

MATTHEW G. BEVIN GOVERNOR

CHARLES G. SNAVELY SECRETARY

**ENERGY AND ENVIRONMENT CABINET** 

R. BRUCE SCOTT DEPUTY SECRETARY

300 Sower Boulevard FRANKFORT, KENTUCKY 40601 Telephone: 502-564-3350 Telefax: 502-564-7484

May 10, 2018

Mr. Trey Glenn Regional Administrator US EPA Region 4 Atlanta Federal Center 61 Forsyth Street, SW Atlanta, GA 30303-8960

RE: Request for approval of the final submission to revise the Kentucky State Implementation Plan relating to Clean Air Act Section 110(a)(2)(D)(i)(I), Good Neighbor Provisions for the 2008 8-hour Ozone National Ambient Air Quality Standard

Dear Mr. Glenn:

On behalf of the Commonwealth of Kentucky, the Kentucky Energy and Environment Cabinet (Cabinet) respectfully submits a final revision to the Kentucky State Implementation Plan (SIP) in accordance with Clean Air Act (CAA) Section 110. The Cabinet requests the Environmental Protection Agency (EPA) to approve this revision to the Kentucky SIP and find that Kentucky is not required to make any further reductions, beyond those required by the Cross State Air Pollution Rule (CSAPR) Update, to address its statutory obligation under CAA section 110(a)(2)(D)(i)(I) for the 2008 8-hour ozone National Ambient Air Quality Standard.

In accordance with 40 CFR 51.102, the Cabinet made the proposed SIP revision available for public review and comment from March 1, 2018 until March 30, 2018. All comments received during the comment period are included in Appendix C, along with the statement of consideration.

If you have any questions or comments concerning this matter, please contact Ms. Kelly Lewis, Program Planning and Administrative Branch Manager, Division for Air Quality at (502) 782-6687 or Kelly.lewis@ky.gov.

Sincerely,

Charles G. Snavely Secretary

Cc: Beverly Banister, Region 4 US EPA Lynorae Benjamin, Region 4 US EPA Scott Davis, Region 4 US EPA



#### <u>COMPLETENESS CRITERIA FOR SIP SUBMITTALS –</u> <u>40 CFR PART 51 APPENDIX V</u>

To ensure completeness of this SIP revision submittal, the following elements detailed in 40 CFR Part 51, Appendix V are listed:

#### A. ADMINISTRATIVE MATERIALS:

## **1.** A formal letter of submittal from the Governor or his designee, requesting EPA approval of the plan or revision.

The cover letter dated May 10, 2018 signed by Secretary Charles G. Snavely, the Governor's designee requests EPA's approval of the SIP revision to approve this revision to the Kentucky SIP and find that Kentucky is not required to make any further reductions, beyond those required by the Cross State Air Pollution Rule (CSAPR) Update, to address its statutory obligation under CAA section 110(a)(2)(D)(i)(I) for the 2008 8-hour ozone National Ambient Air Quality Standard.

# 2. Evidence that the State has adopted the plan in the State code or body of regulations; or issued the permit, order, consent agreement in final form. That evidence shall include the date of adoption or final issuance as well as the effective date of the plan, if different from the adoption/issuance date.

This SIP submission is legally adopted by the letter signed by Secretary Charles G. Snavely, the Governor's designee, on May 10, 2018.

## **3.** Evidence that the State has the necessary legal authority under State law to adopt and implement the plan.

The powers and duties of the Cabinet established in KRS 224.10-100 provide the Energy and Environment Cabinet with the statutory authority to prepare and develop a comprehensive plan or plans related to the environment of the Commonwealth. Additionally, KRS 224.10-100 requires the cabinet to administer and enforce all rules, regulations and orders promulgated under Chapter 224, Environmental Protection, including those regulations that provide for the prevention, abatement, and control of all air pollution.

4. A copy of the actual regulation, or document submitted for approval and incorporation by reference into the plan, including indication of the changes made to the existing approved plan, where applicable. The submittal shall be a copy of the official State regulation/document signed, stamped, dated by the appropriate State official indicating that it is fully enforceable by the State. The effective data of the regulation/document shall, whenever possible, be indicated in the document itself.

The Energy and Environmental Cabinet has attached the entire document with appendices for approval. The SIP revision has been signed by the Governor's designee, Charles G. Snavely, Secretary for the Energy and Environment Cabinet, and is effective May 10, 2018.

## 5. Evidence that the State followed all of the procedural requirements of the State's laws and constitution in conducting and completing the adoption/issuance of the plan.

The procedural requirements associated with this plan and public comment period are included in the submittal to EPA.

## 6. Evidence that public notice was given of the proposed change consistent with procedures approved by EPA, including the date of publication of such notice.

In accordance with 40 CFR 51.102, a public hearing notice was posted on the Division's website and sent to members of the community on March 1, 2018. This notice detailed that the public had 30 days to provide comment and that a public hearing would be held on March 30, 2018 at 10:00am in room 111 at 300 Sower Blvd, Frankfort, KY. A copy of the public hearing notice is included in Appendix C.

## 7. Certification that public hearing(s) were held in accordance with the information provided in the public notice and the State's laws and constitutions, if applicable.

A public hearing was held at the Division for Air Quality offices located at 300 Sower Blvd, Frankfort, Kentucky on March 30, 2018. The SIP revision document was made available for public review on the Division's website throughout the 30 day review period. The transcript of the public hearing is included in Appendix C.

#### 8. Compilation of public comments and the State's response thereto.

All comments along with the Cabinet's responses are available in Appendix C.

#### **B. TECHNICAL SUPPORT:**

1. Identification of all regulated pollutants affected by the plan.

The appropriate pollutant(s) have been identified within the narrative consistent with EPA's guidance.

## 2. Identification of the locations of affected sources including the EPA attainment/nonattainment designations and the status of the attainment plan for the affected area(s).

This plan focuses on CAA section 110(a)(2)(D)(i)(I), Good Neighbor Provisions, which encompasses the entire state of Kentucky.

3. Quantification of the changes in plan allowable emissions from the affected sources; estimates of changes in current actual emissions from affected sources or, where appropriate, quantification of changes in actual emissions from affected sources through calculations of the differences between certain baseline levels and allowable emissions anticipated as a result of the revision.

Quantification and changes in emissions are discussed within the Emissions Trends Section of this submittal.

4. The State's demonstration that the national ambient air quality standards, prevention of significant deterioration increments, reasonable further progress demonstration, and visibility, as applicable, are protected if the plan is approved and implemented. For all requests to redesignate an area to attainment for a national ambient air quality standard, under section 107 of the Act, a revision must be submitted to provide for the maintenance of the national primary ambient air quality standards for at least 10 years as required by section 175A of the Act.

This submittal addresses CAA section 110(a)(2)(D)(i)(I) which focuses on interstate transport. The submittal demonstrates that the NAAQS will be protected if the plan is approved and implemented.

5. Modeling information required to support the proposed revision, including input data, output data, models used, justification of model selections, ambient monitoring data used, meteorological data used, justification for use of offsite data (where used), modes of models used, assumptions, and other information relevant to the determination of adequacy of the modeling analysis.

Modeling information is discussed throughout the main narrative and provided in Appendix A and B of this submittal.

6. Evidence, where necessary, that emission limitations are based on continuous emission reduction technology.

This is not applicable to this submittal.

7. Evidence that the plan contains emission limitations, work practice standards and recordkeeping/reporting requirements, where necessary, to ensure emission levels.

These elements are consistent with EPA's guidance.

8. Compliance/enforcement strategies, including how compliance will be determined in practice.

Compliance and enforcement strategies have been addressed in the regulatory changes being amended to the SIP.

9. Special economic and technological justifications required by any applicable EPA policies, or an explanation of why such justifications are not necessary.

Economic and technological justifications are consistent with EPA's guidance.

### Kentucky State Implementation Plan (SIP) Revision to address the requirements of Section 110(a)(2)(D)(i)(I) of the Clean Air Act



Demonstration that Kentucky Satisfies the "Good Neighbor" Requirements of Clean Air Act Section 110(a)(2)(D)(i)(I)

2008 Ozone National Ambient Air Quality Standard

Submitted by Kentucky Energy and Environment Cabinet May 2018 This page left intentionally blank

### **Table of Contents**

| I.    | Summary of the Kentucky State Implementation Plan Submittal                                  | 1  |
|-------|----------------------------------------------------------------------------------------------|----|
| II.   | Interstate Transport Requirements for 2008 Ozone NAAQS                                       | 1  |
| i.    | EPA's Rationale for Partial Disapproval of Kentucky 2008 Ozone Infrastructure                | 2  |
|       | SIP                                                                                          |    |
| ii.   | Federal Implementation Plan Obligations                                                      | 2  |
| iii.  | EPA Supplemental Information Memorandum                                                      | 3  |
| III.  | Kentucky Modeling for the 2008 Ozone Transport SIP Obligations                               | 4  |
| IV.   | Permanent and Enforceable Measures                                                           | 4  |
| i.    | Kentucky Administrative Regulations Addressing 110(a)(2)(D)(i)(I)                            | 4  |
| ii.   | Approved State Implementation Plan Regulations Administered by the Louisville                | 8  |
|       | Metro Air Pollution Control District Addressing 110(a)(2)(D)(i)(I)                           |    |
| iii.  | Federal Regulations                                                                          | 13 |
| V.    | Emission Trends                                                                              | 15 |
| i.    | Comparison of annual NO <sub>x</sub> emissions from historic year to current emission totals | 15 |
| ii.   | Trends in EGU NO <sub>x</sub> Emissions                                                      | 16 |
| iii.  | Emission totals after CSAPR Implementation                                                   | 17 |
| VI.   | Public Hearing                                                                               | 19 |
| VII.  | Conclusion                                                                                   | 19 |
| Table | es                                                                                           |    |
| Table | 1 Kentucky Point Source Annual NO <sub>x</sub> Emissions under CSAPR                         | 15 |
| Table | 2 2015 - 2017 EGU Point Sources Ozone Season NO <sub>x</sub> Emissions                       | 18 |
| Char  | ts                                                                                           |    |

| Chart 1 | 2008 – 2017 Annual NOx Emissions for Kentucky EGUs       | 16 |
|---------|----------------------------------------------------------|----|
| Chart 2 | 2008 – 2017 Ozone Season NOx Emissions for Kentucky EGUs | 17 |

#### Appendices

Appendix A – Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone National Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I) memorandum

Appendix B – Alpine Geophysics Final Modeling Report: "Good Neighbor" Modeling for the 2008 8-Hour Ozone State Implementation Plan

Appendix C - Public Hearing & Statement of Consideration

This page left intentionally blank

#### I. Summary of the Kentucky State Implementation Plan Submittal

On behalf of the Commonwealth of Kentucky (Kentucky), the Kentucky Energy and Environment Cabinet (Cabinet) submits the following State Implementation Plan (SIP) revision and requests the United States Environmental Protection Agency's (EPA) approval. This SIP submittal specifically addresses the requirements of Section 110(a)(2)(D)(i)(I) of the Clean Air Act (CAA), also known as the "Good Neighbor" provision, for the 2008 ozone National Ambient Air Quality Standard (NAAQS).

On September 8, 2009 and July 17, 2012, the Cabinet submitted SIPs to demonstrate that Kentucky's SIP contained adequate provisions to address elements of Section 110(a)(1) and 110(a)(2) of the CAA. However, EPA partially disapproved the Kentucky SIP revision as it related to Section 110(a)(2)(D)(i)(I) of the CAA effective April 8, 2013.<sup>1</sup>

This SIP submittal demonstrates that the emission reductions required by the CSAPR Update are adequate to prohibit emissions within Kentucky from significantly contributing to nonattainment, or interfering with the maintenance, of downwind states with respect to the 2008 ozone NAAQS. The Cabinet therefore requests the EPA to approve this revision to the Kentucky SIP and find that Kentucky is not required to make any further reductions, beyond those required by the CSAPR Update, to address its statutory obligation under section 110(a)(2)(D)(i)(I) for the 2008 ozone NAAQS.

To support this SIP submittal, the Cabinet is including EPA's most recent technical analysis related to the Good Neighbor provision for the 2008 ozone NAAQS. On October 27, 2017, EPA provided supplemental information and updated modeling to address the Good Neighbor provision. EPA's updated modeling indicates that no monitoring sites, outside of California, will violate the 2008 ozone NAAQS in the year 2023.

In addition to EPA's technical analysis, the Cabinet is also providing the final modeling report prepared by Alpine Geophysics, LLC. Independently, the air quality modeling performed by Alpine Geophysics predicts that all problem monitors identified by EPA will achieve the 2008 ozone NAAQS.

#### II. Interstate Transport Requirements for 2008 Ozone NAAQS

After EPA revises a NAAQS, Section 110(a)(1) of the CAA requires that each state revise its SIP within three (3) years to assure that the SIP contains applicable requirements to achieve and maintain the revised NAAQS. This type of SIP revision is commonly referred to as an "infrastructure SIP." Infrastructure SIPs address the elements listed in sections 110(a)(1) and 110(a)(2) of the CAA, which mandate that each state must develop a plan that provides for the implementation, maintenance and enforcement of the NAAQS.

<sup>&</sup>lt;sup>1</sup> 78 FR 14681

Section 110(a)(2)(D)(i)(I) of the CAA requires each state plan to contain adequate provisions prohibiting a state from emitting air pollutants in amounts that "contribute significantly to nonattainment in, or interfere with maintenance by, any other state with respect to any such national primary or secondary ambient air quality standard." This provision is commonly referred to as the "interstate transport" or "Good Neighbor" provision.

On March 27, 2008, the EPA revised the primary and secondary 8-hour ozone NAAQS to a more stringent 0.075 parts per million (ppm) standard.<sup>2</sup> The previous 1997 8-hour ozone standard was 0.08 ppm.

Effective April 8, 2013, EPA partially disapproved the Kentucky SIP revision as it related to Section 110(a)(2)(D)(i)(I) of the CAA for the 2008 8-hour ozone NAAQS.<sup>3</sup> In accordance with CAA Section 110(c)(1), when the EPA disapproves a SIP, it is required to promulgate a Federal Implementation Plan (FIP) within two years if the state does not correct the deficiency during that time period.

#### *i.* EPA's Rationale for Partial Disapproval of Kentucky 2008 Ozone Infrastructure SIP

EPA's limited disapproval of the Kentucky SIP revision centered on the use of the Clean Air Interstate Rule (CAIR) to limit emissions from electric generating units to satisfy the interstate transport obligation. EPA commented, "CAIR, however, was promulgated before the 2008 8-hour ozone NAAQS were promulgated, and CAIR did not, in any way, address interstate transport requirements related to the 2008 8-hour ozone NAAQS."<sup>4</sup> Although CAIR became effective in 2009, EPA found that a replacement rule, the Cross-State Air Pollution Rule (CSAPR)<sup>5</sup>, for CAIR was better suited to address the 2008 standard. Emission reductions resulting from the CSAPR requirements began January 1, 2015.

#### *ii.* Federal Implementation Plan Obligations

Regarding the imposition of a FIP, EPA provided the following rationale in the proposed and final disapproval notices:

Kentucky DAQ was not yet required to submit a SIP submission to address these interstate transport requirements. Moreover, under that same court decision, this disapproval does not trigger an obligation for EPA to promulgate a Federal Implementation plan (FIP) to address these interstate transport requirements.<sup>6,7</sup>

<sup>&</sup>lt;sup>2</sup> 73 FR 16435

<sup>&</sup>lt;sup>3</sup> 78 FR 14681

<sup>&</sup>lt;sup>4</sup> 78 FR 14682

<sup>&</sup>lt;sup>5</sup> 76 FR 48207

<sup>&</sup>lt;sup>6</sup> 78 FR 3867

<sup>&</sup>lt;sup>7</sup> 78 FR 14681

Kentucky SIP Demonstration CAA Section 110(a)(2)(D)(i)(I) May 2018

However, on October 17, 2012 (amended December 7, 2012), the court granted partial summary judgment in *WildEarth Guardians v. Jackson* and ordered the EPA Administrator to take final action on the disapproval of the Kentucky SIP revision submission by March 4, 2013. EPA met the court's deadline with the final disapproval published in the Federal Register on March 7, 2013.<sup>8</sup>

To specifically address the 2008 8-hour ozone NAAQS, EPA published the CSAPR Update on October 26, 2016, and modified the NO<sub>x</sub> ozone season allowance-trading program established under the original CSAPR.<sup>9</sup> The rule is anticipated to reduce ground-level ozone in twenty-two (22) eastern states found to have ozone season NO<sub>x</sub> emissions potentially affecting the ability of downwind states to attain and maintain the 2008 ozone NAAQS. The final rule became effective on December 27, 2016.

Currently, the owner and operator of each source located in Kentucky, and subject to CSAPR, must comply with the CSAPR  $NO_x$  Ozone Season Budget as required by 40 CFR 52.940(b)(1) and (b)(2). The owner and operator of each source and each unit located in Kentucky must comply with the requirements set forth under the CSAPR  $NO_x$  ozone Season Group 2 Trading Program in 40 CFR 97 Subpart EEEEE with regard to emissions occurring in 2017 and in each subsequent year. These applicable requirements are federally-enforceable and can be relied upon to satisfy the Good Neighbor provision.

#### *iii.* EPA Supplemental Information Memorandum

On October 27, 2017, EPA Air Quality Planning and Standards Director, Stephen Page, signed a memorandum that was issued to air agency directors within all EPA regions. The memorandum provided supplemental information for the 2008 ozone NAAQS under Clean Air Act Section 110(a)(2)(D)(i)(I). In the memo, EPA stated that the objective was "to assist states" efforts to develop, supplement or resubmit good neighbor SIPs for the 2008 ozone NAAQS to fully address their interstate transport obligations."

The memorandum predicted "future year ozone design values and contribution modeling outputs for monitors in the United States based on updated air quality modeling (for 2023) and monitoring data. The EPA's updated modeling indicates that there are no monitoring sites, outside of California, that are projected to have nonattainment or maintenance problems with respect to the 2008 ozone NAAQS of 75 ppb in 2023."<sup>10</sup>

<sup>&</sup>lt;sup>8</sup> 78 FR 14681

<sup>&</sup>lt;sup>9</sup> 81 FR 74504

<sup>&</sup>lt;sup>10</sup> EPA Memorandum, "Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone National Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I)," October 27, 2017.

As explained in EPA's Memo, "EPA believes that it is reasonable to assume that installation of emissions controls for EGUs and non-EGUs that could be required under these rulemaking efforts may take up to 4 years, the EPA believes that such reductions are unlikely to be implemented for a full ozone season until 2023." Kentucky concurs with EPA's assessment that the timeline for promulgation of new applicable emission requirements, as well as the installation and operation of additional air pollution controls, cannot be feasibly completed prior to the 2023 ozone season. Kentucky appreciates EPA's balanced consideration to avoid unnecessary over-control of Kentucky sources consistent with the Supreme Court's decision on the matter.<sup>11</sup>

#### III. Kentucky Modeling for the 2008 Ozone Transport SIP Obligations

In June of 2017, Kentucky contacted Alpine Geophysics (Alpine) to discuss their ability to provide a modeling protocol and demonstration, in a timely manner, which Kentucky could use to satisfy the requirements of the Good Neighbor provision of the 2008 Ozone NAAQS Infrastructure SIP. In the development of the modeling protocol, it was determined that additional emissions inventory information from Kentucky's EGU sources was needed, as well as adjustments to the previous 2023 NODA provided by EPA. Alpine provided Kentucky with a final modeling protocol, which the Division for Air Quality (Division) submitted to EPA for review and comment on August 4, 2017, along with a projected timeline for completing the modeling.

Modeling results provided by Alpine Geophysics to Kentucky on October 16, 2017, indicated that downwind monitors previously identified as being impacted by Kentucky's upwind emissions showed compliance with 2023, and that Kentucky will not interfere with any downwind maintenance monitors in 2023.

#### **IV.** Permanent and Enforceable Measures

The following regulations and programs address additional control measures, means and techniques to assure that Kentucky is not interfering with attainment or maintenance of the 2008 ozone NAAQS in downwind states.

#### *i.* Kentucky Administrative Regulations addressing 110(a)(2)(D)(i)(I)

The following administrative regulations demonstrate the Cabinet's commitment to apply permanent and enforceable measures to prevent interference with attainment and maintenance of the 2008 ozone NAAQS in downwind areas.

<sup>&</sup>lt;sup>11</sup> EPA v. EME Homer City Generation, L.P., 134 S. Ct. 1584, 1600-01 (2014)

#### 401 KAR Chapter 50

- 401 KAR 50:012. *General Application*. This administrative regulation provides the general guidelines by which all administrative regulations of 401 KAR 50 through 65 are to be understood. Specifically, this regulation mandates the use of reasonable controls on sources of VOC emissions and defines a major source of VOC, among other applicable items.
- 401 KAR 50:055. *General compliance requirements*. This administrative regulation establishes requirements for demonstrating compliance with standards; establishes requirements for compliance when a source is relocated within the Commonwealth of Kentucky; and other general compliance requirements.
- 401 KAR 50:060. *Enforcement*. This administrative regulation provides for enforcement of the terms and conditions of permits and compliance schedules.

