an additional 6 taxa (*Corbicula fluminea*, *Elimia* sp., *Caenis* sp., *Drunella* sp., *Enallagma* sp., and Corixidae; Appendix XXXV). Overall 11,000 individuals were sorted from the sample. Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), yet designated as fully supportive according to the macroinvertebrate assemblage (Appendix XXXVI). This site was characterized by slightly-alkaline pH (6.97; Table VI), moderately-low conductivity (233; Table VI), and a stream reach with a mediocre total habitat score (127; Table VIII) and with moderate riffle coverage that was composed mainly of cobble (Table X).

The composite riffle sample of GRBOO-087 (unnamed tributary to Flat Creek) was dominated by three taxa (*Caecidotea* sp., *Hyalella azteca*, and Oligochaeta), comprising 85% of the total sample (Appendix XXXVII). The multihabitat sample contributed an additional 9 taxa (*Elimia* sp., *Pleurocera* sp., *Callibaetis* sp., *Argia* sp., *Macromia* sp., Corixidae, *Peltodytes* sp., *Berosus* sp. and *Tropisternus* sp.; Appendix XXXVIII). Individual metric scores and the MBI values, combined with the fact that only 108 individuals were retrieved from the sample, are indicative of a stream of very poor water quality (Tables XIV-XV), and designated as non-supportive according to the macroinvertebrate

Grubbs, 2003. Bacteriological and Biological Assessment assemblage (Appendix XXXIX). This site was characterized by slighty-alkaline pH (7.28; Table VI), high conductivity (1123; Table VI), and a stream reach with a mediocre total habitat score (105; Table VIII) and with a nearly-absent riffle that was composed mainly of cobble-gravel-sand mix (Table X)

The composite riffle sample of GRBOO-088 (unnamed tributary to Mays Run) was dominated by six taxa (*Sphaerium* sp., *Cheumatopsyche* sp., Chironomidae, *Nigronia* sp., *Optioservus* sp., and *Stenelmis* sp.), comprising 83% of the total sample (Appendix XL). The multihabitat sample contributed an additional 10 taxa (*Caecidotea* sp., *Pleurocera* sp., *Argia* sp., *Gomphus* sp., *Helicopsyche* sp., *Polycentropus* sp., *Lype diversa*, *Ancyronyx variegatus*, *Hydroporus* sp., and *Bezzia/Palpomyia* sp.; Appendix XLI). Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), yet designated as fully supportive according to the macroinvertebrate assemblage (Appendix XLII). This site was characterized by moderately-alkaline pH (7.38; Table VI), moderate conductivity (311; Table VI), and a stream reach with a mediocre total habitat score (110; Table VIII) and with meager riffle coverage that was composed mainly of cobblegravel mix (Table X).

eight taxa (*Stenelmis* sp., *Stenonema* sp., *Isonychia* sp., *Cheumatopsyche* sp., *Baetis* sp., *Psephenus herricki*, *Caenis* sp., and *Corbicula fluminea*), comprising 90% of the total sample (Appendix XLIII). The multihabitat sample contributed an additional 16 taxa (Hydracarina, *Stenacron* sp., *Hetaerina* sp., *Enallagma* sp., Libellulidae, *Mesovelia* sp., *Micrasema* sp., *Trianodes* sp., *Nyctiophylax*, *Lype diversa*, *Ancyronyx variegatus*, *Dubiraphia* sp., *Macronychus glabratus*, *Peltodytes* sp., *Berosus* sp., and *Dixella* sp.; Appendix XLIV). Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), yet designated as fully supportive according to the macroinvertebrate assemblage (Appendix XLV). This site was characterized by moderately-alkaline pH (7.52; Table VI), moderate conductivity (300; Table VI), and a stream reach with a good total habitat score (160; Table VIII) and with a meager riffle coverage that was composed mainly of cobble-gravel mix (Table X).

The composite riffle sample of GRBOO-097 (Beaverdam Creek) was dominated by Chironomidae, comprising 82% of the total sample (Appendix XLVI). The multihabitat sample contributed an additional 7 taxa (*Physella* sp., *Pleurocera* sp., *Argia* sp., *Munroessa/Synclita* sp., *Nyctiophylax* sp., *Psychomyia* sp., and *Ancyronyx variegatus*; Appendix XLVII). Individual metric scores, except for taxa richness, and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), yet designated as fully supportive according to the macroinvertebrate assemblage (Appendix XLVIII). This site was characterized by moderately-alkaline pH (7.45; Table VI), moderately-low conductivity (152; Table VI), and a stream reach with a good total habitat score (146; Table VIII) and with a moderate riffle coverage that was composed mainly of cobble-gravel mix (Table X). In addition, bedrock-dominated runs were a dominant geomorphic feature at this site.

Taxa richness values were the highest recorded for all 35 sites at both genus-level (43) and family-level (32) taxonomy.

The composite riffle sample of GRBOO-102 (Bear Creek) was dominated by two taxa (*Cheumatopsyche* sp., and Chironomidae), comprising 94% of the total sample (Appendix XLIX). Overall 13,000 individuals were sorted from the sample. The multihabitat sample contributed an additional 12 taxa (*Dugesia* sp., Hydracarina, *Hyalella azteca*, *Stenonema* sp., *Stenacron* sp., *Enallagma* sp., *Mesovelia* sp., *Ancyronyx variegatus*, *Dubiraphia* sp., *Berosus* sp., *Tropisternus* sp., and Tabanidae; Appendix L). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XIV-XV), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix LI). This site was characterized by moderately-alkaline pH (7.35; Table VI), moderately-low conductivity (220; Table VI), and a stream reach with a mediocre total habitat score (115; Table VIII) and with a moderate riffle coverage that was composed mainly of cobble-gravel mix (Table X).

The composite riffle sample of GRBOO-103 (Sycamore Branch) was dominated by four taxa (Chironomidae, *Cheumatopsyche* sp., *Nigronia* sp., and *Limonia* sp.), comprising 86% of the total sample (Appendix LII). The multihabitat sample contributed an additional 8 taxa (*Procloeon* sp., Ephemerellidae, *Stenonema* sp., *Diplectrona modesta*, *Rhyacophila* sp., *Helocombus* sp.,

Atrichopogon sp., and Dasyhelea sp.; Appendix LIII). The two trichopteran taxa (Diplectrona modesta and Rhyacophila) suggest that this small stream is spring-fed through the summer months and supports at least a partial fauna of Appalachian components. Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XIV-XV), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix LIV). This site was characterized by a stream reach with a mediocre total habitat score (131; Table VIII) and a cobbledominated riffle (Table X). pH and conductivity were not obtained at this site.

The composite riffle sample of GRBOO-106 (South Fork Little Barren River) was dominated by four taxa (*Stenelmis* sp., Chironomidae, *Elimia* sp., *Cheumatopsyche* sp., and *Baetis* sp.), comprising 90% of the total sample (Appendix LV). The multihabitat sample contributed an additional 14 taxa (*Corbicula fluminea*, *Serratella* sp., *Hetaerina* sp., *Enallagma* sp., *Leuctra* sp., *Corydalus cornutus*, *Hydroptila* sp., *Oecetis* sp., *Cernotina* sp., *Ancyronyx variegatus*, *Dubiraphia* sp., *Macronychus glabratus*., *Berosus* sp., and *Bezzia/Palpomyia* sp.; Appendix LVI). Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), yet designated as fully supportive according to the macroinvertebrate assemblage (Appendix LVII). This site was characterized by alkaline pH (7.57; Table VI), moderate conductivity (283; Table VI), and a stream reach with a good total habitat score (156; Table VIII) and with and meager riffle coverage that was composed mainly of cobble-gravel mix (Table X). In addition, bedrock-dominated runs were a dominant geomorphic feature at this site.

The composite riffle sample of GRBOO-109 (East Fork Little Barren River) was dominated by three taxa (Chironomidae, *Elimia* sp., and *Cheumatopsyche* sp.), comprising 84% of the total sample (Appendix LVIII). The multihabitat sample only contributed an additional 4 taxa (*Stenacron* sp., *Acroneuria* sp., *Neophylax* sp., and *Psychoda* sp.; Appendix LIX). Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XIV-XV), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix LX). This site was characterized by alkaline pH (8.02; Table VI), moderate conductivity (246; Table VI), and a stream reach with a mediocre total habitat score (127; Table VIII) and with and meager riffle coverage that

Grubbs, 2003. Bacteriological and Biological Assessment were composed mainly of cobble-gravel-sand mix (Table X). In addition, bedrock-dominated runs were a dominant geomorphic feature at this site.

High-Gradient Sites: Tradewater River Basin

The composite riffle sample of GRBOO-064 (Ward Creek) was not dominated by any particular taxon, as only Chironomidae contributed more than 26 specimens (152, or 54%) to the total sample (Appendix XXVIII). The multihabitat sample contributed an additional 9 taxa (Oligochaeta, *Caecidotea* sp., *Helisoma* sp., *Pisidium* sp., *Stenacron* sp., *Boyeria* sp., *Somatochlora* sp., *Enallagma* sp., and *Ectopria nervosa*; Appendix XXIX). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XIV-XV), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix XXX). This site was characterized by circumneutral pH (6.97; Table VI), moderately-low conductivity (193; Table VI), and a stream reach with a moderately-high total habitat score (144; Table VIII) and with and meager riffle coverage that were composed mainly of cobble-gravel mix (Table X). In addition, bedrock-dominated runs were a dominant geomorphic feature at this site.

High-Gradient Sites: Ohio River Tributaries

The composite riffle sample of GRBOO-067 (Crooked Creek) was dominated by three taxa (Chironomidae, *Cheumatopsyche* sp., and *Stenelmis* sp.), comprising 80% of the total sample (Appendix XXXI). The multihabitat sample only contributed an additional 9 taxa (*Dugesia* sp., *Hyalella azteca*, *Physella* sp., *Pleurocera* sp., *Callibaetis* sp., *Centroptilum* sp., *Stenacron* sp., *Hydroptila* sp., and *Dineutus* sp.; Appendix XXXII), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix XXXIII). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XIV-XV). This site was characterized by circumneutral pH (7.10; Table VI), moderately-low conductivity (162; Table VI), and a stream reach with a mediocre total habitat score (127; Table VIII) and with and meager riffle

Grubbs, 2003. Bacteriological and Biological Assessment coverage that were composed mainly of cobble-gravel-sand mix (Table X). In addition, bedrock-dominated runs were a dominant geomorphic feature at this site.

The composite riffle sample of GRBOO-110 (Bayou Creek) was dominated by three taxa (*Sphaerium* sp., *Lirceus* sp., and Chironomidae), comprising 84% of the total sample (Appendix LXI). The multihabitat sample only contributed an additional 6 taxa (Cambaridae, *Crangonyx* sp., *Ferrissia* sp., *Amnicola* sp., *Peltodytes* sp., and *Pseudolimnophila* sp.; Appendix LXII). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XIV-XV), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXIII). This site was characterized by moderately-alkaline pH (7.48; Table VI), moderately-low conductivity (152; Table VI), and a stream reach with a mediocre total habitat score (121; Table VIII) and with and meager riffle coverage that were composed mainly of cobble-gravel mix (Table X).

Low-Gradient Sites: Green River Basin

The composite low-gradient sample of GRBOO-001 (Old Panther Creek) was dominated by two taxa (Chironomidae and Corixidae), comprising 95% of the total sample (Appendix LXIV). Individual metric scores and the MBI values are indicative of a stream of very poor water quality (Tables XVI-XVII), producing the lowest MBI score from the study, and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXV). This site was

Table XVI. Individual metric values and multimetric (G-MBI) index values at genus-level resolution for 14 stream sites characterized as low-gradient. See Table I for site code information. Values in bold represent individual components of the G-MBI.

Modified %EPT		Modified HBI			EPT Richness		ixa Richness	Ta	Site code
0.27	0.21	28.97	2.25	7.76	3.23	1	16.92	11	GRB00-001
43.97	33.86	26.99	2.09	7.91	9.68	3	35.38	23	GRB00-009
22.97	17.69	40.57	3.14	6.86	12.90	4	36.92	24	GRB00-016
15.16	11.67	30.54	2.37	7.63	6.45	2	29.23	19	GRB00-035
6.64	5.11	38.54	2.99	7.01	16.13	5	35.38	23	GRB00-057
0.78	0.60	34.67	2.69	7.31	3.23	1	38.46	25	GRB00-061
7.29	5.61	38.06	2.95	7.05	16.13	5	40.00	26	GRB00-069
35.38	27.24	28.44	2.20	7.80	6.45	2	24.62	16	GRB00-073
0.30	0.23	28.94	2.24	7.76	3.23	1	35.38	23	GRB00-076
18.10	13.94	28.22	2.19	7.81	9.68	3	40.00	26	GRB00-100
20.87	16.07	47.63	3.69	6.31	12.90	4	33.85	22	GRB00-104
7.69	5.92	39.73	3.08	6.92	19.35	6	36.92	24	GRB00-105
2.52	1.94	43.59	3.38	6.62	9.68	3	35.38	23	GRB00-111
3.61	2.78	56.84	4.41	5.60	3.23	1	9.23	6	GRB00-112
	G-MBI		%Clng		%C + %O				
	8.23		0.00	0.00	0.00	60.40	1.44	58.96	GRB00-001
	36.23		2.66	1.97	98.69	1.57	1.57	0.00	GRB00-009
	19.93		1.95	1.44	4.29	49.81	0.00	49.81	GRB00-016
	13.56		0.00	0.00	0.00	57.77	13.33	44.44	GRB00-035
	16.69		3.45	2.55	0.00	63.49	0.36	63.13	GRB00-057
	12.87		0.00	0.00	0.10	51.95	4.83	47.12	GRB00-061
	18.13		7.31	5.41	0.00	55.94	0.03	55.91	GRB00-069
	28.80		0.00	0.00	77.93	12.18	0.72	11.46	GRB00-073
	21.27		0.00	0.00	59.78	21.45	3.88	17.57	GRB00-076
	33.05		0.54	0.40	101.76	0.00	0.00	0.00	GRB00-100
	20.90		10.14	7.50	0.00	57.50	0.00	57.50	GRB00-104
	17.91		3.77	2.79	0.00	72.12	0.00	72.12	GRB00-105
	15.63		2.62	1.94	0.00	58.74	7.77	50.97	GRB00-111
	12.15		0.00	0.00	0.00	77.78	5.56	72.22	GRB00-112

characterized by alkaline pH (7.70; Table VII), low conductivity (132; Table VII), and a stream reach with a low total habitat score (79; Table XI).

The composite low-gradient sample of GRBOO-009 (Deer Creek) was not dominated by any particular taxon. The most abundant taxa (*Caenis* sp. and *Enallagma* sp.) only comprised 60% of the total sample (Appendix LXVI). The next two abundant taxa (*Palaemonetes* sp. and *Berosus* sp.) only

contributed 11%. Although the individual metric scores and the MBI values are indicative of a stream of only fair water quality (Tables XVI-XVII), this stream produced the highest MBI value for the low-gradient streams, yet was designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXVII). This site was characterized by moderately-alkaline pH (7.51; Table VII), moderately-low conductivity (201; Table VII), and a stream reach with a low total habitat score (71; Table XI).

The composite low-gradient sample of GRBOO-016 (Little Muddy Creek) was dominated by four taxa (Chironomidae, *Caenis* sp., *Hyalella azteca*, and *Neurocordulia* sp.), comprising 84% of the total sample (Appendix LXVIII). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXIX). This site was characterized by circumneutral pH (6.92; Table VII), moderate conductivity (290; Table VII), and a stream reach with a mediocre total habitat score (117; Table XI).

With the exception of *Caenis* sp. (26%), the composite low-gradient sample of GRBOO-073 (Narge Creek) was near-equally represented by five additional taxa (*Sphaerium* sp., *Physella* sp., *Argia* sp., Chironomidae, and *Berosus* sp.; 61%) (Appendix LXXVIII). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXXIX). This site was characterized by moderately-alkaline pH (7.35; Table VII), moderate conductivity (393; Table VII), and a stream reach with a very poor total habitat score (44; Table XI). The habitat score is hardly surprising as this stream reach is channelized through a cornfield absent of a woody riparian zone.

Table XVII. Individual metric values and multimetric (F-MBI) index values at genus-level resolution for 14 stream sites characterized as low-gradient. See Table I for site code information. Values in bold represent individual components of the F-MBI.

Modified %EPT		Modified HBI			EPT Richness		Taxa Richness		Site code
0.27	0.21	25.61	1.68	8.32	5.08	1	24.84	10	GRB00-001
43.97	33.86	33.69	2.21	7.79	15.23	3	47.20	19	GRB00-009
22.97	17.69	44.97	2.95	7.05	20.30	4	54.66	22	GRB00-016
15.16	11.67	30.79	2.02	7.98	10.15	2	42.24	17	GRB00-035
6.64	5.11	42.23	2.77	7.23	25.38	5	52.17	21	GRB00-057
0.78	0.60	37.65	2.47	7.53	5.08	1	52.17	21	GRB00-061
7.29	5.61	41.31	2.71	7.29	25.38	5	57.14	23	GRB00-069
35.38	27.24	27.59	1.81	8.19	10.15	2	34.78	14	GRB00-073
0.30	0.23	34.76	2.28	7.72	5.08	1	47.20	19	GRB00-076
18.10	13.94	33.99	2.23	7.77	15.23	3	57.14	23	GRB00-100
20.87	16.07	48.78	3.20	6.80	20.30	4	47.20	19	GRB00-104
7.69	5.92	41.92	2.75	7.25	30.46	6	52.17	21	GRB00-105
2.52	1.94	41.31	2.71	7.29	15.23	3	49.69	20	GRB00-111
3.61	2.78	45.27	2.97	7.03	5.08	1	14.91	6	GRB00-112
	F-MBI		%Clng		%C + %O				
	9.30		0.00	0.00	0.00	60.40	1.44	58.96	GRB00-001
	40.24		2.66	1.97	98.69	1.57	1.57	0.00	GRB00-009
	24.86		1.95	1.44	4.29	49.81	0.00	49.81	GRB00-016
	16.39		0.00	0.00	0.00	57.77	13.33	44.44	GRB00-035
	21.64		3.45	2.55	0.00	63.49	0.36	63.13	GRB00-057
	15.96		0.00	0.00	0.10	51.95	4.83	47.12	GRB00-061
	23.07		7.31	5.41	0.00	55.94	0.03	55.91	GRB00-069
	30.97		0.00	0.00	77.93	12.18	0.72	11.46	GRB00-073
	24.52		0.00	0.00	59.78	21.45	3.88	17.57	GRB00-076
	37.50		0.54	0.40	100.00	0.00	0.00	0.00	GRB00-100
	24.55		10.14	7.50	0.00	57.50	0.00	57.50	GRB00-104
	22.67		3.77	2.79	0.00	72.12	0.00	72.12	GRB00-105
	18.56		2.62	1.94	0.00	58.74	7.77	50.97	GRB00-111
	11.48		0.00	0.00	0.00	77.78	5.56	72.22	GRB00-112

The composite low-gradient sample of GRBOO-076 (Gilles Ditch) was dominated by five taxa (*Physella* sp., Chironomidae, *Pisidium* sp., *Sphaerium* sp., and *Enallagma* sp.), comprising 79% of the total sample (Appendix LXXX). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and likewise designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXXXI). This site was characterized by moderately-alkaline pH (7.43; Table VII), moderate conductivity (310; Table VII), and a stream reach with a poor total habitat score (70; Table XI).

The composite low-gradient sample of GRBOO-100 (Deer Creek) was not dominated by any particular taxon. The most abundant taxa (*Enallagma* sp. and *Physella* sp.) only comprised 47% of the total sample (Appendix LXXXII). This site supported the highest taxa richness at both genus- and family-level taxonomy, and the second highest MBI scores. This is not surprising as this site was located approximately one kilometer downstream of GRBOO-009. However, the individual metric scores and the MBI values are indicative of a stream of only fair water quality (Tables XVI-XVII), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXXXIII). This site was characterized by moderately-alkaline pH (7.51; Table VII), moderately-low conductivity (201; Table VII), and a stream reach with a poor total habitat score (80; Table XI).

With the exception of Chironomidae (58%), the composite low-gradient sample of GRBOO-104 (North Branch South Fork Panther Creek) was near-equally represented by three additional taxa (*Caenis* sp., *Stenonema* sp., and *Helisoma* sp.; 20%) (Appendix LXXXIV). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXXXV). This site was characterized by moderately-alkaline pH (7.36; Table VII), low conductivity (126; Table VII), and a stream reach with a mediocre total habitat score (114; Table XI).

With the exception of Chironomidae (72%), the composite low-gradient sample of GRBOO-105 (Wolflick Creek) was near-equally represented by three additional taxa (Corixidae, *Caenis* sp., and *Hyalella azteca*.; 12%) (Appendix LXXXVI). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and designated as non-supportive

Grubbs, 2003. Bacteriological and Biological Assessment according to the macroinvertebrate assemblage (Appendix LXXXVII). This site was characterized by moderately-alkaline pH (7.31; Table VII), moderately-low conductivity (223; Table VII), and a stream reach with a mediocre total habitat score (114; Table XI).

With the exception of Chironomidae (51%), the composite low-gradient sample of GRBOO-111 (West Fork Pond River) was near-equally represented by four additional taxa (Neurocordulia sp., *Sialis* sp., Oligochaeta, and *Culicoides* sp.; 33%) (Appendix LXXXVIII). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXXXIX). This site was characterized by moderately-alkaline pH (7.20; Table VII), moderately-low conductivity (228; Table VII), and a stream reach with a mediocre total habitat score (108; Table XI).

Low-Gradient Sites: Tradewater River Basin

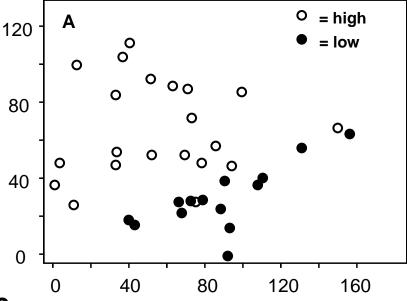
The composite low-gradient sample of GRBOO-057 (Tyson Branch) was dominated by three taxa (Chironomidae, Corixidae, and *Palaemonetes* sp.), comprising 88% of the total sample (Appendix LXXII). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXXIII). This site was characterized by a stream reach with a very poor total habitat score (46; Table XI). pH and conductivity were not obtained at this site.

The composite low-gradient sample of GRBOO-061 (Piney Creek) was dominated by six taxa (Chironomidae, *Sigara* sp., *Sialis* sp., *Pisidium* sp., Oligochaeta, and *Sphaerium* sp.), comprising 85% of the total sample (Appendix LXXIV). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXXV). This site was characterized by moderately-alkaline pH (7.45; Table VII), moderately-low conductivity (167; Table VII), and a stream reach with a poor total habitat score (84; Table XI).

Low-Gradient Sites: Ohio River Tributaries

The composite low-gradient sample of GRBOO-035 (Deer Creek) was dominated by four taxa (Chironomidae, Oligochaeta, *Trepobates* sp., and *Caenis* sp.), comprising 81% of the total sample (Appendix LXX). Individual metric scores and the MBI values are indicative of a stream of fair water quality (Tables XVI-XVII), yet designated as fully-supportive according to the macroinvertebrate assemblage (Appendix LXXI). This site was characterized by slightly-alkaline pH (7.17; Table VII), moderately-low conductivity (178; Table VII), and a stream reach with a mediocre total habitat score (135; Table XI).

The composite low-gradient sample of GRBOO-069 (Highland Creek) was moderately dominated by two taxa (Chironomidae and Corixidae), comprising 76% of the total sample (Appendix LXXVI). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix LXXVII). This site was characterized by moderately-alkaline pH (7.40; Table VII), moderately-low conductivity (216; Table VII), and a stream reach with a moderately-high total habitat score (136; Table XI).