#### 401 KAR Chapter 51

- 401 KAR 51:001. *Definitions for 401 KAR Chapter 51*. This administrative regulation defines the terms used in 401 KAR Chapter 51. The definitions contained in this administrative regulation are neither more stringent nor otherwise different than the corresponding federal definitions.
- 401 KAR 51:010. *Attainment Status Designations*. This administrative regulation designates the status of all areas of the Commonwealth of Kentucky with regard to attainment of the ambient air quality standards.
- 401 KAR 51:017. *Prevention of Significant Deterioration of Air Quality*. This administrative regulation applies to the construction of any new major stationary source or any project at an existing major stationary source in an area designated as attainment or unclassifiable. It ensures the prevention of significant deterioration (PSD) of air quality in areas of Kentucky where the air quality is better than the ambient air quality standards (i.e. attainment areas).
- 401 KAR 51:052. *Review of New Sources in or Impacting Upon Nonattainment Areas.* This administrative regulation establishes requirements for the construction or modification of stationary sources within, or impacting upon, areas where the national ambient air quality standards have not been attained.
- 401 KAR 51:150. *NO<sub>x</sub> Requirements for stationary internal combustion engines*. Pursuant to the federal NO<sub>x</sub> SIP Call, this administrative regulation provides for the regional control of NO<sub>x</sub> emissions by establishing requirements for large stationary internal combustion engines.

Kentucky SIP Demonstration CAA Section 110(a)(2)(D)(i)(I) May 2018

#### 401 KAR Chapter 52

- 401 KAR 52:020. *Title V Permits*. This administrative regulation establishes the requirements for air contaminant sources located in Kentucky to obtain a Title V operating permit.
- 401 KAR 52:030. *Federally-enforceable permits for non-major sources*. This administrative regulation establishes requirements for air contaminant sources located in Kentucky that accept federally-enforceable emission limitations. It specifically deals with sources that are located in ozone nonattainment areas and emit, or have the potential to emit 25 tpy or more of VOCs or NO<sub>x</sub>, stating that they shall submit an annual emission certification pursuant to Section 25(2) of this administrative regulation.

#### 401 KAR Chapter 53

• 401 KAR 53:010. *Ambient air quality standards*. This administrative regulation establishes ambient air quality standards necessary for the protection of the public health, the general welfare, and the property and people in the Commonwealth of Kentucky.

#### 401 KAR Chapter 59

- 401 KAR 59:001. *Definitions for 401 KAR Chapter 59.* This administrative regulation provides all the definitions used in 401 KAR Chapter 59 regulations.
- 401 KAR 59:005. *General Provisions*. This administrative regulation includes the monitoring requirements for new sources with the potential to emit NO<sub>x</sub> and other criteria pollutants, which applies to the controlling of emissions.
- 401 KAR 59:046. *Selected New Petroleum Refining Processes and Equipment*. This administrative regulation provides for the control of VOC emissions from any new petroleum refining processes and equipment.
- 401 KAR 59:050. *New Storage Vessels for Petroleum Liquids*. This administrative regulation controls emissions from new petroleum liquid storage vessels. This regulation includes standards for VOC monitoring, testing, and operating requirements.
- 401 KAR 59:101. *New Bulk Gasoline Plants*. This administrative regulation controls VOC emissions from new bulk gasoline plants.
- 401 KAR 59:174. *Stage II Controls at Gasoline Dispensing Facilities*. This administrative regulation deals with gas dispensing facilities, and imposes controls on VOC emissions and vapor recovery systems.

- 401 KAR 59:175. *New Service Stations*. This administrative regulation controls VOC emissions from new service stations in Kentucky.
- 401 KAR 59:185. *New Solvent Metal Cleaning Equipment*. This administrative regulation describes the controls for VOC emissions from new solvent metal cleaning equipment.
- 401 KAR 59:190. *New Insulation of Magnet Wire Operations*. This administrative regulation controls VOC emissions from new insulation of magnet wire operations.
- 401 KAR 59:210. *New Fabric, Vinyl and Paper Surface Coating Operations*. This administrative regulation addresses VOC emissions from new fabric, vinyl, or paper surface coating operations.
- 401 KAR 59:212. *New Graphic Arts Facilities Using Rotogravure and Flexography*. This administrative regulation applies to new graphic arts facilities that use rotogravure and flexography and controls any potential VOC emissions they create.
- 401 KAR 59:214. *New Factory Surface Coating Operations of Flat Wood Paneling*. This administrative regulation deals with VOC emissions from new factory surface coating operations of flat wood paneling.
- 401 KAR 59:225. *New Miscellaneous Metal Parts and Products Surface Coating Operations*. This administrative regulation controls VOC emissions from new miscellaneous metal parts and products surface coating operations.
- 401 KAR 59:230. *New Synthesized Pharmaceutical Product Manufacturing Operations*. This administrative regulation controls VOC emissions from new synthesized pharmaceutical product manufacturing operations.
- 401 KAR 59:240. *New Perchloroethylene Dry Cleaning Systems*. This administrative regulation deals with VOC emissions from new perchloroethylene dry cleaning systems.
- 401 KAR 59:315. *Specific New Sources*. This administrative regulation controls VOC emissions from specific new sources in Kentucky.
- 401 KAR 59:760. *Commercial Motor Vehicle and Mobile Equipment Refinishing Operations*. This administrative regulation controls VOC emissions from commercial motor vehicle and mobile equipment refinishing operations.

#### 401 KAR Chapter 61

- 401 KAR 61:001. *Definitions for 401 KAR Chapter 61*. This administrative regulation provides definitions used in 401 KAR 61 including major source, VOC, NO<sub>x</sub>, and others.
- 401 KAR 61:005. *General Provisions*. This administrative regulation deals with performance test requirements and emissions monitoring.
- 401 KAR 61:065. *Existing Nitric Acid Plants*. This administrative regulation deals with controlling emissions from nitric acid plants and sets a limit on NO<sub>x</sub> emissions.

#### *ii.* Regulations Administered by the Louisville Metro Air Pollution Control District Addressing 110(a)(2)(D)(i)(I)

The following administrative regulations demonstrate the Louisville Metro Air Pollution Control District's (LMAPCD) commitment to apply permanent and enforceable measures to prevent interference with attainment and maintenance of the 2008 ozone NAAQS in downwind areas.

#### Part 1: General Provisions

- Regulation 1.01. *General Application of Regulations and Standards*. This regulation describes the general application of District regulations and emission standards.
- Regulation 1.02. *Definitions*. This regulation contains definitions used throughout District regulations.
- Regulation 1.03. *Abbreviations and Acronyms*. This regulation contains certain abbreviations and acronyms used in District regulations.
- Regulation 1.05. *Compliance with Emission Standards and Maintenance Requirements*. This regulation establishes the conditions for compliance with emissions standards.
- Regulation 1.06. *Stationary Source Self-Monitoring, Emissions Inventory Development, and Reporting.* This regulation establishes requirements for stationary source monitoring, recordkeeping, and reporting.
- Regulation 1.07. *Excess Emissions During Startups, Shutdowns, and Upset Conditions.* This regulation establishes the notification, reporting, and operational requirements for the owner or operator of a stationary source when excess emissions occur as a result of a startup, shutdown, preventable upset condition, or malfunction.

#### Part 2: Permit Requirements

- Regulation 2.02. *Air Pollution Regulation Requirements and Exemptions*. This regulation establishes requirements for exempt stationary sources, temporary exemptions, and registered stationary sources.
- Regulation 2.04. *Construction or Modification of Major Sources in or Impacting upon Non-Attainment Areas (Emission Offset Requirements).* This regulation establishes requirements for the construction, modification of stationary sources within, or impacting upon, areas where the national ambient air quality standards have not been attained.
- Regulation 2.05. *Prevention of Significant Deterioration of Air Quality*. This regulation, which adopts the Federal Prevention of Significant Deterioration of Air Quality program, provides for the prevention of significant deterioration of air quality where the national ambient air quality standards have been achieved.

#### Part 3: Ambient Air Quality Standards

• Regulation 3.01. *Ambient Air Quality Standards*. This regulation establishes ambient air quality standards to protect public health and welfare.

#### Part 4: Emergency Episodes

• Regulation 4.05. *Hydrocarbon and Nitrogen Oxides Reduction Requirements*. This regulation establishes the requirements for reduction of hydrocarbon and nitrogen oxides emissions under certain conditions.

#### Part 6: Standards of Performance for Existing Affected Facilities

- Regulation 6.01. *General Provisions*. This regulation establishes the general provisions for the application of standards of performance for existing affected facilities.
- Regulation 6.09. *Standards of Performance for Existing Process Operations*. This regulation provides for the control of emissions from existing process operations.
- Regulation 6.12. *Standard of Performance for Existing Asphalt Paving Operations*. This regulation provides for the control of emissions from existing asphalt paving operations.
- Regulation 6.13. *Standard of Performance for Existing Storage Vessels for Volatile Organic Compounds*. This regulation provides for the control of emissions of volatile organic compounds from existing storage vessels.

- Regulation 6.16. *Standard of Performance for Existing Large Appliance Surface Coating Operations*. This regulation provides for the control of emissions from surface coating operations at large appliance manufacturing facilities.
- Regulation 6.17. *Standard of Performance for Existing Automobile and Truck Surface Coating Operations*. This regulation provides for the control of emissions from surface coating operations at automobile and truck manufacturing facilities.
- Regulation 6.29. *Standard of Performance for Graphic Arts Facilities Using Rotogravure or Flexographic Printing*. This regulation provides for the control of volatile organic compound emissions from graphic arts facilities that use rotogravure or flexographic printing.
- Regulation 6.30. *Standard of Performance for Existing Factory Surface Coating Operations of Flat Wood Paneling.* This regulation provides for the control of surface coating emissions from existing wood panel facilities.
- Regulation 6.31. *Standard of Performance for Existing Miscellaneous Metal Parts and Products Surface Coating Operations.* This regulation provides for the control of volatile organic compound emissions from existing miscellaneous metal parts and products surface coating operations.
- Regulation 6.32. *Standard of Performance for Leaks from Existing Petroleum Refinery Equipment*. This regulation provides for the control of leakage from equipment at existing petroleum refineries.
- Regulation 6.33. *Standard of Performance for Existing Synthesized Pharmaceutical Product Manufacturing Operations*. This regulation provides for the control of emissions from existing pharmaceutical manufacturing operations.
- Regulation 6.34. *Standard of Performance for Existing Pneumatic Rubber Tire Manufacturing Plants.* This regulation provides for the control of emissions from existing rubber tire manufacturing facilities.
- Regulation 6.35. *Standard of Performance for Existing Fabric, Vinyl, and Paper Surface Coating Operations.* This regulation provides for the control of emissions from existing fabric, vinyl, and paper surface coating operations.
- Regulation 6.38. *Standard of Performance for Existing Air Oxidation Processes in Synthetic Organic Chemical Manufacturing Industries.* This regulation provides for the control of volatile organic compound emissions from air oxidation processes in the synthetic organic chemical manufacturing industry.

- Regulation 6.39. *Standard of Performance for Equipment Leaks of Volatile Organic Compounds in Existing Synthetic Organic Chemical and Polymer Manufacturing Plants.* This regulation provides for the control of volatile organic compound leaks from synthetic organic chemical and polymer manufacturing equipment.
- Regulation 6.42. *Reasonably Available Control Technology Requirements for Major Volatile Organic Compound- and Nitrogen Oxides-Emitting Facilities.* This regulation establishes the requirements for Reasonably Available Control Technology (RACT) determination, demonstration, and compliance for VOC and NO<sub>x</sub> emitting facilities for new or renewed operating permit applications.
- Regulation 6.43. *Volatile Organic Compound Emission Reduction Requirements*. This regulation establishes emissions, equipment, and operational requirements for the listed stationary sources, each of which voluntarily agreed to these requirements.
- Regulation 6.44. *Standards of Performance for Existing Commercial Motor Vehicle and Mobile Equipment Refinishing Operations.* This regulation provides for the control of VOC emissions from existing commercial motor vehicle and mobile equipment refinishing operations.
- Regulation 6.48. *Standard of Performance for Existing Bakery Oven Operations*. This regulation provides for the quantification of VOC emissions from existing bakery oven operations.
- Regulation 6.49. *Standards of Performance for Reactor Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing Industry.* This regulation provides for the control of emissions from reactor processes and distillation operations processes in the synthetic organic chemical manufacturing industry (SOCMI).
- Regulation 6.50. *NO<sub>x</sub> Requirements for Portland Cement Kilns*. This regulation, which provides for regional control of oxides of nitrogen (NO<sub>x</sub>) emissions from portland cement kilns pursuant to the federal mandate published under the EPA's NO<sub>x</sub> SIP Call, would allow the District to enforce 401 KAR 51:170 NO<sub>x</sub> requirements for cement kilns.

#### Part 7: Standards of Performance for New Affected Facilities

- Regulation 7.01. *General Provisions. This regulation establishes general requirements for new affected facilities.* (specifically, Standard of Performance for New Storage Vessels for Volatile Organic Compounds)
- Regulation 7.08. *Standards of Performance for New Process Operations*. This regulation provides for the control of particulates and nitrous oxide emissions from new sources.

Kentucky SIP Demonstration CAA Section 110(a)(2)(D)(i)(I) May 2018

- Regulation 7.11. *Standard of Performance for New Asphalt Paving Operations*. This regulation provides for the control of emissions from new asphalt paving operations.
- Regulation 7.12. *Standard of Performance for New Storage Vessels for Volatile Organic Compounds.* This regulation provides for the control of emissions of volatile organic compounds from new storage vessels.
- Regulation 7.15. *Standards of Performance for Gasoline Transfer to New Service Station Storage Tanks (Stage I Vapor Recovery).* This regulation provides for the control of emissions from gasoline delivery and storage tanks at existing service stations.
- Regulation 7.20. *Standard of Performance for New Gasoline Loading Facilities at Bulk Plants.* This regulation provides for the control of volatile organic compound emissions from new gasoline loading facilities at bulk plants.
- Regulation 7.22. *Standard of Performance for New Volatile Organic Materials Loading Facilities.* This regulation provides for the control of emissions from new volatile organic materials loading facilities.
- Regulation 7.25. *Standard of Performance for New Sources Using Volatile Organic Compounds*. This regulation provides for the control of emissions of volatile organic compounds from new sources.
- Regulation 7.36. *Standard of Performance for New Volatile Organic Compound Water Separators*. This regulation provides for the control of emissions from new water separators.
- Regulation 7.51. *Standard of Performance for New Liquid Waste Incinerators*. This regulation provides for the control of emissions from new liquid waste incinerators.
- Regulation 7.52. *Standard of Performance for New Fabric, Vinyl and Paper Surface Coating Operations.* This regulation provides for the control of emissions from new fabric, vinyl and paper surface coating operations.
- Regulation 7.55. *Standard of Performance for New Insulation of Magnet Wire*. This regulation provides for the control of emissions of volatile organic compounds from magnetic wire coatings.
- Regulation 7.56. *Standard of Performance for Leaks from New Petroleum Refinery Equipment*. This regulation provides for the control of leakage from equipment at new petroleum refineries.

- Regulation 7.58. *Standard of Performance for New Factory Surface Coating Operations of Flat Wood Paneling*. This regulation provides for the control of surface coating emissions from new wood panel facilities.
- Regulation 7.59. *Standard of Performance for New Miscellaneous Metal Parts and Products Surface Coating Operations.* This regulation provides for the control of volatile organic compound emissions from new miscellaneous metal parts and products surface coating operations.
- Regulation 7.60. *Standard of Performance for New Synthesized Pharmaceutical Product Manufacturing Operations*. This regulation provides for the control of emissions from new pharmaceutical manufacturing operations.
- Regulation 7.79. *Standards of Performance for New Commercial Motor Vehicle and Mobile Equipment Refinishing Operations.* This regulation provides for the control of VOC emissions from new commercial motor vehicle and mobile equipment refinishing operations.
- Regulation 7.81. *Standard of Performance for New or Modified Bakery Oven Operations*. This regulation provides for the quantification and control of VOC emissions from new or modified bakery ovens.

#### iii. Federal Programs

The following programs address additional control measures, means and techniques to assure that Kentucky is not interfering with attainment or maintenance of the 2008 ozone NAAQS in downwind states.

- 40 CFR 52.940(b)(2). Interstate Pollutant Transport Provisions; What are the FIP Requirements for Decreases in Emissions of Nitrogen Oxides? (2) The owner and operator of each source and each unit located in the State of Kentucky and for which requirements are set forth under the CSAPR NOx Ozone Season Group 2 Trading Program in subpart EEEEE of part 97 of this chapter must comply with such requirements with regard to emissions occurring in 2017 and each subsequent year.
- *National Program for greenhouse gas (GHG) emissions and fuel economy standards*: The federal GHG and fuel economy standards apply to light-duty cars and trucks in model years 2012-2016 (phase 1) and 2017-2025 (phase 2). The final standards are projected to result in an average industry fleet-wide level of 163 grams/mile of carbon dioxide (CO2) which is equivalent to 54.5 miles per gallon (mpg) if achieved exclusively through fuel economy improvements. These emission reductions will be federally enforceable.

Kentucky SIP Demonstration CAA Section 110(a)(2)(D)(i)(I) May 2018

- *Tier II Emission Standards for Vehicles and Gasoline Sulfur Standards*: EPA finalized a federal rule in 2000 to reduce emissions from passenger vehicles in each manufacturer's fleet to meet an average standard of 0.07 grams of NO<sub>x</sub> per mile. Additionally, in January 2006 the sulfur content of gasoline was required to be on average 30 ppm, which assists in lowering NO<sub>x</sub> emissions. EPA estimated that the reduction of NO<sub>x</sub> emissions was ranged from 77 percent for cars to 86 percent for minivans, light trucks and small SUVs. VOC emissions were also reduced, ranging from 12 percent for cars up to 18 percent for minivans, light trucks and small SUVs. These emission reductions are federally enforceable.
- *Tier III Emission Standards for Vehicles and Gasoline Sulfur Standards*: On March 3, 2014, the EPA finalized new Tier III emission standards for light duty (and some larger) motor vehicles. Light duty vehicles include cars, SUVs, vans, and most pickup trucks. Phase-in of the standards will begin with Model Year 2017. According to EPA, by the time Tier III is fully implemented in Model Year 2025, the standards for light duty vehicles will require a national reduction of about 80% in tailpipe emissions of VOC and NO<sub>x</sub> (both of which contribute to the formation of ground-level ozone) and of about 70% in tailpipe emissions of particulates.

Like the current Tier II standards, which were promulgated in 2000 and phased in between Model Years 2004 and 2009, the Tier III standards treat vehicles and fuels as a system: reductions in vehicle emissions are easier to achieve if the fuel used contains less sulfur. The Tier III standards will require that gasoline contain no more than 10 parts per million (ppm) sulfur on an annual average basis beginning January 1, 2017, down from 30 ppm under the Tier II program. Further, the rule extends the required useful life of emission control equipment from 120,000 miles to 150,000 miles, and sets standards for heavier duty gasoline-powered vehicles. The standards will also require about a 50% reduction in evaporative emissions.

EPA anticipates that the implementation of the Tier III vehicle and fuel standards will reduce emissions of NO<sub>x</sub>, VOC, PM2.5, and air toxics. The fuel standards alone, which would take effect in 2017, are projected to provide an immediate 56% reduction in sulfur dioxide (SO2) emissions as the ultra-low sulfur gasoline is deployed in existing vehicles and engines. Further, EPA projects that NO<sub>x</sub> emissions will be reduced by about 260,000 tons by 2018 (about 10% of the current emissions from on-highway vehicles), and by about 330,000 tons by 2030 (about 25% of the current emissions from on-highway vehicles) as covered vehicles become a larger percentage of the fleet. VOC and CO emissions are projected to be reduced by about 170,000 tons and 3.5 million tons respectively by 2030 (16% and 24% of the current emissions from on-highway vehicles). These projected national reductions would immediately reduce ozone levels in 2017 when the sulfur controls take effect, and would lead to significant decreases in ambient concentrations of ozone, PM2.5 and air toxics by 2030 as the vehicle fleets become updated. Kentucky SIP Demonstration CAA Section 110(a)(2)(D)(i)(I) May 2018

• *Tier 4 Vehicle Standards*: On May 11, 2004, EPA signed the final rule introducing Tier 4 emission standards, which were phased-in from 2008-2015. Engine manufacturers were required to produce new engines with advanced emission control technologies. Exhaust emissions from these engines were predicted to decrease by more than 90 percent. When the full inventory of older non-road engines are replaced by Tier 4 engines, annual emission reductions are estimated at 738,000 tons of NO<sub>x</sub> and 129,000 tons of PM.

#### V. Emission Trends

#### *i.* Comparison of annual NO<sub>x</sub> emissions from historic year to current emission totals

As demonstrated in Table 1, NO<sub>x</sub> emissions in Kentucky have significantly decreased since 2008, and are expected to continue to decline. Although VOC and NO<sub>x</sub> emissions both contribute to the formation of ground-level ozone, ozone is far more sensitive to NO<sub>x</sub> emissions than VOC emissions in the Southeastern United States.<sup>12</sup> In the 2011 FIP ruling for Interstate Transport of Fine Particulate Matter and Ozone, the EPA stated that "Authoritative assessments of ozone control approaches have concluded that, for reducing regional scale ozone transport, a NO<sub>x</sub> control strategy is most effective, whereas VOC reductions are generally most effective locally, in more dense urbanized areas...EPA continues to believe that the most effective regional pollution control strategy for mitigation of interstate transport of ozone remains NO<sub>x</sub> emission reductions."<sup>13</sup> Therefore, controlling NO<sub>x</sub> emissions is a more effective strategy in reducing ozone levels than controlling VOC emissions.

|                 | 2008    | 2009   | 2010    | 2011    | 2012   | 2013   | 2014   | 2015   | 2016   |
|-----------------|---------|--------|---------|---------|--------|--------|--------|--------|--------|
| NO <sub>x</sub> | 167,427 | 91,203 | 105,081 | 102,680 | 90,952 | 91,527 | 92,323 | 75,798 | 71,442 |

Table 1: Kentucky Point Source Annual NO<sub>x</sub> Emissions under CSAPR (tpy)

Based on EPA's 2014 NEI emissions data, the major contributor of NO<sub>x</sub> emissions in Kentucky are from the mobile & nonpoint sectors, with point sources being the largest contributor. As listed above in Chapter IV, *Permanent and Enforceable Measures*, there are several federal programs that will continue to decrease mobile VOC and NO<sub>x</sub> emissions significantly once fully implemented. The majority of point source NO<sub>x</sub> emissions in Kentucky are from EGUs, which have already decreased significantly since the implementation of CAIR and CSAPR. NO<sub>x</sub> emissions from EGUs will continue to decrease with the implementation of the CSAPR Update, and the retirement of several EGUs located in Kentucky.

 <sup>&</sup>lt;sup>12</sup> Odman, M Talat et al., *Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States*, 90 Journal of Environmental Management 3155-3168 (2009).
 <sup>13</sup> 76 FR 48222

#### *ii.* Trends in EGU NO<sub>x</sub> Emissions

As demonstrated in both Charts 1 and 2, there was a significant drop in annual ozone season EGU NO<sub>x</sub> emissions between 2008 and 2009, due to the implementation of CAIR. The EPA has stated in their disapproval of the good neighbor portion of Kentucky's 2008 ozone infrastructure SIP submission that "Because CAIR does not, in any way, address transport with respect to the 2008 8-hour ozone NAAQS, it cannot be relied upon to satisfy the requirements of 110(a)(2)(D)(i)(I) for the NAAQS."<sup>14</sup> Although the EPA does not allow Kentucky to take credit for CAIR, the program has nevertheless provided significant NO<sub>x</sub> reductions.

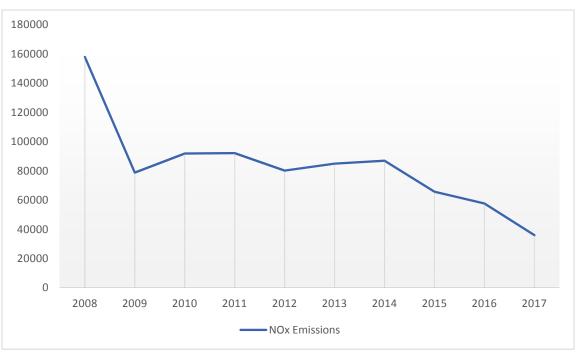



Chart 1: 2008 – 2017 Annual NO<sub>x</sub> Emissions for Kentucky EGUs (tpy)

Note: Chart 1 data obtained from EPA's Air Markets Program Data: https://ampd.epa.gov/ampd/

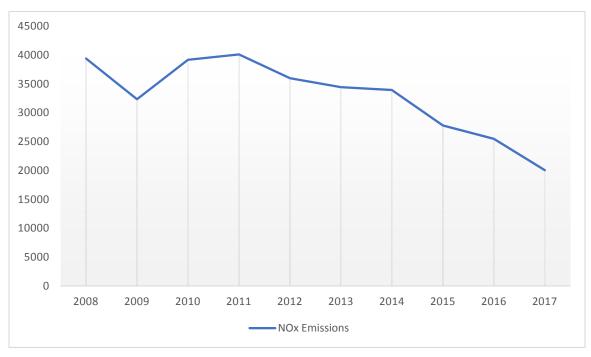



Chart 2: 2008 – 2017 Ozone Season NO<sub>x</sub> Emissions for Kentucky EGUs (tpy)

Note: Chart 2 data obtained from EPA's Air Markets Program Data: https://ampd.epa.gov/ampd/

#### iii. Emission totals after CSAPR Implementation

The implementation of CSAPR required fossil fuel-fired EGUs to reduce emissions to help downwind areas attain and maintain fine particle and/or ozone NAAQS. EPA allocated a set emissions budget for each state covered by CSAPR. In 2015 and 2016, Kentucky was allotted an EGU NO<sub>x</sub> ozone season budget of 36,167 tons through CSAPR.<sup>15</sup> Kentucky's 2017 EGU NO<sub>x</sub> budget was reduced to 21,115 tons through the CSAPR Update rule.<sup>16</sup> As seen in Table 2 below, Kentucky has not only reduced NO<sub>x</sub> emissions at EGU sources to meet the budgets allotted by CSAPR and the CSAPR Update Rule, but actual ozone season NO<sub>x</sub> emissions are significantly lower than the allotted budgets. Table 2 demonstrates that the implementation of CSAPR and the CSAPR Update has successfully reduced ozone NO<sub>x</sub> emissions within Kentucky and therefore prohibited Kentucky emissions from significantly contributing to nonattainment, or interfering with the maintenance, of downwind states with respect to the 2008 ozone NAAQS.

<sup>&</sup>lt;sup>15</sup> 40 CFR 97.510(a)(8)(i)

<sup>&</sup>lt;sup>16</sup> 40 CFR 97.810(a)(8)(i)

|                                                             | 2015      | 2016      | 2017      |
|-------------------------------------------------------------|-----------|-----------|-----------|
| Allocations                                                 | 36,167    | 36,167    | 21,115    |
| NO <sub>x</sub> Actual Emission Totals (tons) <sup>17</sup> | 27,790.75 | 25,473.99 | 20,053.01 |

#### Table 2: 2015 - 2017 EGU Point Sources Ozone Season NO<sub>x</sub> emissions (tons)

Kentucky Utilities Company's (KU) Green River Station retired its last two coal units in 2015. Also, East Kentucky Power Cooperative's (EKPC) Dale Station retired all of its coal burning units in 2015 and is now closed. It should be particularly noted that American Electric Power's (AEP) Big Sandy Plant converted Unit 1 from coal-fired to natural gas in 2016, and removed Unit 2. Louisville Gas & Electric Company's (LG&E) Cane Run Station converted Unit 7 to natural gas and retired all remaining coal-fired units in 2015.

Two other EGU facilities have made significant changes to their coal boilers. Big Rivers Electric Corporation's (Big Rivers) Robert Reid Station idled one of their boilers in 2016 and has submitted a permit revision requesting to switch this boiler from coal to natural gas. Tennessee Valley Authority's (TVA) Paradise Fossil Plant retired two of their three coal boilers in June 2017 and replaced them with a combined cycle system that has already significantly decreased their NO<sub>x</sub> emissions.

Further NO<sub>x</sub> emissions reductions are expected with the planned retirement of units at two facilities. KU plans to retire two older coal-fired units, each operating more than 50 years, at the E.W. Brown Generating Station in February 2019.<sup>18</sup> Owensboro Municipal Utilities (OMU) announced in 2015 their plans to retire Unit 1 at the Elmer Smith Plant by 2019.<sup>19</sup> In March 2017, OMU announced that they will also retire Unit 2 which will effectively close the Elmer Smith Plant in its entirety before 2023.

Additionally, as stated in EPA's October 27, 2017 memo for interstate transport SIPs for the 2008 ozone NAAQS, "Generally, emissions levels are expected to decline in the future through implementation of existing local, state and federal emissions reduction programs...While the CSAPR Update included emissions reductions associated with EGU control strategies that could be implemented on a shorter timeframe (*i.e.*, by the 2017 ozone season), the EPA concluded that additional emissions reductions from EGUs would likely require the installation of new post-combustion controls."<sup>20</sup>

 $<sup>^{17}</sup>$  Ozone Season NOx emissions data obtained from EPA's Air Markets Program Data <a href="https://ampd.epa.gov/ampd/">https://ampd.epa.gov/ampd/</a>  $^{18}$  <a href="https://lge-ku.com/newsroom/press-releases/2017/11/14/kentucky-utilities-announces-upcoming-retirement-two-coal-fired">https://ampd.epa.gov/ampd/</a>  $^{18}$  <a href="https://lge-ku.com/newsroom/press-releases/2017/11/14/kentucky-utilities-announces-upcoming-retirement-two-coal-fired">https://ampd.epa.gov/ampd/</a>  $^{18}$  <a href="https://announces-upcoming-retirement-two-coal-fired">https://announces-upcoming-retirement-two-coal-fired</a>

<sup>&</sup>lt;sup>19</sup> https://omu.org/\_uploads/20171019\_CCR-Ash-Pond-Initial-and-Post-Closure-Plan.pdf

<sup>&</sup>lt;sup>20</sup> Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone National Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I). Memorandum from Stephen D. Page, Director, U.S.EPA Office of Air Quality Planning and Standards to Regional Air Division Directors, Regions 1-10. October 27, 2017.

#### VI. Public Hearing

In accordance with 40 CFR 51.102, the Cabinet will make this proposed plan available for public inspection and provide the opportunity for written comments 30 days prior to the scheduled public hearing. A public hearing is scheduled to be held on March 30, 2018 at 10:00 a.m. (EDT) at the Division for Air Quality offices located at 300 Sower Boulevard, Frankfort, Kentucky. A copy of the public hearing is included with the final submittal.

#### **VII.** Conclusion

This SIP submittal demonstrates that the emission reductions required by the CSAPR Update are adequate to prohibit emissions within Kentucky from significantly contributing to nonattainment, or interfering with the maintenance, of downwind states with respect to the 2008 ozone NAAQS. The Cabinet therefore requests the EPA to approve this revision to the Kentucky SIP and find that Kentucky is not required to make any further reductions, beyond those required by the CSAPR Update, to address its statutory obligation under section 110(a)(2)(D)(i)(I) for the 2008 ozone NAAQS. The Cabinet's request is supported by technical analyses conducted by EPA (Attachment A) and Alpine Geophysics (Attachment B). Independently, the analyses demonstrate and conclude that no additional control strategies beyond what is "on-the-books" are necessary to fully address the requirements of Section 110(a)(2)(D)(i)(I) of the Clean Air Act.

## Appendix A

## October 27, 2017 EPA Memorandum

Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone National Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I)



#### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

RESEARCH TRIANGLE PARK, NC 27711

October 27, 2017

OFFICE OF AIR QUALITY PLANNING AND STANDARDS

#### **MEMORANDUM**

SUBJECT: Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone National Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I)

FROM: Stephen D. Page bhev C Director

The purpose of this memorandum is to provide supplemental information to states and the Environmental Protection Agency Regional offices as they develop or review state implementation plans (SIPs) that address section 110(a)(2)(D)(i)(I) of the Clean Air Act (CAA), also called the "good neighbor" provision, as it pertains to the 2008 ozone National Ambient Air Quality Standards (NAAQS) of 75 parts per billion (ppb).<sup>1</sup> Specifically, we are providing future year ozone design values and contribution modeling outputs for monitors in the United States based on updated air quality modeling (for 2023) and monitoring data.<sup>2</sup> The EPA's updated modeling indicates that there are no monitoring sites, outside of California, that are projected to have nonattainment or maintenance problems with respect to the 2008 ozone NAAQS of 75 ppb in 2023.

The EPA's goal in providing this information is to assist states' efforts to develop, supplement or resubmit good neighbor SIPs for the 2008 ozone NAAQS to fully address their interstate transport obligations. While the information in this memorandum and the associated air quality analysis data can inform the development of these SIPs, the information provided by this memorandum is not a final determination regarding states' remaining obligations under the good neighbor provision. Any such determination would be made through notice-and-comment rulemaking.

**TO:** Regional Air Division Directors, Regions 1–10

<sup>&</sup>lt;sup>1</sup> This memorandum supplements the EPA's original memorandum on this subject, *Information on the Interstate Transport "Good Neighbor" Provision for the 2008 Ozone National Ambient Air Quality Standards (NAAQS) under Clean Air Act (CAA) Section 110(a)(2)(D)(i)(I).* Memorandum from Stephen D. Page, Director, U.S. EPA Office of Air Quality Planning and Standards, to Regional Air Division Directors, Regions 1–10. January 22, 2015. Available at *https://www.epa.gov/sites/production/files/2015-10/documents/goodneighborprovision2008naaqs.pdf.* This memorandum also supplements analyses provided in the 2016 Cross-State Air Pollution Rule Update for the 2008 ozone NAAQS, 81 FR 74504 (October 26, 2016).

<sup>&</sup>lt;sup>2</sup> Attachment A contains the projected 2023 ozone design values for monitors in the United States.

In addition to summarizing the EPA's review of relevant air quality projections as they relate to interstate transport obligations for the 2008 ozone NAAQS, this memorandum includes background on the good neighbor provision and the four-step interstate transport framework that the EPA has previously used, and continues to use, to address the good neighbor provision for regional pollutants, such as ozone. This background may further assist states in developing SIPs using these projections.

#### **The Good Neighbor Provision**

Under CAA sections 110(a)(l) and 110(a)(2), each state is required to submit a SIP that provides for the implementation, maintenance and enforcement of each primary or secondary NAAQS. Section 110(a)(1) requires each state to make this new SIP submission within 3 years after promulgation of a new or revised NAAQS. This type of SIP submission is commonly referred to as an "infrastructure SIP." Section 110(a)(2) identifies specific elements that each plan submission must meet. Conceptually, an infrastructure SIP provides assurance that the submitting state's SIP contains the necessary structural requirements to implement the new or revised NAAQS, whether by demonstrating that the state's SIP already contains or sufficiently addresses the necessary provisions, or by making a substantive SIP revision to update the plan provisions.

In particular, CAA section 110(a)(2)(D)(i)(I) requires each state to submit to the EPA new or revised SIPs that "contain adequate provisions ... prohibiting, consistent with the provisions of this subchapter, any source or other type of emissions activity within the State from emitting any air pollutant in amounts which will ... contribute significantly to nonattainment in, or interfere with maintenance by, any other state with respect to any such national primary or secondary ambient air quality standard." The EPA often refers to section 110(a)(2)(D)(i)(I) as the "good neighbor" provision and to SIP revisions addressing this requirement as good neighbor SIPs. Where a state does not submit a good neighbor SIP, or if the EPA disapproves the SIP, the CAA obligates the EPA to promulgate a federal implementation plan (FIP).

In applying the good neighbor provision for the 2008 ozone NAAQS, the EPA finalized in 2016 the Cross-State Air Pollution Rule Update for the 2008 ozone NAAQS (CSAPR Update).<sup>3</sup> The CSAPR Update applied to 22 eastern states, each of which the EPA found had failed to submit an approvable SIP addressing the good neighbor provision for the 2008 ozone NAAQS.<sup>4</sup> Through the CSAPR Update, the EPA promulgated FIPs for these 22 states by requiring power plants in those states to participate in an allowance trading program to partially address the requirements of the good neighbor provision by implementing emissions reductions that were achievable for the 2017 ozone season. Some states have already submitted or may be developing SIPs to adopt the CSAPR Update regulations and replace the CSAPR Update FIPs. However, the EPA acknowledged in the CSAPR Update that the rule may not fully address the requirements of the good neighbor provision for the 2008 ozone NAAQS for most of the states included and that

<sup>&</sup>lt;sup>3</sup> See 81 FR 74504 (October 26, 2016).

<sup>&</sup>lt;sup>4</sup> The CSAPR Update provided a full FIP for Tennessee and partial FIPs for Alabama, Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri, New Jersey, New York, Ohio, Oklahoma, Pennsylvania, Texas, Virginia, West Virginia, and Wisconsin. The CSAPR Update did not promulgate FIPs for western states.

further analysis was needed of air quality and oxides of nitrogen (NO<sub>X</sub>) reductions after 2017.<sup>5</sup> Additionally, a few western states, not regulated in the CSAPR Update, do not yet have approved SIPs. As noted earlier, the EPA believes that the information conveyed through this memorandum can assist states in their efforts to develop, supplement or resubmit good neighbor SIPs for the 2008 ozone NAAQS to fully address their interstate transport obligations.

#### Framework to Address the Good Neighbor Provision

Through the development and implementation of several previous rulemakings,<sup>6</sup> the EPA, working in partnership with states, established the following four-step interstate transport framework to address the requirements of the good neighbor provision for ozone and fine particulate matter (PM<sub>2.5</sub>) NAAQS: (1) identify downwind air quality problems, (2) identify upwind states that contribute enough to those downwind air quality problems to warrant further review and analysis, (3) identify the emissions reductions necessary to prevent an identified upwind state from contributing significantly to those downwind air quality problems, and (4) adopt permanent and enforceable measures needed to achieve those emissions reductions.

The EPA most recently applied each step in this framework to address the good neighbor provision requirements for the 2008 ozone NAAQS in the CSAPR Update.<sup>7</sup> Two aspects of the CSAPR Update (i.e., selection of the analytic year and the scope of the CSAPR Update good neighbor remedy) are influential in the development of analyses discussed in this memorandum. First, in the CSAPR Update, the EPA selected 2017 as both the analytic year and the implementation year because the 2017 ozone season was the last full season from which data could be used to determine attainment with the 2008 ozone NAAQS by the July 20, 2018, attainment date for nonattainment areas classified as Moderate. Second, given the time constraints for implementing NO<sub>X</sub> reduction strategies for the 2008 ozone NAAQS (i.e., in the 2017 ozone season), the EPA, in the CSAPR Update, did not analyze or attempt to quantify further electric generating units (EGU) or non-EGU ozone season NOx reductions available after 2017. Because the EPA's analysis showed persisting ozone transport problems after implementation of the CSAPR Update and because the EPA did not assess available emissions reductions after 2017, at the time of promulgation, the EPA could not definitively conclude, without further analysis, that the CSAPR Update fully addressed the requirements of the good neighbor provision. Therefore, the EPA explained in the final rule that the CSAPR Update may only provide a partial remedy to address interstate emissions transport for the 2008 ozone NAAQS for 21 of the covered states.<sup>8</sup> As a result, these states (or the EPA) must take additional

<sup>&</sup>lt;sup>5</sup> The EPA also determined that the following 14 eastern states evaluated in the CSAPR Update had no emissions reduction obligations under the good neighbor provision for the 2008 ozone NAAQS: Connecticut, Florida, Georgia, Maine, Massachusetts, Minnesota, Nebraska, New Hampshire, North Carolina, North Dakota, Rhode Island, South Carolina, South Dakota, and Vermont. The EPA has already approved good neighbor SIPs for the 2008 ozone NAAQS for a number of these states and has pending actions to approve other SIPs.

<sup>&</sup>lt;sup>6</sup> See for example, Finding of Significant Contribution and Rulemaking for Certain States in the Ozone Transport Assessment Group Region for Purposes of Reducing Regional Transport of Ozone (also known as the NO<sub>X</sub> SIP Call). 63 FR 57356 (October 27, 1998); Clean Air Interstate Rule (CAIR) Final Rule. 70 FR 25162 (May 12, 2005); CSAPR Final Rule. 76 FR 48208 (August 8, 2011); CSAPR Update. 81 FR 74504 (October 26, 2016). Each of these rulemakings also incorporated allowance trading programs to implement emissions reductions.

 <sup>&</sup>lt;sup>7</sup> See details on the CSAPR Update analysis and methodology in the final rule at 81 FR 74504 (October 26, 2016).
 <sup>8</sup> The CSAPR Update provided a FIP fully addressing the good neighbor provision for Tennessee and FIPs that may only partially address the good neighbor provision for Alabama, Arkansas, Illinois, Indiana, Iowa, Kansas,

steps to fully satisfy the good neighbor provision, or show why no additional emissions reductions are necessary. It is for this reason that the EPA is now conducting and releasing our additional modeling for an analytic year after 2017.

#### Applying the Interstate Transport Framework to the EPA's 2023 Modeling for the 2008 Ozone NAAQS

This section explains the EPA's choice of 2023 as the analytic year and our application of the interstate transport framework to our updated modeling. As we discuss in the following paragraphs, the EPA's analysis indicates that no areas in the United States, outside of California, are expected to have problems attaining and maintaining the 2008 ozone NAAQS in 2023.

Step 1. Identification of Potential Downwind Nonattainment and Maintenance Receptors

One of the first steps in the modeling process is selecting a future analytic year. In determining the appropriate future analytic year for purposes of assessing remaining interstate transport obligations for the 2008 ozone NAAQS, the EPA considered two primary factors. First, the EPA considered the downwind attainment dates for the 2008 ozone NAAQS. In *North Carolina v. EPA*, the D.C. Circuit held that emissions reductions required by the good neighbor provision should be evaluated considering the relevant attainment dates of downwind nonattainment areas impacted by interstate transport.<sup>9</sup> The next attainment dates for the 2008 ozone NAAQS will be July 20, 2021, for nonattainment areas classified as Serious and July 20, 2027, for nonattainment areas classified as Severe.<sup>10</sup> Because the various attainment date are in July, which is in the middle of the ozone monitoring season for all states, data from the calendar year prior to the attainment date) are the last data that can be used to demonstrate attainment with the NAAQS. In all cases, the statute provides that areas should attain as expeditiously as practicable.<sup>11</sup>

Second, the EPA considered the timeframes that may be required for implementing further emissions reductions as expeditiously as practicable. Generally, emissions levels are expected to decline in the future through implementation of existing local, state and federal emissions reduction programs. This is an important consideration because the U.S. Supreme Court and the D.C. Circuit Court have both held that the EPA may not require emissions reductions greater than necessary to achieve attainment and maintenance of the NAAQS in downwind areas.<sup>12</sup> Therefore, if new controls cannot be implemented feasibly for several years when air quality will likely be cleaner, the EPA should evaluate air quality in a future year to ensure that any potential emissions reductions would not over-control relative to the identified ozone problem.

Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri, New Jersey, New York, Ohio, Oklahoma, Pennsylvania, Texas, Virginia, West Virginia, and Wisconsin. The CSAPR Update did not promulgate FIPs for western states.

<sup>&</sup>lt;sup>9</sup> 531 F.3d 896, 911–12 (D.C. Cir. 2008) (holding that the EPA must coordinate interstate transport compliance deadlines with downwind attainment deadlines).

<sup>&</sup>lt;sup>10</sup> While there are no areas (outside of California) that are classified as either Serious or Severe, these classifications (and the associated attainment dates) are required under the statute in the event that the many downwind Moderate nonattainment areas fail to attain by their attainment date of July 20, 2018.

<sup>&</sup>lt;sup>11</sup> See CAA section 181(a)(1).