The composite low-gradient sample of the both individual- and taxa-poor GRBOO-112 (Goose Pond Ditch) was dominated by two taxa (Chironomidae and *Corbicula fluminea*), comprising 86% of the total sample (Appendix XC). Individual metric scores and the MBI values are indicative of a stream of poor water quality (Tables XVI-XVII), and designated as non-supportive according to the macroinvertebrate assemblage (Appendix XCI). This site was characterized by moderately-acidic pH (6.48; Table VII), moderately-low conductivity (181; Table VII), and a stream reach with a very poor total habitat score (59; Table XI).

Ordinations

Examination of the environmental DCA ordination plots revealed that there was reasonable separation of low-gradient and high-gradient sites (Fig. IA), but not a considerable distinction

Grubbs, 2003. Bacteriological and Biological Assessment between sites according to ecoregions (Fig. IB). Similarly, macroinvertebrate assemblages were separated more effectively according to gradient (Fig. IIA) than ecoregion (Fig. IIB).

Examination of the physical and water chemistry variables indicated that no individual parameter strongly structured macroinvertebrate assemblages. The first three canonical axes accounted for only 17% of the variance for macroinvertebrate abundance data (Table XVIII). The CCA biplot Axis 1 revealed a gradient of geomorphology and habitat quality, while the second axis reflected a gradient only related to stream size (Fig. III). The distinctiveness of the high-gradient reaches was a function of coarser substrates and superior habitat quality, while the low-gradient reaches were defined according to the predominance of fine substrates (Fig. IIIA). Paralleling the distinctiveness of the low-gradient stream sites according to the macroinvertebrates and geomorphology was the somewhat weaker separation of Ecoregion 72 sites according to the same parameters (Fig. IIIB).

Axis 2

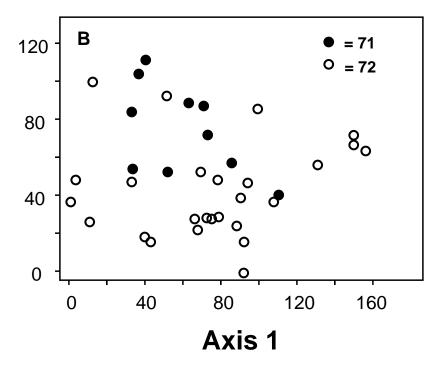
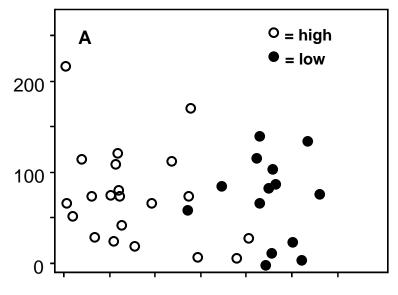



Figure I. Detrended correspondence analysis (DCA) ordination plot of sites according to environmental data. A = DCA plot with sites coded as either high-gradient or low gradient; B = DCA plot of sites coded as either located in Level III Ecoregion 71 (Interior Plateau) or Ecoregion 72 (Interior River Valley and Hills).

41

Axis 2

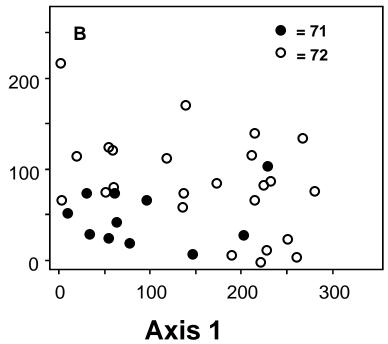


Figure II. Detrended correspondence analysis (DCA) ordination plot of sites according to macroinvertebrate data. A = DCA plot with sites coded as either high-gradient or low gradient; B = DCA plot of sites coded as either located in Level III Ecoregion 71 (Interior Plateau) or Ecoregion 72 (Interior River Valley and Hills).

Table XVIII. Summary of CCA eigenvalues and cumulative percentage of species data explained on the first three canonical axes.

	Axis	Axis	Axis
	1	2	3
Eigenvalue Cumulative % variance of species data explained	0.365	0.244	0.216
	7.3	12.2	16.5

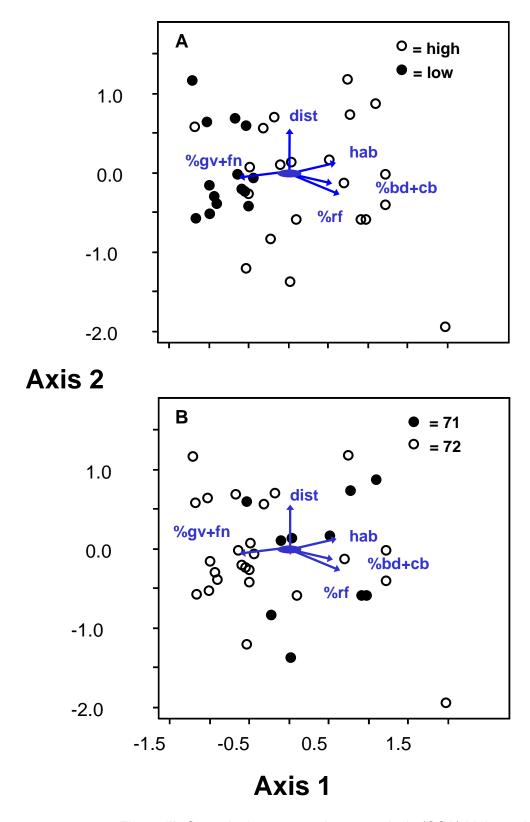


Figure III. Canonical correspondence analysis (CCA) biplots. A = CCA biplot with sites coded as either high-gradient or low gradient; B = CCA biplot of sites coded as either located in Level III Ecoregion 71 (Interior Plateau) or Ecoregion 72 (Interior River Valley and Hills).

Fecal Coliform Bacteria

Overall, 271 FC colony counts were obtained (Appendix LVII). Only one stream site (Plum Creek, FC-T25) was dry at the time of sampling (August). Three tiers of criteria, each defined according to number of FC colonies per 100 ml, exist regarding type of human use: (a) < 200 = direct human contact, (b) < 1000 = fishing and boating, (c) < 2000 = domestic use. The number of sites that exceeded all criteria varied by month: October (two), July and August (six each), June (eight), and September (15). The number of sites that met human contact criteria also varied by month but appeared to be inversely related to sites that exceeded 2000 colonies/100 ml: October (38 sites), July and August (32 and 24, respectively), June (20), and September (18).

Precipitation is suggested as a potential factor. Yet the lack of precipitation data across both spatial (e.g., sampling site, stream reach, entire drainage area) and temporal (i.e., accumulation of time prior to sampling event) scales impedes the ability to succinctly explain the variable monthly FC data. A cursory view of the number of sites either meeting (< 200 FC colonies per 100 ml) or exceeding (> 2000 FC colonies per 100 ml) all criteria, plotted on a monthly basis, versus mean accumulated precipitation at 2 days and 4 days prior to the first sampling event in a given month reveals that only the 4-d lag appears informative (Figure IV).

No stream site exceeded all criteria during all sampled months, and only one stream (Glens Fork - Russell Creek, GRBEX-01) exceeded all criteria in four separate months. This sampling site was immediately adjacent to a small farm that on five occasions (out of seven total site visits that also include separate macroinvertebrate and fish sampling events) had numerous

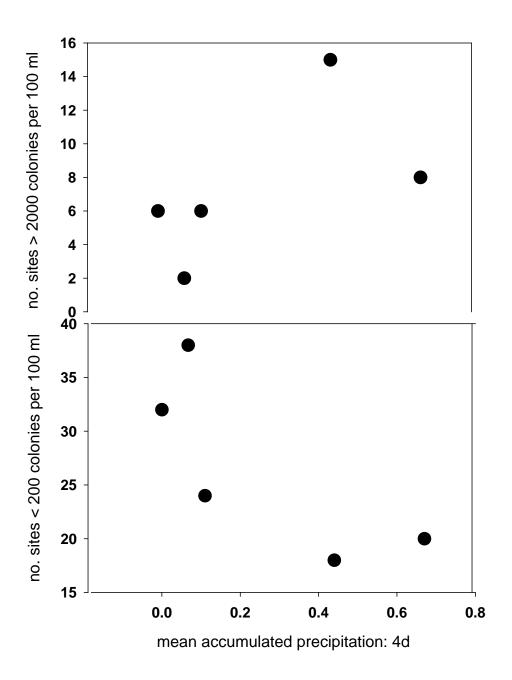


Figure IV. Scatterplot of monthly fecal coliform data as number of sites that exceed all (> 2000 colonies per 100 ml) or meet human contact (< 200 colonies per 100 ml) criteria vs. mean accumulated precipitation 4 days prior to first sampling date.

Grubbs, 2003. Bacteriological and Biological Assessment cattle in-stream within 50 meters of WKU personnel. In addition, no stream sites (except Glens Fork) exceeded all criteria in three of five months. In contrast, six stream sites (Plum Creek, GRBEX-14; Lewis Creek, GRBEX-15; Craborchard Creek, GRBEX-28; Pleasant Run, GRBEX-29; Flat Creek, GRBEX-30; Pond River, FC-sta.no.44) met human contact criteria during all five months. Fecal coliform bacteria counts for Pleasant Run and Flat Creek need to viewed as indicative of Western Kentucky Coalfields acid mine drainage. We have recorded pH values as low as 3.15 and 4.66 for Pleasant Run and Flat Creek, respectively. Eight streams (Wolf Lick Creek, GRBEX-11; McGrady Creek, GRBEX-18; East Fork Pond River, GRBEX-22; Buck Creek, GRBEX-24; East Branch West Fork Pond River, GRBEX-26; Wolf Lick Creek, FC-sta.no.46; Russell Creek, FC-sta.no.49; Tradewater River, FC-sta.no.50) met all criteria during four of five months, and nine streams (Russell Creek, GRBEX-02; Upper Brush Creek, GRBEX-08; Claylick Creek, GRBEX-10; Caney Creek, GRBEX-17; Greasy Creek, FC-T12; Rough River, FC-T34; Mill Creek, FC-T35; Mud River, FC-sta.no.47; Gasper River, FC-sta.no.48) met all criteria during three of five months.

V. Summary and Conclusions

Regardless of whether sites were categorized according to geomorphic characteristics or landscape-level location within the Commonwealth (i.e., ecoregions), this project did not reveal a single site of exceptional water quality as defined by biological attributes. Similarly, only 6 of 35 sites (5 high-gradient, 1 low gradient) were designated as providing full biological support according to the macroinvertebrate assemblage. Ordination analysis by detrended correspondence analysis (DCA) revealed a relatively clear separation of sites categorized as either high- or low-gradient according to both environmental parameters (e.g., pH, % riffle) and macroinvertebrate assemblages. In contrast, DCA showed a much less evident separation of sites as defined by Level III Ecoregion 71 (Interior Plateau) and Ecoregion 72 (Interior River Valley and Hills). The latter ordination demonstrated a similar pattern with environmental and biological parameters. The relative unimportance of geography, coupled with the apparent importance of substrate composition, suggest that local scale habitat features at least partially regulate macroinvertebrate assemblage composition across the 30 sampling sites.

The number of fecal coliform colonies varied widely during the sampling period, ranging from < 8 in acid mine-drainage impacted streams in the Western Kentucky Coalfields to > 12,000 in numerous streams in agriculture watersheds. Site-specific bacteriological data was also highly variable across months, and appeared to be related to climatological conditions. Colony counts were relatively high during May due to repeated rainfall events prior to, and during, sampling while counts were considerably lower during late summer when drought-like conditions prevail.

Literature Cited

- American Public Health Association (APHA) (1998) *Standard Methods for the Examination of Water and Wastewater*. APHA, American Water Works Association and Water Environment Federation. 20th edition. Washington, D.C.
- Barbour M.T., Plafkin J.L., Bradley B.P., Graves C.G. & Wisseman R.W. (1992) Evaluation of EPA's rapid bioassessment benthic metrics: metric redundancy and variability among reference stream sites. *Environmental Toxicology and Chemistry*, **11**, 437-449.
- Barbour M.T., Gerritsen J., Snyder B.D. & Stribling J.B. (1999) Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Burr B.M. & Warren M.L. Jr. (1986) *A Distributional Atlas of Kentucky Fishes*. Kentucky Nature Preserves Commission, Scientific and Technical Series Number 4.
- Carter J.L. & Resh V.H. (2001) After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. *Journal of the North American Benthological Society*, **20**, 658-682.
- Kentucky Department of Environmental Protection (KDEP) (1993) *Methods for Assessing Biological Integrity of Surface Waters.* Kentucky Department of Environmental Protection, Division of Water, Frankfort, Kentucky.
- Kentucky Division of Water (KDOW) (1986) *Quality Assurance Quidelines*. Kentucky Natural Resources and Environmental Protection Cabinet, Frankfort, KY.
- Lenat D. (1993) A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. *Journal of the North American Benthological Society*, **12**, 279-290.
- McGarigal K., Cushman S. & Stafford S. (2000) *Multivariate Statistics for Wildlife and Ecology Research*. Springer-Verlag, New York, New York, U.S.A.
- Ohio Environmental Protection Agency (Ohio EPA). (1999) Association between nutrients, habitat, and the aquatic biota in Ohio rivers and streams. Ohio EPA Technical Bulletin MAS/1999-1-1. Division of Surface Water, Monitoring and Assessment Section, Columbus, OH. 64 pp.
- Plafkin J.L., Barbour M.T., Porter K.D., Gross S.K & Hughes R.M. (1989) *Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish.* United States Environmental Protection Agency, Washington. EPA/444/4-89-001.
- Resh V.H. & Unzicker J.D. (1975) Water quality monitoring and aquatic organisms: the importance of species identification. *Journal of the Water Pollution Control Federation*, **47**, 9-19.
- Resh V.H. & Jackson J.K. (1993) Rapid Assessment approaches to biomonitoring using benthic macroinvertebrates. In: *Freshwater Biomonitoring and Benthic Macroinvertebrate* (Eds D.M. Rosenberg & V.H. Resh), pp. 195-233. Routledge, Chapman & Hall, Inc., U.S.A.
- Resh V.H. & McElravy E.P. (1993) Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In: *Freshwater Biomonitoring and Benthic Macroinvertebrate* (Eds D.M. Rosenberg & V.H. Resh), pp. 159-194. Routledge, Chapman & Hall, Inc., U.S.A.
- Rosenberg D.M. & Resh V.H. (1993) Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: *Freshwater Biomonitoring and Benthic Macroinvertebrate* (Eds D.M. Rosenberg & V.H. Resh), pp. 1-9. Routledge, Chapman & Hall, Inc., U.S.A.
- ter Braak, C. J. F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. *Ecology* 67: 1167-1179.
- U.S.G.S. (2002) Real-Time Data for Kentucky. URL address http://water.usgs.gov/ky/nwis/current?

Appendix A. Financial and administrative closeout

Bacteriological assessment				
Milestone	Expected Begin Date	Expected End Date	Actual Begin Date	Actual End Date
Submit all draft materials to the Division of Water, Nonpoint Source Section for review and approval	Duration			
2. Submit Annual Reports and/or participate in Division of Water sponsored NPS Conference(s)	Duration			
Request most current Final and Close Out Report Guidelines	Jun.02	Oct.02	Oct.02	Oct.02
4. Submit three copies of Final and Close Out Reports and submit three copies of all products produced by this project	Oct.02	Oct.02	Oct.02	Aug.03
5. Select 50 sites in Green and Tradewater watersheds	Apr.01	Jun.01	May.01	Jun.01
6. Collect and analyze FC samples from all sites	May.01	Oct.01	Jun.01	Oct.01
7. Submit monthly reports	Jun.01	Nov.01	Jun.01	Nov.01
8. Present preliminary findings at Nonpoint Source Conference in lieu of annual report	Sep.01	Dec.01		
Written report with assessments of data	Feb.02	Jun.02	Oct.02	Aug.03

- 1.) The only drafted materials that were submitted were (a) sampling protocols for fecal coliform bacteria, and (b) QA/QG guidelines. Both were approved prior to funding.
- 2.) A fully executed Memorandum of Agreement (= Master Agreement) was in place only on June 1, 2001. The 2001 NPS Conference was not held.
- 3.) The Final and Closeout Reports were initiated October 2002. Guidelines were requested.
- 4.) The Final and Closeout Reports were submitted within this final report.
- 5.) The locations of all 50 sampling sites were chosen and submitted to WKU by Kentucky Division of Water Personnel by June 2001.
- 6.) Monthly sampling periods have been completed for June October, 2001. Data for plate counts of fecal coliform bacteria for all 50 sites (plus 50 duplicates) for the June October, 2001 have been completed.
- 7.) All data was submitted to Kentucky Division of Water Personnel by November 2001.
- 8.) The 2001 NPS Conference was not held.
- 9.) Analysis for fecal coliform bacteria has been completed, and all data has been submitted to Kentucky Division of Water Personnel. The final report is submitted here..

Biological assessment				
Milestone	Expected Begin Date	Expected End Date	Actual Begin Date	Actual End Date
10. Submit all draft materials to the Division of Water, Nonpoint Source Section for review and approval	Duration			
11. Submit Annual Reports and/or participate in Division of Water sponsored NPS Conference(s)	Duration			
12. Request most current Final and Close Out Report Guidelines	Oct.02	Oct.02	Oct.02	Oct.02
13. Submit three copies Final and Close Out Reports and submit three copies of all products produced by this project	Oct.02	Oct.02	Oct.02	Aug.03
14. Select 75 sites in Green and Tradewater watersheds	Apr.01	Jun.01	Apr.01	May.01
15. Collect biological samples from 35 sites	May.01	Sep.01	Jul.01	Aug.01
16. Taxonomic identification of biological samples	Jun.01	Dec.01	Sep.01	Aug.02
17. Stream usage assessments presented to DOW for inclusion in watershed monitoring report	Oct.02	Nov.02	Oct.02	Aug.03
18. Written report with assessments of biological data	Oct.02	Nov.02	Oct.02	Aug.03

16.) Identification of macroinvertebrates was completed for riffle habitats from 21 sites treated as high-gradient. Identification of macroinvertebrates from other habitats (i.e.,

non-riffle or "multihabitat") in high-gradients was completed. Identification of macroinvertebrates from 14 stream sites treated as low-gradient was\ completed.

17.) Finalized and included within the body of this report.

Detailed Budget

Budget Categories	Sec	etion 319 (h)	Non-Fe	deral Match	Total
Personnel	\$	41,902	\$	16,000	\$ 57,902
Supplies	\$	78	\$	703	\$ 781
Equipment	\$	_	\$	4,000	\$ 4,000
Travel	\$	-	\$	5,060	\$ 5,060
Contractual	\$	-	\$	4,050	\$ 4,050
Operating Costs	\$	8,020	\$	3,520	\$ 11,540
Other	\$	-	\$	-	\$ -
Total	\$	50,000	\$	33,333	\$ 83,333

All federal dollars budgeted originally (\$50,000) were expended

Appendix B. DOW-approved Quality Assurance / Quality-Control Plan (QA/QC)

Quality Assurance / Quality Control

Biological Assessment

All standard quality assurance/quality control (QA/QC) procedures, as outlined in APHA (1998) and KDOW Quality Assurance Guideline (1986), were followed. Selected and random WKU macroinvertebrate collections were examined by SSS personnel to ensure consistency with taxonomic identifications. The internal KDOW protocols and QA guidelines mentioned above are part of the then-approved EPA-approved Kentucky Department of Environmental Protection (DEP) QA/QC plan. A QA/QC plan had been submitted to the KDOW for approval. All monitoring activities that were conducted as part of this project were consistent with the approved QA/QC plan.

Bacteriological Assessment

All standard QA/QC procedures, as outlined in APHA (1998) and KDOW Quality Assurance Guidelines (1986), were followed. A duplicate number of samples (5, or 10%) were analyzed monthly. All data was submitted on a monthly basis. The internal KDOW protocols and QA guidelines mentioned above are part of the then-approved EPA-approved Kentucky Department of Environmental Protection (DEP) QA/QC plan. A QA/QC plan had been submitted to the KDOW for approval. All monitoring activities that were conducted as part of this project were consistent with the approved QA/QC plan.

Appendix I. Taxa list for GRBOO-004 (West Fork Pond River) based on high-gradient, kicknet sampling.

Taxon			
OLIGOCH CRUSTA			11
	Asellidae		
		Caecidotea sp.	120
		immature asellid	2
	Cambaridae		
		Orconectes sp.	4
MOLLUS	CA	•	
	Corbiculiidae		
		Corbicula fluminea	27
	Sphaeriidae		
		Sphaerium sp.	55
EPHEME	ROPTERA		
	Baetidae		
		Acerpenna sp.	3
	Caenidae	The section of the se	_
		Caenis sp.	13
	Heptageniidae	Cuomo opi	.0
	r roptagormado	Stenacron sp.	11
ODONAT	·A	отопастон орт	
02011111	Aeshnidae		
	7 toorii iidad	Aeshna sp.	2
		Nasiaeschna sp.	1
		immature aeshnid	1
	Coenagrionida		•
	Cooriagnomaa	Argia sp.	1
		immature coenagrionid	1
PLECOP ⁻	TERΔ	inimature coenagnoma	
i LLOOI	Perlidae		
	Tonidae	Acroneuria sp.	4
HEMIPTE	RΔ	Actoricaria sp.	7
IILIVIII IL	Gerridae		
	Gerridae	Trepobates sp.	1
NEUROP	TEDA	Trepobates sp.	'
NEOROI	Sialidae		
	Sialidae	Sialis sp.	1
TRICHOF	OTED A	Sialis sp.	'
TRICHOF		Δ	
	Hydropsychida		1038
		Cheumatopsyche sp. Hydropsyche sp.	1036
		riyaropsyone sp.	'

Grubbs, 2003. Bacteriological and Biological Assessment

			SUM	4069
		Chrysops sp.		2
	Chironomida Tabanidae	ae		65
DIPTERA				
	Gyrinidae	Dineutus sp.		1
		Stenelmis sp.		2664
		Macronychus glabratus		3
		Dubiraphia sp.		19
		Ancyronyx variegatus		2
	Elmidae	riciiorius sp.		
	Біуоріаас	Helichus sp.		2
COLEOPTE	RA Dryopidae			
COLEODIE	DΛ	Chimarra sp.		14
	Philopotamic			
Taxon				
·				

Appendix II. Taxa list for GRBOO-004 (West Fork Pond River) based on high-gradient, multihabitat sampling.

Taxon		
CRUSTACEA Atyidae		
, ny idao	Palaemonetes sp.	3
Talitridae		
MOLLUSCA	Hyalella azteca	2
Corbiculiidae		
	Corbicula fluminea	2
EPHEMEROPTERA Baetidae		
Baotidao	Callibaetis sp.	1
Caenidae		0
Heptageniidae	Caenis sp.	6
op.ageaa	Stenacron sp.	14
و ماه معامل المعامل ال	immature heptageniid	1
Leptophlebiidae	Choroterpes sp.	1
ODONATA		
Coenagrionidae	Engliagma an	3
HEMIPTERA	Enallagma sp.	3
Corixidae		
NEUROPTERA	immature corixid	2
Sialidae		
TD10110DTED4	Sialis sp.	2
TRICHOPTERA Hydropsychidae		
riyaropoyornado	Cheumatopsyche sp.	110
COLEOPTERA		
Elmidae	Ancyronyx variegatus	1
	Macronychus glabratus	8
Hallalida a	Stenelmis sp.	85
Haliplidae	Peltodytes sp.	2

Grubbs, 2003. Bacteriological and Biological Assessment

Taxon			
DIPTERA	Chironomidae Stratiomyiidae Stratiomys sp.		39 1
		SUM	283

Cause Code: _____ Source Code(s):

(One or more sources must be designated for each cause)

Appendix III. Stream usage assessment for GRBOO-004.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: WEST FORK POND RIVER (Stream must be on 1:100k map) GNIS Feature ID: 506444 Segment No.: ___ Station ID: WKU0332 (GRBOO-004) Total length of stream (in miles, excluding reservoirs): Receiving Stream: POND RIVER Downstream/Upstream Mile Point: ______ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05110006 County 1: CHRISTIAN County 2: (sample site county(s)) Sample Site Mile Point: _____. Topographic Map Name: GRAHAM Latitude: 37.1361 Longitude: -87.3654_ (dd.dddd or dms) Type: Monitored or Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-25-01 (mm-dd-yy) End: 07-25-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL **NONSUPPORT** 1 to 4 **HABITAT** Χ BIOLOGICAL Χ TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Nonsupport Full Threatened Partial Cause Code: 1100 Source Code(s): 7550 Cause Code: 1600__ Source Code(s): 7550_____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____

FISH CONSUMPTION	ON (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle o	one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			<u> </u>
DRINKING WATER Full	(circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (DO	DW use only – do not c	circle)		
Full	Threatened	Partial	Nonsupport	
Assessment Method	d Code(s):			

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of Contributors: Sc	ott Grubbs
---------------------------	------------

Comments:

Appendix IV. Taxa list for GRBOO-008 (Indian Camp Creek) based on high-gradient, kicknet sampling.