<sup>&</sup>lt;sup>12</sup> EPA v. EME Homer City Generation, L.P., 134 S. Ct. 1584, 1600–01 (2014); EME Homer City Generation, L.P. v. EPA, 795 F.3d 118, 127 (D.C. Cir. 2015).

Accordingly, it is reasonable to evaluate downwind air quality, and identify any remaining receptors, in the year in which the EPA expects additional emissions reductions, if any, to be implemented.

While the CSAPR Update included emissions reductions associated with EGU control strategies that could be implemented on a shorter timeframe (*i.e.*, by the 2017 ozone season), the EPA concluded that additional emissions reductions from EGUs would likely require the installation of new post-combustion controls. For this analysis, the EPA assumed that the analytic year should reflect the time needed to plan for, install, and test new EGU and non-EGU emissions controls across multiple states. This assumption was based on previous interstate ozone transport analyses showing that multiple upwind states are typically linked to downwind ozone problems.<sup>13</sup> Further, the EPA assumed that new emissions controls would likely be considered on multiple upwind source categories, including those that currently do not report emissions to the EPA under Part 75 and, therefore, may have relatively more uncertainty associated with their emissions levels, existing control efficiencies and further emissions reduction potential. The scope and uncertainty associated with potential new EGU and non-EGU controls led the EPA to assume that it could take up to 4 years for new controls to be fully operational following promulgation of a final rule. For example, the EPA believes that it is reasonable to assume that the installation of these new post-combustion controls for state- or regional-level fleets of EGUs or controls for non-EGU point sources may take up to 4 years following promulgation of a final rule.<sup>14</sup> In addition and not accounting for time needed for permitting or determining and installing appropriate monitoring equipment, the EPA's most recent assessment of non-EGU controls indicates the timing for installing controls is uncertain.<sup>15</sup>

For purposes of conducting updated modeling, to determine in what year future emissions reductions might be implemented, the EPA, therefore, considered the timeframe in which a future rulemaking that might require such emissions reductions would likely be finalized. The EPA is subject to several statutory and court-ordered deadlines to address the requirements of the good neighbor provision for the 2008 ozone NAAQS for several states. The next such deadline is a court-ordered deadline of June 30, 2018, for the EPA to address these requirements for Kentucky,<sup>16</sup> followed by several statutory deadlines in 2018 and 2019.<sup>17</sup> The notice-and-comment rulemakings that must be undertaken to address these requirements, whether in the context of SIPs or FIPs, are unlikely to be completed any earlier than mid-2018 and are likely to continue into 2019. Accordingly, given that the EPA believes that it is reasonable to assume that installation of new emissions controls for EGUs and non-EGUs that could be required under

<sup>&</sup>lt;sup>13</sup> See 81 FR 74504 (October 26, 2016).

<sup>&</sup>lt;sup>14</sup> See 81 FR 74562 (October 26, 2016).

<sup>&</sup>lt;sup>15</sup> For the EPA's most current assessment of controls for non-EGU emissions sources, *see Assessment of Non-EGU NOx Emission Controls, Cost of Controls, and Time for Compliance Final Technical Support Document (TSD) for the Cross-State Air Pollution Rule for the 2008 Ozone NAAQS (Docket ID No.: EPA-HQ-OAR-2015-0500) available at https://www.epa.gov/sites/production/files/2017-05/documents/final\_assessment\_of\_non-egu\_nox\_emission\_controls\_cost\_of\_controls\_and\_time\_for\_compliance\_final\_tsd.pdf).* 

<sup>&</sup>lt;sup>16</sup> Order, Sierra Club v. EPA, Case No. 3:15-cv-04328-JD (N.D. Cal. May 23, 2017).

<sup>&</sup>lt;sup>17</sup> The EPA has deadlines to promulgate FIPs for Indiana, Ohio and New Jersey by July 15, 2018; for Maryland by August 19, 2018; for Louisiana, Texas and Wisconsin by September 12, 2018; for New York by September 26, 2018; for Utah by November 18, 2018, and for Wyoming by March 6, 2019.

these rulemaking efforts may take up to 4 years, the EPA believes that such reductions are unlikely to be implemented for a full ozone season until 2023.

While 2023 is later than the attainment date for nonattainment areas classified as Serious (July 20, 2021), as explained above, it is unlikely that emissions control requirements could be promulgated and implemented by the Serious area attainment date. Likewise, the EPA also believes that it would not be reasonable to assume that emissions reductions could be postponed to the attainment date for nonattainment areas classified as Severe (July 20, 2027) because the statute instructs states to attain the NAAQS as expeditiously as practicable. Accordingly, the EPA believes that 2023 is a reasonable year to assess downwind air quality to evaluate any remaining requirements under the good neighbor provision for the 2008 ozone NAAQS.<sup>18</sup> Thus, in selecting its future analytic year for the air quality modeling, the EPA balanced considerations such as attainment dates in downwind states, including the obligation to attain as expeditiously as practicable, the EPA's obligation to avoid unnecessary over-control of upwind state emissions, the timeframe in which any necessary emissions reductions could be feasibly implemented, and the timeframe required for rulemaking to impose any such emissions reductions that might be required.

After selecting 2023 as the appropriate analytic year, the EPA performed nationwide photochemical modeling for 2023 to identify nonattainment and maintenance receptors relevant for the 2008 ozone NAAQS. The EPA used as a starting point for this updated air quality modeling some of the data used in the January 2017 Notice of Data Availability (NODA).<sup>19</sup> Although the EPA initially provided the NODA to assist states in developing SIPs to address their good neighbor obligations for the 2015 ozone NAAQS, the emissions files and other modeling input files are independent of the level of the NAAQS.<sup>20</sup> As discussed below, because the EPA began its updated analyses with the data from the January 2017 NODA, we also were able to incorporate some of the stakeholder feedback provided through the public comment process on the NODA.

We are providing an overview of the January 2017 NODA files to help states and the EPA Regional offices better understand the updated air quality modeling for potential application to the 2008 ozone NAAQS. The transport assessment discussed in the January 2017 NODA used a 2011-based modeling platform to develop base year and future year emissions inventories as inputs into the air quality model. The platform also included meteorology for 2011, base year emissions for 2011 and future year base case emissions for 2023. The EPA performed air quality modeling to project ozone design values for 2023 and used these projections to identify nonattainment and maintenance receptors. The EPA then used ozone source apportionment modeling for 2023 to quantify contributions from emissions in each state to ozone concentrations at each of the projected nonattainment and maintenance receptors in that future year. As part of the NODA process and the ensuing 90-day comment period, the EPA made available and took

<sup>&</sup>lt;sup>18</sup> Using the 2023 analytic year also allowed the EPA to begin the updated analysis using the data sets originally developed for the January 2017 NODA, which we revised in response to stakeholder feedback. Accordingly, the EPA initiated its analysis more quickly than if a different year had been chosen, which might have delayed subsequent rulemaking actions and therefore emissions reductions.

<sup>&</sup>lt;sup>19</sup> 82 FR 1733 (January 6, 2017).

<sup>&</sup>lt;sup>20</sup> Good neighbor SIPs for the 2015 ozone NAAQS are due within 3 years of promulgation of the revised NAAQS, or by October 2018.

comment on (1) the emissions inventories for 2011 and 2023, supporting data used to develop those inventories, methods and data used to process emissions inventories into a form that can be used for air quality modeling and (2) air quality modeling results for 2011 and 2023, base period (*i.e.*, 2009-2013) average and maximum design value concentrations, projected 2023 average and maximum ozone design value concentrations and projected 2023 ozone contributions from state-specific anthropogenic emissions and other contribution categories to ozone concentrations at individual ozone monitoring sites. The EPA received comments on the transport modeling NODA from nearly 50 commenters, including 21 state air agencies, 3 multi-state groups and 23 industry groups.

Following the close of the NODA public comment period on April 6, 2017, the EPA began incorporating stakeholder feedback into its EGU and non-EGU emissions projections and its modeling platform. After incorporating many of the suggested updates, the EPA hosted conference calls with these same stakeholders to announce our intent to update the ozone transport air quality modeling and to review updates to the 2011 and projected 2023 emissions inventories (including specific changes to the oil and gas projection methodology),<sup>21</sup> describe incorporated changes to the EGU emissions projections<sup>22</sup> and changes to the modeling platform described here.

Regarding emissions inventories, the updated 2023 modeling reflects revisions to the January 2017 NODA approach for projecting future year emissions from EGUs. The approach used in this modeling is consistent with the EGU projections that the EPA used in the CSAPR Update, specifically the EGU projection called the "budget-setting base case."<sup>23</sup> In brief, the EPA used the CSAPR Update budget-setting approach to develop this projection in support of the updated 2023 ozone transport modeling that is the subject of this memorandum. The EGU projection begins with 2016 reported Part 75 sulfur dioxide (SO<sub>2</sub>) and NO<sub>X</sub> data for units reporting under the Acid Rain and CSAPR programs. These were the most recent ozone season data available at the time of the EPA's analysis. The EPA then extended these observed emissions levels forward to 2023, and made unit-specific adjustments to emissions to account for upcoming retirements, post-combustion control retrofits, coal-to-gas conversions, combustion controls upgrades, new units, CSAPR Update compliance, state rules and Best Available Retrofit Technology (BART) requirements.<sup>24</sup> The resulting estimated EGU emissions values for this application of 2023 air quality modeling are based on the latest reported operational data combined with known and anticipated fleet and pollution controls changes. For emissions from units not reporting under

<sup>&</sup>lt;sup>21</sup> See the TSD: Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2023, October 2017. Available at https://www.epa.gov/air-emissions-modeling/2011-version-63-platform.

<sup>&</sup>lt;sup>22</sup> See Section 4.1 of the TSD: Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2023, October 2017 for details on the development of the EGU engineering analytics emissions estimates for the 2023 Flat File.

<sup>&</sup>lt;sup>23</sup> See the preamble to the final CSAPR Update for more details on the development and use of the budget-setting base case.

<sup>&</sup>lt;sup>24</sup> The EPA uses the U.S. Energy Information Association (EIA) Form 860 as a source for upcoming controls, retirements, and new units.

Part 75, the EPA largely relied on unadjusted 2011 National Emissions Inventory (NEI) data for its 2023 assumptions.<sup>25</sup>

Another important emissions inventory update includes a revised methodology for estimating 2023 emissions from the oil and gas sector. The projection factors used in the updated 2023 oil and gas emissions incorporate state-level factors based on historic growth from 2011-2015 and region-specific factors that represent the projected growth from 2015 to 2023. The 2011-2015 state-level factors were based on historic state oil and gas production data published by the EIA, while the 2015-2023 factors are based on projected oil and gas production in EIA's 2017 Annual Energy Outlook (AEO) Reference Case without the Clean Power Plan for the six EIA supply regions. Details on the revised methodology that the EPA used to project oil and gas emissions to 2023, as well as changes to the base year 2011 and future year 2023 emissions inventories for other sectors, can be found in the technical support document, titled *Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2023, October 2017.*<sup>26</sup>

The EPA used the Comprehensive Air Quality Model with Extensions (CAMx v6.40)<sup>27</sup> for modeling the updated emissions in 2011 and 2023.<sup>28</sup> The EPA used outputs from the 2011 and 2023 model simulations to project base period 2009-2013 average and maximum ozone design values to 2023 at monitoring sites nationwide. The EPA's modeling guidance<sup>29</sup> recommends that model predictions from the "3 x 3" array of grid cells surrounding the location of the monitoring site be used in the projection of future year design values. The EPA used this approach for projecting design values for the updated 2023 modeling. In addition, in light of comments on the January 2017 NODA and other analyses, the EPA also projected 2023 design values based on a modified version of this approach for those monitoring sites located in coastal areas. In brief, in the alternative approach, the EPA eliminated from the design value calculations those modeling data in grid cells not containing a monitoring site that are dominated by water (*i.e.*, more than 50 percent of the land use in the grid cell is water).<sup>30</sup> The base period and 2023 average and maximum design values at individual monitoring sites for both the "3 x 3" approach and the alternative approach affecting coastal sites are available at *https://www.epa.gov/airmarkets/october-2017-memo-and-information*-

 $<sup>^{25}</sup>$  For non-SO<sub>2</sub> and non-NO<sub>X</sub> pollutants for units reporting under Part 75, the EPA used 2016 reported heat input to create a scaler for 2011 data. For instance, if heat input increased by 10 percent during that time frame for a particular unit, then its emissions for these pollutants were assumed to do the same.

<sup>&</sup>lt;sup>26</sup> Available at *https://www.epa.gov/air-emissions-modeling/2011-version-63-platform*.

<sup>&</sup>lt;sup>27</sup> CAMx v6.40 was the most recent public release version of CAMx at the time the EPA updated its modeling in fall 2017. ("Comprehensive Air Quality Model with Extensions version 6.40 User's Guide" Ramboll Environ, December 2016. *http://www.camx.com/*.)

<sup>&</sup>lt;sup>28</sup> For the updated modeling, the EPA used the construct of the modeling platform (*i.e.*, modeling domain and nonemissions inputs) that we used for the NODA modeling, except that the photolysis rates files were updated to be consistent with CAMx v6.40. The NODA Air Quality Modeling Technical Support Document describing the modeling platform is available at *https://www.epa.gov/airmarkets/notice-data-availability-preliminary-interstateozone-transport-modeling-data-2015-ozone.* 

<sup>&</sup>lt;sup>29</sup> http://www.epa.gov/ttn/scram/guidance/guide/Draft\_O3-PM-RH\_Modeling\_Guidance-2014.pdf.

<sup>&</sup>lt;sup>30</sup> A model grid cell is identified as a "water" cell if more than 50 percent of the grid cell is water based on the 2006 National Land Cover Database. Grid cells that meet this criterion are treated as entirely over water in the Weather Research Forecast (WRF) modeling used to develop the 2011 meteorology for the EPA's air quality modeling.

*interstate-transport-sips-2008-ozone-naaqs*. This file also contains 2014-2016 measured design values.

When identifying areas with potential downwind air quality problems, the EPA's updated modeling used the same "receptor" definitions as those developed during the CSAPR rulemaking process and used in the CSAPR Update.<sup>31</sup> That is, the EPA identified nonattainment receptors as those monitoring sites with current measured values exceeding the NAAQS that also have projected (*i.e.*, in 2023) average design values exceeding the NAAQS. The EPA identified maintenance receptors as those monitoring sites with current measured values exceeding the NAAQS. The EPA identified maintenance receptors as those monitoring sites with current measured values below the NAAQS and projected average and maximum design values exceeding the NAAQS. The EPA also identified as maintenance receptors those monitoring sites with projected average design values below the NAAQS but with projected maximum design values exceeding the NAAQS. As with past application of receptor definitions, the EPA considered all nonattainment receptors to also be maintenance receptors because a monitoring site with a projected average design value above the standard necessarily also has a projected maximum design value for monitors in the United States.

The EPA's 2023 updated modeling, using either the "3 x 3" approach or the alternative approach affecting coastal sites, indicates that there are no monitoring sites, outside of California, that are projected to have nonattainment or maintenance problems with respect to the 2008 ozone NAAQS in 2023.<sup>32</sup>

**Step 2.** Identification of States Contributing to Potential Downwind Nonattainment and Maintenance Receptors

Although the EPA has completed nationwide contribution modeling for 2023, this information may not be necessary for most states to develop good neighbor SIPs for the 2008 ozone NAAQS in light of the information described previously. The EPA does, however, plan to make its contribution modeling outputs available to the states and will coordinate with multi-jurisdictional organizations regarding the release of this information.

### Conclusion

The EPA believes that states may consider using this national modeling to develop SIPs that fully address requirements of the good neighbor provision for the 2008 ozone NAAQS.<sup>33</sup> States may also be able to use this information to address other CAA obligations. States could include in any such submission state-specific information to support their reliance on the 2023 modeling data. Further, states may supplement the information provided in this memorandum with any additional information that they believe is relevant to addressing the good neighbor provision requirements. States may also choose to use information different from that provided in this document or on the EPA's website to identify nonattainment and maintenance receptors relevant

<sup>&</sup>lt;sup>31</sup> See 81 FR 74530-74532 (October 26, 2016).

<sup>&</sup>lt;sup>32</sup> This information is available at *https://www.epa.gov/airmarkets/october-2017-memo-and-information-interstate-transport-sips-2008-ozone-naaqs*.

<sup>&</sup>lt;sup>33</sup> For a state already subject to a CSAPR Update FIP to get full SIP approval, the state would need to address in their SIP submission the reductions that it would achieve by implementing the FIP. One way states could accomplish this would be by submitting a CSAPR Update SIP using the guidance provided in the preamble to the CSAPR Update at 81 FR 74569 (October 26, 2016).

to development of their good neighbor SIPs. If this is the case, states should submit that information along with a full explanation and technical analysis for the EPA's evaluation. The EPA Regional offices and states should work together to accomplish the goal of developing, submitting and reviewing approvable SIPs that fully address the good neighbor provision for the 2008 ozone NAAQS.

Please share this information with the air agencies in your Region.

### **For Further Information**

If you have any questions concerning this memorandum, please contact Norm Possiel at (919) 541-5692, *possiel.norm@epa.gov* for modeling information or Beth Palma at (919) 541-5432, *palma.elizabeth@epa.gov* for any other information.

Attachment

### Attachment A

### Projected Ozone Design Values at Individual Monitoring Sites Based on the EPA's Updated 2023 Transport Modeling

This attachment contains projected ozone design values at individual monitoring sites nationwide based on EPA's updated transport modeling for 2023. The scenario name for the updated modeling is "2023en." All of the data are in units of "ppb."

The following data are provided in the table below.

(1) Base period 2009 - 2013 average and maximum design values based on 2009 - 2013 measured data.

(2) Projected 2023 average and maximum design values based on the "3x3" approach recommended in EPA's photochemical modeling guidance.

(3) Projected 2023 average and maximum design values based on a modified "3x3" approach in which model predictions in grid cells without monitors that are predominately water are excluded from the projection calculations ("No Water"). Note that the modified approach only affects the projection of design values for monitoring sites in or near coastal areas.

(4) 2016 ozone design values based on 2014 – 2016 measured data (N/A indicates that a 2016 design value is not available). The following web site has additional information on the 2016 design values: *https://www.epa.gov/air-trends/air-quality-design-values#report*.

Note, a value of 75.9 ppb (or less) is considered to be in attainment of the 2008 ozone NAAQS, and a value of 76.0 ppb (or higher) is considered to be in violation of the 2008 ozone NAAQS.

| Site     | St | County    | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|----------|----|-----------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 10030010 | AL | Baldwin   | 70.0                 | 72                   | 53.4                   | 54.9                   | 55.4                           | 57.0                           | 65            |
| 10331002 | AL | Colbert   | 65.0                 | 67                   | 45.5                   | 46.9                   | 45.5                           | 46.9                           | 59            |
| 10499991 | AL | DeKalb    | 66.0                 | 66                   | 50.7                   | 50.7                   | 50.7                           | 50.7                           | 63            |
| 10510001 | AL | Elmore    | 66.3                 | 68                   | 49.5                   | 50.7                   | 49.5                           | 50.7                           | N/A           |
| 10550011 | AL | Etowah    | 61.7                 | 62                   | 46.2                   | 46.4                   | 46.2                           | 46.4                           | 61            |
| 10690004 | AL | Houston   | 63.7                 | 65                   | 49.2                   | 50.2                   | 49.2                           | 50.2                           | 59            |
| 10730023 | AL | Jefferson | 72.3                 | 75                   | 54.9                   | 56.9                   | 54.9                           | 56.9                           | 68            |
| 10731003 | AL | Jefferson | 72.0                 | 75                   | 55.2                   | 57.5                   | 55.2                           | 57.5                           | 66            |
| 10731005 | AL | Jefferson | 75.3                 | 77                   | 56.8                   | 58.1                   | 56.8                           | 58.1                           | N/A           |
| 10731009 | AL | Jefferson | 72.0                 | 74                   | 56.1                   | 57.7                   | 56.1                           | 57.7                           | N/A           |
| 10731010 | AL | Jefferson | 73.7                 | 76                   | 55.4                   | 57.2                   | 55.4                           | 57.2                           | 64            |
| 10732006 | AL | Jefferson | 75.0                 | 77                   | 55.7                   | 57.1                   | 55.7                           | 57.1                           | 66            |
| 10735002 | AL | Jefferson | 72.0                 | 74                   | 54.2                   | 55.7                   | 54.2                           | 55.7                           | N/A           |
| 10735003 | AL | Jefferson | 71.0                 | 73                   | 55.0                   | 56.5                   | 55.0                           | 56.5                           | N/A           |
| 10736002 | AL | Jefferson | 76.7                 | 80                   | 58.8                   | 61.3                   | 58.8                           | 61.3                           | 68            |
| 10890014 | AL | Madison   | 70.7                 | 73                   | 52.8                   | 54.5                   | 52.8                           | 54.5                           | 64            |
| 10970003 | AL | Mobile    | 69.0                 | 71                   | 53.2                   | 54.7                   | 53.2                           | 54.7                           | 63            |

| Site     | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 10972005 | AL | Mobile     | 73.0                 | 73                   | 56.6                   | 56.6                   | 57.3                           | 57.3                           | 65            |
| 11011002 | AL | Montgomery | 67.3                 | 69                   | 49.6                   | 50.8                   | 49.6                           | 50.8                           | 62            |
| 11030011 | AL | Morgan     | 68.7                 | 71                   | 54.2                   | 56.0                   | 54.2                           | 56.0                           | 64            |
| 11130002 | AL | Russell    | 66.0                 | 67                   | 49.9                   | 50.6                   | 49.9                           | 50.6                           | 62            |
| 11170004 | AL | Shelby     | 73.3                 | 75                   | 54.0                   | 55.3                   | 54.0                           | 55.3                           | 67            |
| 11190002 | AL | Sumter     | 61.0                 | 61                   | 49.2                   | 49.2                   | 49.2                           | 49.2                           | N/A           |
| 11250010 | AL | Tuscaloosa | 58.7                 | 59                   | 45.1                   | 45.4                   | 45.1                           | 45.4                           | 60            |
| 40038001 | AZ | Cochise    | 72.0                 | 73                   | 69.4                   | 70.4                   | 69.4                           | 70.4                           | 65            |
| 40051008 | AZ | Coconino   | 69.0                 | 69                   | 64.2                   | 64.2                   | 64.2                           | 64.2                           | 69            |
| 40058001 | AZ | Coconino   | 71.0                 | 72                   | 66.3                   | 67.2                   | 66.3                           | 67.2                           | 67            |
| 40070010 | AZ | Gila       | 74.5                 | 75                   | 64.2                   | 64.6                   | 64.2                           | 64.6                           | 71            |
| 40130019 | AZ | Maricopa   | 76.7                 | 79                   | 69.3                   | 71.4                   | 69.3                           | 71.4                           | 73            |
| 40131004 | AZ | Maricopa   | 79.7                 | 81                   | 69.8                   | 71.0                   | 69.8                           | 71.0                           | 75            |
| 40131010 | AZ | Maricopa   | 69.7                 | 72                   | 60.4                   | 62.3                   | 60.4                           | 62.3                           | 73            |
| 40132001 | AZ | Maricopa   | 74.7                 | 76                   | 66.1                   | 67.2                   | 66.1                           | 67.2                           | 68            |
| 40132005 | AZ | Maricopa   | 76.0                 | 77                   | 65.3                   | 66.2                   | 65.3                           | 66.2                           | 77            |
| 40133002 | AZ | Maricopa   | 73.3                 | 75                   | 65.6                   | 67.2                   | 65.6                           | 67.2                           | 70            |
| 40133003 | AZ | Maricopa   | 75.7                 | 77                   | 66.2                   | 67.3                   | 66.2                           | 67.3                           | 70            |
| 40134003 | AZ | Maricopa   | 74.7                 | 76                   | 67.8                   | 69.0                   | 67.8                           | 69.0                           | 70            |
| 40134004 | AZ | Maricopa   | 72.7                 | 74                   | 63.7                   | 64.8                   | 63.7                           | 64.8                           | 69            |
| 40134005 | AZ | Maricopa   | 69.7                 | 71                   | 61.3                   | 62.4                   | 61.3                           | 62.4                           | N/A           |
| 40134008 | AZ | Maricopa   | 76.3                 | 77                   | 65.2                   | 65.8                   | 65.2                           | 65.8                           | 71            |
| 40134010 | AZ | Maricopa   | 71.0                 | 72                   | 60.8                   | 61.7                   | 60.8                           | 61.7                           | 66            |
| 40134011 | AZ | Maricopa   | 65.0                 | 66                   | 57.6                   | 58.5                   | 57.6                           | 58.5                           | 59            |
| 40137003 | AZ | Maricopa   | 70.7                 | 72                   | 62.4                   | 63.6                   | 62.4                           | 63.6                           | 67            |
| 40137020 | AZ | Maricopa   | 73.7                 | 75                   | 64.4                   | 65.5                   | 64.4                           | 65.5                           | 72            |
| 40137021 | AZ | Maricopa   | 76.7                 | 77                   | 65.9                   | 66.2                   | 65.9                           | 66.2                           | 76            |
| 40137022 | AZ | Maricopa   | 73.3                 | 75                   | 63.0                   | 64.4                   | 63.0                           | 64.4                           | 74            |
| 40137024 | AZ | Maricopa   | 73.3                 | 74                   | 64.1                   | 64.7                   | 64.1                           | 64.7                           | 71            |
| 40139508 | AZ | Maricopa   | 74.0                 | 76                   | 62.5                   | 64.2                   | 62.5                           | 64.2                           | 73            |
| 40139702 | AZ | Maricopa   | 74.7                 | 77                   | 63.9                   | 65.9                   | 63.9                           | 65.9                           | 72            |
| 40139704 | AZ | Maricopa   | 74.5                 | 76                   | 64.0                   | 65.3                   | 64.0                           | 65.3                           | N/A           |
| 40139706 | AZ | Maricopa   | 74.0                 | 75                   | 63.6                   | 64.5                   | 63.6                           | 64.5                           | 70            |
| 40139997 | AZ | Maricopa   | 76.0                 | 77                   | 68.1                   | 69.0                   | 68.1                           | 69.0                           | 75            |
| 40170119 | AZ | Navajo     | 68.7                 | 70                   | 60.2                   | 61.3                   | 60.2                           | 61.3                           | 64            |
| 40190021 | AZ | Pima       | 71.3                 | 73                   | 61.4                   | 62.9                   | 61.4                           | 62.9                           | 68            |
| 40191011 | AZ | Pima       | 67.0                 | 68                   | 57.3                   | 58.1                   | 57.3                           | 58.1                           | 62            |
| 40191018 | AZ | Pima       | 68.3                 | 69                   | 59.4                   | 60.0                   | 59.4                           | 60.0                           | 64            |
| 40191020 | AZ | Pima       | 69.7                 | 71                   | 59.2                   | 60.3                   | 59.2                           | 60.3                           | 64            |

| Site     | St | County       | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|----------|----|--------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 40191028 | AZ | Pima         | 67.0                 | 68                   | 57.5                   | 58.3                   | 57.5                           | 58.3                           | 64            |
| 40191030 | AZ | Pima         | 68.7                 | 70                   | 59.2                   | 60.3                   | 59.2                           | 60.3                           | 63            |
| 40191032 | AZ | Pima         | 66.3                 | 67                   | 57.0                   | 57.6                   | 57.0                           | 57.6                           | 64            |
| 40191034 | AZ | Pima         | 64.0                 | 65                   | 56.8                   | 57.6                   | 56.8                           | 57.6                           | 61            |
| 40213001 | AZ | Pinal        | 73.0                 | 74                   | 62.6                   | 63.4                   | 62.6                           | 63.4                           | 70            |
| 40213003 | AZ | Pinal        | 68.3                 | 69                   | 59.7                   | 60.3                   | 59.7                           | 60.3                           | 65            |
| 40213007 | AZ | Pinal        | 68.3                 | 69                   | 61.5                   | 62.1                   | 61.5                           | 62.1                           | 65            |
| 40217001 | AZ | Pinal        | 70.3                 | 72                   | 61.2                   | 62.6                   | 61.2                           | 62.6                           | 65            |
| 40218001 | AZ | Pinal        | 76.0                 | 76                   | 65.3                   | 65.3                   | 65.3                           | 65.3                           | 71            |
| 40278011 | AZ | Yuma         | 76.5                 | 77                   | 70.4                   | 70.8                   | 70.4                           | 70.8                           | 74            |
| 50350005 | AR | Crittenden   | 77.3                 | 79                   | 60.3                   | 61.6                   | 60.3                           | 61.6                           | 67            |
| 51010002 | AR | Newton       | 68.0                 | 69                   | 53.1                   | 53.9                   | 53.1                           | 53.9                           | 59            |
| 51130003 | AR | Polk         | 72.3                 | 73                   | 60.8                   | 61.3                   | 60.8                           | 61.3                           | 62            |
| 51190007 | AR | Pulaski      | 72.3                 | 73                   | 53.0                   | 53.5                   | 53.0                           | 53.5                           | 64            |
| 51191002 | AR | Pulaski      | 75.7                 | 77                   | 55.6                   | 56.6                   | 55.6                           | 56.6                           | 64            |
| 51191008 | AR | Pulaski      | 73.0                 | 75                   | 55.0                   | 56.5                   | 55.0                           | 56.5                           | N/A           |
| 51430005 | AR | Washington   | 71.0                 | 73                   | 57.1                   | 58.8                   | 57.1                           | 58.8                           | 59            |
| 60010007 | CA | Alameda      | 73.3                 | 76                   | 64.2                   | 66.6                   | 64.2                           | 66.6                           | 74            |
| 60010009 | CA | Alameda      | 45.7                 | 49                   | 44.3                   | 47.5                   | 44.3                           | 47.5                           | 55            |
| 60010011 | CA | Alameda      | 45.0                 | 45                   | 44.0                   | 44.0                   | 44.0                           | 44.0                           | 49            |
| 60012001 | CA | Alameda      | 56.0                 | 56                   | 52.9                   | 52.9                   | 52.9                           | 52.9                           | 66            |
| 60050002 | CA | Amador       | 72.0                 | 74                   | 58.6                   | 60.3                   | 58.6                           | 60.3                           | 73            |
| 60070007 | CA | Butte        | 76.3                 | 77                   | 62.0                   | 62.6                   | 62.0                           | 62.6                           | 75            |
| 60070008 | CA | Butte        | 65.0                 | 66                   | 53.4                   | 54.2                   | 53.4                           | 54.2                           | 66            |
| 60090001 | CA | Calaveras    | 75.0                 | 77                   | 61.1                   | 62.7                   | 61.1                           | 62.7                           | 76            |
| 60111002 | CA | Colusa       | 61.0                 | 62                   | 52.5                   | 53.4                   | 52.5                           | 53.4                           | 63            |
| 60130002 | CA | Contra Costa | 70.7                 | 73                   | 62.9                   | 64.9                   | 62.9                           | 64.9                           | 67            |
| 60131002 | CA | Contra Costa | 71.7                 | 74                   | 62.7                   | 64.8                   | 62.7                           | 64.8                           | 68            |
| 60131004 | CA | Contra Costa | 51.0                 | 51                   | 49.7                   | 49.7                   | 49.7                           | 49.7                           | 54            |
| 60170010 | CA | El Dorado    | 81.0                 | 82                   | 64.4                   | 65.2                   | 64.4                           | 65.2                           | 85            |
| 60170012 | CA | El Dorado    | 68.3                 | 69                   | 60.7                   | 61.4                   | 60.7                           | 61.4                           | N/A           |
| 60170020 | CA | El Dorado    | 82.7                 | 84                   | 65.9                   | 66.9                   | 65.9                           | 66.9                           | 82            |
| 60190007 | CA | Fresno       | 94.7                 | 95                   | 79.2                   | 79.4                   | 79.2                           | 79.4                           | 86            |
| 60190011 | CA | Fresno       | 93.0                 | 96                   | 78.6                   | 81.2                   | 78.6                           | 81.2                           | 89            |
| 60190242 | CA | Fresno       | 91.7                 | 95                   | 79.4                   | 82.2                   | 79.4                           | 82.2                           | 86            |
| 60192009 | CA | Fresno       | 77.0                 | 77                   | 65.1                   | 65.1                   | 65.1                           | 65.1                           | 76            |
| 60194001 | CA | Fresno       | 90.7                 | 92                   | 73.3                   | 74.4                   | 73.3                           | 74.4                           | 91            |
| 60195001 | CA | Fresno       | 97.0                 | 99                   | 79.6                   | 81.2                   | 79.6                           | 81.2                           | 94            |
| 60210003 | CA | Glenn        | 64.3                 | 65                   | 56.0                   | 56.6                   | 56.0                           | 56.6                           | 64            |

| Site     | St | County      | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|----------|----|-------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 60250005 | CA | Imperial    | 74.7                 | 76                   | 73.3                   | 74.6                   | 73.3                           | 74.6                           | 76            |
| 60251003 | CA | Imperial    | 81.0                 | 82                   | 79.0                   | 80.0                   | 79.0                           | 80.0                           | 76            |
| 60254003 | CA | Imperial    | 72.0                 | 73                   | 67.6                   | 68.5                   | 68.4                           | 69.4                           | N/A           |
| 60254004 | CA | Imperial    | 71.3                 | 73                   | 63.1                   | 64.6                   | 66.3                           | 67.9                           | 67            |
| 60270101 | CA | Inyo        | 71.7                 | 72                   | 67.3                   | 67.6                   | 67.3                           | 67.6                           | 70            |
| 60290007 | CA | Kern        | 91.7                 | 96                   | 77.7                   | 81.3                   | 77.7                           | 81.3                           | 87            |
| 60290008 | CA | Kern        | 86.3                 | 88                   | 71.3                   | 72.8                   | 71.3                           | 72.8                           | 81            |
| 60290011 | CA | Kern        | 80.0                 | 81                   | 69.5                   | 70.4                   | 69.5                           | 70.4                           | 84            |
| 60290014 | CA | Kern        | 87.7                 | 89                   | 74.1                   | 75.2                   | 74.1                           | 75.2                           | 84            |
| 60290232 | CA | Kern        | 87.3                 | 89                   | 73.7                   | 75.2                   | 73.7                           | 75.2                           | 77            |
| 60295002 | CA | Kern        | 90.0                 | 91                   | 75.9                   | 76.8                   | 75.9                           | 76.8                           | 87            |
| 60296001 | CA | Kern        | 84.3                 | 86                   | 70.9                   | 72.4                   | 70.9                           | 72.4                           | 81            |
| 60311004 | CA | Kings       | 87.0                 | 90                   | 71.7                   | 74.2                   | 71.7                           | 74.2                           | 84            |
| 60370002 | CA | Los Angeles | 80.0                 | 82                   | 73.3                   | 75.1                   | 73.3                           | 75.1                           | 88            |
| 60370016 | CA | Los Angeles | 94.0                 | 97                   | 86.1                   | 88.9                   | 86.1                           | 88.9                           | 96            |
| 60370113 | CA | Los Angeles | 65.0                 | 68                   | 60.3                   | 63.1                   | 60.3                           | 63.1                           | 70            |
| 60371002 | CA | Los Angeles | 80.0                 | 81                   | 69.4                   | 70.3                   | 69.4                           | 70.3                           | N/A           |
| 60371103 | CA | Los Angeles | 63.7                 | 65                   | 59.1                   | 60.3                   | 59.1                           | 60.3                           | 71            |
| 60371201 | CA | Los Angeles | 90.0                 | 90                   | 79.8                   | 79.8                   | 79.8                           | 79.8                           | 85            |
| 60371302 | CA | Los Angeles | 58.0                 | 58                   | 57.2                   | 57.2                   | 57.2                           | 57.2                           | 67            |
| 60371602 | CA | Los Angeles | 63.5                 | 64                   | 61.6                   | 62.1                   | 61.6                           | 62.1                           | 76            |
| 60371701 | CA | Los Angeles | 84.0                 | 85                   | 78.1                   | 79.1                   | 78.1                           | 79.1                           | 90            |
| 60372005 | CA | Los Angeles | 79.5                 | 82                   | 72.3                   | 74.6                   | 72.3                           | 74.6                           | 83            |
| 60374002 | CA | Los Angeles | 58.5                 | 59                   | 56.1                   | 56.6                   | 56.1                           | 56.6                           | N/A           |
| 60376012 | CA | Los Angeles | 97.3                 | 99                   | 85.9                   | 87.4                   | 85.9                           | 87.4                           | 96            |
| 60379033 | CA | Los Angeles | 90.0                 | 91                   | 76.3                   | 77.2                   | 76.3                           | 77.2                           | 88            |
| 60390004 | CA | Madera      | 79.3                 | 81                   | 68.6                   | 70.1                   | 68.6                           | 70.1                           | 83            |
| 60392010 | CA | Madera      | 85.0                 | 86                   | 72.1                   | 72.9                   | 72.1                           | 72.9                           | 83            |
| 60410001 | CA | Marin       | 52.3                 | 53                   | 47.6                   | 48.2                   | 47.2                           | 47.9                           | 61            |
| 60430003 | CA | Mariposa    | 77.3                 | 78                   | 69.8                   | 70.4                   | 69.8                           | 70.4                           | 74            |
| 60430006 | CA | Mariposa    | 77.0                 | 78                   | 64.6                   | 65.5                   | 64.6                           | 65.5                           | 75            |
| 60470003 | CA | Merced      | 82.7                 | 84                   | 69.9                   | 71.0                   | 69.9                           | 71.0                           | 82            |
| 60530002 | CA | Monterey    | 57.0                 | 58                   | 49.0                   | 49.9                   | 49.0                           | 49.9                           | 59            |
| 60530008 | CA | Monterey    | 58.0                 | 60                   | 48.6                   | 50.3                   | 48.6                           | 50.3                           | 60            |
| 60531003 | CA | Monterey    | 52.3                 | 54                   | 45.1                   | 46.5                   | 45.1                           | 46.5                           | 55            |
| 60550003 | CA | Napa        | 62.3                 | 65                   | 51.9                   | 54.2                   | 51.9                           | 54.2                           | 62            |
| 60570005 | CA | Nevada      | 77.7                 | 79                   | 62.3                   | 63.3                   | 62.3                           | 63.3                           | 83            |
| 60570007 | CA | Nevada      | 76.0                 | 78                   | 60.7                   | 62.3                   | 60.7                           | 62.3                           | N/A           |
| 60590007 | CA | Orange      | 63.7                 | 64                   | 61.1                   | 61.4                   | 61.1                           | 61.4                           | 70            |

| Site     | St | County         | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|----------|----|----------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 60591003 | CA | Orange         | 61.3                 | 62                   | 58.1                   | 58.8                   | 57.8                           | 58.4                           | 69            |
| 60592022 | CA | Orange         | 72.0                 | 74                   | 60.3                   | 61.9                   | 60.3                           | 61.9                           | 77            |
| 60595001 | CA | Orange         | 69.7                 | 71                   | 68.3                   | 69.6                   | 68.3                           | 69.6                           | 74            |
| 60610003 | CA | Placer         | 83.0                 | 85                   | 66.1                   | 67.7                   | 66.1                           | 67.7                           | 83            |
| 60610004 | CA | Placer         | 74.0                 | 75                   | 58.9                   | 59.7                   | 58.9                           | 59.7                           | 76            |
| 60610006 | CA | Placer         | 84.0                 | 86                   | 68.6                   | 70.2                   | 68.6                           | 70.2                           | 80            |
| 60650004 | CA | Riverside      | 85.0                 | 85                   | 76.7                   | 76.7                   | 76.7                           | 76.7                           | N/A           |
| 60650012 | CA | Riverside      | 97.3                 | 99                   | 83.6                   | 85.1                   | 83.6                           | 85.1                           | 93            |
| 60650016 | CA | Riverside      | 77.0                 | 77                   | 62.8                   | 62.8                   | 62.8                           | 62.8                           | 77            |
| 60651016 | CA | Riverside      | 100.7                | 101                  | 85.2                   | 85.5                   | 85.2                           | 85.5                           | 97            |
| 60652002 | CA | Riverside      | 84.3                 | 85                   | 72.4                   | 73.0                   | 72.4                           | 73.0                           | 81            |
| 60655001 | CA | Riverside      | 92.3                 | 93                   | 79.5                   | 80.1                   | 79.5                           | 80.1                           | 87            |
| 60656001 | CA | Riverside      | 94.0                 | 98                   | 78.3                   | 81.6                   | 78.3                           | 81.6                           | 91            |
| 60658001 | CA | Riverside      | 97.0                 | 98                   | 87.0                   | 87.9                   | 87.0                           | 87.9                           | 94            |
| 60658005 | CA | Riverside      | 92.7                 | 94                   | 83.2                   | 84.4                   | 83.2                           | 84.4                           | 91            |
| 60659001 | CA | Riverside      | 88.3                 | 91                   | 73.7                   | 75.9                   | 73.7                           | 75.9                           | 86            |
| 60659003 | CA | Riverside      | 67.0                 | 68                   | 60.2                   | 61.1                   | 60.2                           | 61.1                           | 66            |
| 60670002 | CA | Sacramento     | 76.7                 | 77                   | 64.8                   | 65.0                   | 64.8                           | 65.0                           | 77            |
| 60670006 | CA | Sacramento     | 78.7                 | 81                   | 66.6                   | 68.6                   | 66.6                           | 68.6                           | 77            |
| 60670010 | CA | Sacramento     | 70.3                 | 71                   | 60.4                   | 61.0                   | 60.4                           | 61.0                           | 69            |
| 60670011 | CA | Sacramento     | 72.5                 | 74                   | 61.3                   | 62.6                   | 61.3                           | 62.6                           | 68            |
| 60670012 | CA | Sacramento     | 93.3                 | 95                   | 74.5                   | 75.9                   | 74.5                           | 75.9                           | 83            |
| 60670014 | CA | Sacramento     | 69.3                 | 70                   | 58.8                   | 59.4                   | 58.8                           | 59.4                           | 71            |
| 60675003 | CA | Sacramento     | 86.3                 | 88                   | 69.9                   | 71.3                   | 69.9                           | 71.3                           | 79            |
| 60690002 | CA | San Benito     | 62.0                 | 66                   | 52.0                   | 55.4                   | 52.0                           | 55.4                           | 63            |
| 60690003 | CA | San Benito     | 70.0                 | 70                   | 59.9                   | 59.9                   | 59.9                           | 59.9                           | 69            |
| 60710001 | CA | San Bernardino | 77.0                 | 78                   | 68.0                   | 68.9                   | 68.0                           | 68.9                           | 80            |
| 60710005 | CA | San Bernardino | 105.0                | 107                  | 96.2                   | 98.1                   | 96.2                           | 98.1                           | 108           |
| 60710012 | CA | San Bernardino | 95.0                 | 97                   | 84.1                   | 85.8                   | 84.1                           | 85.8                           | 91            |
| 60710306 | CA | San Bernardino | 83.7                 | 85                   | 76.2                   | 77.4                   | 76.2                           | 77.4                           | 86            |
| 60711004 | CA | San Bernardino | 96.7                 | 98                   | 89.8                   | 91.0                   | 89.8                           | 91.0                           | 101           |
| 60711234 | CA | San Bernardino | 69.0                 | 69                   | 64.1                   | 64.1                   | 64.1                           | 64.1                           | 69            |
| 60712002 | CA | San Bernardino | 101.0                | 103                  | 93.1                   | 95.0                   | 93.1                           | 95.0                           | 97            |
| 60714001 | CA | San Bernardino | 94.3                 | 97                   | 86.0                   | 88.5                   | 86.0                           | 88.5                           | 90            |
| 60714003 | CA | San Bernardino | 105.0                | 107                  | 94.1                   | 95.8                   | 94.1                           | 95.8                           | 101           |
| 60719002 | CA | San Bernardino | 92.3                 | 94                   | 80.0                   | 81.4                   | 80.0                           | 81.4                           | 86            |
| 60719004 | CA | San Bernardino | 98.7                 | 99                   | 88.4                   | 88.7                   | 88.4                           | 88.7                           | 104           |
| 60730001 | CA | San Diego      | 61.3                 | 63                   | 58.0                   | 59.6                   | 58.0                           | 59.6                           | 61            |
| 60731001 | CA | San Diego      | 63.0                 | 64                   | 56.4                   | 57.3                   | 56.2                           | 57.0                           | 67            |