Taxon			
CRUSTA	CEA Asellidae		
	Cambaridae	Caecidotea sp.	820
MOLLUS	CA Corbiculiidae	Orconectes sp.	8
		Corbicula fluminea	13
	Physidae	Physella sp.	2
	Planorbidae	Helisoma sp.	1
	Sphaeriidae	Sphaerium sp.	92
EPHEMEROPTERA Heptageniidae			
		Stenacron sp. Stenonema sp.	2
PLECOP ⁻	ΓΕRA Perlidae		
NEUROP	TERA	Neoperla sp.	66
	Sialidae	Sialis sp.	2
TRICHOF	PTERA Hydropsychidae	·	
	Philopotamidae	Cheumatopsyche sp.	1438
COLEOP		Chimarra sp.	2
OOLLOI	Dryopidae	Helichus sp.	2
	Elmidae		
	O minid	Dubiraphia sp. Stenelmis sp.	3 204
	Gyrinidae	Dineutus sp.	2

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix IV. Cont.

Taxon				
DIPTERA	Chironomidae Tipulidae			460
	1.5.555	Hexatoma sp. Ormosia sp.		6 1
			SUM	3125

Appendix V. Taxa list for GRBOO-008 (Indian Camp Creek) based on high-gradient, multihabitat sampling.

Taxon			
OLIGOCH CRUSTAC			4
	Asellidae		
	Talitridae	Caecidotea sp.	49
		Hyalella azteca	91
MOLLUSC			
	Corbiculiidae	Corbicula fluminea	8
	Physidae		
	Planorbidae	Physella sp.	19
	Flatiorbidae	Helisoma sp.	14
	Sphaeriidae	Tielisoma sp.	17
	Opriadinado	Pisidium sp.	2
		Sphaerium sp.	6
EPHEMER	ROPTERA	•	
	Baetidae		
		Centroptilum sp.	1
	Caenidae		
		Caenis sp.	11
	Heptageniidae	_	_
		Stenacron sp.	5
ODONATA	^	Stenonema sp.	5
ODONATA	Aeshnidae		
	Aesiiiidae	Basiaeschna sp.	1
	Coenagrionidae	Basiacosinia op.	
	Cooriagnoriaac	Enallagma sp.	2
	Libellulidae		
		Neurocordulia sp.	1
NEUROP1	ΓERA		
	Sialidae		
		Sialis sp.	6
TRICHOP			
	Hydropsychidae	Chaumatana ala	_
		Cheumatopsyche sp.	5 2
		Hydropsyche sp.	2

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix V. Cont.

Taxon				
COLEOPTER	RA			
	Elmidae			
		Dubiraphia sp.		7
		Stenelmis sp.		1
	Gyrinidae			
		Dineutus sp.		1
DIPTERA	0	alda a		
	Ceratopogo			
	Chiromonoid	Bezzia/Palpomyia sp.		1
	Chironomida	ae		74
			SUM	316

Appendix VI. Stream usage assessment for GRBOO-008.

305b ASSESSMENT Sampling Year: 2001 Basin Management I (Complete a form for	Jnit: GREEN & 1				
Stream Name: INDIA	AN CAMP CREE	K (Stream must be	e on 1:100k ma	ap)	
GNIS Feature ID: 49	4914 Segment	No.:Statio	n ID: WKU033	3 (GRBOO-008)	
Total length of stream	m (in miles, exclu	uding reservoirs): _	·		
Receiving Stream: G	REEN RIVER				
Downstream/Upstrea	am Mile Point:	to	•	Segment Length	:
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Sal		; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0003			
County 1: BUTLER	County 2:		(sample site of	county(s))	
Sample Site Mile Poi	nt:	Topographic N	/lap Name: FLE	ENER	
Latitude: 37.3065 Lo	ongitude: -86-69	02 (dd.dddd or dn	ns)		
Assessment Date: 04	4-17-03 (mm-dd-	-уу) Туре:	Monitored or E	Evaluated (circle one)
Sampling Dates: Sta	art: 07-26-01 (mr	m-dd-yy) End: 07	-26-01 (mm-dd	l-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circl	e one)				
Full	Threatened	Partia	I	Nonsupport)
Cause Code: 1100	Source Code/s	a): 1050			
Cause Code: 1100					
Cause Code:					
Cause Code:					
Cause Code:					
Cause Code:					
Cause Code:	Source Code(s	s):			
(One or more source	s must be desig	nated for each cau	ıse)		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl				
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE		Destin	News	
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (I	DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	od Code(s):			
Assessment Perfo	ormed by: (circle all that a	(ylqq		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Comments:

Appendix VII. Taxa list for GRBOO-022 (unnamed tributary to Wiggington Creek) based on high-gradient, kicknet sampling.

Taxon			
OLIGO(CRUST			15
	Asellidae		
		Lirceus sp.	21
		immature asellid	5
	Crangonyctic		
		immature crangonyctid	3
MOLLU			
	Lymnaeidae		
		Pseudosuccinea columella	1
	Physidae		
		Physella sp.	1
	Planorbidae		
		Helisoma sp.	1
	Pleurocerida		
		Elimia sp.	152
		Pleurocera sp.	51
	Sphaeriidae		
		Pisidium sp.	10
		Sphaerium sp.	7
EPHEM	IEROPTERA		
	Baetidae		
		Fallceon sp.	24
HEMIP	ΓERA	эр	
	Veliidae		
		Mesovelia sp.	7
TRICHO	OPTERA	wiedevend op.	•
110110	Hydropsychi	dae	
	riyaropayani	Cheumatopsyche sp.	40
		Hydropsyche sp.	4
	Polycentropo		4
	Polycerillopo		2
COLEO		Cyrnellus fraternus	2
COLEO			
	Dryopidae		
	5 (1) 1	Helichus sp.	3
	Dytiscidae		
		Hydroporus sp.	1
		unidentified dytiscid adult	1
	Elmidae		
		Optioservus sp.	38
		Stenelmis sp.	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix VII. Cont.

Taxon				
DIPTERA	Hydrophilidae	e Hydrobius sp.		1
DIFTERA	Ceratopogoni Chironomidae Empididae	Probezzia sp.		4 250
	Psychodidae	Hemerodromia sp.		8
	Simuliidae	Pericoma sp. Simulium sp.		1
	Tabanidae	Chrysops sp.		3
	Tipulidae	Pedicia sp. Pseudolimnophila sp. Tipula sp.		1 2 2
			SUM	661

Appendix VIII. Taxa list for GRBOO-022 (unnamed tributary to Wiggington Creek) based on high-gradient, multihabitat sampling.

Taxon			
OLIGOCH CRUSTA			12
	Asellidae		
		Lirceus sp.	26
	Cambaridae	Survey of the second and the	4
MOLLUS	Ω Λ	immature cambarid	1
MOLLUS	Physidae		
	Filysidae	Physella sp.	2
	Pleuroceridae	Triyoona op.	_
		Elimia sp.	33
		Pleurocera sp.	40
	Sphaeriidae		
		Pisidium sp.	3
EPHEME	ROPTERA		
	Baetidae	Doctio on	1
ODONAT	Δ	Baetis sp.	'
ODONAI	Aeshnidae		
	710011111000	Boyeria sp.	1
HEMIPTE	RA	, ,	
	Gerridae		
		immature gerrid	1
NEUROP			
	Sialidae	Cialia an	4
TRICHOF	OTERA	Sialis sp.	1
TRICTIO	Hydropsychidae	<u> </u>	
	. iyaropoyomaac	Cheumatopsyche sp.	2
		Hydropsyche sp.	2
	Leptoceridae		
		immature leptocerid	1
	Psychomyiidae	L P	
		Lype diversa	14

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix VIII. Cont.

Taxon				
COLEOP	TERA Dryopidae			
	Dytiscidae	Helichus sp.		15
	Dytiscidae	Hydroporus sp.		1
	Elmidae	Hygrotus sp.		1
DIPTERA	A	Dubiraphia sp.		1
	Ceratopogonida	ae		
		Atrichopogon sp.		1
	Chironomidae Empididae			100
	-	Chelifera sp.		5
	Tabanidae	Chrysops sp.		5
			SUM	269

Appendix IX. Stream usage assessment for GRBOO-022.

305b ASSESSMENT FORM

Sampling Year: 2001

Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.)

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPTI Full	ON (circle one) Threatened	Partial	Nonsupport
Cause Code:	Source Code(s):		
Cause Code:	Source Code(s):		
SWIMMING (circle of Full	one) Threatened	Partial	Nonsupport
Cause Code:	Source Code(s):		
Cause Code:	Source Code(s):		
	Threatened Source Code(s):		Nonsupport
	DW use only – do not circle		
Full	Threatened	Partial	Nonsupport
Assessment Method	d Code(s):		

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Comments:

Appendix X. Taxa list for GRBOO-024 (Bull Run) based on high-gradient kicknet sampling.

Taxon		
OLIGOCHAETA CRUSTACEA		1
Asellidae	On and Internal	0
MOLLUSCA	Caecidotea sp.	2
Corbiculiidae		
Corbicalilado	Corbicula fluminea	106
Lymnaeidae		
	Pseudosuccinea columella	29
Physidae		
	Physella sp.	9
EPHEMEROPTERA Caenidae		
Caernuae	Caenis sp.	1
ODONATA	Cucino op.	•
Aeshnidae		
	Boyeria sp.	1
Calopterygida	е	
	Calopteryx sp.	2
HEMIPTERA		
Veliidae	Phogovolio on	5
MEGALOPTERA	Rhagovelia sp.	5
Corydalidae		
oo.yaamaao	Corydalus cornutus	23
TRICHOPTERA	•	
Hydropsychid		
	Cheumatopsyche sp.	464
	Hydropsyche sp.	115
Hydroptilidae	Hydroptila en	7
Philopotamida	Hydroptila sp.	1
i illopotarilida	Chimarra sp.	7
COLEOPTERA		
Elmidae		
	Stenelmis sp.	66
Hydrophilidae		
	Berosus sp.	4

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix X. Cont.

Taxon				
DIPTERA	0	:		
(Ceratopogon			2
(Chironomida	Probezzia sp. e		120
E	Empididae			
		Hemerodromia sp.		70
7	Tipulidae			
		Ormosia sp.		1
		Pseudolimnophila sp.		3
		Tipula sp.		47
			SUM	1085

Appendix XI. Taxa list for GRBOO-024 (Bull Run) based on high-gradient multihabitat sampling.

Taxon			
CRUSTA			
	Asellidae	Lirceus sp.	10
MOLLUS	CA	глосио ор.	10
	Corbiculiidae		
	Physidae	Corbicula fluminea	5
	Filysidae	Physella sp.	46
EPHEME	ROPTERA	, ,	
	Tricorythidae	Twissen the deep on	4
ODONAT	ГА	Tricorythodes sp.	1
020	Aeshnidae		
		Boyeria sp.	1
	Calopterygidae	e Calopteryx sp.	3
	Coenagrionida	, , ,	Ü
		Argia sp.	2
MEGALO	OPTERA Corydalidae		
	Coryuanuae	Corydalus cornutus	3
NEUROF		•	
	Sialidae	Cialia an	4
TRICHO	PTERA	Sialis sp.	1
	Hydropsychida	ae	
		Cheumatopsyche sp.	53
		Hydropsyche sp. immature hydropsychid	33 2
	Hydroptilidae	illilliatare riyaropsyerila	2
		Hydroptila sp.	2
	Leptoceridae	Occatio on	4
COLEOF	PTERA	Oecetis sp.	1
	Elmidae		
		Dubiraphia sp.	1
		Macronychus glabratus	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XI. Cont.

		4
,		82
Hemerodromia sp.		16
•		
Chrysops sp.		1
	SUM	268
	ae Dasyhelea sp. Hemerodromia sp. Chrysops sp.	Dasyhelea sp. Hemerodromia sp. Chrysops sp.

Cause Code: _____ Source Code(s): _____

(One or more sources must be designated for each cause)

Cause Code: _____ Source Code(s): ___

Appendix XII. Stream usage assessment for GRBOO-024.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: BULL RUN (Stream must be on 1:100k map) GNIS Feature ID: 488363 Segment No.: ___ Station ID: WKU0337 (GRBOO-024) Total length of stream (in miles, excluding reservoirs): Receiving Stream: THOROUGHFARE CREEK Downstream/Upstream Mile Point: ______ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ to Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05110003 County 1: OHIO County 2: (sample site county(s)) Sample Site Mile Point: _____. Topographic Map Name: CROMWELL Latitude: 37.2671 Longitude: -86.8597 (dd.dddd or dms) Type: Monitored of Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-19-01 (mm-dd-yy) End: 07-19-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL **NONSUPPORT** 1 to 4 **HABITAT** Χ BIOLOGICAL Χ TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Partial Nonsupport Full Threatened Cause Code: 1100__ Source Code(s): 5100_____ Cause Code: 1300__ Source Code(s): 5100______ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____ Cause Code: _____ Source Code(s): _____

78

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPTION	ON (circle one) Threatened	Partial	Nonsupport	
Cause Code:	_ Source Code(s):			
Cause Code:	_ Source Code(s):			
SWIMMING (circle o	one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
DRINKING WATER Full	(circle one) Threatened	Partial	Nonsupport	
Cause Code:	_ Source Code(s):			
Cause Code:	_ Source Code(s):			
OVERALL USE (DC	OW use only – do not	circle)		
Full	Threatened	Partial	Nonsupport	
Assessment Method	d Code(s):			

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW	(WKU)	USFS	KSNPC	MSD
WMB	Probmon	MorelleadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	Ωf	Contribu	itore:	Scott	Crubbe
ivames	OI	COntribu	IIOIS:	SCOIL	Grupps

Comments:

Appendix XIII. Taxa list for GRBOO-025 (Deer Creek) based on high-gradient kicknet sampling.

Taxon		
OLIGOCHAETA CRUSTACEA		32
Asellidae	Caecidotea sp.	3
MOLLUSCA	·	
Physidae	Physella sp.	6
Planorbidae	Heliaama an	44
EPHEMEROPTERA Caenidae	Helisoma sp.	11
Heptageniidae	Caenis sp.	146
, -	Stenonema sp.	6
Tricorythidae	Tricorythodes sp.	3
ODONATA	,	
Aeshnidae HEMIPTERA	Boyeria sp.	1
Belostomatidae		
Veliidae	Belostoma sp.	1
Veillade	Mesovelia sp. Steinovelia sp.	1
NEUROPTERA	·	
Sialidae	Sialis sp.	2
TRICHOPTERA Hydropsychidae		
	Cheumatopsyche sp.	431
Leptoceridae	Oecetis sp.	1
COLEOPTERA	•	
Dryopidae	Helichus sp.	10
Elmidae	·	2
	Dubiraphia sp. Stenelmis sp.	6 605

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XIII. Cont.

Taxon				
F	Haliplidae			
	·	Peltodytes sp.		2
H	Hydrophilidae			
		Anacaena sp.		5
		Berosus sp.		43
		Enochrus sp.		25
		Laccophilus sp.		1
		Tropisternus sp.		14
DIPTERA				
C	Ceratopogonida			
		Atrichopogon sp.		3
	Chironomidae abanidae			173
		Chrysops sp.		28
Т	ipulidae			
		Pseudolimnophila sp.		2
			SUM	1562

Appendix XIV. Taxa list for GRBOO-025 (Deer Creek) based on high-gradient multihabitat sampling.

Taxon			
PLATYHELM F	/INTHES Planariidae		
OLIGOCHAE CRUSTACE		Dugesia sp.	1 6
	Asellidae	Caecidotea sp.	5
MOLLUSCA F	Physidae	Dharalla an	44
F	Planorbidae	Physella sp. Helisoma sp.	11 49
5	Sphaeriidae	Pisidium sp.	1
EPHEMERO E	PTERA Baetidae		
(Caenidae	Callibaetis sp. Caenis sp.	1 12
H	Heptageniidae	Stenacron sp.	24
ODONATA		Stenonema sp.	124
(Coenagrionidae	Argia sp. Enallagma sp.	11 60
L	₋ibellulidae	immature libellulid	4
HEMIPTERA			
	Gerridae /eliidae	immature gerrid	1
COLEOPTE		Mesovelia sp.	3
	Dytiscidae	Gyrinus sp.	1
E	Elmidae	Stenelmis sp.	7

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XIV. Cont.

	Chironomidae		35
DIPTERA	Ceratopogonida	ae immature ceratopogonid	1
DIDTEDA	Hydrophilidae	Berosus sp.	1
	Haliplidae	Peltodytes sp.	6
Taxon			

Appendix XV. Stream usage assessment for GRBOO-025.

305b ASSESSMENT Sampling Year: 2001 Basin Management I (Complete a form for	l Jnit: GREEN & ⁻				
Stream Name: DEEF	R CREEK (Strea	m must be on 1:10	00k map)		
GNIS Feature ID: 49	0771 Segment	No.:Statior	n ID: WKU0338	(GRBOO-025)	
Total length of stream	m (in miles, exclu	uding reservoirs): _	·		
Receiving Stream: G	REEN RIVER				
Downstream/Upstrea	am Mile Point: _	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt	Green; 7 radewater:	; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0005			
County 1: WEBSTER	R County 2:		(sample site	county(s))	
Sample Site Mile Poi	int:	_ Topographic N	Map Name: SE	BREE7	
Latitude: 37.5065 Lo	ongitude: -87.612	20 (dd.dddd or dm	s)		
Assessment Date: 04	4-17-03 (mm-dd	-уу) Туре:	Monitored of E	Evaluated (circle one))
Sampling Dates: Sta	art: 07-30-01 (mr	m-dd-yy) End: 07	-30-01 (mm-dc	l-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circle	le one)				
Full	Threatened	Partia	I	Nonsupport	
Cause Code: 1100_					
Cause Code: 1600_ Cause Code:					
Cause Code:					
Cause Code:					
Cause Code:					
Cause Code:					
(One or more source					

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPTI Full	ION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle Full	Threatened	Partial	Nonsupport	
DRINKING WATEF Full	R (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
OVERALL USE (D	OW use only – do not ci	ircle)		
Full	Threatened	Partial	Nonsupport	
Assessment Metho	od Code(s):			

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Comments:

Appendix XVI. Taxa list for GRBOO-030 (Pond Creek) based on high-gradient kicknet sampling.

			SUM	144
	Приниае	Tipula sp.		1
	Tipulidae	Chrysops sp.		4
	Tabanidae	Hemerodromia sp.		3
	Chironomidae Empididae			47
	Ceratopogonida	ae Probezzia sp.		4
DIPTERA	Elmidae	Stenelmis sp.		43
	-	Hydroporus sp.		1
	Dryopidae Dytiscidae	Helichus sp.		1
COLEOPTER		Cheumatopsyche sp.		24
TAIGHUFTER	Hydropsychida Hydropsychida			
TRICHOPTER	Sialidae	Sialis sp.		1
NEUROPTER	Veliidae A	Microvelia sp.		1
HEMIPTERA	Maliida :	Gammarus sp.		1
	Gammaridae			1
	Cambaridae	immature cambarid		2
OLIGOCHAET CRUSTACEA		Caecidotea sp.		9
Taxon				

Appendix XVII. Taxa list for GRBOO-030 (Pond Creek) based on high-gradient multihabitat sampling.

			SUM	158
DIFTERA	Chironomidae			68
DIPTERA		Dubiraphia sp. Stenelmis sp.		8 2
	Elmidae	Hydroporus sp.		1
COLEOPTERA	A Dytiscidae			
001 500750	Hydropsychidae	e Cheumatopsyche sp.		22
TRICHOPTER		Sialis sp.		3
NEUROPTERA	A Sialidae			
	Libellulidae	immature libellulid		7
	Coenagrionidae	Enallagma sp.		1
	Calopterygidae	Hetaerina sp.		1
	Aeshnidae	Boyeria sp.		1
ODONATA		Stenonema sp.		13
	Heptageniidae	Centroptilum sp.		1
EPHEMEROP [*]	TERA Baetidae	Саесіцоїва зр.		23
CRUSTACEA	Asellidae	Caecidotea sp.		29
OLIGOCHAET	Λ			1
Taxon				

Appendix XVIII. Stream usage assessment for GRBOO-030.

Sampling Year: 2001 Basin Management I (Complete a form for	l Jnit: GREEN & 1				
Stream Name: PONI	O CREEK (Strea	m must be on 1:10	00k map)		
GNIS Feature ID: 50	1042 Segment	No.:Statio	n ID: WKU0339	9 (GRBOO-030)	
Total length of stream	m (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: G	REEN RIVER				
Downstream/Upstrea	am Mile Point:	to _		Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt	Green; 7 radewater;	Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0003			
County 1: MUHLENE	BERG Cou	nty 2:	(sam	ole site county(s))	
Sample Site Mile Poi	int:	_ Topographic N	Лар Name: GR	EENVILLE	
Latitude: 37.1462 Lo	ongitude: -87.160	01 (dd.dddd or dn	ns)		
Assessment Date: 04	4-17-03 (mm-dd	-yy) Type:	Monitored or E	ivaluated (circle one))
Sampling Dates: Sta	art: 07-23-01 (mr	m-dd-yy) End: 07	-23-01 (mm-dd	-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circl	le one)				
Full	Threatened	Partia	I	Nonsupport	
Cause Code: 1100	Source Code(s	s)· 7600 7700			
Cause Code: 1600					
Cause Code:					
Cause Code:	_ Source Code(s	s):			
Cause Code:	Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
(One or more source	s must be desig	nated for each cau	use)		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPTI Full	ON (circle one) Threatened	Partial	Nonsupport
Cause Code:	Source Code(s):		
Cause Code:	Source Code(s):		
SWIMMING (circle of Full	one) Threatened	Partial	Nonsupport
Cause Code:	Source Code(s):		
Cause Code:	Source Code(s):		
	Threatened Source Code(s):		Nonsupport
Cause Code	Source Code(s)		
OVERALL USE (DO	DW use only – do not circle	e)	
Full	Threatened	Partial	Nonsupport
Assessment Method	d Code(s):		
	\-/ <u>-</u>		

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names	of Co	ntributors	· Scott	Grubbs
names	$OI \cup O$	HIHDUIOIS	, accom	CHUIDIOS

Comments:

Appendix XIX. Taxa list for GRBOO-036 (unnamed tributary to Pond Creek) based on high-gradient, kicknet sampling.

Taxon		
CRUSTACEA		
Asellidae		
	Caecidotea sp.	73
Gammaridae		
	Gammarus sp.	1
COLEOPTERA	·	
Elmidae		
	Stenelmis sp.	25
TRICHOPTERA	•	
Hydropsychid	ae	
7 - 1 - 7	Cheumatopsyche sp.	24
	Hydropsyche sp.	285
DIPTERA	ya. apayaa ap.	
Ceratopogoni	dae	
Ceratopogoni	Bezzia/Palpomyia sp.	4
	Dezziari aipoiliyia sp.	4

SUM 412

Appendix XX. Taxa list for GRBOO-036 (unnamed tributary to Pond Creek) based on high-gradient, multihabitat sampling.

			SUM	85
DIFTERA	Chironomidae			3
DIPTERA		Hydropsyche sp.		79
	туаторзустна	Cheumatopsyche sp.		1
TRICHOPTER	A Hydropsychida	ae		
TDIOLIODTED	٨	Caecidotea sp.		2
	Asellidae			
CRUSTACEA				
Taxon				
\ <u></u>				

Appendix XI. Stream usage assessment for GRBOO-036.

305b ASSESSMENT FORM

Sampling Year: 2001

Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.)

(Complete a form for	Cacii assessed	ocginent.)			
Stream Name: UNN	AMED TRIBUTA	RY TO POND CR	EEK (Stream n	nust be on 1:100k m	ар)
GNIS Feature ID: 50	1042 Segment	No.:Statior	n ID: WKU0340	(GRBOO-036)	
Total length of stream	m (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: P	OND CREEK				
Downstream/Upstrea	am Mile Point: _	to		Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt	Green; Tradewater;	; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	10003			
County 1: MUHLENE	BERG Cou	nty 2:	(samp	ole site county(s))	
Sample Site Mile Poi	int:	_ Topographic N	Лар Name: DR	AKESBORO	
Latitude: 37.2422 Lo	ongitude: -87.06	49 (dd.dddd or dn	ns)		
Assessment Date: 04	4-17-03 (mm-dd	-yy) Type:	Monitored or E	valuated (circle one))
Sampling Dates: Sta	art: 07-05-01 (m	ım-dd-vv) End: 07	7-05-01 (mm-d	d-vv)	
Biological Integrity: I	·		•	ber of Sites: 1	
AQUATIC LIFE USE		,	,		
AQUATIC LIFE USE	JUFFUNTTAL		гарріу <i>)</i> І	1	l aval of lafa
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			Х		
BIOLOGICAL				Х	
TOXICITY					
PHYSICAL/CHEM				X	
USE SUPPORT AQUATIC LIFE (circl Full	le one) Threatened	Partia	ı (Nonsupport	
Cause Code: 1100	Source Code(s	s): 5100			
Cause Code: 1300					-
Cause Code:	_ Source Code(s	s):			
Cause Code:	Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
(One or more source			ıse)		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPT Full	ION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle Full	Tt	Partial	Nonsupport	
Cause Code:	Source Code(s):			
DRINKING WATER Full	R (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (D	OW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Metho	od Code(s):			

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of Contributors:	Scott	Grubbs
------------------------	-------	--------

Comments:

Appendix XXII. Taxa list for GRBOO-040 (unnamed tributary to West Fork Lewis Creek) based on high-gradient kicknet sampling.

Taxon			
OLIGOCHAET CRUSTACEA	Ā		32
	Asellidae		
	Cambaridas	Caecidotea sp.	367
	Cambaridae	Orconectes sp.	3
MOLLUSCA	Dhyaidaa		
	Physidae	Physella sp.	16
	Sphaeriidae		_
PLECOPTER/	4	Pisidium sp.	2
1 22001 1210	Perlidae		
HEMIPTERA		immature perlid	4
HEIVIIF I EKA	Corixidae		
		immature corixid	8
	Nepidae	Nepa sp.	8
	Notonectidae		_
NEUROPTER.	٨	immature notonectid	1
NEOROFIER	Sialidae		
TD10110DTED		Sialis sp.	5
TRICHOPTER	KA Hydropsychida	ne	
		Cheumatopsyche sp.	194
COLEOPTER	A Elmidae		
	Ellilluae	Stenelmis sp.	12
	Hydrophilidae		40
DIPTERA		Hydrobius sp.	19
	Ceratopogonio		
	Chironomidae	Bezzia/Palpomyia sp.	1 227
	Tabanidae		221
		Chrysops sp.	16

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XXII. Cont.		
Taxon		
Tipulidae	Pilaria sp.	5
	SUM	920

Appendix XXIII. Taxa list for GRBOO-040 (unnamed tributary to West Fork Lewis Creek) based on high-gradient multihabitat sampling.

	, a. opo, ornac	10	
TAIOHOI TEIN	~ Hydropsychida	20	
HEMIPTERA TRICHOPTERA	Corixidae A	immature corixid	4
ODONATA	Libellulidae	Somatochlora sp.	2
	Cambaridae	Caecidotea sp. Lirceus sp. immature cambarid	77 3 6
OLIGOCHAET CRUSTACEA	A Asellidae		

Appendix XXIV. Stream usage assessment for GRBOO-040.

305b ASSESSMENT FORM

Sampling Year: 2001

Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.)

Stream Name: UNNA	AMED TRIBUTA	RY TO WEST FO	RK LEWIS CRE	EEK (Stream must b	e on 1:100k map)
GNIS Feature ID: 50	6436 Segment	No.:Statior	ID: WKU0341	(GRBOO-040)	
Total length of stream	n (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: W	EST FORK LEV	VIS CREEK			
Downstream/Upstrea	am Mile Point:	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C	idy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt	Green; Tradewater;	; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0003			
County 1: OHIO Cour	nty 2:	(sampl	e site county(s))	
Sample Site Mile Poi	nt:	_ Topographic N	Лар Name: EQl	JALITY	
Latitude: 37.3777 Lo	ongitude: -87.002	26 (dd.dddd or dm	ns)		
Assessment Date: 04	4-17-03 (mm-dd-	-yy) Type:	Monitored or E	valuated (circle one)	
Sampling Dates: Sta	art: 07-10-01 (m	nm-dd-yy) End: 0	7-10-01 (mm-	dd-yy)	
Biological Integrity: I	·			ber of Sites: 1	
AQUATIC LIFE USE		•	,		
AQUATIC LII L USL	SUPPORT TAL		. арріу <i>)</i>	T	11
		FULL, but	D. A. D. T. A. I.		Level of Info
AQUATIC LIFE	FULL	THREATENED		NONSUPPORT	1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circl Full	e one) Threatened	Partia	l	Nonsupport	
Cause Code: 1100	Source Code/s	·\· 7550			
Cause Code: 1100 Cause Code: 1600					
Cause Code: 1000	_ ,	,			
Cause Code:	Source Code(s	·/·			
Cause Code:	Source Code(s	?/· :\·			
Cause Code:	Source Code(s	?/· :\·			
Cause Code:	Source Code(s	?/· ·\·			
(One or more source					
(Sile of Higher Boulde	o muoi de desig	natou for cacif cat	, o o ,		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPTI Full	ON (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
SWIMMING (circle Full	one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
DRINKING WATER Full	R (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
OVERALL USE (DO	OW use only – do not cire	cle)			
Full	Threatened	Partial	Nonsupport		
Assessment Method Code(s):					

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Comments:

Appendix XXV. Taxa list for GRBOO-049 (Old Panther Creek) based on high-gradient kicknet sampling.

Taxon				
OLIGOCHAE CRUSTACE				14
01100171027	Asellidae			
		Lirceus sp.		96
MOLLUSCA				
	Physidae	Discollection		
	Caboariidaa	Physella sp.		4
	Sphaeriidae	Sphaerium sp.		12
EPHEMERO	PTERA	орнаснин эр.		12
	Caenidae			
		Caenis sp.		7
ODONATA				
	Coenagrionic			•
HEMIPTERA		Argia sp.		2
HEIVIIF LEKA	Gerridae			
	Comado	Rheumatobates sp.		4
	Veliidae	,		
		Steinovelia sp.		6
MEGALOPTE				
	Corydalidae	Ohaniia daa aa		4
LEPIDOPTER	⊃ Λ	Chauliodes sp.		1
LEFIDOFTER	Pyralidae			
	Tyranaao	Acentria sp.		2
COLEOPTER	RA			
	Hydrophilidae	e		
		Berosus sp.		1
DIPTERA	0	9 to .		
	Ceratopogon			20
	Chironomidae	immature ceratopogonid		20 183
	Jimonomida	-		100
			SUM	352

Appendix XXVI. Taxa list for GRBOO-049 (Old Panther Creek) based on high-gradient multihabitat sampling.

			SUM	294
	Chironomidae	9		218
		immature ceratopogonid		1
	Ceratopogoni	dae		
DIPTERA		, ,		
		Tropisternus sp.		1
	, ar oprimate	, Berosus sp.		1
COLLOI ILIN	 Hydrophilidae	<u> </u>		
COLEOPTER	Α	Enanagina sp.		
	Coenagrionid	ae Enallagma sp.		2
ODONATA	Coopogricaid	00		
		Caenis sp.		2
	Caenidae			
EPHEMEROP	PTERA	, ,		
	Spridomado	Sphaerium sp.		3
IVIOLLUSUA	Sphaeriidae			
MOLLUSCA		Lirceus sp.		1
		Caecidotea sp.		64
	Asellidae	0 11 1		
CRUSTACEA				
OLIGOCHAE	TA			1
Taxon				

Appendix XXVII. Stream usage assessment for GRBOO-049.

305b ASSESSMENT Sampling Year: 2001 Basin Management U (Complete a form for	Jnit: GREEN & 1				
Stream Name: OLD	PANTHER CRE	EK (Stream must	be on 1:100k m	nap)	
GNIS Feature ID: 499	9866 Segment	No.:Statio	n ID: WKU0342	2 (GRBOO-049)	
Total length of stream	n (in miles, exclu	uding reservoirs):	·	_	
Receiving Stream: P.	ANTHER CREE	K			
Downstream/Upstrea	am Mile Point:	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C					; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0005			
County 1: DAVIESS	County 2:		(sample site o	county(s))	
Sample Site Mile Poi	nt:	Topographic N	Map Name: PAI	NTHER	
Latitude: 37.6775 Lo	ongitude: 87.204	9 (dd.dddd or dm	s)		
Assessment Date: 04	4-17-03 (mm-dd-	-yy) Type:	Monitored or E	valuated (circle one))
Sampling Dates: Sta	art: 08-31-01 (r	nm-dd-yy) End: (08-31-01 (mm	n-dd-yy)	
Biological Integrity: E	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT				X	
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	Х				
USE SUPPORT AQUATIC LIFE (circl	le one)				1
Full	Threatened	Partia	I	Nonsupport	
Cause Code: 1100_ Cause Code: 1600_ Cause Code: Cause Code:	_ Source Code(s _ Source Code(s _ Source Code(s): 7550):):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:					
(One or more source			use)		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPT Full	TION (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
SWIMMING (circle	e one)				
Full	Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
DRINKING WATE Full	R (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
OVERALL USE ([DOW use only – do not cir	rcle)			
Full	Threatened	Partial	Nonsupport		
Assessment Method Code(s):					
A		I. A			

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Comments:

Appendix XXVIII. Taxa list for GRBOO-064 (Ward Creek) based on high-gradient, kicknet sampling.

Taxon			
CRUSTACE	EA Asellidae		
		Lirceus sp.	5
	Cambaridae	Orconectes sp.	3
MOLLUSCA		,	
	Physidae	Physella sp.	12
	Pleuroceridae		0
		Elimia sp. Pleurocera sp.	2 9
EPHEMERO		·	
	Baetidae	Callibaetis sp. Procloeon sp.	1
	Caenidae		40
	Heptageniidae	Caenis sp.	12
HEMIPTER.	۸	Stenonema sp.	2
HEIVIIP I EK	Corixidae		
	Gelastocoridae	immature corixid	3
	Gelasiocoridae	Gelastocoris sp.	1
	Veliidae	Microvelia sp.	2
MEGALOPT		wholevena sp.	2
	Corydalidae	Nigronia sp.	1
NEUROPTE			
	Sialidae	Sialis sp.	1
COLEOPTE			
	Dryopidae	Helichus sp.	1
	Dytiscidae	Hydroporus sp.	17

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XXVIII. Cont.

Taxon				
	Elmidae			
		Stenelmis sp.		26
	Haliplidae	·		
	·	Peltodytes sp.		3
	Hydrophilidae			
		Anacaena sp.		2
		Enochrus sp.		1
		Hydrobius sp.		14
		Laccobius sp.		5
		Tropisternus sp.		2
	Scirtidae			
		Elodes sp.		5
DIPTERA				
	Ceratopogonidae	5		
	01.1	Probezzia sp.		1
	Chironomidae Culicidae			164
	Culicidae	Ananhalaa an		1
	Stratiomyidae	Anopheles sp.		ļ
	Strationlyldae	Stratiomys sp.		4
			SUM	301

Appendix XXIX. Taxa list for GRBOO-064 (Ward Creek) based on high- gradient, multihabitat sampling.

Taxon				
OLIGOCHAETA CRUSTACEA				1
MOLLUSCA	Asellidae	Caecidotea sp. Lirceus sp.		18 2
WOLLOSCA	Planorbidae	Helisoma sp.		2
	Pleuroceridae	Pleurocera sp.		202
EPHEMEROPT	Sphaeriidae ERA	Sphaerium sp.		3
	Baetidae Caenidae	Procloeon sp.		1
	Heptageniidae	Caenis sp.		12
ODONATA		Stenacron sp. Stenonema sp.		1 32
ODONATA	Aeshnidae	Boyeria sp.		1
	Coenagrionidae Libellulidae	Enallagma sp.		1
	Libeliuliuae	Somatochlora sp. immature libellulid		1 2
COLEOPTERA	Psephenidae			
DIPTERA	·	Ectopria nervosa		1
	Chironomidae			17
			SUM	297

Appendix XXX. Stream usage assessment for GRBOO-064.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: WARD CREEK (Stream must be on 1:100k map) GNIS Feature ID: 506219 Segment No.: ___ Station ID: WKU1003 (GRBOO-064) Total length of stream (in miles, excluding reservoirs): Receiving Stream: FLYNN FORK Downstream/Upstream Mile Point: ______ to _____.__ Segment Length: . Downstream/Upstream Description: _____ ____to __ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Salt; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05140205 County 1: CALDWELL County 2: (sample site county(s)) Sample Site Mile Point: ______ Topographic Map Name: PRINCETON EAST Latitude: 37.1001 Longitude: -87.8070 (dd.dddd or dms) Type: Monitored or Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-24-01 (mm-dd-yy) End: 07-24-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL **NONSUPPORT** 1 to 4 **HABITAT** Χ BIOLOGICAL Χ TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Threatened Nonsupport Partial Full Cause Code: 1100__ Source Code(s): 7550_____ Cause Code: 1600__ Source Code(s): 7550_____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____ Cause Code: Source Code(s):

(One or more sources must be designated for each cause)

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPT Full	TION (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
SWIMMING (circle		Do allal	News		
Full	Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
DRINKING WATE Full	R (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
OVERALL USE (D	OOW use only – do not ci	rcle)			
Full	Threatened	Partial	Nonsupport		
Assessment Method Code(s):					
Assessment Performed by: (circle all that apply)					

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	(WKU	USFS	KSNPC	MSD
WMB	Probmon	MorelleadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Comments:

Appendix XXXI. Taxa list for GRBOO-067 (Crooked Creek) based on high- gradient, kicknet sampling.

Taxon			
OLIGOCH HIRUDIN CRUSTA	EA		24 5
	Asellidae	Caecidotea sp.	6
MOLLUS	Cambaridae	Orconectes sp.	12
WOLLOS	Corbiculiidae	Corbicula fluminea	4
	Planorbidae	Helisoma sp.	6
	Pleuroceridae Sphaeriidae	Elimia sp.	38
	Oprideriidae	Pisidium sp. Sphaerium sp.	1 6
EPHEME	ROPTERA Baetidae		,
	Caenidae	immature baetid Caenis sp.	1 56
	Heptageniidae	Stenonema sp.	6
PLECOP ⁻	TERA Perlidae		
HEMIPTE	RA Veliidae	Neoperla sp.	8
NEUROP		Microvelia sp.	2
TRICHOL	Sialidae	Sialis sp.	1
TRIOHOF	Hydropsychidae	e Cheumatopsyche sp.	291
TRICHOF	Sialidae PTERA	e	

Appendix XXXI. Cont.

Taxon				
COLEOP	TERA			
	Dryopidae			
		Helichus sp.		5
	Elmidae			
		Ancyronyx variegatus		1
		Dubiraphia sp.		4
		Stenelmis sp.		222
	Haliplidae	Delta Literary		•
	Llydrophilidoo	Peltodytes sp.		9
	Hydrophilidae	Berosus sp.		1
		Tropisternus sp.		2
DIPTERA		тторізістіца эр.		
	Ceratopogonida	ae		
	1 3 3 3 3	Atrichopogon sp.		1
	Chironomidae			341
	Empididae			
		Hemerodromia sp.		4
	Tipulidae			
		Hexatoma sp.		3
		Limonia sp.		6
		Pseudolimnophila sp.		1
			SUM	1067

Appendix XXXII. Taxa list for GRBOO-067 (Crooked Creek) based on high-gradient, multihabitat sampling.

Taxon		
PLATYHELMINTHES Planariidae		
HIRUDINEA CRUSTACEA	Dugesia sp.	1
Talitridae	Hyalella azteca	24
MOLLUSCA Physidae	Physella sp.	16
Planorbidae	Helisoma sp.	15
Pleuroceridae	Elimia sp. Pleurocera sp.	13 3
EPHEMEROPTERA Baetidae	·	· ·
Caenidae	Callibaetis sp. Centroptilum sp.	1
Heptageniidae	Caenis sp.	27
TRICHOPTERA	Stenacron sp. Stenonema sp.	37 11
Hydropsychidae	Cheumatopsyche sp.	12
Hydroptilidae COLEOPTERA	Hydroptila sp.	4
Elmidae	Ancyronyx variegatus	2
	Dubiraphia sp. Stenelmis sp.	7 2
Gyrinidae Haliplidae	Dineutus sp.	2
i ialipliuae	Peltodytes sp.	4

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XXXII. Cont.

Taxon				
	Hydrophilidae			
		Berosus sp.		9
		Tropisternus sp.		1
DIPTERA	4			
	Chironomidae			85
	Tipulidae			
		Limonia sp.		2
			SUM	281

Appendix XXXIII. Stream usage assessment for GRBOO-067.

305b ASSESSMENT Sampling Year: 2001 Basin Management U (Complete a form for	Jnit: GREEN & 1				
Stream Name: CRO	OKED CREEK (Stream must be or	n 1:100k map)		
GNIS Feature ID: 51	1649 Segment	No.: Statio	n ID: WKU0802	2 (GRBOO-067)	
Total length of stream	n (in miles, exclu	uding reservoirs):	·	_	
Receiving Stream: O	HIO RIVER				
Downstream/Upstrea	am Mile Point:	to		Segment Length	:
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C					; Tennessee;
USGS (8-digit) Catal	oging Unit: 0514	0203			
County 1: CRITTENI	DEN Cou	nty 2:	(samp	ole site county(s))	
Sample Site Mile Poi	nt:	Topographic N	/lap Name: REI	PTON	
Latitude: 37.4312 Lo	ongitude: -88.093	38 (dd.dddd or dm	ns)		
Assessment Date: 04	4-17-03 (mm-dd-	-yy) Type:	Monitored or E	valuated (circle one))
Sampling Dates: Sta	art: 07-11-01 (mm-dd-yy) End:	07-11-01 (m	m-dd-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	Х				
USE SUPPORT AQUATIC LIFE (circl	e one)				
Full	Threatened	Partia	I	(Nonsupport	
Cause Code: 1100_ Cause Code: 1600_ Cause Code:	_ Source Code(s _ Source Code(s): 7550):			
Cause Code:	_ Source Code(s). 			
Cause Code:					
Cause Code:					
Cause Code: (One or more source					
(Sile of Higher Boulde	o made de acoig	natou ioi cacii cat	,,,,		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl	le one)			
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assessment Perfe	ormed by: (circle all that a	(vlaa		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of	Contribu	tors: Scott	Grubbs
----------	----------	-------------	--------

Comments:

Appendix XXXIV. Taxa list for GRBOO-068 (East Branch Pond River) based on high-gradient, kicknet sampling.

Taxon		
OLIGOCHAETA CRUSTACEA		268
Cambaridae MOLLUSCA	Orconectes sp.	8
Corbiculiidae	Corbicula fluminea	70
Sphaeriidae EPHEMEROPTERA	Sphaerium sp.	6
Baetidae	Acerpenna sp.	87
Heptageniidae	Baetis sp. Stenacron sp.	503
Tricorythidae	Stenonema sp.	30 32
ODONATA Connectionide	Tricorythodes sp.	32
Coenagrionida Libellulidae	Argia sp.	10
PLECOPTERA	Macromia sp.	1
Perlidae	Acroneuria sp.	2
MEGALOPTERA Corydalidae	0 - 1 - 1 - 1 - 1 - 1	40
TRICHOPTERA Hydropsychida	Corydalus cornutus	18
	Cheumatopsyche sp. Hydropsyche sp.	2118 53
Hydroptilidae	Hydroptila sp.	7
Leptoceridae	Ceraclea sp.	3

Appendix XXIV. Cont.

		SUM 11012
	Odontomyia sp.	1
Stratiom	Simulium sp. vidae	2
Simuliida	Hemerodromia sp. ae	35
Chironor Empidida	ae	829
DIPTERA	otenennis sp.	4921
Elmidae	Dubiraphia sp. Stenelmis sp.	1 4921
Elm: do o	Helichus sp.	1
COLEOPTERA Dryopida		
Pyralidae	Petrophila confusalis	7
LEPIDOPTERA		
Polycent	ropodidae Cyrnellus fraternus	1
Philopota	Chimarra sp.	1967
Taxon		

Appendix XXXV. Taxa list for GRBOO-068 (East Branch Pond River) based on high-gradient, multihabitat sampling.

Taxon		
MOLLUSCA		
Corbiculiidae		40
Pleurocerida	Corbicula fluminea	18
Fleurocerida	e Elimia sp.	8
EPHEMEROPTERA		-
Baetidae		
	Acerpenna sp.	4
	Baetis sp.	45
Caenidae	0	7
Ephemerellic	Caenis sp.	7
Lpriemereiid	Drunella sp.	2
Heptageniida	·	_
	Stenacron sp.	3
	Stenonema sp.	1
	immature heptageniid	3
Tricorythidae		
ODONATA	Tricorythodes sp.	6
ODONATA Coenagrionio	daa	
Coeriagnonic	Argia sp.	5
	Enallagma sp.	1
HEMIPTERA	Znanagma op.	·
Corixidae		
	immature corixid	1
MEGALOPTERA		
Corydalidae		
TDIOLIODTEDA	Corydalus cornutus	1
TRICHOPTERA	doo	
Hydropsychi	Cheumatopsyche sp.	101
	Hydropsyche sp.	13
	immature hydropsychid	22
Hydroptilidae		
	Hydroptila sp.	1
Philopotamic		
	Chimarra sp.	37

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XXXV. Cont.

Taxon		
LEPIDOPTERA Pyralidae		
•	Petrophila confusalis	2
COLEOPTERA Elmidae	·	
	Dubiraphia sp.	2
	Stenelmis sp.	94
DIPTERA		
Chironomidae Empididae		248
	Hemerodromia sp.	6
		SUM 631

Appendix XXXVI. Stream usage assessment for GRBOO-068.

305b ASSESSMENT Sampling Year: 2001 Basin Management U (Complete a form for	Jnit: GREEN & 1				
Stream Name: EAST	BRANCH PON	D RIVER (Stream	must be on 1:1	00k map)	
GNIS Feature ID: 49	1428 Segment	No.:Station	ID: WKU0343	(GRBOO-068)	
Total length of stream	n (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: P	OND RIVER				
Downstream/Upstrea	am Mile Point:	to	·	Segment Length:	·
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C	am Description: ₋ ndy; Little Sandy umberland; Low	; Tygarts; Licking; er Cumberland; O	to Kentucky; Sal hio (circle one)	Green; Tradewater;	Tennessee;
USGS (8-digit) Catal	oging Unit: 5110	0006			
County 1: CHRISTIA	N County 2:		(sample site c	ounty(s))	
Sample Site Mile Poi	nt:	_ Topographic N	/lap Name: HAL	EYS MILL	
Latitude: 37.0710 Lo	ongitude: -87.272	27 (dd.dddd or dm	ns)		
Assessment Date: 04	4-17-03 (mm-dd-	-yy) Type:	Monitored or E	valuated (circle one)	
Sampling Dates: Sta	art: 07-25-01	(mm-dd-yy) End:	07-25-01 (m	nm-dd-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	one) Numl	per of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			Х		
BIOLOGICAL	X				
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC ENEE (circle Full	e one) Threatened	Partia	l	Nonsupport	
Cause Code:	Source Code(s	.).			
Cause Code:					
Cause Code:					
Cause Code:					
Cause Code:	Source Code(s	; s):			
Cause Code:	Source Code(s	s):			
Cause Code:	Source Code(s	s):			
(One or more source			ıse)		_

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMP [*] Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle		5		
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (I	DOW use only – do not cir	cle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	ood Code(s):			
Assessment Perfo	ormed by: (circle all that a	oply)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of	Contribu	tors: Scott	Grubbs
----------	----------	-------------	--------

Comments:

Appendix XXXVII. Taxa list for GRBOO-087 (unnamed tributary to Flat Creek) based on high-gradient, kicknet sampling.