| Site     | St | County          | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|----------|----|-----------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 60731002 | CA | San Diego       | 70.3                 | 72                   | 55.9                   | 57.3                   | 55.9                           | 57.3                           | N/A           |
| 60731006 | CA | San Diego       | 81.0                 | 82                   | 69.4                   | 70.2                   | 69.4                           | 70.2                           | 81            |
| 60731008 | CA | San Diego       | 64.7                 | 67                   | 55.1                   | 57.1                   | 54.9                           | 56.8                           | 70            |
| 60731010 | CA | San Diego       | 56.3                 | 59                   | 53.2                   | 55.8                   | 53.2                           | 55.8                           | 62            |
| 60731016 | CA | San Diego       | 68.0                 | 69                   | 59.8                   | 60.7                   | 59.8                           | 60.7                           | 68            |
| 60731018 | CA | San Diego       | 69.7                 | 71                   | 59.2                   | 60.3                   | 59.2                           | 60.3                           | N/A           |
| 60732007 | CA | San Diego       | 57.7                 | 58                   | 54.0                   | 54.2                   | 54.0                           | 54.2                           | N/A           |
| 60771002 | CA | San Joaquin     | 68.0                 | 69                   | 59.1                   | 60.0                   | 59.1                           | 60.0                           | 68            |
| 60773005 | CA | San Joaquin     | 79.0                 | 80                   | 67.2                   | 68.1                   | 67.2                           | 68.1                           | 79            |
| 60790005 | CA | San Luis Obispo | 64.3                 | 66                   | 54.1                   | 55.5                   | 54.1                           | 55.5                           | 62            |
| 60792006 | CA | San Luis Obispo | 54.3                 | 57                   | 45.4                   | 47.7                   | 45.4                           | 47.7                           | 57            |
| 60793001 | CA | San Luis Obispo | 53.3                 | 55                   | 45.4                   | 46.9                   | 45.4                           | 46.9                           | 55            |
| 60794002 | CA | San Luis Obispo | 58.7                 | 62                   | 49.0                   | 51.7                   | 49.0                           | 51.7                           | 62            |
| 60798002 | CA | San Luis Obispo | 62.3                 | 63                   | 52.3                   | 52.9                   | 52.3                           | 52.9                           | 63            |
| 60798005 | CA | San Luis Obispo | 78.0                 | 79                   | 66.0                   | 66.8                   | 66.0                           | 66.8                           | 73            |
| 60798006 | CA | San Luis Obispo | 75.0                 | 76                   | 64.0                   | 64.9                   | 64.0                           | 64.9                           | 68            |
| 60811001 | CA | San Mateo       | 54.0                 | 56                   | 54.0                   | 56.1                   | 54.0                           | 56.1                           | 59            |
| 60830008 | CA | Santa Barbara   | 57.7                 | 59                   | 50.1                   | 51.3                   | 50.2                           | 51.4                           | 61            |
| 60830011 | CA | Santa Barbara   | 56.0                 | 57                   | 49.0                   | 49.9                   | 48.6                           | 49.4                           | 63            |
| 60831008 | CA | Santa Barbara   | 50.3                 | 52                   | 42.1                   | 43.5                   | 42.1                           | 43.5                           | 54            |
| 60831013 | CA | Santa Barbara   | 62.7                 | 64                   | 53.2                   | 54.3                   | 53.2                           | 54.3                           | 62            |
| 60831014 | CA | Santa Barbara   | 67.0                 | 69                   | 57.5                   | 59.2                   | 57.5                           | 59.2                           | 64            |
| 60831018 | CA | Santa Barbara   | 55.0                 | 56                   | 47.5                   | 48.3                   | 47.1                           | 47.9                           | 60            |
| 60831021 | CA | Santa Barbara   | 66.7                 | 71                   | 58.6                   | 62.4                   | 57.6                           | 61.3                           | 63            |
| 60831025 | CA | Santa Barbara   | 68.3                 | 73                   | 59.4                   | 63.4                   | 59.5                           | 63.6                           | 67            |
| 60832004 | CA | Santa Barbara   | 53.0                 | 54                   | 45.5                   | 46.4                   | 45.5                           | 46.4                           | 56            |
| 60832011 | CA | Santa Barbara   | 55.7                 | 57                   | 48.9                   | 50.0                   | 48.6                           | 49.7                           | 63            |
| 60833001 | CA | Santa Barbara   | 59.7                 | 62                   | 51.1                   | 53.0                   | 51.1                           | 53.0                           | 62            |
| 60834003 | CA | Santa Barbara   | 60.3                 | 61                   | 52.2                   | 52.8                   | 51.9                           | 52.5                           | 60            |
| 60850002 | CA | Santa Clara     | 68.3                 | 71                   | 56.7                   | 58.9                   | 56.7                           | 58.9                           | 66            |
| 60850005 | CA | Santa Clara     | 60.7                 | 63                   | 57.3                   | 59.5                   | 57.3                           | 59.5                           | 63            |
| 60851001 | CA | Santa Clara     | 66.0                 | 70                   | 60.0                   | 63.7                   | 60.0                           | 63.7                           | 67            |
| 60852006 | CA | Santa Clara     | 71.3                 | 74                   | 60.1                   | 62.3                   | 60.1                           | 62.3                           | 70            |
| 60852009 | CA | Santa Clara     | 62.0                 | 62                   | 57.9                   | 57.9                   | 57.9                           | 57.9                           | N/A           |
| 60870007 | CA | Santa Cruz      | 53.0                 | 55                   | 47.1                   | 48.9                   | 47.1                           | 48.9                           | 57            |
| 60890004 | CA | Shasta          | 60.0                 | 64                   | 48.8                   | 52.0                   | 48.8                           | 52.0                           | 70            |
| 60890007 | CA | Shasta          | 67.0                 | 69                   | 55.1                   | 56.7                   | 55.1                           | 56.7                           | 68            |
| 60890009 | CA | Shasta          | 68.0                 | 69                   | 55.3                   | 56.2                   | 55.3                           | 56.2                           | N/A           |
| 60893003 | CA | Shasta          | 66.3                 | 68                   | 57.2                   | 58.7                   | 57.2                           | 58.7                           | 65            |

| Site     | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 60950004 | CA | Solano     | 59.0                 | 61                   | 52.0                   | 53.8                   | 52.0                           | 53.8                           | 63            |
| 60950005 | CA | Solano     | 67.3                 | 69                   | 56.0                   | 57.4                   | 56.0                           | 57.4                           | 64            |
| 60953003 | CA | Solano     | 68.0                 | 69                   | 56.7                   | 57.5                   | 56.7                           | 57.5                           | 67            |
| 60970003 | CA | Sonoma     | 48.0                 | 50                   | 39.0                   | 40.6                   | 39.0                           | 40.6                           | N/A           |
| 60990005 | CA | Stanislaus | 75.0                 | 75                   | 65.2                   | 65.2                   | 65.2                           | 65.2                           | 81            |
| 60990006 | CA | Stanislaus | 87.0                 | 88                   | 74.8                   | 75.7                   | 74.8                           | 75.7                           | 83            |
| 61010003 | CA | Sutter     | 65.0                 | 66                   | 53.4                   | 54.3                   | 53.4                           | 54.3                           | 65            |
| 61030004 | CA | Tehama     | 75.3                 | 76                   | 62.3                   | 62.9                   | 62.3                           | 62.9                           | 79            |
| 61030007 | CA | Tehama     | 72.5                 | 73                   | 59.7                   | 60.1                   | 59.7                           | 60.1                           | 67            |
| 61070006 | CA | Tulare     | 81.7                 | 85                   | 69.1                   | 71.9                   | 69.1                           | 71.9                           | 84            |
| 61070009 | CA | Tulare     | 94.7                 | 96                   | 76.1                   | 77.2                   | 76.1                           | 77.2                           | 89            |
| 61072002 | CA | Tulare     | 85.0                 | 88                   | 68.9                   | 71.4                   | 68.9                           | 71.4                           | 80            |
| 61072010 | CA | Tulare     | 89.0                 | 90                   | 73.1                   | 73.9                   | 73.1                           | 73.9                           | 83            |
| 61090005 | CA | Tuolumne   | 73.3                 | 74                   | 60.6                   | 61.2                   | 60.6                           | 61.2                           | 79            |
| 61110007 | CA | Ventura    | 71.7                 | 76                   | 62.9                   | 66.7                   | 62.9                           | 66.7                           | 69            |
| 61110009 | CA | Ventura    | 74.0                 | 77                   | 63.7                   | 66.2                   | 63.7                           | 66.2                           | 74            |
| 61111004 | CA | Ventura    | 76.7                 | 77                   | 66.1                   | 66.4                   | 66.1                           | 66.4                           | 74            |
| 61112002 | CA | Ventura    | 81.0                 | 83                   | 70.5                   | 72.2                   | 70.5                           | 72.2                           | 77            |
| 61113001 | CA | Ventura    | 60.7                 | 63                   | 53.3                   | 55.3                   | 53.3                           | 55.3                           | 63            |
| 61130004 | CA | Yolo       | 68.7                 | 70                   | 56.5                   | 57.6                   | 56.5                           | 57.6                           | 64            |
| 61131003 | CA | Yolo       | 69.0                 | 69                   | 59.5                   | 59.5                   | 59.5                           | 59.5                           | 69            |
| 80013001 | CO | Adams      | 76.0                 | 76                   | 70.8                   | 70.8                   | 70.8                           | 70.8                           | 67            |
| 80050002 | CO | Arapahoe   | 76.7                 | 79                   | 69.3                   | 71.3                   | 69.3                           | 71.3                           | N/A           |
| 80050006 | CO | Arapahoe   | 73.5                 | 74                   | 65.0                   | 65.4                   | 65.0                           | 65.4                           | 67            |
| 80130011 | CO | Boulder    | 74.7                 | 77                   | 65.5                   | 67.5                   | 65.5                           | 67.5                           | N/A           |
| 80310014 | CO | Denver     | 71.0                 | 73                   | 66.2                   | 68.0                   | 66.2                           | 68.0                           | N/A           |
| 80310025 | CO | Denver     | 65.0                 | 65                   | 61.8                   | 61.8                   | 61.8                           | 61.8                           | N/A           |
| 80350004 | CO | Douglas    | 80.7                 | 83                   | 71.1                   | 73.2                   | 71.1                           | 73.2                           | 77            |
| 80410013 | CO | El Paso    | 71.0                 | 74                   | 64.0                   | 66.7                   | 64.0                           | 66.7                           | 66            |
| 80410016 | CO | El Paso    | 72.7                 | 74                   | 65.4                   | 66.6                   | 65.4                           | 66.6                           | 64            |
| 80450012 | CO | Garfield   | 65.0                 | 66                   | 62.4                   | 63.3                   | 62.4                           | 63.3                           | 63            |
| 80590002 | CO | Jefferson  | 74.0                 | 74                   | 66.7                   | 66.7                   | 66.7                           | 66.7                           | N/A           |
| 80590005 | CO | Jefferson  | 75.7                 | 78                   | 67.5                   | 69.5                   | 67.5                           | 69.5                           | 72            |
| 80590006 | CO | Jefferson  | 80.3                 | 83                   | 71.3                   | 73.7                   | 71.3                           | 73.7                           | 77            |
| 80590011 | CO | Jefferson  | 78.7                 | 82                   | 70.9                   | 73.9                   | 70.9                           | 73.9                           | 80            |
| 80590013 | CO | Jefferson  | 74.5                 | 75                   | 65.6                   | 66.1                   | 65.6                           | 66.1                           | 70            |
| 80671004 | CO | La Plata   | 73.0                 | 74                   | 66.0                   | 66.9                   | 66.0                           | 66.9                           | N/A           |
| 80677001 | CO | La Plata   | 68.7                 | 69                   | 61.9                   | 62.2                   | 61.9                           | 62.2                           | 68            |
| 80690007 | CO | Larimer    | 75.7                 | 77                   | 66.8                   | 68.0                   | 66.8                           | 68.0                           | 69            |

| Site      | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 80690011  | CO | Larimer    | 78.0                 | 80                   | 71.2                   | 73.0                   | 71.2                           | 73.0                           | 75            |
| 80690012  | CO | Larimer    | 71.0                 | 71                   | 64.2                   | 64.2                   | 64.2                           | 64.2                           | N/A           |
| 80691004  | CO | Larimer    | 68.7                 | 72                   | 63.3                   | 66.3                   | 63.3                           | 66.3                           | 70            |
| 80770020  | CO | Mesa       | 67.0                 | 68                   | 63.1                   | 64.1                   | 63.1                           | 64.1                           | 63            |
| 80830006  | CO | Montezuma  | 67.3                 | 68                   | 59.8                   | 60.4                   | 59.8                           | 60.4                           | 62            |
| 80830101  | CO | Montezuma  | 68.3                 | 69                   | 59.3                   | 59.9                   | 59.3                           | 59.9                           | 65            |
| 81030005  | CO | Rio Blanco | 63.5                 | 64                   | 59.8                   | 60.3                   | 59.8                           | 60.3                           | 61            |
| 81230009  | CO | Weld       | 74.7                 | 76                   | 70.2                   | 71.4                   | 70.2                           | 71.4                           | 70            |
| 90010017  | СТ | Fairfield  | 80.3                 | 83                   | 69.8                   | 72.1                   | 68.9                           | 71.2                           | 80            |
| 90011123  | СТ | Fairfield  | 81.3                 | 83                   | 66.4                   | 67.8                   | 66.4                           | 67.8                           | 78            |
| 90013007  | СТ | Fairfield  | 84.3                 | 89                   | 71.2                   | 75.2                   | 71.0                           | 75.0                           | 81            |
| 90019003  | СТ | Fairfield  | 83.7                 | 87                   | 72.7                   | 75.6                   | 73.0                           | 75.9                           | 85            |
| 90031003  | СТ | Hartford   | 73.7                 | 75                   | 60.7                   | 61.7                   | 60.7                           | 61.7                           | 75            |
| 90050005  | СТ | Litchfield | 70.3                 | 71                   | 57.2                   | 57.8                   | 57.2                           | 57.8                           | 74            |
| 90070007  | СТ | Middlesex  | 79.3                 | 81                   | 64.7                   | 66.1                   | 64.7                           | 66.1                           | 79            |
| 90090027  | СТ | New Haven  | 74.3                 | 78                   | 62.3                   | 65.4                   | 61.9                           | 65.0                           | 76            |
| 90099002  | СТ | New Haven  | 85.7                 | 89                   | 71.2                   | 73.9                   | 69.9                           | 72.6                           | 76            |
| 90110124  | СТ | New London | 80.3                 | 84                   | 66.4                   | 69.5                   | 67.3                           | 70.4                           | 72            |
| 90131001  | СТ | Tolland    | 75.3                 | 77                   | 61.4                   | 62.8                   | 61.4                           | 62.8                           | 73            |
| 100010002 | DE | Kent       | 74.3                 | 78                   | 58.3                   | 61.2                   | 57.6                           | 60.5                           | 66            |
| 100031007 | DE | New Castle | 76.3                 | 80                   | 59.2                   | 62.0                   | 59.2                           | 62.0                           | 68            |
| 100031010 | DE | New Castle | 78.0                 | 78                   | 61.2                   | 61.2                   | 61.2                           | 61.2                           | 74            |
| 100031013 | DE | New Castle | 77.7                 | 80                   | 60.8                   | 62.6                   | 60.8                           | 62.6                           | 70            |
| 100051002 | DE | Sussex     | 77.3                 | 81                   | 59.7                   | 62.6                   | 59.7                           | 62.6                           | 65            |
| 100051003 | DE | Sussex     | 77.7                 | 81                   | 62.4                   | 65.1                   | 61.1                           | 63.7                           | 69            |
| 110010041 | DC | DC         | 76.0                 | 80                   | 58.7                   | 61.7                   | 58.7                           | 61.7                           | N/A           |
| 110010043 | DC | DC         | 80.7                 | 84                   | 62.3                   | 64.8                   | 62.3                           | 64.8                           | 70            |
| 120013011 | FL | Alachua    | 63.7                 | 65                   | 51.0                   | 52.0                   | 51.0                           | 52.0                           | 58            |
| 120030002 | FL | Baker      | 61.7                 | 63                   | 50.5                   | 51.6                   | 50.5                           | 51.6                           | 59            |
| 120050006 | FL | Вау        | 68.0                 | 69                   | 51.7                   | 52.4                   | 52.6                           | 53.4                           | 62            |
| 120090007 | FL | Brevard    | 64.0                 | 64                   | 52.2                   | 52.2                   | 51.6                           | 51.6                           | 58            |
| 120094001 | FL | Brevard    | 64.0                 | 65                   | 52.6                   | 53.4                   | 51.7                           | 52.5                           | 61            |
| 120110033 | FL | Broward    | 58.0                 | 59                   | 53.6                   | 54.5                   | 53.6                           | 54.5                           | 59            |
| 120112003 | FL | Broward    | 58.0                 | 58                   | 50.7                   | 50.7                   | 52.6                           | 52.6                           | N/A           |
| 120118002 | FL | Broward    | 59.3                 | 60                   | 53.1                   | 53.7                   | 55.7                           | 56.3                           | 62            |
| 120210004 | FL | Collier    | 59.5                 | 60                   | 49.8                   | 50.2                   | 51.2                           | 51.6                           | 57            |
| 120230002 | FL | Columbia   | 62.7                 | 64                   | 51.6                   | 52.7                   | 51.6                           | 52.7                           | N/A           |
| 120310077 | FL | Duval      | 63.3                 | 66                   | 49.8                   | 51.9                   | 51.2                           | 53.3                           | N/A           |
| 120310100 | FL | Duval      | 64.3                 | 67                   | 50.3                   | 52.5                   | 50.4                           | 52.5                           | N/A           |

| Site      | St | County       | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|--------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 120310106 | FL | Duval        | 63.0                 | 64                   | 51.4                   | 52.2                   | 51.4                           | 52.2                           | N/A           |
| 120330004 | FL | Escambia     | 68.7                 | 70                   | 54.0                   | 55.0                   | 55.8                           | 56.8                           | 64            |
| 120330018 | FL | Escambia     | 72.0                 | 73                   | 56.2                   | 57.0                   | 58.8                           | 59.6                           | 64            |
| 120550003 | FL | Highlands    | 63.3                 | 64                   | 52.8                   | 53.4                   | 52.8                           | 53.4                           | 60            |
| 120570081 | FL | Hillsborough | 71.7                 | 73                   | 60.6                   | 61.7                   | 60.8                           | 61.9                           | 68            |
| 120571035 | FL | Hillsborough | 68.3                 | 69                   | 57.5                   | 58.1                   | 58.4                           | 59.0                           | 66            |
| 120571065 | FL | Hillsborough | 70.7                 | 72                   | 59.9                   | 61.0                   | 60.7                           | 61.8                           | 66            |
| 120573002 | FL | Hillsborough | 71.5                 | 72                   | 58.5                   | 58.9                   | 58.5                           | 58.9                           | 66            |
| 120590004 | FL | Holmes       | 62.3                 | 63                   | 47.8                   | 48.3                   | 47.8                           | 48.3                           | 60            |
| 120619991 | FL | Indian River | 65.0                 | 65                   | 53.3                   | 53.3                   | 54.1                           | 54.1                           | 61            |
| 120690002 | FL | Lake         | 65.7                 | 66                   | 53.5                   | 53.7                   | 54.1                           | 54.3                           | 63            |
| 120712002 | FL | Lee          | 63.7                 | 64                   | 53.4                   | 53.7                   | 53.6                           | 53.8                           | 60            |
| 120713002 | FL | Lee          | 61.3                 | 62                   | 50.7                   | 51.3                   | 51.7                           | 52.3                           | 59            |
| 120730012 | FL | Leon         | 64.3                 | 66                   | 49.3                   | 50.6                   | 49.3                           | 50.6                           | 60            |
| 120730013 | FL | Leon         | 64.0                 | 65                   | 49.2                   | 50.0                   | 49.2                           | 50.0                           | N/A           |
| 120813002 | FL | Manatee      | 64.0                 | 65                   | 53.3                   | 54.2                   | 53.0                           | 53.8                           | 59            |
| 120814012 | FL | Manatee      | 67.0                 | 67                   | 55.4                   | 55.4                   | 55.5                           | 55.5                           | N/A           |
| 120830003 | FL | Marion       | 65.0                 | 66                   | 52.7                   | 53.5                   | 52.7                           | 53.5                           | 61            |
| 120830004 | FL | Marion       | 62.0                 | 63                   | 49.6                   | 50.4                   | 49.6                           | 50.4                           | 58            |
| 120860027 | FL | Miami-Dade   | 64.0                 | 65                   | 58.5                   | 59.4                   | 60.3                           | 61.2                           | 62            |
| 120860029 | FL | Miami-Dade   | 63.3                 | 64                   | 56.4                   | 57.0                   | 57.7                           | 58.4                           | 61            |
| 120910002 | FL | Okaloosa     | 66.0                 | 67                   | 51.2                   | 52.0                   | 51.3                           | 52.1                           | 62            |
| 120950008 | FL | Orange       | 71.0                 | 72                   | 58.0                   | 58.8                   | 58.0                           | 58.8                           | 62            |
| 120952002 | FL | Orange       | 71.7                 | 73                   | 60.0                   | 61.1                   | 60.0                           | 61.1                           | 62            |
| 120972002 | FL | Osceola      | 66.0                 | 66                   | 53.2                   | 53.2                   | 53.2                           | 53.2                           | 63            |
| 120990009 | FL | Palm Beach   | 62.7                 | 63                   | 54.1                   | 54.4                   | 54.1                           | 54.4                           | N/A           |
| 120990020 | FL | Palm Beach   | 61.7                 | 62                   | 54.0                   | 54.2                   | 54.3                           | 54.5                           | N/A           |
| 121010005 | FL | Pasco        | 66.7                 | 67                   | 53.9                   | 54.1                   | 53.9                           | 54.1                           | 61            |
| 121012001 | FL | Pasco        | 65.3                 | 67                   | 55.6                   | 57.1                   | 55.7                           | 57.1                           | 62            |
| 121030004 | FL | Pinellas     | 66.7                 | 67                   | 57.1                   | 57.3                   | 57.1                           | 57.3                           | 61            |
| 121030018 | FL | Pinellas     | 65.3                 | 66                   | 57.8                   | 58.4                   | 56.9                           | 57.5                           | 61            |
| 121035002 | FL | Pinellas     | 64.3                 | 65                   | 54.9                   | 55.5                   | 54.8                           | 55.4                           | 59            |
| 121056005 | FL | Polk         | 67.3                 | 68                   | 55.1                   | 55.7                   | 55.1                           | 55.7                           | 63            |
| 121056006 | FL | Polk         | 68.3                 | 69                   | 56.0                   | 56.6                   | 56.0                           | 56.6                           | 62            |
| 121130015 | FL | Santa Rosa   | 71.7                 | 74                   | 55.4                   | 57.2                   | 55.3                           | 57.1                           | 64            |
| 121151005 | FL | Sarasota     | 71.3                 | 72                   | 58.7                   | 59.3                   | 58.7                           | 59.2                           | 62            |
| 121151006 | FL | Sarasota     | 67.7                 | 68                   | 55.2                   | 55.4                   | 55.2                           | 55.5                           | 62            |
| 121152002 | FL | Sarasota     | 66.0                 | 67                   | 54.5                   | 55.3                   | 54.6                           | 55.5                           | 61            |
| 121171002 | FL | Seminole     | 67.3                 | 69                   | 55.1                   | 56.5                   | 55.1                           | 56.5                           | 61            |