Taxon				
OLIGOCHAET CRUSTACEA	TA			14
	Asellidae			
		Caecidotea sp.		61
		Lirceus sp.		1
	Talitridae			
		Hyalella azteca		17
MOLLUSCA	5			
	Physidae	Di II		
EDITEMEDOD:	TEDA	Physella sp.		4
EPHEMEROP'	Caenidae			
	Caeriidae	Caenis sp.		1
TRICHOPTER	А	Oderiis sp.		'
	 Hydropsychida	ne		
	, 1 - ,	Cheumatopsyche sp.		3
COLEOPTERA	A	. , .		
	Elmidae			
		Stenelmis sp.		2
DIPTERA				
	Chironomidae			2
	Tabanidae			•
		Chrysops sp.		3
			SUM	108

Appendix XXXVIII. Taxa list for GRBOO-087 (unnamed tributary to Flat Creek) based on high-gradient, multihabitat sampling.

Taxon				
OLIGOCHAETA CRUSTACEA				1
MOLLLICOA	Asellidae	Caecidotea sp.		7
MOLLUSCA	Physidae	Physella sp.		50
	Pleuroceridae	Elimia sp.		16 1
EPHEMEROPT	ERA Baetidae	Pleurocera sp.		ı
ODONATA	Coenagrionidae	Callibaetis sp.		3
	Libellulidae	Argia sp.		1
HEMIPTERA	Corixidae	Macromia sp.		2
COLEOPTERA	Conxidae	immature corixid		1
	Haliplidae Hydrophilidae	Peltodytes sp.		1
	Trydropfillidae	Berosus sp. Tropisternus sp.		1 1
DIPTERA	Chironomidae			29
			SUM	114

Appendix XXXIX. Stream usage assessment for GRBOO-087.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: UNNAMED TRIBUTARY TO FLAT CREEK (Stream must be on 1:100k map) GNIS Feature ID: 492181 Segment No.: ___ Station ID: WKU0346 (GRBOO-087) Total length of stream (in miles, excluding reservoirs): Receiving Stream: FLAT CREEK Downstream/Upstream Mile Point: ______ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 5110006 County 2: (sample site county(s)) County 1: HOPKINS Sample Site Mile Point: _____. Topographic Map Name: MADISONVILLE EAST Latitude: 37.2859 Longitude: -87.4289 (dd.dddd or dms) Type: Monitored or Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-30-01 (mm-dd-yy) End: 07-30-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** Χ BIOLOGICAL Χ TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Partial Nonsupport Full Threatened Cause Code: 1100__ Source Code(s): 5100_____ Cause Code: 1300__ Source Code(s): 5100______ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____

(One or more sources must be designated for each cause)

Cause Code: _____ Source Code(s): _____

Cause Code: _____ Source Code(s): ___

Cause Code: _____ Source Code(s): _____

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMP ⁻ Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle Full	e one) Threatened	Partial	Nonsupport	
			. Tonoupport	
Cause Code:	Source Code(s):			
DRINKING WATE Full	R (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE ([DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	od Code(s):			
Assessment Borfo	ormad by: (circle all that a	nnly)		

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of	Contri	butors:	Scott	Grubbs
----------	--------	---------	-------	--------

Comments:

Appendix XL. Taxa list for GRBOO-088 (unnamed tributary to Mays Run) based on high-gradient, kicknet sampling.

Taxon			
OLIGOCI CRUSTA	CEA		12
	Asellidae		
		Caecidotea sp.	1
	Cambaridae		
		Orconectes sp.	2
	Gammaridae		
MOLLUO	0.4	Gammarus sp.	32
MOLLUS			
	Pleuroceridae	Elimio on	33
	Sphaeriidae	Elimia sp.	აა
	Орпастичае	Sphaerium sp.	405
FPHFMF	ROPTERA	Орнаснатт эр.	400
	Baetidae		
	Baotidao	Acerpenna sp.	25
	Caenidae		
		Caenis sp.	8
	Heptageniidae		
		Stenacron sp.	31
		Stenonema sp.	75
ODONAT	A		
	Aeshnidae		
		Boyeria sp.	9
	Coenagrionida		
		immature coenagrionid	4
	Gomphidae	Ot leaves to a all tells as	40
LICKHOTO	- D A	Stylogomphus albistlyus	10
HEMIPTE	Veliidae		
	veilluae	Microvelia sp.	4
		Rhagovelia sp.	1
MEGALO	PTFRA	Magovella sp.	ı
WILOALO	Corydalidae		
	o i y danidao	Nigronia sp.	178
NEUROP	TERA	g. 27110 0P1	170
	Sialidae		
		Sialis sp.	3
		•	

Appendix XL. Cont.

Taxon			
TRICHO	OPTERA		
	Hydropsychida		
		Cheumatopsyche sp. Hydropsyche sp.	381 24
	Philopotamidae	Э	
		Chimarra sp.	17
COLEO	PTERA Dryopidae		
		Helichus sp.	3
	Elmidae	Dubiraphia sp.	1
		Optioservus sp.	164
		Stenelmis sp.	129
	Haliplidae	·	
		Peltodytes sp.	1
	Psephenidae		
		Ectopria nervosa	2
		Psephenus herricki	4
DIPTER			
	Ceratopogonid	immature ceratopogonid	1
	Chironomidae	illillature ceratopogoriid	325
	Empididae		020
		Hemerodromia sp.	2
	Tabanidae	·	
		Tabanus sp.	9
	Tipulidae		
		Hexatoma sp.	1
		Tipula sp.	3

SUM 1900

Appendix XLI. Taxa list for GRBOO-088 (unnamed tributary to Mays Run) based on high-gradient, multihabitat sampling.

Taxon			
OLIGOCH CRUSTAC			24
	Cambaridae		
MOLLUSO	CA	immature cambarid	2
	Pleuroceridae		
		Elimia sp.	125
		Pleurocera sp.	7
	Sphaeriidae	,	
		Sphaerium sp.	27
EPHEMER	ROPTERA Baetidae	ораса ор.	
		Acerpenna sp.	4
	Heptageniidae		
	p g	Stenacron sp.	16
ODONATA	Д	этэм эр	
020111111	Coenagrionida	e	
	Coonagnomaa	Argia sp.	1
	Gomphidae	rugia op.	•
	Comprilace	Gomphus sp.	1
MEGALO	PTFRA	Compilation.	
WIL ON ILO	Corydalidae		
	Corydanaac	Nigronia sp.	1
NEUROP ⁻	TERΔ	Nigionia sp.	· ·
NLONOI	Sialidae		
	Sialidae	Sialis sp.	9
TRICHOP	TERΔ	olalis sp.	9
11(101101	Helicopsychida	10	
	riencopsychiae	Helicopsyche sp.	1
	Hydropsychida	. , .	ı
	пушоръусниа		5
		Cheumatopsyche sp.	5
	Dhilanatamida	Hydropsyche sp.	3
	Philopotamidae		4
	Dolugontropodi	Chimarra sp.	1
	Polycentropodi		2
	Dovobomyiidaa	Polycentropus sp.	2
	Psychomyiidae		2
		Lype diversa	2

Appendix XLI. Cont.

Taxon			
COLEOPT	ERA		
	Dryopidae		
		Helichus sp.	1
	Dytiscidae		
		Hydroporus sp.	8
	Elmidae	A = = = = = = = = = = = = = = = = = = =	2
		Ancyronyx variegatus Dubiraphia sp.	2 1
		Macronychus glabratus	1
		Stenelmis sp.	1
	Haliplidae	·	
		Peltodytes sp.	1
	Psephenidae		_
		Ectopria nervosa	1
DIPTERA		Psephenus herricki	1
DIFTERA	Ceratopogor	nidae	
	Cordiopogoi	Bezzia/Palpomyia sp.	1
	Chironomida		27
	Tipulidae		
		Tipula sp.	3

SUM 279

Appendix XLII. Stream usage assessment for GRBOO-088.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: UNNAMED TRIBUTARY TO MAYS RUN (Stream must be on 1:100k map) GNIS Feature ID: 497751 Segment No.: ___ Station ID: WKU0347 (GRBOO-088) Total length of stream (in miles, excluding reservoirs): Receiving Stream: MAYS RUN Downstream/Upstream Mile Point: ______ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05110004 County 2: (sample site county(s)) County 1: HARDIN Sample Site Mile Point: _____. Topographic Map Name: HOWE VALLEY Latitude: 37.7391 Longitude: -86.0833 (dd.dddd or dms) Type: Monitored or Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-17-01 (mm-dd-yy) End: 07-17-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** Χ Χ BIOLOGICAL TOXICITY PHYSICAL/CHEM Χ **USE SUPPORT** AQUATICE (circle one) Full Threatened Partial Nonsupport Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____ Cause Code: _____ Source Code(s): _____

(One or more sources must be designated for each cause)

Cause Code: _____ Source Code(s): _____

Cause Code: _____ Source Code(s):

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPT Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle				
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	R (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (D	OOW use only – do not c	ircle)		
Full	Threatened	Partial	Nonsupport	
Assessment Metho	od Code(s):			
Assessment Perfo	rmed by: (circle all that a	nply)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of	Cont	ributors:	Scott	Grubb	S
----------	------	-----------	-------	-------	---

Comments:

Appendix XLIII. Taxa list for GRBOO-089 (West Fork Drakes Creek) based on high-gradient, kicknet sampling.

Taxon			
OLIGOCH HIRUDINE CRUSTAG	ĒΑ		19 2
CRUSTAC	Asellidae		
	Acomado	Lirceus sp.	13
	Cambaridae	•	
		Orconectes sp.	13
MOLLUS			
	Corbiculiidae		
	Pleuroceridae	Corbicula fluminea	95
	rieuroceridae	Elimia sp.	20
EPHEMEI	ROPTERA	Liiiilia op.	20
	Baetidae		
		Baetis sp.	152
	Caenidae		
		Caenis sp.	130
	Heptageniidae	Stananamaan	382
	Isonychiidae	Stenonema sp.	302
	isorryormaac	Isonychia sp.	347
	Tricorythidae		
		Tricorythodes sp.	38
ODONAT			
	Coenagrionidae		00
MEGALO		Argia sp.	29
MEGALO	Corydalidae		
	Corydanaac	Corydalus cornutus	1
		Nigronia sp.	2
NEUROP [*]	TERA		
	Sialidae		
TD10110		Sialis sp.	7
TRICHOP			
	Hydropsychidae	Cheumatopsyche sp.	173
		Hydropsyche sp.	11
	Philopotamidae) -) - - - -	•
		Chimarra sp.	28

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XLIII. Cont.

Taxon			
COLEOP	TERA Elmidae		
	Limuae	Optioservus sp.	1
		Stenelmis sp.	546
	Psephenidae	Otorionino op.	040
	r copiloriidae	Psephenus herricki	133
	Ptilodactylidae		
	, , , , , , , , , , , , , , , , , , , ,	Anchytarsus bicolor	1
DIPTERA	1	,	
	Chironomidae		41
			SUM 2184

Appendix XLIV. Taxa list for GRBOO-089 (West Fork Drakes Creek) based on high-gradient, multihabitat sampling.

Taxon			
HYDRACA CRUSTAC			1
ONOOTAO	Asellidae		
MOLLUSC		Lirceus sp.	8
	Corbiculiidae	Corbicula fluminea	6
	Planorbidae	Helisoma sp.	1
	Pleuroceridae	Elimia sp.	105
EPHEMER	ROPTERA Baetidae		
	Caenidae	Baetis sp.	3
	Heptageniidae	Caenis sp.	1
	Перкаденнаае	Stenacron sp.	9
		Stenonema sp. immature heptageniid	21 3
	Isonychiidae	Isonychia sp.	2
	Tricorythidae		
ODONATA	1	Tricorythodes sp.	5
ODONATA	Calopterygidae	Hataasina aa	0
	Coenagrionidae	Hetaerina sp.	2
		Argia sp. Enallagma sp.	4 7
	Libellulidae	immature libellulid	1
HEMIPTER		irimature iibeliuliu	
	Veliidae	Mesovelia sp.	1
TRICHOP	TERA Brachycentrida		
		Micrasema sp.	1

Appendix XLIV. Cont.

Taxon				
	Hydropsychida	e		
		Cheumatopsyche sp.		17
		Hydropsyche sp.		11
		immature hydropsychid		4
	Leptoceridae			
		Triaenodes sp.		3
	Philopotamidae			
		Chimarra sp.		1
	Polycentropodi			
	5 . ".	Nyctiophylax sp.		1
	Psychomyiidae			
	OTED A	Lype diversa		1
COLEOF	FIERA Elmidae			
	Elmidae	Ancyronyx variegatus		7
		Dubiraphia sp.		, 16
		Macronychus glabratus		66
		Stenelmis sp.		11
	Haliplidae	Gtorionino op.		• • •
		Peltodytes sp.		1
	Hydrophilidae			
	,	Berosus sp.		1
	Psephenidae	·		
		Psephenus herricki		3
DIPTERA	4			
	Chironomidae			42
	Dixidae			
		Dixella sp.		1
			SUM	367

Appendix XLV. Stream usage assessment for GRBOO-089.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: WEST FORK DRAKES CREEK (Stream must be on 1:100k map) GNIS Feature ID: 506431 Segment No.: ___ Station ID: WKU0348 (GRBOO-089) Total length of stream (in miles, excluding reservoirs): Receiving Stream: DRAKES CREEK Downstream/Upstream Mile Point: _____ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05110002 County 1: SIMPSON County 2: (sample site county(s)) Sample Site Mile Point: _____. Topographic Map Name: WOODBURN Latitude: 36.7533 Longitude: -86.5489 (dd.dddd or dms) Type: Monitored of Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-18-01 (mm-dd-yy) End: 07-18-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** Χ BIOLOGICAL TOXICITY PHYSICAL/CHEM X **USE SUPPORT** AQUATICE (circle one) Full Threatened Partial Nonsupport Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____

(One or more sources must be designated for each cause)

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl	,			
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assessment Perfe	ormed by: (circle all that a	(vlaa		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Comments:

Appendix XLVI. Taxa list for GRBOO-097 (Beaverdam Creek) based on high-gradient, kicknet sampling.

Taxon			
OLIGOC CRUSTA			47
	Cambaridae		
		Orconectes sp.	3
MOLLUS			
	Pleuroceridae		
		Elimia sp.	1
	Sphaeriidae	0.1	47
EDHEME	ROPTERA	Sphaerium sp.	17
CPHEIVIE	Baetidae		
	Daeliuae	Baetis sp.	6
		immature baetid	1
	Caenidae	mmataro baona	·
		Caenis sp.	4
	Ephemeridae	'	
	·	Ephemera sp.	11
		Hexagenia sp.	1
	Heptageniidae		
		Stenacron sp.	11
		Stenonema sp.	19
	Isonychiidae		•
	1 (1 1 - 1 " 1 -	Isonychia sp.	2
	Leptophlebiida		1
ODONAT	ΓΔ	immature leptophlebiid	'
ODONA	Aeshnidae		
	Acominac	Boyeria sp.	2
	Calopterygidae		
	, ,,	Hetaerina sp.	3
	Gomphidae		
		Gomphus sp.	6
		Stylogomphus albistylus	1
PLECOP			
	Leuctridae		
		Leuctra sp.	1

Appendix XLVI. Cont.

Taxon		
- ANDIT		
HEMIPTERA		
Veliidae	Miorovolio on	4
MEGALOPTERA Corydalidae	Microvelia sp.	1
20.70	Nigronia sp.	29
NEUROPTERA Sialidae		
TRICUARTERA	Sialis sp.	40
TRICHOPTERA Brachycentrida	۵	
Diachycentha	Micrasema sp.	2
Hydropsychida	-	_
	Cheumatopsyche sp.	55
1 (Hydropsyche sp.	5
Leptoceridae	Oecetis sp.	1
Philopotamidae	•	· ·
.,	Chimarra sp.	1
Polycentropodi		
COLEODIEDA	Cyrnellus fraternus	2
COLEOPTERA Dryopidae		
Dryopidae	Helichus sp.	2
Elmidae	т.	_
	Dubiraphia sp.	34
	Macronychus glabratus	2
	Microcylloepus pusillus	12
	Optioservus sp. Promoresia sp.	20 6
	Stenelmis sp.	4
Haliplidae		
	Peltodytes sp.	2
Psephenidae		
	Ectopria nervosa Psephenus herricki	2
Scirtidae	i sepiletius tietticki	2
20230	Elodes sp.	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XLVI. Cont.

Taxon		
DIPTERA		
Ceratopogonio	dae	
, ,	Bezzia/Palpomyia sp.	5
Chironomidae		1795
Empididae		
	Hemerodromia sp.	3
Tabanidae		
Tinulidaa	Chrysops sp.	1
Tipulidae	Pseudolimnophila sp.	4
	Tipula sp.	10
	ripaia op.	10
		SUM 2178

Appendix XLVII. Taxa list for GRBOO-097 (Beaverdam Creek) based on high-gradient, multihabitat sampling.

Taxon			
OLIGOC CRUSTA			20
	Cambaridae		
		immature cambarid	1
MOLLUS	SCA		
	Physidae		
	•	Physella sp.	9
	Pleuroceridae		
		Elimia sp.	291
		Pleurocera sp.	1
	Sphaeriidae	·	
	·	Sphaerium sp.	4
EPHEME	EROPTERA	' '	
	Caenidae		
		Caenis sp.	1
	Heptageniidae		
	1 3	Stenacron sp.	11
		Stenonema sp.	5
ODONA ³	TA		
	Aeshnidae		
		Boyeria sp.	1
	Coenagrionida	-	
		Argia sp.	1
MEGALO	OPTERA	g.c. op	
	Corydalidae		
	,	Nigronia sp.	1
LEPIDO	PTERA	9	
	Pyralidae		
	, ,	Munroessa/Synclita sp.	3
TRICHO	PTERA		_
	Hydropsychida	e	
	,	Cheumatopsyche sp.	1
	Polycentropodi		·
	,	Nyctiophylax sp.	1
	Psychomyiidae		·
	, , ,	Psychomyia sp.	2

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XLVII. Cont.

Taxon			
COLEOPTERA			
Elmidae			
	Ancyronyx variegatus		1
	Dubiraphia sp.		5
	Macronychus glabratus		2
	Stenelmis sp.		1
Psephenidae	·		
•	Psephenus herricki		1
DIPTERA	•		
Ceratopogoni	dae		
, 0	Bezzia/Palpomyia sp.		
Chironomidae	, , ,		89
Tabanidae			
	Chrysops sp.		1
Tipulidae	5, 300p0 op.		-
	Tipula sp.		2
		SUM	455

Appendix XLVIII. Stream usage assessment for GRBOO-097.

305b ASSESSMENT Sampling Year: 2001 Basin Management U (Complete a form for	Jnit: GREEN & 1				
Stream Name: BEAV	'ERDAM CREE	K (Stream must be	on 1:100k map)	
GNIS Feature ID: 48	6628 Segment	No.: Station	n ID: WKU0349	(GRBOO-097)	
Total length of stream	n (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: G	REEN RIVER				
Downstream/Upstrea	m Mile Point:	to	·	Segment Length:	
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C	nm Description: _ dy; Little Sandy; umberland; Low	; Tygarts; Licking; er Cumberland; O	to Kentucky; Salt; hio (circle one)	Green; Tradewater;	Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0001			
County 1: EDMONS	ON Cou	nty 2:	(samp	le site county(s))	
Sample Site Mile Poi	nt:	Topographic N	/lap Name: SMI	THS GROVE	
Latitude: 37.1218 Lo	ngitude: -86.193	6 (dd.dddd or dms	s)		
Assessment Date: 04	1-17-03 (mm-dd-	yy) Type:	Monitored or Ev	valuated (circle one)	
Sampling Dates: Sta	nrt: 07-18-01	(mm-dd-yy) Er	nd: 07-18-01	(mm-dd-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	one) Numl	per of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	Χ				
USE SUPPORT					
AQUATIC LIFE (circl	e one) Threatened	Partia	I	Nonsupport	
Cause Code:	Source Code(s	s):			
Cause Code:	_Source Code(s	s):			
Cause Code:	Source Code(s	s):			
Cause Code:	Source Code(s	s):			
Cause Code:					
Cause Code:					·····
Cause Code:					
(One or more source	s must be desig	nated for each cau	ıse)		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMP [*] Full		Partial	Nonsupport	
SWIMMING (circle	e one)			
Full `	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):		···	
Cause Code:	Source Code(s):			
OVERALL USE (I	DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assessment Perfo	ormed by: (circle all that a	oply)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of	Contribu	tors: Scott	Grubbs
----------	----------	-------------	--------

Comments:

Appendix XLIX. Taxa list for GRBOO-102 (Bear Creek) based on high-gradient, kicknet sampling.

Taxon			
OLIGOC HIRUDIN CRUSTA	IEA		8
	Cambaridae	Organisatos en	12
MOLLUS	SCA .	Orconectes sp.	12
	Corbiculiidae		
	Dhyaidaa	Corbicula fluminea	12
	Physidae	Physella sp.	2
	Planorbidae		
	Sphaoriidae	Helisoma sp.	1
	Sphaeriidae	Sphaerium sp.	617
EPHEME	ROPTERA Baetidae		
		Baetis sp.	11
ODONAT	ΓΑ Aeshnidae		
	Acsillidae	Boyeria sp.	2
	Coenagrionida	-	
	Comphidos	Argia sp.	1
	Gomphidae	Stylogomphus albistylus	1
MEGALO	OPTERA Corydalidae		
	·	Corydalus cornutus Nigronia sp.	3
NEUROF	PTERA Sialidae	rugionia sp.	'
		Sialis sp.	2
TRICHO			
	Hydropsychid	ae Cheumatopsyche sp. Hydropsyche sp.	7253 5
	Hydroptilidae	Trydropayone ap.	· ·
		Hydroptila sp.	3
COLEOF	PTERA Elmidae		
	Limidae	Stenelmis sp.	42

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XLIX. Cont.

Taxon			
Ptilodactylid	ae		
	Anchytarsus bicolor		1
DIPTERA			
Ceratopogo	nidae		
	Probezzia sp.		1
Chironomida Empididae	ae		5144
·	Hemerodromia sp.		23
Simuliidae			
	Simulium sp.		2
		SUM	13150

Appendix L. Taxa list for GRBOO-102 (Bear Creek) based on high-gradient, multihabitat sampling.

Taxon		
PLATYHELMINTHES Planariidae		
Flatialiluae	Dugosia en	2
OLIGOCHAETA	Dugesia sp.	3 2
HIRUDINEA		1
HYDRACARINA		1
CRUSTACEA		•
Cambaridae		
	immature cambarid	1
Talitridae		
	Hyallela azteca	1
MOLLUSCA	•	
Planorbidae		
	Helisoma sp.	2
Sphaeriidae		
	Sphaerium sp.	12
EPHEMEROPTERA		
Baetidae		
	Baetis sp.	13
Heptageniida		_
	Stenacron sp.	2
ODONATA	Stenonema sp.	2
ODONATA	de e	
Coenagrionio		4
	Argia sp.	4
HEMIPTERA	Enallagma sp.	3
Veliidae		
Vellidae	Mesovelia sp.	6
TRICHOPTERA	iviesovella sp.	O
Hydropsychi	dae	
. iyal opoyolii	Cheumatopsyche sp.	420
	Hydropsyche sp.	1
	immature hydropsychid	64
Hydroptilidae		
, ,	Hydroptila sp.	10
COLEOPTERA	, , ,	
Elmidae		
	Ancyronyx variegatus	2
	Dubiraphia sp.	14
	Stenelmis sp.	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix L. Cont.

Taxon			
	Hydrophilidae		
		Berosus sp.	3
		Tropisternus sp.	4
DIPTER/	4		
	Chironomidae Simuliidae		957
		Simulium sp.	1
	Tabanidae	•	
		immature tabanid	1
			SUM 1531

Appendix LI. Stream usage assessment for GRBOO-102.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: BEAR CREEK (Stream must be on 1:100k map) GNIS Feature ID: 486554 Segment No.: ___ Station ID: WKU0351 (GRBOO-102) Total length of stream (in miles, excluding reservoirs): Receiving Stream: GREEN RIVER Downstream/Upstream Mile Point: _____ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05110001 County 1: GRAYSON County 2: (sample site county(s)) Sample Site Mile Point: ______. Topographic Map Name: BEE SPRING Latitude: 37.3617 Longitude: -86.3021 (dd.dddd or dms) Type: Monitored of Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-18-01 (mm-dd-yy) End: 07-18-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** Χ BIOLOGICAL Χ TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Nonsupport Full Threatened Partial Cause Code: 1100__ Source Code(s): 7600, 7700_ Cause Code: 1600__ Source Code(s): 7600, 7700_____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ___

(One or more sources must be designated for each cause)

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPTI Full	ON (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):			_	
Cause Code:	Source Code(s):			_	
SWIMMING (circle Full	one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):			_	
Cause Code:	Source Code(s):			_	
DRINKING WATER Full	R (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):			_	
Cause Code:	Source Code(s):			_	
OVERALL USE (DO	OW use only – do not c	ircle)			
Full	Threatened	Partial	Nonsupport		
Assessment Method Code(s):					

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

٨	lamae	٥f	Conti	ributore	· Scott	Grubbs
ı	iames	OI	Conn	noutors	s: Scon	Grupps

Comments:

Appendix LII. Taxa list for GRBOO-103 (Sycamore Branch) based on high-gradient, kicknet sampling.

Taxon				
CRUSTACEA				
	Asellidae			
	Cambaridas	Lirceus sp.		15
	Cambaridae	Orconectes sp.		5
HEMIPTERA		отостостостор.		
	Veliidae			
MEGALOPTE	7 A	Microvelia sp.		1
MEGALOPTER	KA Corydalidae			
	Corydandae	Nigronia sp.		32
NEUROPTERA	Ą	,		
	Sialidae	.		_
TRICHOPTER	۸	Sialis sp.		3
TRICHOFTER	A Hydropsychid	ae		
	,	Cheumatopsyche sp.		80
COLEOPTERA				
	Dryopidae	Haliahua an		4
	Dytiscidae	Helichus sp.		1
	Dynoolaao	Celina sp.		1
		Hydroporus sp.		1
	Hydrophilidae	Ulcular letter an		0
DIPTERA		Hydrobius sp.		2
DII TERVA	Chironomidae			117
	Empididae			
		Hemerodromia sp.		1
	Tipulidae	Limonia sp.		23
		Pseudolimnophila sp.		23 4
		Tipula sp.		7
			SUM	293

Appendix LIII. Taxa list for GRBOO-103 (Sycamore Branch) based on high-gradient, kicknet sampling.

Taxon				
EPHEMERO	PTFRA			
2 2	Baetidae			
		Procloeon sp,		1
	Ephemerellic	·		
		immature ephemerellid		1
	Heptageniida	ae		
		Stenonema sp.		2
MEGALOPTI				
	Corydalidae			
TD10110DTE	D.4	Nigronia sp.		1
TRICHOPTE		-1		
	Hydropsychi			4
	Rhyacophilid	Diplectrona modesta		4
	Kilyacopillio	Rhyacophila sp.		2
COLEOPTER	RA	ттуасоргша эр.		_
002202.	Hydrophilida	e		
	,	Helocombus sp.		1
DIPTERA		,		
	Ceratopogor	iidae		
		Atrichopogon sp.		1
		Dasyhelea sp.		1
	Chironomida	e		2
	Tipulidae			
		Limonia sp.		1
		immature tipulid		1
			SUM	18

Appendix LIV. Stream usage assessment for GRBOO-103.

305b ASSESSMENT Sampling Year: 2001 Basin Management I (Complete a form for	l Unit: GREEN & 1				
Stream Name: SYCA	AMORE BRANC	H (Stream must be	e on 1:100k ma	ap)	
GNIS Feature ID: 50	4864 Segment	No.:Statio	n ID: WKU035	2 (GRBOO-103)	
Total length of stream	m (in miles, exclu	uding reservoirs): _	·		
Receiving Stream: B	EAR CREEK				
Downstream/Upstrea	am Mile Point:	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt	; Green; T radewater;	; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0001			
County 1: EDMONS	ON Cou	nty 2:	(sam	ple site county(s))	
Sample Site Mile Po	int:	_ Topographic N	Map Name: BE	E SPRING	
Latitude: 37.2738 Lo	ongitude: -86.312	28 (dd.dddd or dm	ns)		
Assessment Date: 04	4-17-03 (mm-dd	-yy) Type:	Monitored or E	Evaluated (circle one))
Sampling Dates: Sta	art: 07-18-01	(mm-dd-yy) Er	nd: 07-18-01	(mm-dd-yy)	
Biological Integrity:	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)	_	
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circ					
Full	Threatened	Partia	I	(Nonsupport)	
		\			
Cause Code: 1100_					
Cause Code: 1600_					
Cause Code:	_ Source Code(s	5):			
Cause Code:	_ Source Code(S	5)			
Cause Code:	Source Code(S	9)·			
Cause Code:					
(One or more source	_ source code(s es must be desia	nated for each cau	use)		
,	9		,		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl				
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE	ER (circle one)	Destal	Newson	
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assessment Perf	ormed by: (circle all that a	pply)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW	(WKU)	USFS	KSNPC	MSD
WMB	Probmon	MercheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of Contributors: Scott Grubbs

Comments:

Appendix LV. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, kicknet sampling.

Taxon			
OLIGOCHAE ^T MOLLUSCA	ГΑ		13
	Physidae		
		Physella sp.	2
	Pleuroceridae	France	404
EPHEMEROF	PTER A	Elimia sp.	184
LITILIVILIXOI	Baetidae		
	24011440	Baetis sp.	103
		Procloeon sp.	12
	Caenidae		
	l lanta ganii da a	Caenis sp.	16
	Heptageniidae	Stenonema sp.	39
	Isonychiidae	Oterioriema sp.	33
	, ,	Isonychia sp.	47
	Tricorythidae		
LIENAIDTED A		Tricorythodes sp.	53
HEMIPTERA	Veliidae		
	veilluae	Mesovelia sp.	17
		Rhagovelia sp.	5
MEGALOPTE	RA		
	Corydalidae		
NEUDODTED	Α.	Nigronia sp.	2
NEUROPTER	.A Sialidae		
	Sialidae	Sialis sp.	1
TRICHOPTER	RA		
	Hydropsychida	ae	
		Cheumatopsyche sp.	147
COLEODIED	۸	Hydropsyche sp.	5
COLEOPTER	A Elmidae		
	Ziiiiidao	Stenelmis sp.	1108
DIPTERA		,	
	Chironomidae		574
	Empididae	Harris In 2	4.5
		Hemerodromia sp.	13

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LV. Cont.

Taxon				
	Simuliidae	Simulium sp.		4
	Stratomyiidae	Odontomyia sp.		1
	Tipulidae	Limnophila sp.		1
			SUM	2347

Appendix LVI. Taxa list for GRBOO-106 (South Fork Little Barren River) based on high-gradient, multihabitat sampling.

Taxon		
OLIGOCHAETA		6
MOLLUSCA		
Corbic		
	Corbicula fluminea	1
Pleuro	ceridae	50
EDUEMEDODIE	Elimia sp.	59
EPHEMEROPTE		
Baetida		0
	Baetis sp.	3
0	Procloeon sp.	1
Caenid		0
F	Caenis sp.	9
Epnem	nerellidae	4
Hontos	Serratella sp.	1
періац	geniidae Stononomo on	7
Tricory	Stenonema sp.	,
Tricory	Tricorythodes sp.	4
ODONATA	rricorytriodes sp.	4
	erygidae	
Calopti	Hetaerina sp.	2
Coena	grionidae	2
Cocna	Enallagma sp.	3
PLECOPTERA	Enalitagina op.	Ü
Leuctri	dae	
200011	Leuctra sp.	1
MEGALOPTERA	•	·
Coryda		
55.75.	Corydalus cornutus	1
TRICHOPTERA	,	_
	osychidae	
, ,	Cheumatopsyche sp.	18
	Hydropsyche sp.	5
	unidentified hydropsychid	2
Hydrop	• • •	
, ,	Hydroptila sp.	1
Leptoc		
•	Oecetis sp.	1
Polyce	ntropodidae	
,	Cernotina sp.	1
	•	

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LVI. Cont.

Taxon				
COLEOP				
	Elmidae			
		Ancyronyx variegatus		19
		Dubiraphia sp.		7
		Macronychus glabratus		19
		Stenelmis sp.		7
	Hydrophilidae	_		
D.D.T.E.D.		Berosus sp.		1
DIPTERA				
	Ceratopogonida			
	01:	Bezzia/Palpomyia sp.		1
	Chironomidae Empididae			232
	-	Hemerodromia sp.		3
	Simuliidae	·		
		Simulium sp.		3
			SUM	418

Appendix LVII. Stream usage assessment for GRBOO-106.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: SOUTH FORK LITTLE BARREN RIVER (Stream must be on 1:100k map) GNIS Feature ID: 503933 Segment No.: ___ Station ID: WKU0355 (GRBOO-106) Total length of stream (in miles, excluding reservoirs): Receiving Stream: LITTLE BARREN RIVER Downstream/Upstream Mile Point: _____ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ ___to _ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05110001 County 1: METCALFE County 2: (sample site county(s)) Sample Site Mile Point: _____. Topographic Map Name: SULPHUR WELL Latitude: 37.0430 Longitude: -85.6408 (dd.dddd or dms) Type: Monitored of Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-16-01 (mm-dd-yy) End: 07-16-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE **FULL** THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** Χ BIOLOGICAL Χ TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATICE (circle one) Full Threatened Partial Nonsupport Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ____ Cause Code: _____ Source Code(s): _____

(One or more sources must be designated for each cause)

Cause Code: _____ Source Code(s): _____

Cause Code: _____ Source Code(s):

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPT Full	FION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle Full	e one) Threatened	Partial	Nonsupport	
			Nonsupport	
Cause Code:	Source Code(s):			
DRINKING WATE Full	R (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (D	OOW use only – do not ci	·cle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	od Code(s):			
Accessment Porfe	armed by: (circle all that a	oply)		

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Comments:

Appendix LVIII. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, kick-net sampling.

Taxon		
OLIGOCHAETA HYDROCARINA MOLLUSCA		4 22
Physidae	Physella sp.	2
Pleuroceridae	Elimia sp.	184
EPHEMEROPTERA Baetidae	Eiiiiia op.	101
	Baetis sp. Procloeon sp.	3 12
Caenidae	Caenis sp.	16
Heptageniidae 	Stenonema sp.	4
Isonychiidae	Isonychia sp.	1
Tricorythidae	Tricorythodes sp.	2
ODONATA Coenagrionida	e Argia sp.	1
HEMIPTERA	, g.a. op:	·
Gerridae	Trepobates sp.	10
Veliidae	Mesovelia sp.	17
MEGALOPTERA	Rhagovelia sp.	5
Corydalidae	Nigronia sp.	2
NEUROPTERA Sialidae		
TRICHOPTERA	Sialis sp.	1
Hydropsychida	е	
	Cheumatopsyche sp. Hydropsyche sp.	147 5
Hydroptilidae	Hydroptila sp.	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LVIII. Cont.

Taxon			
COLEOF			
	Elmidae		
		Dubiraphia sp.	1
		Stenelmis sp.	42
	Hydrophilidae		
		Berosus sp.	1
		Laccobius sp.	2
	Lutrochidae		
		Lutrochus sp.	3
	Psephenidae		
		Psephenus herricki	4
DIPTERA	А		
	Chironomidae Empididae		574
	·	Hemerodromia sp.	5
	Stratiomyiidae	•	
	·	Odontomyia sp.	1
			SUM 1072

Appendix LIX. Taxa list for GRBOO-109 (East Fork Little Barren River) based on high-gradient, multihabitat sampling.

Taxon				
MOLLUSCA				
	Physidae			_
	Pleuroceridae	Physella sp.		2
	Fleuroceriuae	Elimia sp.		97
EPHEMEROI	PTERA			
	Baetidae			
	0	Baetis sp.		2
	Caenidae	Caenis sp.		12
	Heptageniidae	•		12
	13	Stenacron sp.		4
		Stenonema sp.		33
ODONATA		immature heptageniid		1
ODONATA	Coenagrionida	10		
	Occinagnonida	Argia sp.		1
PLECOPTER	A	3 1		
	Perlidae			
TRICHOPTE	DΛ	Acroneuria sp.		1
TRICHOPTE	KA Hydropsychida	ae		
	. iyarapayamaa	Cheumatopsyche sp.		18
	Uenoidae	. , .		
		Neophylax sp.		2
COLEOPTER	RA Elmidae			
	Elillidae	Stenelmis sp.		9
	Psephenidae	Ctorionino op.		Ü
	·	Psephenus herricki		3
DIPTERA	.			4-0
	Chironomidae Psychodidae			153
	rsychodidae	Psychoda sp.		1
			SUM	339

Appendix LX. Stream usage assessment for GRBOO-109.

305b ASSESSMENT Sampling Year: 2001 Basin Management I (Complete a form for	l Unit: GREEN & 1				
Stream Name: EAST	FORK LITTLE	BARREN RIVER (Stream must b	e on 1:100k map)	
GNIS Feature ID: 49	1648 Segment	No.:Statio	n ID: WKU0356	6 (GRBOO-109)	
Total length of stream	m (in miles, exclu	uding reservoirs): _		_	
Receiving Stream: L	ITTLE BARREN	RIVER			
Downstream/Upstrea	am Mile Point:	to		Segment Length:	
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Sal;		Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0001			
County 1: METCALF	E County 2:		(sample site c	ounty(s))	
Sample Site Mile Po	int:	_ Topographic N	/lap Name: EDI	MONTON	
Latitude: 36.9439 Lo	ongitude: -85.50°	11 (dd.dddd or dm	ns)		
Assessment Date: 04	4-17-03 (mm-dd	yy) Type:	Monitored or E	valuated (circle one)	
Sampling Dates: Sta	art: 07-16-01	(mm-dd-yy) E	nd: 07-16-01	(mm-dd-yy)	
Biological Integrity:	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circle Full	le one) Threatened	Partia	I	Nonsupport	
Cause Code: 1100_					
Cause Code: 1600_	_ Source Code(s	s): 7550			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	;):			
Cause Code:					
Cause Code:					
Cause Code:	_ Source Code(s):			
(One or more source	es must be desig	nated for each cat	ise)		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMPTIC Full	ON (circle one) Threatened	Partial	Nonsupport	
Cause Code:	_ Source Code(s):			
Cause Code:	_ Source Code(s):			
SWIMMING (circle o Full	ne) Threatened	Partial	Nonsupport	
Cause Code:	_ Source Code(s):			
Cause Code:	_ Source Code(s):			
DRINKING WATER Full	(circle one) Threatened	Partial	Nonsupport	
Cause Code:	_ Source Code(s):			
Cause Code:	_ Source Code(s):			
OVERALL USE (DO	W use only – do not circle)			
Full	Threatened	Partial	Nonsupport	
Assessment Method Code(s):				
Assessment Performed by: (circle all that apply)				

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	Ωf	Contribu	itore:	Scott	Crubbe
ivames	OI	Contribu	mors:	2COII	Grupps

Comments:

Appendix LXI. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, kicknet sampling.

Taxon			
OLIGOCI HIRUDIN CRUSTA	IEA		52 50
01100171	Asellidae		
		Lirceus sp.	409
	Talitridae	I brahalla astasa	4
MOLLUS	СА	Hyalella azteca	4
WOLLOO	Ancylidae		
	•	Laevapex sp.	9
	Hydrobiidae	2 .	•
	Physidae	Somatogyrus sp.	9
	Titysidae	Physella sp.	10
	Planorbidae		
	0-1	Helisoma sp.	8
	Sphaeriidae	Pisidium sp.	79
		Sphaerium sp.	606
ODONAT	A Libellulidae		
HEMIPTE	Ξ D Λ	Neurocordulia sp.	3
HEIVIIFIE	Corixidae		
		immature corixid	3
NEUROF			
	Sialidae	Sialis sp.	10
TRICHO	PTERA	Sialis sp.	10
	Hydropsychida	ae	
		Cheumatopsyche sp.	1
COLEOP			
	Dryopidae	Helichus sp.	1
	Elmidae	1	·
		Dubiraphia sp.	1
		Stenelmis sp.	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix XLI. Cont.

Taxon	
DIPTERA Chironomidae	233
	SUM 1489

Appendix LXII. Taxa list for GRBOO-110 (Bayou Creek) based on high- gradient, multihabitat sampling.

Taxon				
OLIGOCHAE1 CRUSTACEA				2
	Asellidae			
	Cambaridae	Lirceus sp.		2
	Cambandac	immature cambarid		2
	Crangonyctida			40
	Talitridae	Crangonyx sp.		10
		Hyalella azteca		1
MOLLUSCA	Ancylidae			
	7 trioyildae	Ferrissia sp.		6
	Hydrobiidae	Amnicolo on		2
	Physidae	Amnicola sp.		2
		Physella sp.		2
	Sphaeriidae	Pisidium sp.		6
		Sphaerium sp.		2
HEMIPTERA	Corixidae			
	Conxidae	immature corixid		11
NEUROPTER				
	Sialidae	Sialis sp.		1
COLEOPTER				
	Haliplidae	Peltodytes sp.		1
DIPTERA		r chodytes sp.		'
	Chironomidae			188
	Tipulidae	Pseudolimnophila sp.		1
			SUM	237

Appendix LXIII. Stream usage assessment for GRBOO-110.

Sampling Year: 2001 Basin Management I (Complete a form for	Jnit: GREEN & 1				
Stream Name: BAYO	OU CREEK (Stre	am must be on 1:	100k map)		
GNIS Feature ID: 51	0435 Segment	No.:Station	n ID: WKU0804	(GRBOO-110)	
Total length of stream	n (in miles, exclu	uding reservoirs): _		_	
Receiving Stream: O	HIO RIVER				
Downstream/Upstrea	m Mile Point:	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C	dy; Little Sandy;	; Tygarts; Licking ;			; Tennessee;
USGS (8-digit) Catal	oging Unit: 5140	203			
County 1: LIVINGST	ON County 2:		(sample site c	ounty(s))	
Sample Site Mile Poi	nt:	Topographic N	/lap Name: GO	LCONDA	
Latitude: 37.2872 Lo	ongitude: -88.47	18 (dd.dddd or dm	ns)		
Assessment Date: 04	1-17-03 (mm-dd-	-yy) Type:	Monitored or E	valuated (circle one))
Sampling Dates: Sta	art: 07-30-01	(mm-dd-yy) E	nd: 07-30-01 (n	nm-dd-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT				X	
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	Χ				
USE SUPPORT AQUATIC LIFE (circl	e one)				
Full	Threatened	Partia	· (Nonsupport	
Cause Code: 1100	Source Code(s	i): /550			
Cause Code: 1600_	Source Code(s): /55U			
Cause Code:					
Cause Code:	Source Code(S	/·			-
Cause Code:					
(One or more source	s must be design	nated for each cau	ıse)		
, = 5 5.5 55 51 50			· /		

Grubbs, 2003. Bacteriological and Biological Assessment

FISH CONSUMP ⁻ Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle				
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	R (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE ([DOW use only – do not cir	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	od Code(s):			
Accomment Dorfe	armed by (airele all that a	l)		

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	Ωf	Contribu	itore:	Scott	Crubbe
ivames	OI	Contribu	mors:	2COII	Grupps

Comments:

Appendix LXIV. Taxa list for GRBOO-001 (Old Panther Creek) based on low- gradient, multihabitat sampling.

Taxon				
OLIGOCHAETA MOLLUSCA	A			14
	Physidae	Physella sp.		1
EPHEMEROPT	ERA Caenidae	Caenis sp.		2
ODONATA	Libellulidae	Оденіз зр.		۷
HEMIPTERA	Belostomatidae	Perithemis sp.		6
	Corixidae	Belostoma sp.		3
COLEOPTERA	Haliplidae	immature corixid		347
	Hydrophilidae	Peltodytes sp.		2
	Scirtidae	Berosus sp. Helochares sp.		21 1
DIPTERA		Prionocyphon sp.		1
	Chironomidae			572
			SUM	970

Appendix LXV. Stream usage assessment for GRBOO-001.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: OLD PANTHER CREEK (Stream must be on 1:100k map) GNIS Feature ID: 499866 Segment No.: ___ _Station ID: WKU0331 (GRBOO-001) Total length of stream (in miles, excluding reservoirs): Receiving Stream: PANTHER CREEK Downstream/Upstream Mile Point: ______ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05110005 County 2: (sample site county(s)) County 1: DAVIESS Sample Site Mile Point: _____. Topographic Map Name: PANTHER Latitude: 37.6835 Longitude: -87.1791 (dd.dddd or dms) Type: Monitored or Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 08-30-01 (mm-dd-yy) End: 08-30-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** BIOLOGICAL TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Partial Nonsupport Full Threatened Cause Code: 1100 Source Code(s): 7550 Cause Code: 1600__ Source Code(s): 7550_____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): ___

(One or more sources must be designated for each cause)

FISH CONSUMP ⁻ Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle				
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	R (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE ([DOW use only – do not cir	·cle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	od Code(s):			
Accomment Dorfe	armed by (airele all that a	anh d		

Assessment Performed by:	(circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Appendix LXVI. Taxa list for GRBOO-009 (Deer Creek) based on low- gradient, multihabitat sampling.

Taxon			
OLIGOC CRUSTA			4
	Atyidae		
MOLLUS	SCA	Palaemonetes sp.	16
WOLLO	Corbiculiidae		
	oor broamado	Corbicula fluminea	6
	Lymnaeidae		
		Pseudosuccinea columella	11
	Physidae		
		Physella sp.	12
	Sphaeriidae	Cabacium as	c
EDHEMI	EROPTERA	Sphaerium sp.	6
	Baetidae		
	24044	Callibaetis sp.	3
	Caenidae	·	
		Caenis sp.	80
	Heptageniida		
000114	. .	Stenonema sp.	3
ODONA	Aeshnidae		
	Aesiiiidae	Basiaeschna sp.	5
	Coenagrionid		J
	3	Argia sp.	1
		Enallagma sp.	73
	Libellulidae		
		Epicordulia sp.	2
ЦЕМІРТ	·	Libellula sp.	4
HEMIPT	Gerridae		
	Gerridae	Gerris sp.	1
		Rheumatobates sp.	1
NEURO	PTERA	•	
	Sialidae		
		Sialis sp.	1
COLEO			
	Elmidae	Dubiranhia an	4
		Dubiraphia sp. Stenelmis sp.	1 1
		Ctorionino op.	

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXVI. Cont.

Taxon			
	Haliplidae		
		Peltodytes sp.	3
	Hydrophilida	ae	
		Berosus sp.	13
		Tropisternus sp.	5
	Scirtidae		
		immature scirtid	2
			SUM 254

Appendix LXVII. Stream usage assessment for GRBOO-009.