| Site      | St | County    | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-----------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 121272001 | FL | Volusia   | 59.7                 | 60                   | 46.6                   | 46.9                   | 48.3                           | 48.6                           | 59            |
| 121275002 | FL | Volusia   | 63.3                 | 64                   | 50.4                   | 51.0                   | 51.6                           | 52.1                           | 59            |
| 121290001 | FL | Wakulla   | 63.7                 | 65                   | 50.8                   | 51.8                   | 50.0                           | 51.0                           | N/A           |
| 130210012 | GA | Bibb      | 72.3                 | 73                   | 51.3                   | 51.8                   | 51.3                           | 51.8                           | 65            |
| 130510021 | GA | Chatham   | 63.3                 | 64                   | 49.7                   | 50.3                   | 49.7                           | 50.3                           | 57            |
| 130550001 | GA | Chattooga | 66.3                 | 67                   | 50.1                   | 50.7                   | 50.1                           | 50.7                           | 62            |
| 130590002 | GA | Clarke    | 70.7                 | 73                   | 50.6                   | 52.3                   | 50.6                           | 52.3                           | 64            |
| 130670003 | GA | Cobb      | 76.0                 | 78                   | 55.4                   | 56.9                   | 55.4                           | 56.9                           | N/A           |
| 130730001 | GA | Columbia  | 68.7                 | 70                   | 50.6                   | 51.5                   | 50.6                           | 51.5                           | 61            |
| 130770002 | GA | Coweta    | 65.0                 | 67                   | 46.4                   | 47.8                   | 46.4                           | 47.8                           | 66            |
| 130850001 | GA | Dawson    | 66.3                 | 68                   | 47.7                   | 48.9                   | 47.7                           | 48.9                           | 65            |
| 130890002 | GA | DeKalb    | 77.3                 | 80                   | 56.1                   | 58.1                   | 56.1                           | 58.1                           | 71            |
| 130970004 | GA | Douglas   | 73.3                 | 75                   | 52.9                   | 54.2                   | 52.9                           | 54.2                           | 68            |
| 131210055 | GA | Fulton    | 81.0                 | 83                   | 59.2                   | 60.6                   | 59.2                           | 60.6                           | 75            |
| 131270006 | GA | Glynn     | 60.0                 | 61                   | 47.4                   | 48.2                   | 47.6                           | 48.4                           | 56            |
| 131350002 | GA | Gwinnett  | 76.7                 | 78                   | 54.5                   | 55.4                   | 54.5                           | 55.4                           | 72            |
| 131510002 | GA | Henry     | 80.0                 | 82                   | 57.7                   | 59.2                   | 57.7                           | 59.2                           | 74            |
| 132130003 | GA | Murray    | 70.3                 | 72                   | 51.2                   | 52.5                   | 51.2                           | 52.5                           | 65            |
| 132150008 | GA | Muscogee  | 66.0                 | 67                   | 50.2                   | 50.9                   | 50.2                           | 50.9                           | 62            |
| 132230003 | GA | Paulding  | 70.7                 | 72                   | 54.3                   | 55.3                   | 54.3                           | 55.3                           | 63            |
| 132450091 | GA | Richmond  | 70.0                 | 72                   | 51.9                   | 53.4                   | 51.9                           | 53.4                           | 62            |
| 132470001 | GA | Rockdale  | 77.0                 | 79                   | 54.4                   | 55.8                   | 54.4                           | 55.8                           | 74            |
| 132611001 | GA | Sumter    | 64.7                 | 66                   | 50.4                   | 51.4                   | 50.4                           | 51.4                           | 60            |
| 160010017 | ID | Ada       | 67.5                 | 68                   | 59.4                   | 59.8                   | 59.4                           | 59.8                           | 67            |
| 160010019 | ID | Ada       | 62.0                 | 62                   | 54.2                   | 54.2                   | 54.2                           | 54.2                           | N/A           |
| 160230101 | ID | Butte     | 62.3                 | 63                   | 59.6                   | 60.2                   | 59.6                           | 60.2                           | 60            |
| 160550003 | ID | Kootenai  | 56.0                 | 56                   | 47.9                   | 47.9                   | 47.9                           | 47.9                           | N/A           |
| 170010007 | IL | Adams     | 67.0                 | 69                   | 54.5                   | 56.2                   | 54.5                           | 56.2                           | 62            |
| 170190007 | IL | Champaign | 71.0                 | 71                   | 57.7                   | 57.7                   | 57.7                           | 57.7                           | 63            |
| 170230001 | IL | Clark     | 66.0                 | 66                   | 53.8                   | 53.8                   | 53.8                           | 53.8                           | 64            |
| 170310001 | IL | Cook      | 72.0                 | 74                   | 63.2                   | 64.9                   | 63.2                           | 64.9                           | 69            |
| 170310032 | IL | Cook      | 77.7                 | 81                   | 58.8                   | 61.3                   | 66.6                           | 69.5                           | 70            |
| 170310064 | IL | Cook      | 71.3                 | 75                   | 53.9                   | 56.7                   | 61.1                           | 64.3                           | N/A           |
| 170310076 | IL | Cook      | 71.7                 | 74                   | 62.7                   | 64.7                   | 62.7                           | 64.7                           | 69            |
| 170311003 | IL | Cook      | 69.7                 | 72                   | 53.3                   | 55.1                   | 62.4                           | 64.4                           | 69            |
| 170311601 | IL | Cook      | 71.3                 | 74                   | 61.5                   | 63.9                   | 61.5                           | 63.9                           | 69            |
| 170314002 | IL | Cook      | 71.7                 | 74                   | 55.8                   | 57.6                   | 62.3                           | 64.3                           | 66            |
| 170314007 | IL | Cook      | 65.7                 | 68                   | 49.2                   | 50.9                   | 58.0                           | 60.0                           | 71            |
| 170314201 | IL | Cook      | 75.7                 | 78                   | 56.7                   | 58.4                   | 66.8                           | 68.8                           | 71            |

| Site      | St | County      | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 170317002 | IL | Cook        | 76.0                 | 80                   | 55.7                   | 58.6                   | 66.8                           | 70.3                           | 72            |
| 170436001 | IL | DuPage      | 66.3                 | 68                   | 57.9                   | 59.4                   | 57.9                           | 59.4                           | 68            |
| 170491001 | IL | Effingham   | 68.3                 | 70                   | 55.5                   | 56.9                   | 55.5                           | 56.9                           | 64            |
| 170650002 | IL | Hamilton    | 74.3                 | 78                   | 60.7                   | 63.8                   | 60.7                           | 63.8                           | 65            |
| 170831001 | IL | Jersey      | 76.0                 | 79                   | 58.4                   | 60.7                   | 58.4                           | 60.7                           | 68            |
| 170859991 | IL | Jo Daviess  | 68.0                 | 68                   | 56.4                   | 56.4                   | 56.4                           | 56.4                           | 65            |
| 170890005 | IL | Kane        | 69.7                 | 71                   | 62.8                   | 63.9                   | 62.8                           | 63.9                           | 68            |
| 170971007 | IL | Lake        | 79.3                 | 82                   | 57.5                   | 59.5                   | 63.4                           | 65.6                           | 73            |
| 171110001 | IL | McHenry     | 69.7                 | 71                   | 61.8                   | 62.9                   | 61.8                           | 62.9                           | 68            |
| 171132003 | IL | McLean      | 70.3                 | 72                   | 56.0                   | 57.4                   | 56.0                           | 57.4                           | 64            |
| 171150013 | IL | Macon       | 71.3                 | 73                   | 58.0                   | 59.4                   | 58.0                           | 59.4                           | 66            |
| 171170002 | IL | Macoupin    | 71.3                 | 73                   | 53.8                   | 55.1                   | 53.8                           | 55.1                           | 64            |
| 171190008 | IL | Madison     | 77.0                 | 80                   | 59.5                   | 61.8                   | 59.5                           | 61.8                           | 71            |
| 171191009 | IL | Madison     | 78.3                 | 80                   | 59.9                   | 61.2                   | 59.9                           | 61.2                           | 67            |
| 171193007 | IL | Madison     | 76.7                 | 79                   | 59.3                   | 61.0                   | 59.3                           | 61.0                           | 71            |
| 171199991 | IL | Madison     | 76.0                 | 76                   | 56.7                   | 56.7                   | 56.7                           | 56.7                           | 67            |
| 171430024 | IL | Peoria      | 61.7                 | 63                   | 51.3                   | 52.4                   | 51.3                           | 52.4                           | 64            |
| 171431001 | IL | Peoria      | 70.7                 | 72                   | 58.8                   | 59.8                   | 58.8                           | 59.8                           | N/A           |
| 171570001 | IL | Randolph    | 67.7                 | 70                   | 54.7                   | 56.6                   | 54.7                           | 56.6                           | 67            |
| 171613002 | IL | Rock Island | 58.3                 | 60                   | 49.2                   | 50.6                   | 49.2                           | 50.6                           | 62            |
| 171630010 | IL | Saint Clair | 74.7                 | 77                   | 56.9                   | 58.7                   | 56.9                           | 58.7                           | 68            |
| 171670014 | IL | Sangamon    | 72.0                 | 72                   | 56.8                   | 56.8                   | 56.8                           | 56.8                           | 63            |
| 171971011 | IL | Will        | 64.0                 | 65                   | 55.6                   | 56.5                   | 55.6                           | 56.5                           | 64            |
| 172012001 | IL | Winnebago   | 67.3                 | 68                   | 57.5                   | 58.0                   | 57.5                           | 58.0                           | 68            |
| 180030002 | IN | Allen       | 68.3                 | 70                   | 55.2                   | 56.6                   | 55.2                           | 56.6                           | 63            |
| 180030004 | IN | Allen       | 69.3                 | 71                   | 56.1                   | 57.4                   | 56.1                           | 57.4                           | 63            |
| 180110001 | IN | Boone       | 72.3                 | 74                   | 59.4                   | 60.8                   | 59.4                           | 60.8                           | 66            |
| 180150002 | IN | Carroll     | 69.0                 | 71                   | 56.8                   | 58.5                   | 56.8                           | 58.5                           | 64            |
| 180190008 | IN | Clark       | 78.0                 | 81                   | 62.1                   | 64.5                   | 62.1                           | 64.5                           | 70            |
| 180350010 | IN | Delaware    | 68.7                 | 70                   | 54.4                   | 55.5                   | 54.4                           | 55.5                           | 59            |
| 180390007 | IN | Elkhart     | 67.7                 | 70                   | 54.6                   | 56.5                   | 54.6                           | 56.5                           | 61            |
| 180431004 | IN | Floyd       | 76.0                 | 79                   | 61.7                   | 64.1                   | 61.7                           | 64.1                           | 69            |
| 180550001 | IN | Greene      | 77.0                 | 78                   | 63.5                   | 64.3                   | 63.5                           | 64.3                           | 66            |
| 180570006 | IN | Hamilton    | 71.0                 | 72                   | 57.2                   | 58.0                   | 57.2                           | 58.0                           | 63            |
| 180590003 | IN | Hancock     | 66.7                 | 69                   | 53.4                   | 55.2                   | 53.4                           | 55.2                           | N/A           |
| 180630004 | IN | Hendricks   | 67.0                 | 68                   | 55.5                   | 56.3                   | 55.5                           | 56.3                           | 60            |
| 180690002 | IN | Huntington  | 65.0                 | 66                   | 53.0                   | 53.8                   | 53.0                           | 53.8                           | 58            |
| 180710001 | IN | Jackson     | 66.0                 | 67                   | 53.0                   | 53.8                   | 53.0                           | 53.8                           | 66            |
| 180810002 | IN | Johnson     | 69.0                 | 70                   | 56.0                   | 56.8                   | 56.0                           | 56.8                           | 60            |

| Site      | St | County      | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 180839991 | IN | Кпох        | 73.0                 | 73                   | 59.2                   | 59.2                   | 59.2                           | 59.2                           | 65            |
| 180890022 | IN | Lake        | 66.7                 | 69                   | 55.2                   | 57.1                   | 58.3                           | 60.3                           | 67            |
| 180890030 | IN | Lake        | 69.7                 | 73                   | 58.9                   | 61.7                   | 61.9                           | 64.8                           | N/A           |
| 180892008 | IN | Lake        | 68.0                 | 68                   | 57.5                   | 57.5                   | 60.4                           | 60.4                           | 65            |
| 180910005 | IN | LaPorte     | 79.3                 | 83                   | 65.4                   | 68.5                   | 67.2                           | 70.4                           | N/A           |
| 180910010 | IN | LaPorte     | 69.7                 | 72                   | 59.2                   | 61.2                   | 58.9                           | 60.9                           | 63            |
| 180950010 | IN | Madison     | 68.3                 | 70                   | 54.2                   | 55.5                   | 54.2                           | 55.5                           | 57            |
| 180970050 | IN | Marion      | 72.7                 | 74                   | 59.1                   | 60.2                   | 59.1                           | 60.2                           | 69            |
| 180970057 | IN | Marion      | 69.0                 | 71                   | 57.8                   | 59.4                   | 57.8                           | 59.4                           | 65            |
| 180970073 | IN | Marion      | 72.0                 | 74                   | 59.1                   | 60.7                   | 59.1                           | 60.7                           | 65            |
| 180970078 | IN | Marion      | 69.7                 | 72                   | 58.3                   | 60.3                   | 58.3                           | 60.3                           | N/A           |
| 181090005 | IN | Morgan      | 69.0                 | 70                   | 55.1                   | 55.9                   | 55.1                           | 55.9                           | 64            |
| 181230009 | IN | Perry       | 72.7                 | 75                   | 53.6                   | 55.3                   | 53.6                           | 55.3                           | 67            |
| 181270024 | IN | Porter      | 70.3                 | 72                   | 57.6                   | 59.0                   | 61.8                           | 63.3                           | 69            |
| 181270026 | IN | Porter      | 63.0                 | 64                   | 54.4                   | 55.3                   | 54.4                           | 55.3                           | 66            |
| 181290003 | IN | Posey       | 70.3                 | 71                   | 56.5                   | 57.0                   | 56.5                           | 57.0                           | 66            |
| 181410010 | IN | St. Joseph  | 62.7                 | 64                   | 51.2                   | 52.3                   | 51.2                           | 52.3                           | 62            |
| 181410015 | IN | St. Joseph  | 69.3                 | 73                   | 56.9                   | 59.9                   | 56.9                           | 59.9                           | 68            |
| 181411007 | IN | St. Joseph  | 64.0                 | 64                   | 52.5                   | 52.5                   | 52.5                           | 52.5                           | N/A           |
| 181450001 | IN | Shelby      | 74.0                 | 75                   | 60.6                   | 61.4                   | 60.6                           | 61.4                           | 62            |
| 181630013 | IN | Vanderburgh | 71.7                 | 73                   | 56.2                   | 57.3                   | 56.2                           | 57.3                           | 69            |
| 181630021 | IN | Vanderburgh | 74.0                 | 74                   | 58.6                   | 58.6                   | 58.6                           | 58.6                           | 70            |
| 181670018 | IN | Vigo        | 65.7                 | 68                   | 52.5                   | 54.3                   | 52.5                           | 54.3                           | 65            |
| 181670024 | IN | Vigo        | 64.0                 | 64                   | 51.3                   | 51.3                   | 51.3                           | 51.3                           | 61            |
| 181730008 | IN | Warrick     | 71.0                 | 73                   | 54.9                   | 56.5                   | 54.9                           | 56.5                           | 68            |
| 181730009 | IN | Warrick     | 69.7                 | 72                   | 55.0                   | 56.8                   | 55.0                           | 56.8                           | 66            |
| 181730011 | IN | Warrick     | 71.0                 | 74                   | 54.2                   | 56.5                   | 54.2                           | 56.5                           | 67            |
| 190170011 | IA | Bremer      | 64.0                 | 65                   | 50.9                   | 51.7                   | 50.9                           | 51.7                           | 60            |
| 190450021 | IA | Clinton     | 66.7                 | 68                   | 55.9                   | 57.0                   | 55.9                           | 57.0                           | 63            |
| 190850007 | IA | Harrison    | 66.7                 | 68                   | 53.9                   | 54.9                   | 53.9                           | 54.9                           | 62            |
| 190851101 | IA | Harrison    | 67.7                 | 69                   | 54.7                   | 55.7                   | 54.7                           | 55.7                           | 62            |
| 191130028 | IA | Linn        | 64.3                 | 66                   | 54.1                   | 55.5                   | 54.1                           | 55.5                           | 61            |
| 191130033 | IA | Linn        | 64.0                 | 65                   | 51.9                   | 52.7                   | 51.9                           | 52.7                           | 61            |
| 191130040 | IA | Linn        | 62.7                 | 64                   | 52.8                   | 53.9                   | 52.8                           | 53.9                           | 61            |
| 191370002 | IA | Montgomery  | 65.3                 | 67                   | 54.1                   | 55.5                   | 54.1                           | 55.5                           | 60            |
| 191471002 | IA | Palo Alto   | 66.7                 | 68                   | 55.2                   | 56.3                   | 55.2                           | 56.3                           | 61            |
| 191530030 | IA | Polk        | 59.7                 | 61                   | 48.1                   | 49.2                   | 48.1                           | 49.2                           | 60            |
| 191630014 | IA | Scott       | 63.0                 | 63                   | 52.4                   | 52.4                   | 52.4                           | 52.4                           | 63            |
| 191630015 | IA | Scott       | 66.0                 | 67                   | 55.7                   | 56.5                   | 55.7                           | 56.5                           | 60            |