305b ASSESSMENT Sampling Year: 2001 Basin Management I (Complete a form for	l Jnit: GREEN & ⁻				
Stream Name: DEEF	R CREEK (Strea	m must be on 1:10	00k map)		
GNIS Feature ID: 49	0771 Segment	No.: Statio	n ID: WKU033	4 (GRBOO-009)	
Total length of stream	m (in miles, exclu	uding reservoirs): _	·_		
Receiving Stream: G	REEN RIVER				
Downstream/Upstrea	am Mile Point:	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt	; Green; Tradewater	; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0005			
County 1: WEBSTER	R County 2:		(sample site	county(s))	
Sample Site Mile Po	int:	_ Topographic N	Лар Name: SE	BREE	
Latitude: 37.5464 Lo	ongitude: -87.57	70 (dd.dddd or dm	ns)		
Assessment Date: 04	4-17-03 (mm-dd	-yy) Type:	Monitored or E	Evaluated (circle one)
Sampling Dates: Sta	art: 07-30-01 (mr	m-dd-yy) End: 07	-30-01 (mm-do	d-yy)	
Biological Integrity:	Excellent; Good;	Fair; Poor (circle	e one) Num	nber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT				X	
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circ	,				
Full	Threatened	Partia	l '	Nonsupport)
		·			
Cause Code: 1100_					
Cause Code: 1600_					
Cause Code:	_ Source Code(s	S):			
Cause Code:	_ Source Code(S	6)			
Cause Code:	Source Code(S	o)			
Cause Code:					
Cause Code: (One or more source	_ Source Code(S	nated for each car	<u> </u>		
(Sile of file soulce	o musi be desig	nated for each cat	<i>100)</i>		

FISH CONSUMPT Full	TON (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle	one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
DRINKING WATEI Full	` <u>_</u> . ′ .	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (D	OW use only – do not c	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Metho	od Code(s):			
Assessment Perform	rmed by: (circle all that a	apply)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Appendix LXVIII. Taxa list for GRBOO-016 (Little Muddy Creek) based on low-gradient, multihabitat sampling.

Taxon			
CRUSTAC	CEA Asellidae		
		Caecidotea sp. Lirceus sp.	1 2
	Atyidae	Palaemonetes sp.	6
	Talitridae	Hyalella azteca	36
MOLLUSC	A		
	Ancylidae	Laevapex sp.	1
	Physidae	Physella sp.	2
	Sphaeriidae	•	
EPHEMEROPTERA		Sphaerium sp.	3
	Baetidae Caenidae Heptageniidae	Callibaetis sp.	3
		Caenis sp.	45
		Stenonema sp.	1
ODONATA	4	Sterional op:	•
Aeshnidae		Dovorio on	1
		Boyeria sp. Nasiaeschna sp.	1
	Coenagrionidae	Ischnura sp.	3
	Libellulidae	Neurocordulia sp.	16
HEMIPTE	RA	riourosoruumu opi	
	Nepidae	None on	2
NEUROP1		Nepa sp.	2
	Sialidae	Sialis sp.	6
TRICHOP	TERA Hydropsychidae	·	
	Тучгорзустнийс	Cheumatopsyche sp.	2

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXVIII. Cont.

Taxon				
COLEOF				
	Elmidae	Dubirankia an		4
	Haliplidae	Dubiraphia sp.		1
		Peltodytes sp.		1
	Hydrochidae	I ludro chuo on		4
	Hydrophilidae	Hydrochus sp.		1
	,	Berosus sp.		2
DIPTER	A			
	Chironomidae Tabanidae			138
		Chlorotabanus sp.		2
	Tipulidae			
		Tipula sp.		1
			SUM	277

Cause Code: _____ Source Code(s): ___

(One or more sources must be designated for each cause)

Appendix LXIX. Stream usage assessment for GRBOO-016.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: LITTLE MUDDY CREEK (Stream must be on 1:100k map) GNIS Feature ID: 513506 Segment No.: ___ _Station ID: WKU0335 (GRBOO-016) Total length of stream (in miles, excluding reservoirs): Receiving Stream: BARREN RIVER Downstream/Upstream Mile Point: _____ to ____.__ Segment Length: _____. Downstream/Upstream Description: _____ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Sall; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one) USGS (8-digit) Cataloging Unit: 05110002 County 2: (sample site county(s)) County 1: BUTLER Sample Site Mile Point: _____. Topographic Map Name: MORGANTOWN Latitude: 37.1593 Longitude: -86.6610 (dd.dddd or dms) Type: Monitored or Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-26-01 (mm-dd-yy) End: 07-26-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** BIOLOGICAL TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Partial Nonsupport Full Threatened Cause Code: 1100 Source Code(s): 1050 Cause Code: 1600__ Source Code(s): 7550_____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____

FISH CONSUMPTIO Full	N (circle one) Threatened	Partial	Nonsupport
Cause Code:	Source Code(s):		
Cause Code:	Source Code(s):		
SWIMMING (circle or		Doutiel	Nanaumant
Full	Threatened	Partial	Nonsupport
Cause Code:	Source Code(s):		
Cause Code:	Source Code(s):		
DRINKING WATER (Full	circle one) Threatened	Partial	Nonsupport
Cause Code:	Source Code(s):		
Cause Code:	Source Code(s):		<u> </u>
OVERALL USE (DO)	W use only – do not circle)		
Full	Threatened	Partial	Nonsupport
Assessment Method	Code(s):		
Assessment Perform	ed by: (circle all that apply)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW	(WKU)	USFS	KSNPC	MSD
WMB	Probmon	MercheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	

Names of Contributors: Scott Grubbs

Comments:

RR FO

Appendix LXX. Taxa list for GRBOO-035 (Deer Creek) based on low-gradient, multihabitat sampling.

Taxon			
OLIGOCH			24
	Atyidae		
		Palaemonetes sp.	2
MOLLUSC			
	Ancylidae	Laguanayan	4
	Physidae	Laevapex sp.	1
	i iiysidae	Physella sp.	2
	Sphaeriidae	yooa op.	_
		Sphaerium sp.	1
EPHEMER			
	Baetidae	O 1111 - 11	
	Caenidae	Callibaetis sp.	1
	Caemidae	Caenis sp.	20
ODONATA	4	очень орг	
	Aeshnidae		
	_	Nasiaeschna sp.	2
	Coenagrionidae	F	0
	Libellulidae	Enallagma sp.	2
	Libeliuliuae	Somatochlora sp.	4
HEMIPTE	RA	останости орг	·
	Corixidae		
		immature corixid	11
	Gerridae	Dhawa atabatan an	4
		Rheumatobates sp. Trepobates sp.	1 22
NEUROP	ΓFRA	rrepubates sp.	22
	Sialidae		
		Sialis sp.	2
COLEOPT			
	Haliplidae	Daltadistan	
	Hydrophilidae	Peltodytes sp.	1
	Tydiopillidae	Berosus sp.	2
		•	

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXX. Cont.

Taxon				
DIPTERA	Ceratopogonidae Chironomidae	Atrichopogon sp. Bezzia/Palpomyia sp.		1 1 80
			SUM	180

Appendix LXXI. Stream usage assessment for GRBOO-035.

Sampling Year: 2001 Basin Management I (Complete a form for	l Jnit: GREEN & ⁻				
Stream Name: DEEF	R CREEK (Strea	m must be on 1:10	00k map)		
GNIS Feature ID: 49	0770 Segment	No.:Statio	n ID: WKU0801	(GRBOO-035)	
Total length of stream	n (in miles, exclu	uding reservoirs): _	·	_	
Receiving S tream: 0	OHIO RIVER				
Downstream/Upstrea	am Mile Point:	to _	·	Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking ;	Kentucky; Salt;		; Tennessee;
USGS (8-digit) Catal	oging Unit: 0514	10203			
County 1: LIVINGST	ON Cou	nty 2:	(samp	ole site county(s))	
Sample Site Mile Poi	int:	_ Topographic N	Map Name: RO	SICLARE	
Latitude: 37.3976 Lo	ngitude: -88.318	4 (dd.dddd or dm	s)		
Assessment Date: 04	4-17-03 (mm-dd	-yy) Type:	Monitored or E	valuated (circle one))
Sampling Dates: Sta	art: 07-12-01 (m	m-dd-yy) End: 07	7-12-01 (mm-c	dd-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT	.,		Х		
BIOLOGICAL	X				
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATION (circle)	le one)				
Full	Threatened	Partia	I	Nonsupport	
Cause Code:	Source Code(s	3).			
Cause Code:					
Cause Code:	Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
(One or more source	s must be desig	nated for each cau	use)		

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl				
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (I	DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assessment Perfe	ormed by: (circle all that a	nnlv)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of	Contribu	tors: Scott	Grubbs
----------	----------	-------------	--------

Appendix LXXII. Taxa list for GRBOO-057 (Tyson Branch) based on low-gradient, multihabitat sampling.

Taxon			
OLIGOCI CRUSTA			1
	Atyidae		
	Cambaridae	Palaemonetes sp.	13
		immature cambarid	1
	Talitridae	Hyalella azteca	3
MOLLUS			
	Physidae	Physella sp.	2
EPHEME	ROPTERA		
	Baetidae	Paracloeodes sp.	1
	Caenidae	Coonia an	6
	Heptageniidae	Caenis sp.	0
ODONAT	-Λ	Stenacron sp.	4
ODONAI	Coenagrionidae		
		Argia sp. Enallagma sp.	3
HEMIPTE	ΞRA	Litaliagina sp.	ı
	Corixidae	immature corixid	54
NEUROF		ininatare conxid	04
	Sialidae	Sialis sp.	1
TRICHO		Claire op:	·
	Leptoceridae	Oecetis sp.	1
	Polycentropodida	ae	
LEPIDOF	PTERA	Cyrnellus fraternus	2
	Pyralidae		
COLEOP	TERA	Acentria sp.	1
	Elmidae	5	_
		Dubiraphia sp.	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXXII. Cont.

1 1 173
1
1
1
1
1

Appendix LXXIII. Stream usage assessment for GRBOO-057.

Sampling Year: 2001 Basin Management L (Complete a form for	Jnit: GREEN & 1				
Stream Name: TYSC	ON BRANCH (St	ream must be on	1:100k map)		
GNIS Feature ID: 50	5754 Segment	No.:Statio	n ID: WKU1001	I (GRBOO-057)	
Total length of stream	n (in miles, exclu	uding reservoirs):	·	_	
Receiving Stream: T	RADEWATER R	RIVER			
Downstream/Upstrea	am Mile Point:	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C	idy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt;	Green; Tradewater;	; Tennessee;
USGS (8-digit) Catal	oging Unit: 0514	0205			
County 1: CALDWEL	L County 2:	·	(sample site o	county(s))	
Sample Site Mile Poi	nt:	_ Topographic N	Лар Name: DAI	LTON	
Latitude: 37.3321 Lo	ngitude: -87.841	0 (dd.dddd or dm	s)		
Assessment Date: 04	4-17-03 (mm-dd	-yy) Type:	Monitored or E	valuated (circle one))
Sampling Dates: Sta	art: 07-11-01 (m	nm-dd-yy) End: 0	7-11-01 (mm-	dd-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT				X	
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM					
USE SUPPORT AQUATIC LIFE (circl	e one)				
Full	Threatened	Partia	I	Nonsupport	
Cause Code: 1100	Source Code(s	s)· 7550			
Cause Code: 1600	Source Code(s	s): 7550			
Cause Code:					
Cause Code:	Source Code(s	s):			
Cause Code:	Source Code(s	s):			
Cause Code:	_Source Code(s	s):			
Cause Code:	_Source Code(s	s):			
(One or more source					

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl	,			
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assessment Perf	ormed by: (circle all that a	(vlaa		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Appendix LXXIV. Taxa list for GRBOO-061 (Piney Creek) based on low-gradient, multihabitat sampling.

Taxon			
OLIGOCHA CRUSTACI			16
	Asellidae		
		Caecidotea sp. Lirceus sp.	1 8
	Cambaridae	·	1
MOLLUSC	۸	Orconectes sp.	ı
WOLLOGO	- Hydrobiidae		
	Physidae	immature hydrobiid	3
	Planorbidae	Physella sp.	4
	Fianoibidae	Helisoma sp.	2
	Sphaeriidae	Pisidium sp.	18
		Sphaerium sp.	11
EPHEMER			
	Ephemeridae	Hexagenia sp.	2
ODONATA			
	Aeshnidae		
	Libellulidae	Nasiaeschna sp.	3
	Libellulluae	Libellula sp.	3
		immature libellulid	2
HEMIPTER			
	Belostomatidae	Delegan	0
	Corixidae	Belostoma sp.	3
		Sigara sp.	54
	Notonectidae	Notonecta sp.	1
NEUROPT	ERA	·	
	Sialidae	a	
COLEOPTI	FRΔ	Sialis sp.	25
JOLLOI II	Dytiscidae		
	_ ,	Laccophilus sp. Lioporeus sp.	1 3

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXXIV. Cont.

Taxon				
	Gyrinidae	Dineutus sp. Gyrinus sp.		1 1
	Haliplidae Hydrophilidae	Peltodytes sp.		3
	Scirtidae	Tropisternus sp.		2
DIPTERA		Prionocyphon sp.		6
	Chironomidae Tipulidae			156
		Erioptera sp.		
			SUM	331

Appendix LXXV. Stream usage assessment for GRBOO-061.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.)					
Stream Name: PINE	Stream Name: PINEY CREEK (Stream must be on 1:100k map)				
GNIS Feature ID: 50	0729 Segmer	nt No.:Stati	on ID: WKU100	02 (GRBOO-061)	
Total length of stream	n (in miles, exclu	uding reservoirs): _		_	
Receiving Stream: T	RADEWATER R	IVER			
Downstream/Upstrea	m Mile Point:	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C	dy; Little Sandy;	; Tygarts; Licking;	Kentucky; Salt;	Green Tradewater;	ennessee;
USGS (8-digit) Catal	oging Unit: 0514	0205			
County 1: CRITTENI	DEN Cou	nty 2:	(samp	ole site county(s))	
Sample Site Mile Poi	nt:	Topographic N	/lap Name: SH	ADY GROVE	
Latitude: 37.3044 Lo	ongitude: -87.968	39 (dd.dddd or dm	s)		
Assessment Date: 04	1-17-03 (mm-dd-	-yy) Type:	Monitored or E	valuated (circle one)	
Sampling Dates: Sta	art: 07-24-01 (r	nm-dd-yy) End: (07-24-01 (mm	n-dd-yy)	
Biological Integrity: I	Excellent; Good;	Fair; Poor (circle	one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE		apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT				X	
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circle one)					
Full	Threatened	Partia		(Nonsupport	
		\ 			
Cause Code: 1100_	Source Code(s): /600, //00			
Cause Code: 1600_					
Cause Code:					
Cause Code:	Source Code(S	//·			
Cause Code:					
Cause Code:					
(One or more source					

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl				
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (I	DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assassment Perfe	ormed by: (circle all that a	nnly)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW (WKU)	USFS	KSNPC	MSD
WMB	Probmon	MercheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Appendix LXXVI. Taxa list for GRBOO-069 (Highland Creek) based on low-gradient, multihabitat sampling.

Taxon			
OLIGOC HIRUDIN	IEA		3 2
CRUSTA	Atyidae		
	•	Palaemonetes sp.	40
	Cambaridae	immature cambarid	1
	Talitridae	Hyalella azteca	3
MOLLUS	CA		
	Physidae	Physella sp.	4
EPHEME	EROPTERA Baetidae		
	Caenidae	Callibaetis sp.	1
		Caenis sp.	45
ODONAT			
	Aeshnidae	Nasiaeschna sp.	1
	Coenagrionidae	Auria an	04
		Argia sp. Enallagma sp.	21 1
	Gomphidae		
		Gomphus sp.	1
	Libellulidae	Stylurus sp.	3
	Libellulluae	Epicordulia sp.	18
		Perithemis sp.	9
		immature libellulid	1
HEMIPTI			
	Corixidae		000
	Gerridae	immature corixid	200
	Nepidae	Trepobates sp.	2
	•	Ranatra sp.	1
NEUROF			
	Sialidae	Sialis sp.	2
		olalis sp.	2

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXXVI. Cont.

Taxon				
TRICHOPT	ERA			
	Hydropsychidae	Chaumatanayaha an		2
	Hydroptilidae	Cheumatopsyche sp.		2
	, ,	Hydroptila sp.		1
	Leptoceridae	Occatio on		9
COLEOPTE	ERA	Oecetis sp.		9
	Elmidae			
		Dubiraphia sp.		3
	Hydrophilidae	Stenelmis sp.		48
	,	Berosus sp.		18
	Scirtidae	D. Control of the con		
DIPTERA		Prionocyphon sp.		
	Chironomidae			558
			SUM	998

Appendix LXXVII. Stream usage assessment for GRBOO-069.

Sampling Year: 2001 Basin Management I (Complete a form for	l Jnit: GREEN &∃				
Stream Name: HIGHLAND CREEK (Stream must be on 1:100k map)					
GNIS Feature ID: 494210 Segment No.:Station ID: WKU0803 (GRBOO-069)					
Total length of stream	m (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: O	HIO RIVER				
Downstream/Upstrea	am Mile Point:	to	•	Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking ;	Kentucky; Salt;		
USGS (8-digit) Catal	oging Unit: 0511	0005			
County 1: UNION	County 2:		(sample site o	county(s))	
Sample Site Mile Po	int:	Topographic N	/lap Name: UNI	ONTOWN	
Latitude: 37.7813 Lo	ongitude: -87.893	33 (dd.dddd or dn	ns)		
Assessment Date: 04	4-17-03 (mm-dd-	-yy) Type:	Monitored or E	valuated (circle one)
Sampling Dates: Sta	art: 07-12-01 (r	mm-dd-yy) End: (07-12-01 (mm	n-dd-yy)	
Biological Integrity:	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circle one)					
Full	Threatened	Partia	I (Nonsupport)
		\ 			
Cause Code: 1100_					
Cause Code: 1600_					
Cause Code:	Source Code(S	?)·			
Cause Code:	Source Code(S	?/·			
Cause Code:	Source Code(S	?/·			
Cause Code:	Source Code(s	?/· :\·			
(One or more source					
,			• ,		

FISH CONSUMPTIO Full	N (circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
SWIMMING (circle or Full	· · · · ·	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
DRINKING WATER (Full	circle one) Threatened	Partial	Nonsupport		
Cause Code:	Source Code(s):				
Cause Code:	Source Code(s):				
OVERALL USE (DOW use only – do not circle)					
Full	Threatened	Partial	Nonsupport		
Assessment Method Code(s):					
Assessment Performed by: (circle all that apply)					

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW	(WKU)	USFS	KSNPC	MSD
WMB	Probmon	MercheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of Contributors: Scott Grubbs

Appendix LXXVIII. Taxa list for GRBOO-073 (Narge Creek) based on low- gradient, multihabitat sampling.

Taxon				
OLIGOCHAETA CRUSTACEA				2
MOLLUSCA	Asellidae	Lirceus sp.		1
	Physidae	Physella sp.		36
	Sphaeriidae	Sphaerium sp.		37
EPHEMEROPT	Unionidae ERA	immature unionid		2
	Baetidae	immature baetid		3
00011-1	Caenidae	Caenis sp.		73
ODONATA	Coenagrionidae	Argia sp.		35
HEMIPTERA	Belostomatidae	Belostoma sp.		8
	Corixidae	immature corixid		3
COLEOPTERA	Gerridae	Trepobates sp.		1
COLLOFTERA	Dytiscidae	Colymbetes sp.		1
	Haliplidae	Peltodytes sp.		8
	Hydrophilidae	Berosus sp. Tropisternus sp.		30 7
DIPTERA	Chironomidae			32
			SUM	279

Appendix LXXIX. Stream usage assessment for GRBOO-073.

Sampling Year: 2001 Basin Management I (Complete a form for	l Unit: GREEN & 1				
Stream Name: NARO	GE CREEK (Stre	eam must be on 1:	100k map)		
GNIS Feature ID: 49	9173 Segmen	t No.:Statio	on ID: WKU034	4 (GRBOO-073)	
Total length of stream	m (in miles, exclu	uding reservoirs):	·		
Receiving Stream: P	OND RIVER				
Downstream/Upstrea	am Mile Point:	to	•	Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt		; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0006			
County 1: HOPKINS	County 2:		(sample site	county(s))	
Sample Site Mile Po	int:	_ Topographic N	Лар Name: НА	NSON	
Latitude: 37.4440 Lo	ongitude: -87.387	78 (dd.dddd or dn	ns)		
Assessment Date: 04	4-17-03 (mm-dd	-уу) Туре:	Monitored of E	Evaluated (circle one)
Sampling Dates: Sta	art: 07-10-01 (mm-dd-yy) End:	07-10-01 (m	ım-dd-yy)	
Biological Integrity:	Excellent; Good;	Fair; Poor (circle	e one) Num	nber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	RLF (Check all that	t annly)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT				X	
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circ	le one) Threatened	Partia]	Nonsupport)
Cause Code: 1100_					
Cause Code: 1600 Source Code(s): 1050, 7600, 7700					
Cause Code: 1500_	_ Source Code(s	s): 7100			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	s):			
(One or more source	es must be desig	nated for each cal	use)		

FISH CONSUMPT Full	ION (circle one) Threatened	Partial	Nonsupport			
Cause Code:	Source Code(s):					
Cause Code:	Source Code(s):					
SWIMMING (circle		5 . 6.1				
Full	Threatened	Partial	Nonsupport			
Cause Code:	Source Code(s):					
Cause Code:	Source Code(s):					
DRINKING WATEF Full	R (circle one) Threatened	Partial	Nonsupport			
Cause Code:	Source Code(s):					
Cause Code:	Source Code(s):					
OVERALL USE (DOW use only – do not circle)						
Full	Threatened	Partial	Nonsupport			
Assessment Method Code(s):						

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW (WKU)	USFS	KSNPC	MSD
WMB	Probmon	MercheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Appendix LXXX. Taxa list for GRBOO-076 (Gilles Ditch) based on low-gradient, multihabitat sampling.

Taxon			
OLIGOC HIRUDIN CRUSTA	IEA CEA		17 2
	Cambaridae	immature cambarid	1
MOLLUS	SCA .	illinataro odinibaria	•
	Physidae		
	Diamanhida a	Physella sp.	144
	Planorbidae	Helisoma sp.	4
	Sphaeriidae	rionooma op.	7
	·	Pisidium sp.	42
ED. 15145		Sphaerium sp.	42
EPHEME	ROPTERA Caenidae		
	Cacillaac	Caenis sp.	1
ODONAT	ΓΑ	·	
	Aeshnidae	A	0
	Coenagrionida	Anax sp.	2
	Cochagnoniaa	Enallagma sp.	40
HEMIPTI			
	Corixidae		
	Veliidae	immature corixid	2
		Mesovelia sp.	2
LEPIDOF			
	Pyralidae	A a a mérica	4
		Acentria Munroessa/Synclita sp.	1 13
COLEOF	PTERA	mamoooda oynoma op.	.0
	Dytiscidae		
	Halialidaa	Laccophilus sp.	1
	Haliplidae	Peltodytes sp.	10
	Hydrophilidae	, ,	
		Berosus sp.	22
		Helocombus sp. Tropisternus sp.	1 10
		Hohisiallins sh.	10

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXXX. Cont.

Taxon				
DIPTERA	Ceratopogonida	ae		
	Chironomidae	Ceratopogon sp.		2 77
	Stratiomyiidae Tabanidae	Stratiomys sp.		1
	rabanidae	Chrysops sp.		1
			SUM	438

Appendix LXXXI. Stream usage assessment for GRBOO-076.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: GILLES DITCH (Stream must be on 1:100k map) GNIS Feature ID: KY0057 Segment No.: ___ Station ID: WKU0345 (GRBOO-076) Total length of stream (in miles, excluding reservoirs): Receiving Stream: RHODES CREEK Downstream/Upstream Mile Point: ______ to _____.__ Segment Length: . Downstream/Upstream Description: _____ __to __ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking: Kentucky; Salt; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (cricle one) USGS (8-digit) Cataloging Unit: 05110005 County 2: (sample site county(s)) County 1: DAVIESS Sample Site Mile Point: _____. Topographic Map Name: OWENSBORO WEST Latitude: 37.7681 Longitude: -87.1886 (dd.dddd or dms) Type: Monitored or Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-10-01 (mm-dd-yy) End: 07-10-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** BIOLOGICAL TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Nonsupport Full Threatened Partial Cause Code: 1100__ Source Code(s): 7600, 7700_ Cause Code: 1600 Source Code(s): 7600, 7700 Cause Code: 1500__ Source Code(s): 7100_____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _

(One or more sources must be designated for each cause)

FISH CONSUMPTIO Full	N (circle one) Threatened	Partial	Nonsupport			
Cause Code:	Source Code(s):					
Cause Code:	Source Code(s):					
SWIMMING (circle or						
Full	Threatened	Partial	Nonsupport			
Cause Code:	Source Code(s):					
Cause Code:	Source Code(s):					
DRINKING WATER (•	Destiel	Name			
Full	Threatened	Partial	Nonsupport			
Cause Code:	Source Code(s):					
Cause Code:	Source Code(s):					
OVERALL USE (DOW use only – do not circle)						
Full	Threatened	Partial	Nonsupport			
Assessment Method Code(s):						
Assessment Performed by: (circle all that apply)						

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

٨	lamae	٥f	Conti	ributore	· Scott	Grubbs
ı	iames	OI	Conn	noutors	s: Scon	Grupps

Appendix LXXXII. Taxa list for GRBOO-100 (Deer Creek) based on low-gradient, multihabitat sampling.

Taxon			
CRUSTAC			
	Atyidae	Palaemonetes sp.	20
	Cambaridae	immature cambarid	1
MOLLUSC	A Corbiculiidae		
	Lymnaeidae	Corbicula fluminea	9
	Physidae	Fossaria sp.	7
	Planorbidae	Physella sp.	41
	Sphaeriidae	Helisoma sp.	4
EPHEMEROPTERA Baetidae		Sphaerium sp.	13
		Callibaetis sp.	2
	Caenidae		
ODONATA		Caenis sp.	32
	Aeshnidae	Basiaeschna sp. Nasiaeschna sp.	6 2
	Coenagrionidae	Enallagma sp.	77
	Libellulidae	Erythemis sp. Neurocordulia sp. immature libellulid	1 5 2
HEMIPTER			_
	Nepidae	Ranatra sp.	1
	Pleidae	Paraplea sp.	1
	Veliidae	Steinovelia sp.	1

Appendix LXXXI. Cont.

	1
Erioptera sp.	
Tipulidae	_
Anopheles sp.	2
Probezzia sp. Culicidae	1
Bezzia/Palpomyia sp.	2
Ceratopogonidae	
Tropisternus sp. DIPTERA	ı
Berosus sp.	8 1
Hydrophilidae	_
Peltodytes sp.	9
Dubiraphia sp. Haliplidae	1
Elmidae	
COLEOPTERA	
Oecetis sp.	1
TRICHOPTERA Leptoceridae	
Taxon	

Appendix LXXXIII. Stream usage assessment for GRBOO-100.

305b ASSESSMENT Sampling Year: 2001 Basin Management U (Complete a form for	Jnit: GREEN & 1						
Stream Name: DEEF	R CREEK (Strea	m must be on 1:10	00k map)				
GNIS Feature ID: 49	0771 Segment	No.:Statio	n ID: WKU0350	(GRBOO-100)			
Total length of strear	n (in miles, exclu	uding reservoirs): _	·	_			
Receiving Stream: G	REEN RIVER						
Downstream/Upstream Mile Point: to Segment Length:							
Downstream/Upstream Description:toto Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Salt Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio (circle one)							
USGS (8-digit) Cataloging Unit: 05110005							
County 1: WEBSTER County 2: (sample site county(s))							
Sample Site Mile Point: Topographic Map Name: SEBREE							
Latitude: 37.5582 Longitude: -87.5451 (dd.dddd or dms)							
Assessment Date: 04-17-03 (mm-dd-yy) Type: Monitored of Evaluated (circle one)							
Sampling Dates: Start: 07-30-01 (mm-dd-yy) End: 07-30-01 (mm-dd-yy)							
Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1							
AQUATIC LIFE USE SUPPORT TABLE (Check all that apply)							
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4		
HABITAT				X			
BIOLOGICAL				X			
TOXICITY							
PHYSICAL/CHEM	X						
USE SUPPORT AQUATIC LIFE (circl	e one)						
Full	Threatened	Partia	· (Nonsupport			
Cause Code: 1100_ Cause Code: 1600_ Cause Code:	Source Code(s Source Code(s	í): 1050, 7600, 770 i):	00				
Cause Code:	Source Code(S	/·			-		
Cause Code:							
Cause Code: Source Code(s):							
Cause Code: Source Code(s): (One or more sources must be designated for each cause)							
Totale or more source	o muoi de desigi	nateu ioi eacii cat	10 <i>0)</i>				

FISH CONSUMP ⁻ Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circle	e one)			
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE ([DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	od Code(s):			
A				

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW	(WKU)	USFS	KSNPC	MSD
WMB	Probmon	MercheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore:	Scott	Crubbe
Names	()	COMMO	HOIS	OCOII.	CHUDDS

Appendix LXXXIV. Taxa list for GRBOO-104 (North Branch South Fork Panther Creek) based on low-gradient, multihabitat sampling.

Taxon			
CRUSTA			
	Asellidae	Cassidatas an	_
	Cambaridae	Caecidotea sp.	5
		immature cambarid	2
MOLLUS			
	Lymnaeidae	Cto enicale en	4
	Physidae	Stagnicola sp.	1
	Filysidae	Physella sp.	12
	Planorbidae	r Hyddiid der	
		Helisoma sp.	16
	Sphaeriidae		
		Pisidium sp.	2
		Sphaerium sp.	9
EPHEMI	EROPTERA		
	Baetidae	Procloeon sp.	3
	Caenidae	госоеон эр.	3
	Odernade	Caenis sp.	23
	Heptageniidae		
	, -	Stenonema sp.	16
ODONA	TA		
	Aeshnidae		
		Basiaeschna sp.	5
	1.05 - 11.10 - 1	Boyeria sp.	2
	Libellulidae	Macromia sp.	4
NEURO	PTERA	імастоппа эр.	4
NEORO	Sialidae		
		Sialis sp.	7
TRICHO	PTERA	·	
	Polycentropodic	lae	
		Nyctiophylax sp.	3
COLEO			
	Elmidae	Dubisanhia az	^
		Dubiraphia sp. Stenelmis sp.	2
	Haliplidae	טנפוופווווס שף.	1
	. ianpiiaao	Peltodytes sp.	1
		, ,	-

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXXXIV. Cont.

Taxon				
DIPTERA	Scirtidae	Prionocyphon sp.		3
DIFTERA	Chironomidae Tabanidae			161
	Tipulidae	Chrysops sp.		1
	•	Ormosia sp.		1
			SUM	280

Appendix LXXXV. Stream usage assessment for GRBOO-104.

305b ASSESSMENT FORM Sampling Year: 2001

Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.)

(Complete a form for	Cacii assessed	ocginent.)			
Stream Name: NOR	TH BRANCH SC	OUTH FORK PANT	THER CREEK (Stream must be on	1:100k map)
GNIS Feature ID: 49	9538 Segment	No.: Statio	n ID: WKU0353	3 (GRBOO-104)	
Total length of stream	m (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: S	OUTH FORK PA	ANTHER CREEK			
Downstream/Upstrea	am Mile Point: _	to	•	Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Salt		; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0005			
County 1: HANCOCH	County 2:		(sample site o	county(s))	
Sample Site Mile Poi	int:	_ Topographic N	Лар Name: FOI	RDSVILLE	
Latitude: 37.7299 Lo	ongitude: -86.73	00 (dd.dddd or dm	s)		
Assessment Date: 04	- 4-17-03 (mm-dd	-yy) Type:	Monitored or E	valuated (circle one))
Sampling Dates: Sta	•			(mm-dd-yy)	
Biological Integrity: I				ber of Sites: 1	
		•	,	ber of Siles. I	
AQUATIC LIFE USE	SUPPORT TAE	 ,	t apply)	1	1
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			Х		
BIOLOGICAL				Х	
TOXICITY					
PHYSICAL/CHEM	Х				
USE SUPPORT AQUATIC LIFE (circl		Partia	ı (Nonsupport	
Causa Cada, 1100	Course Code/s	\\. 10E0			
Cause Code: 1100_ Cause Code: 1600_					
Cause Code: 1600					
Cause Code:	Source Code(S	?/· ·\·			
Cause Code:	Source Code(s	?/· :\·			
Cause Code:	Source Code(S	?/· ·\·			
Cause Code:	Source Code(S	9)· \\·			
(One or more source					
(Sinc or more addice	o musi de desig	natou ioi baon bat	, o o ,		

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl				
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE	ER (circle one)	D	N	
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (I	DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assessment Perfo	ormed by: (circle all that a	pply)		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW	(WKU)	USFS	KSNPC	MSD
WMB	Probmon	MercheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of Contributors: Scott Grubbs

Appendix LXXXVI. Taxa list for GRBOO-105 (Wolf Lick Creek) based on low-gradient, multihabitat sampling.

Taxon			
HIRUDINE CRUSTAC			1
	Asellidae	Lirceus sp.	4
	Atyidae Talitridae	Palaemonetes sp.	4
MOLLUSC		Hyalella azteca	10
	Ancylidae	Ferrissia sp.	1
EPHEMER	ROPTERA Baetidae		
	Caenidae	Procloeon sp. Caenis sp.	2
ODONATA	A Coenagrionidae	Caeriis sp.	11
	Libellulidae	Enallagma sp.	7
		Macromia sp. Neurocordulia sp.	2
HEMIPTEI	RA Corixidae	in and the control of	40
	Gerridae	immature corixid Trepobates sp.	13
NEUROPT	ΓERA Sialidae	порожало ор.	_
TRICHOP		Sialis sp.	1
	Hydropsychidae	Cheumatopsyche sp.	1
	Hydroptilidae Leptoceridae	Hydroptila sp.	2
	Polycentropodida	Oecetis sp. ae	1
		Polycentropus sp.	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXXXVI. Cont.

Taxon				
COLEOPT	ERA Elmidae			
	Limidae	Dubiraphia sp.		4
	Gyrinidae	Stenelmis sp.		2
	Gyririldae	Gyretes sp.		1
	Haliplidae	Poltodytos sp		5
	Hydrophilidae	Peltodytes sp.		5
DIDTEDA		Berosus sp.		2
DIPTERA	Chironomidae			207
			SUM	287

Appendix LXXXVII. Stream usage assessment for GRBOO-105.

305b ASSESSMENT Sampling Year: 2001 Basin Management I (Complete a form for	l Unit: GREEN & ⁻				
Stream Name: WOL	F LICK CREEK	(Stream must be o	n 1:100k map)		
GNIS Feature ID: 50	7017 Segmen	t No.:Statio	on ID: WKU035	4 (GRBOO-105)	
Total length of stream	m (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: M	IUD RIVER				
Downstream/Upstrea	am Mile Point:	to	·	Segment Length	:
Downstream/Upstrea Major Basin: Big Sar Mississippi; Upper C	ndy; Little Sandy	; Tygarts; Licking;	Kentucky; Sal	Green; Tradewater;	; Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0003			
County 1: LOGAN	County 2:		(sample site of	county(s))	
Sample Site Mile Po	int:	_ Topographic N	/lap Name: DU	NMOR	
Latitude: 37.0097 Lo	ngitude: -86.964	4 (dd.dddd or dm	s)		
Assessment Date: 04	4-17-03 (mm-dd	-yy) Type:	Monitored or E	valuated (circle one))
Sampling Dates: Sta	art: 07-20-01	(mm-dd-yy) End	d: 07-20-01 (mr	n-dd-yy)	
Biological Integrity:	Excellent; Good;	Fair; Poor (circle	e one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE	BLE (Check all that	t apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	X				
USE SUPPORT AQUATIC LIFE (circ	le one)				
Full	Threatened	Partia	l (Nonsupport	
	_				
Cause Code: 1100_					
Cause Code: 1600_					
Cause Code:	_ Source Code(s	s):			
Cause Code:	_ Source Code(s	S):			
Cause Code:	_ Source Code(s	5):			
Cause Code:					
Cause Code:	_ Source Code(s	s):			
(One or more source	s musi be desig	nated for each cat	126)		

FISH CONSUMP Full	TION (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
SWIMMING (circl	e one)			
Full	Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
DRINKING WATE Full	ER (circle one) Threatened	Partial	Nonsupport	
Cause Code:	Source Code(s):			
Cause Code:	Source Code(s):			
OVERALL USE (I	DOW use only – do not ci	rcle)		
Full	Threatened	Partial	Nonsupport	
Assessment Meth	nod Code(s):			
Assessment Perfe	ormed by: (circle all that a	(vlaa		

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKO	COE	KDFWR	ORSANCO
Amb Bio	GDW	WKU)	USFS	KSNPC	MSD
WMB	Probmon	MereneadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Namae	٥f	Contribu	itore.	Scott	Grubbe
names	OI	COHHIDU	IIOIS.	OCOIL	CHUDDS

Appendix LXXXVIII. Taxa list for GRBOO111 (West Fork Pond River) based on low-gradient, multihabitat sampling.

Taxon			
OLIGOCH MOLLUSO			16
	Ancylidae	Ferrissia sp.	3
	Physidae	Physella sp.	1
	Planorbidae	Helisoma sp.	1
	Sphaeriidae	Pisidium sp.	1
EPHEMER	ROPTERA	Sphaerium sp.	4
	Baetidae	Callibaetis sp.	1
	Caenidae	Caenis sp.	3
ODONATA	Д	•	
	Libellulidae	Neurocordulia sp.	19
HEMIPTE	RA		_
	Corixidae	immature corixid	1
	Gerridae	Trepobates sp.	1
	Nepidae	Ranatra sp.	1
NEUROP ⁻	TERA Sialidae	Transita op:	·
TRICHOP		Sialis sp.	18
	Hydropsychidae	Cheumatopsyche sp.	1
COLEOPT	ΓERA Elmidae	Chodinatopoyone Sp.	,
		Dubiraphia sp.	3
	Haliplidae	Peltodytes sp.	2
	Scirtidae	Prionocyphon sp.	1

Grubbs, 2003. Bacteriological and Biological Assessment

Appendix LXXXVII. Cont.

Taxon				
DIDTEDA				
DIPTERA	Caratanaganid			
	Ceratopogonid			2
		Bezzia/Palpomyia sp.		2
		Culicoides sp.		15
		Dasyhelea sp.		4
	Chaoboridae			
		Chaoborus sp.		2
	Chironomidae			105
	Tabanidae			
		Chlorotabanus sp.		1
			SUM	206

Appendix LXXXIX. Stream usage assessment for GRBOO-111.

305b ASSESSMENT Sampling Year: 2001 Basin Management U (Complete a form for	Jnit: GREEN & 1				
Stream Name: WES	T FORK POND I	RIVER (Stream m	ust be on 1:100	k map)	
GNIS Feature ID: 50	6444 Segment	No.:Statio	n ID: WKU0357	(GRBOO-111)	
Total length of stream	n (in miles, exclu	uding reservoirs): _	·	_	
Receiving Stream: Po	OND RIVER				
Downstream/Upstrea	nm Mile Point:	to	•	Segment Length:	·
Downstream/Upstrea Major Basin: Big San Mississippi; Upper C	dy; Little Sandy;	; Tygarts; Licking;	Kentucky; Sal		Tennessee;
USGS (8-digit) Catal	oging Unit: 0511	0006			
County 1: CHRISTIA	N County 2:		(sample site c	ounty(s))	
Sample Site Mile Poi	nt:	Topographic N	/lap Name: CR	OFTON	
Latitude: 37.0543 Lo	ongitude: -87.409	97 (dd.dddd or dm	ns)		
Assessment Date: 04	1-17-03 (mm-dd-	yy) Type:	Monitored or E	valuated (circle one)	
Sampling Dates: Sta	art: 07-27-01 (mr	n-dd-yy) End: 07	-27-01 (mm-dd	-уу)	
Biological Integrity: E	Excellent; Good;	Fair; Poor (circle	one) Num	ber of Sites: 1	
AQUATIC LIFE USE	SUPPORT TAE		apply)		
AQUATIC LIFE	FULL	FULL, but THREATENED	PARTIAL	NONSUPPORT	Level of Info 1 to 4
HABITAT			X		
BIOLOGICAL				X	
TOXICITY					
PHYSICAL/CHEM	Χ				
USE SUPPORT AQUATIC LIFE (circl	e one)				
Full	Threatened	Partia	l	Nonsupport	
0 0 1 4455	0 0 1 1	\ 4050			
Cause Code: 1100	Source Code(s): 1350			
Cause Code: 1600					
Cause Code:					
Cause Code:	Source Code(S	//·			
Cause Code:					
Cause Code:					
(One or more source					

FISH CONSUMPTIO Full	N (circle one) Threatened	Partial	Nonsupport					
Cause Code:	Source Code(s):							
Cause Code:	Source Code(s):							
SWIMMING (circle or		D. Cal	None					
Full	Threatened	Partial	Nonsupport					
Cause Code:	Source Code(s):							
Cause Code:	Source Code(s):							
DRINKING WATER (Full	circle one) Threatened	Partial	Nonsupport					
Cause Code:	Source Code(s):							
Cause Code:	Source Code(s):		<u> </u>					
OVERALL USE (DO)	W use only – do not circle)							
Full	Threatened	Partial	Nonsupport					
Assessment Method	Code(s):							
Assessment Perform	Assessment Performed by: (circle all that apply)							

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW	(WKU)	USFS	KSNPC	MSD
WMB	Probmon	MorefleadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FΩ					

Names of Contributors: Scott Grubbs

Appendix XC. Taxa list for GRBOO-112 (Goose Pond Ditch) based on low-gradient, multihabitat sampling.

	26
Chironomidae	•
Hydrophilidae Berosus sp. DIPTERA	1
Caenis sp. COLEOPTERA	1
EPHEMEROPTERA Caenidae	J
OLIGOCHAETA HIRUDINEA MOLLUSCA Corbiculiidae Corbicula fluminea	2 1 5
011000114574	
Taxon	

(One or more sources must be designated for each cause)

Appendix XCI. Stream usage assessment for GRBOO-112.

305b ASSESSMENT FORM Sampling Year: 2001 Basin Management Unit: GREEN & TRADEWATER (Complete a form for each assessed segment.) Stream Name: GOOSE POND DITCH (Stream must be on 1:100k map) GNIS Feature ID: KY0058 Segment No.: ____Station ID: WKU0805 (GRBOO-112) Total length of stream (in miles, excluding reservoirs): Receiving Stream: OHIO RIVER Downstream/Upstream Mile Point: _____ to ____.__ Segment Length: . Downstream/Upstream Description: _____ _to _ Major Basin: Big Sandy; Little Sandy; Tygarts; Licking; Kentucky; Salt; Green; Tradewater; Tennessee; Mississippi; Upper Cumberland; Lower Cumberland; Ohio circle one) USGS (8-digit) Cataloging Unit: 05140203 County 2: (sample site county(s)) County 1: UNION Sample Site Mile Point: _____. Topographic Map Name: SALINE MINES Latitude: 37.6240 Longitude: -88.1305 (dd.dddd or dms) Type: Monitored or Evaluated (circle one) Assessment Date: 04-17-03 (mm-dd-yy) Sampling Dates: Start: 07-27-01 (mm-dd-yy) End: 07-27-01 (mm-dd-yy) Biological Integrity: Excellent; Good; Fair; Poor (circle one) Number of Sites: 1 AQUATIC LIFE USE SUPPORT TABLE (Check all that apply) FULL, but Level of Info AQUATIC LIFE FULL THREATENED PARTIAL NONSUPPORT 1 to 4 **HABITAT** BIOLOGICAL TOXICITY PHYSICAL/CHEM **USE SUPPORT** AQUATIC LIFE (circle one) Nonsupport Full Threatened Partial Cause Code: 1100__ Source Code(s): 1050, 7600, 7700_ Cause Code: 1600__ Source Code(s): 1050, 7600, 7700_____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): _____ Cause Code: _____ Source Code(s): __

FISH CONSUMPTIC Full	ON (circle one) Threatened	Partial	Nonsupport
Cause Code:	_ Source Code(s):		
Cause Code:	_ Source Code(s):		
SWIMMING (circle o			
Full	Threatened	Partial	Nonsupport
Cause Code:	_ Source Code(s):		
Cause Code:	_ Source Code(s):		
DRINKING WATER Full	(circle one) Threatened	Partial	Nonsupport
Cause Code:	_ Source Code(s):		
Cause Code:	_ Source Code(s):		
OVERALL USE (DO	W use only – do not circle	e)	
Full	Threatened	Partial	Nonsupport
Assessment Method	Code(s):		

Assessment Performed by: (circle all that apply)

DOW	DOW	University	Federal	State	Other
Amb WQ	NPS	EKU	COE	KDFWR	ORSANCO
Amb Bio	GDW (WKU)	USFS	KSNPC	MSD
WMB	Probmon	MercheadU	USFW	VA	LFUCG
Bact	DMR		TVA	WVA	
IS				TN	
RR					
FO					

Names of Contributors: So	ott Grubbs
---------------------------	------------

Appendix XCII. Number of fecal coliform bacteria colonies (per 100 ml). Dry indicates lack of water at stream site at time of sampling. Values in parentheses represent duplicate counts. Refer to Table IV for site code information.

Site Code	June	July	August	September	October
GRBEX-01	4400	> 12000	> 12000	> 12000	392
GRBEX-02	345	1440	200 (192)	840 (920)	24
GRBEX-03	418	440	56	> 12000	120
GRBEX-04	345	216	272	> 12000	72
GRBEX-05	491	376	96	1720	40
GRBEX-06	255 (218)	9600	< 8	3440	128
GRBEX-07	455	560	48	880	16 (24)
GRBEX-08	291	168	72	304	< 8
GRBEX-09	1309 (1073)	56	2200 (2320)	168	424
GRBEX-10	119	840	> 12000	72 (144)	72
GRBEX-11	136	216	32	48	< 8
GRBEX-12	382	104	288	216	56
GRBEX-13	376	216	72	840	240
GRBEX-14	64	56	40 (48)	104	176
GRBEX-15	144	48	56	120	112
GRBEX-16	273	240 (320)	384	320	72
GRBEX-17	32	48	520	256	16
GRBEX-18	160	16 (8)	432	96	24
GRBEX-19	418	280 (440)	280	48	48
GRBEX-20	168	104	512 (520)	> 12000 (> 12000)	288
GRBEX-21	384	56	> 12000	> 12000	240
GRBEX-22	40 (< 8)	< 8	112	< 8	336
GRBEX-23	1680	48	96	320	1720
GRBEX-24	184	32	8	288	128
GRBEX-25	240 (96)	5200	88	112	10000
GRBEX-26	56	< 8	16	32	304
GRBEX-27	152	> 12000	528	144	12200 (12800)
GRBEX-28	64	64	104	40	96
GRBEX-29	< 8	< 8	< 8	< 8	< 8
GRBEX-30	8	16	16	8	< 8
FC-G51	509	40	1160	2720	136
FC-G59	3600	16	1600	2720	336
FC-G60	636	88	880	2820	600
FC-T02	880	8000 (6800)	920	224	48
FC-T12	88	128	2520	920	< 8
FC-T25	840	12000	Dry	560	136
FC-T34	96	16	400	6600	64 (48)
FC-T35	2280	< 8	184	760	8
FC-T36	320	104	10400	> 12000	176
FC-T37	2280	168	1120	2120	80 (64)
FC-T41	> 12000	32	520	> 12000	88 (88)
FC-T47	> 12000	560	1240	1360	48
FC-T48	5800 (4000)	224	920	960	32
FC-sta.no.44	152	144	64	8	16
FC-sta.no.45	8400	40	328	288	< 8
FC-sta.no.46	218	80	64	152	56
FC-sta.no.47	236	88	96	96	400
FC-sta.no.48	400	88	600	152	80
FC-sta.no.49	182	88	48	5000	8
FC-sta.no.50	176	8 (8)	128	> 12000	< 8