| Site      | St | County      | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 191690011 | IA | Story       | 61.3                 | 62                   | 49.1                   | 49.7                   | 49.1                           | 49.7                           | 60            |
| 191770006 | IA | Van Buren   | 65.7                 | 68                   | 53.0                   | 54.9                   | 53.0                           | 54.9                           | 60            |
| 191810022 | IA | Warren      | 63.7                 | 65                   | 51.8                   | 52.9                   | 51.8                           | 52.9                           | 58            |
| 200910010 | KS | Johnson     | 72.7                 | 76                   | 59.0                   | 61.7                   | 59.0                           | 61.7                           | 60            |
| 201030003 | KS | Leavenworth | 72.0                 | 74                   | 56.3                   | 57.8                   | 56.3                           | 57.8                           | 63            |
| 201070002 | KS | Linn        | 70.0                 | 72                   | 55.4                   | 57.0                   | 55.4                           | 57.0                           | N/A           |
| 201730010 | KS | Sedgwick    | 76.3                 | 78                   | 61.9                   | 63.2                   | 61.9                           | 63.2                           | 65            |
| 201730018 | KS | Sedgwick    | 75.7                 | 77                   | 61.6                   | 62.6                   | 61.6                           | 62.6                           | 65            |
| 201770013 | KS | Shawnee     | 71.7                 | 74                   | 56.0                   | 57.8                   | 56.0                           | 57.8                           | 63            |
| 201910002 | KS | Sumner      | 76.3                 | 78                   | 63.0                   | 64.4                   | 63.0                           | 64.4                           | 64            |
| 201950001 | KS | Trego       | 72.3                 | 74                   | 64.3                   | 65.9                   | 64.3                           | 65.9                           | 63            |
| 202090021 | KS | Wyandotte   | 65.7                 | 70                   | 52.8                   | 56.3                   | 52.8                           | 56.3                           | 63            |
| 210130002 | KY | Bell        | 63.3                 | 65                   | 49.3                   | 50.6                   | 49.3                           | 50.6                           | 61            |
| 210150003 | KY | Boone       | 68.0                 | 70                   | 53.5                   | 55.1                   | 53.5                           | 55.1                           | 63            |
| 210190017 | KY | Boyd        | 70.0                 | 72                   | 57.7                   | 59.3                   | 57.7                           | 59.3                           | 66            |
| 210290006 | KY | Bullitt     | 72.3                 | 75                   | 58.0                   | 60.1                   | 58.0                           | 60.1                           | 66            |
| 210373002 | KY | Campbell    | 76.7                 | 79                   | 61.3                   | 63.1                   | 61.3                           | 63.1                           | 70            |
| 210430500 | KY | Carter      | 67.0                 | 69                   | 53.6                   | 55.2                   | 53.6                           | 55.2                           | 61            |
| 210470006 | KY | Christian   | 70.7                 | 73                   | 55.6                   | 57.4                   | 55.6                           | 57.4                           | 62            |
| 210590005 | KY | Daviess     | 76.3                 | 79                   | 57.1                   | 59.1                   | 57.1                           | 59.1                           | 65            |
| 210610501 | KY | Edmonson    | 72.0                 | 75                   | 56.3                   | 58.6                   | 56.3                           | 58.6                           | 64            |
| 210670012 | KY | Fayette     | 71.3                 | 74                   | 57.0                   | 59.1                   | 57.0                           | 59.1                           | 67            |
| 210890007 | KY | Greenup     | 69.7                 | 72                   | 57.4                   | 59.2                   | 57.4                           | 59.2                           | 63            |
| 210910012 | KY | Hancock     | 73.7                 | 76                   | 54.1                   | 55.8                   | 54.1                           | 55.8                           | 68            |
| 210930006 | KY | Hardin      | 70.3                 | 73                   | 54.2                   | 56.3                   | 54.2                           | 56.3                           | 65            |
| 211010014 | KY | Henderson   | 76.3                 | 79                   | 59.7                   | 61.8                   | 59.7                           | 61.8                           | 69            |
| 211110027 | KY | Jefferson   | 77.0                 | 80                   | 62.5                   | 64.9                   | 62.5                           | 64.9                           | 69            |
| 211110051 | KY | Jefferson   | 78.5                 | 79                   | 64.4                   | 64.8                   | 64.4                           | 64.8                           | 69            |
| 211110067 | KY | Jefferson   | 85.0                 | 85                   | 70.1                   | 70.1                   | 70.1                           | 70.1                           | 74            |
| 211130001 | KY | Jessamine   | 70.0                 | 72                   | 55.3                   | 56.9                   | 55.3                           | 56.9                           | 65            |
| 211390003 | KY | Livingston  | 72.3                 | 75                   | 57.1                   | 59.2                   | 57.1                           | 59.2                           | 65            |
| 211451024 | KY | McCracken   | 73.7                 | 77                   | 59.3                   | 62.0                   | 59.3                           | 62.0                           | 63            |
| 211850004 | KY | Oldham      | 82.0                 | 86                   | 63.5                   | 66.6                   | 63.5                           | 66.6                           | 70            |
| 211930003 | KY | Perry       | 65.3                 | 68                   | 54.3                   | 56.5                   | 54.3                           | 56.5                           | 58            |
| 211950002 | KY | Pike        | 65.7                 | 68                   | 53.1                   | 55.0                   | 53.1                           | 55.0                           | 60            |
| 211990003 | KY | Pulaski     | 66.7                 | 69                   | 51.1                   | 52.9                   | 51.1                           | 52.9                           | 62            |
| 212130004 | KY | Simpson     | 69.3                 | 71                   | 52.9                   | 54.2                   | 52.9                           | 54.2                           | 64            |
| 212218001 | KY | Trigg       | 69.0                 | 69                   | 54.8                   | 54.8                   | 54.8                           | 54.8                           | N/A           |
| 212270008 | KY | Warren      | 64.0                 | 64                   | 49.5                   | 49.5                   | 49.5                           | 49.5                           | N/A           |

| Site      | St | County                  | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-------------------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 212299991 | KY | Washington              | 69.0                 | 69                   | 54.4                   | 54.4                   | 54.4                           | 54.4                           | 64            |
| 220050004 | LA | Ascension               | 74.7                 | 77                   | 63.5                   | 65.4                   | 63.5                           | 65.4                           | 71            |
| 220150008 | LA | Bossier                 | 77.3                 | 80                   | 63.4                   | 65.6                   | 63.4                           | 65.6                           | 65            |
| 220170001 | LA | Caddo                   | 74.7                 | 76                   | 61.0                   | 62.0                   | 61.0                           | 62.0                           | 64            |
| 220190002 | LA | Calcasieu               | 72.7                 | 75                   | 66.5                   | 68.6                   | 66.5                           | 68.6                           | 68            |
| 220190008 | LA | Calcasieu               | 67.7                 | 69                   | 61.7                   | 62.8                   | 61.7                           | 62.8                           | N/A           |
| 220190009 | LA | Calcasieu               | 72.0                 | 74                   | 63.6                   | 65.4                   | 63.6                           | 65.4                           | 64            |
| 220330003 | LA | E. Baton Rouge          | 78.7                 | 82                   | 67.8                   | 70.6                   | 67.8                           | 70.6                           | 72            |
| 220330009 | LA | E. Baton Rouge          | 75.0                 | 77                   | 64.1                   | 65.8                   | 64.1                           | 65.8                           | 66            |
| 220330013 | LA | E. Baton Rouge          | 71.0                 | 72                   | 60.5                   | 61.4                   | 60.5                           | 61.4                           | N/A           |
| 220470009 | LA | Iberville               | 73.3                 | 75                   | 63.5                   | 65.0                   | 63.5                           | 65.0                           | N/A           |
| 220470012 | LA | Iberville               | 76.0                 | 77                   | 65.7                   | 66.6                   | 65.7                           | 66.6                           | N/A           |
| 220511001 | LA | Jefferson               | 73.7                 | 76                   | 66.0                   | 68.0                   | 66.6                           | 68.6                           | 68            |
| 220550007 | LA | Lafayette               | 71.0                 | 72                   | 59.8                   | 60.7                   | 59.8                           | 60.7                           | 66            |
| 220570004 | LA | Lafourche               | 72.3                 | 74                   | 64.1                   | 65.6                   | 64.1                           | 65.6                           | 65            |
| 220630002 | LA | Livingston              | 74.0                 | 76                   | 63.3                   | 65.0                   | 63.3                           | 65.0                           | 70            |
| 220710012 | LA | Orleans                 | 69.3                 | 70                   | 62.1                   | 62.7                   | 62.2                           | 62.8                           | N/A           |
| 220730004 | LA | Ouachita                | 63.3                 | 66                   | 52.8                   | 55.1                   | 52.8                           | 55.1                           | N/A           |
| 220770001 | LA | Pointe Coupee           | 75.3                 | 77                   | 63.3                   | 64.7                   | 63.3                           | 64.7                           | 68            |
| 220870004 | LA | St. Bernard             | 69.0                 | 69                   | 61.8                   | 61.8                   | 61.9                           | 61.9                           | 66            |
| 220890003 | LA | St. Charles             | 70.0                 | 72                   | 62.7                   | 64.5                   | 63.0                           | 64.8                           | N/A           |
| 220930002 | LA | St. James               | 68.0                 | 69                   | 60.0                   | 60.9                   | 60.0                           | 60.9                           | 65            |
| 220950002 | LA | St. John the<br>Baptist | 74.0                 | 75                   | 66.3                   | 67.2                   | 66.3                           | 67.2                           | 66            |
| 221030002 | LA | St. Tammany             | 73.3                 | 74                   | 64.1                   | 64.7                   | 64.0                           | 64.6                           | 68            |
| 221210001 | LA | West Baton<br>Rouge     | 70.3                 | 72                   | 60.0                   | 61.5                   | 60.0                           | 61.5                           | 66            |
| 230010014 | ME | Androscoggin            | 61.0                 | 62                   | 49.4                   | 50.2                   | 49.3                           | 50.1                           | 60            |
| 230052003 | ME | Cumberland              | 69.3                 | 70                   | 56.2                   | 56.8                   | 56.7                           | 57.3                           | 65            |
| 230090102 | ME | Hancock                 | 71.7                 | 74                   | 61.3                   | 63.2                   | 59.9                           | 61.8                           | 66            |
| 230090103 | ME | Hancock                 | 66.3                 | 69                   | 55.0                   | 57.3                   | 55.3                           | 57.5                           | 62            |
| 230112005 | ME | Kennebec                | 62.7                 | 64                   | 50.5                   | 51.5                   | 50.5                           | 51.5                           | 59            |
| 230130004 | ME | Кпох                    | 67.7                 | 69                   | 54.7                   | 55.7                   | 54.8                           | 55.8                           | 63            |
| 230173001 | ME | Oxford                  | 54.3                 | 55                   | 43.7                   | 44.3                   | 43.7                           | 44.3                           | N/A           |
| 230194008 | ME | Penobscot               | 57.7                 | 59                   | 46.6                   | 47.6                   | 46.6                           | 47.6                           | 58            |
| 230230006 | ME | Sagadahoc               | 61.0                 | 61                   | 48.7                   | 48.7                   | 48.7                           | 48.7                           | N/A           |
| 230310038 | ME | York                    | 60.3                 | 62                   | 48.2                   | 49.6                   | 48.2                           | 49.6                           | 58            |
| 230310040 | ME | York                    | 64.3                 | 65                   | 51.5                   | 52.0                   | 51.5                           | 52.0                           | 61            |
| 230312002 | ME | York                    | 73.7                 | 75                   | 60.1                   | 61.2                   | 59.6                           | 60.7                           | 67            |

| Site      | St | County           | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|------------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 240030014 | MD | Anne Arundel     | 83.0                 | 87                   | 63.4                   | 66.4                   | 63.4                           | 66.4                           | N/A           |
| 240051007 | MD | Baltimore        | 79.0                 | 82                   | 63.9                   | 66.3                   | 63.9                           | 66.3                           | 72            |
| 240053001 | MD | Baltimore        | 80.7                 | 84                   | 64.9                   | 67.6                   | 65.3                           | 67.9                           | 72            |
| 240090011 | MD | Calvert          | 79.7                 | 83                   | 64.2                   | 66.9                   | 63.2                           | 65.9                           | 69            |
| 240130001 | MD | Carroll          | 76.3                 | 79                   | 58.8                   | 60.9                   | 58.8                           | 60.9                           | 68            |
| 240150003 | MD | Cecil            | 83.0                 | 86                   | 64.5                   | 66.8                   | 64.5                           | 66.8                           | 76            |
| 240170010 | MD | Charles          | 79.0                 | 83                   | 61.6                   | 64.7                   | 61.6                           | 64.7                           | 70            |
| 240199991 | MD | Dorchester       | 75.0                 | 75                   | 60.7                   | 60.7                   | 59.4                           | 59.4                           | 66            |
| 240210037 | MD | Frederick        | 76.3                 | 79                   | 59.6                   | 61.8                   | 59.6                           | 61.8                           | 67            |
| 240230002 | MD | Garrett          | 72.0                 | 75                   | 55.1                   | 57.4                   | 55.1                           | 57.4                           | 65            |
| 240251001 | MD | Harford          | 90.0                 | 93                   | 71.4                   | 73.8                   | 70.9                           | 73.3                           | 73            |
| 240259001 | MD | Harford          | 79.3                 | 82                   | 61.8                   | 63.9                   | 62.2                           | 64.3                           | 73            |
| 240290002 | MD | Kent             | 78.7                 | 82                   | 61.2                   | 63.7                   | 61.2                           | 63.7                           | 70            |
| 240313001 | MD | Montgomery       | 75.7                 | 77                   | 60.0                   | 61.0                   | 60.0                           | 61.0                           | 68            |
| 240330030 | MD | Prince George's  | 79.0                 | 82                   | 60.5                   | 62.8                   | 60.5                           | 62.8                           | 69            |
| 240338003 | MD | Prince George's  | 82.3                 | 87                   | 63.2                   | 66.8                   | 63.2                           | 66.8                           | 71            |
| 240339991 | MD | Prince George's  | 80.0                 | 80                   | 61.0                   | 61.0                   | 61.0                           | 61.0                           | 68            |
| 240430009 | MD | Washington       | 72.7                 | 75                   | 56.0                   | 57.8                   | 56.0                           | 57.8                           | 66            |
| 245100054 | MD | Baltimore (City) | 73.7                 | 75                   | 59.9                   | 61.0                   | 59.4                           | 60.4                           | 69            |
| 250010002 | MA | Barnstable       | 73.0                 | 75                   | 59.6                   | 61.3                   | 60.5                           | 62.2                           | N/A           |
| 250034002 | MA | Berkshire        | 69.0                 | 71                   | 56.1                   | 57.7                   | 56.1                           | 57.7                           | N/A           |
| 250051002 | MA | Bristol          | 74.0                 | 74                   | 61.6                   | 61.6                   | 61.2                           | 61.2                           | N/A           |
| 250070001 | MA | Dukes            | 77.0                 | 80                   | 64.1                   | 66.6                   | 64.1                           | 66.6                           | N/A           |
| 250092006 | MA | Essex            | 71.0                 | 71                   | 57.5                   | 57.5                   | 58.4                           | 58.4                           | 65            |
| 250094005 | MA | Essex            | 70.0                 | 70                   | 57.2                   | 57.2                   | 57.2                           | 57.2                           | 64            |
| 250095005 | MA | Essex            | 69.3                 | 70                   | 56.2                   | 56.8                   | 56.2                           | 56.8                           | 62            |
| 250130008 | MA | Hampden          | 73.7                 | 74                   | 59.3                   | 59.5                   | 59.3                           | 59.5                           | 70            |
| 250150103 | MA | Hampshire        | 64.7                 | 66                   | 51.9                   | 53.0                   | 51.9                           | 53.0                           | N/A           |
| 250154002 | MA | Hampshire        | 71.3                 | 72                   | 57.0                   | 57.5                   | 57.0                           | 57.5                           | 70            |
| 250170009 | MA | Middlesex        | 67.3                 | 68                   | 54.0                   | 54.5                   | 54.0                           | 54.5                           | 63            |
| 250171102 | MA | Middlesex        | 67.0                 | 67                   | 53.4                   | 53.4                   | 53.4                           | 53.4                           | N/A           |
| 250213003 | MA | Norfolk          | 72.3                 | 73                   | 59.6                   | 60.2                   | 59.6                           | 60.2                           | 67            |
| 250250041 | MA | Suffolk          | 68.3                 | 70                   | 56.4                   | 57.8                   | 55.5                           | 56.9                           | N/A           |
| 250250042 | MA | Suffolk          | 60.7                 | 61                   | 49.6                   | 49.9                   | 50.1                           | 50.4                           | 56            |
| 250270015 | MA | Worcester        | 68.3                 | 70                   | 54.6                   | 55.9                   | 54.6                           | 55.9                           | 64            |
| 250270024 | MA | Worcester        | 69.0                 | 70                   | 54.9                   | 55.7                   | 54.9                           | 55.7                           | 64            |
| 260050003 | MI | Allegan          | 82.7                 | 86                   | 69.0                   | 71.8                   | 69.0                           | 71.7                           | 75            |
| 260190003 | MI | Benzie           | 73.0                 | 75                   | 60.9                   | 62.6                   | 60.6                           | 62.3                           | 69            |
| 260210014 | MI | Berrien          | 79.7                 | 82                   | 67.4                   | 69.3                   | 66.9                           | 68.8                           | 74            |

| Site      | St | County      | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 260270003 | MI | Cass        | 76.7                 | 78                   | 62.0                   | 63.1                   | 62.0                           | 63.1                           | 70            |
| 260370001 | MI | Clinton     | 69.3                 | 71                   | 56.2                   | 57.6                   | 56.2                           | 57.6                           | 67            |
| 260490021 | MI | Genesee     | 73.0                 | 76                   | 60.1                   | 62.5                   | 60.1                           | 62.5                           | 68            |
| 260492001 | MI | Genesee     | 72.3                 | 74                   | 58.8                   | 60.2                   | 58.8                           | 60.2                           | 69            |
| 260630007 | MI | Huron       | 71.3                 | 74                   | 59.5                   | 61.7                   | 59.0                           | 61.2                           | 68            |
| 260650012 | MI | Ingham      | 70.3                 | 72                   | 56.8                   | 58.2                   | 56.8                           | 58.2                           | 67            |
| 260770008 | MI | Kalamazoo   | 73.7                 | 75                   | 59.9                   | 60.9                   | 59.9                           | 60.9                           | 69            |
| 260810020 | MI | Kent        | 73.0                 | 75                   | 59.8                   | 61.4                   | 59.8                           | 61.4                           | 69            |
| 260810022 | MI | Kent        | 72.7                 | 74                   | 58.3                   | 59.3                   | 58.3                           | 59.3                           | 67            |
| 260910007 | MI | Lenawee     | 75.5                 | 76                   | 60.6                   | 61.0                   | 60.6                           | 61.0                           | 67            |
| 260990009 | MI | Macomb      | 76.7                 | 78                   | 65.1                   | 66.2                   | 64.5                           | 65.6                           | 72            |
| 260991003 | MI | Macomb      | 77.3                 | 79                   | 66.7                   | 68.1                   | 66.7                           | 68.1                           | 67            |
| 261010922 | MI | Manistee    | 72.3                 | 74                   | 60.2                   | 61.6                   | 60.5                           | 61.9                           | 68            |
| 261050007 | MI | Mason       | 73.3                 | 75                   | 60.7                   | 62.1                   | 60.7                           | 62.1                           | 70            |
| 261130001 | MI | Missaukee   | 68.3                 | 70                   | 56.9                   | 58.3                   | 56.9                           | 58.3                           | 67            |
| 261210039 | MI | Muskegon    | 79.7                 | 82                   | 65.6                   | 67.5                   | 65.8                           | 67.7                           | 75            |
| 261250001 | MI | Oakland     | 76.3                 | 78                   | 64.1                   | 65.6                   | 64.1                           | 65.6                           | 69            |
| 261390005 | MI | Ottawa      | 76.0                 | 78                   | 62.3                   | 64.0                   | 62.3                           | 64.0                           | 70            |
| 261470005 | MI | St. Clair   | 75.3                 | 77                   | 63.7                   | 65.1                   | 62.5                           | 63.9                           | 73            |
| 261530001 | MI | Schoolcraft | 71.7                 | 75                   | 59.4                   | 62.1                   | 59.4                           | 62.1                           | 70            |
| 261610008 | MI | Washtenaw   | 73.3                 | 76                   | 60.7                   | 62.9                   | 60.7                           | 62.9                           | 67            |
| 261630001 | MI | Wayne       | 71.7                 | 74                   | 60.5                   | 62.4                   | 60.5                           | 62.4                           | 65            |
| 261630019 | MI | Wayne       | 78.7                 | 81                   | 69.0                   | 71.0                   | 69.0                           | 71.0                           | 72            |
| 270031001 | MN | Anoka       | 67.0                 | 67                   | 55.1                   | 55.1                   | 55.1                           | 55.1                           | 60            |
| 270031002 | MN | Anoka       | 66.3                 | 67                   | 57.3                   | 57.9                   | 57.3                           | 57.9                           | 63            |
| 270353204 | MN | Crow Wing   | 62.0                 | 62                   | 50.7                   | 50.7                   | 50.7                           | 50.7                           | 59            |
| 270495302 | MN | Goodhue     | 62.5                 | 63                   | 52.2                   | 52.6                   | 52.2                           | 52.6                           | 61            |
| 270834210 | MN | Lyon        | 64.5                 | 65                   | 54.1                   | 54.5                   | 54.1                           | 54.5                           | 62            |
| 270953051 | MN | Mille Lacs  | 59.7                 | 60                   | 48.6                   | 48.8                   | 48.9                           | 49.2                           | 60            |
| 271095008 | MN | Olmsted     | 63.5                 | 64                   | 52.3                   | 52.7                   | 52.3                           | 52.7                           | 61            |
| 271377550 | MN | Saint Louis | 49.7                 | 50                   | 42.0                   | 42.2                   | 42.2                           | 42.5                           | 53            |
| 271390505 | MN | Scott       | 63.5                 | 65                   | 54.3                   | 55.5                   | 54.3                           | 55.5                           | 60            |
| 271453052 | MN | Stearns     | 61.5                 | 62                   | 52.7                   | 53.1                   | 52.7                           | 53.1                           | 60            |
| 271713201 | MN | Wright      | 63.5                 | 64                   | 54.6                   | 55.0                   | 54.6                           | 55.0                           | 61            |
| 280110001 | MS | Bolivar     | 71.7                 | 74                   | 60.9                   | 62.9                   | 60.9                           | 62.9                           | 62            |
| 280330002 | MS | DeSoto      | 72.3                 | 74                   | 55.4                   | 56.7                   | 55.4                           | 56.7                           | 64            |
| 280450003 | MS | Hancock     | 66.3                 | 67                   | 53.4                   | 53.9                   | 53.9                           | 54.4                           | 63            |
| 280470008 | MS | Harrison    | 72.3                 | 75                   | 55.9                   | 58.0                   | 57.7                           | 59.9                           | 67            |
| 280490010 | MS | Hinds       | 67.0                 | 68                   | 50.0                   | 50.7                   | 50.0                           | 50.7                           | N/A           |

| Site      | St | County              | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|---------------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 280590006 | MS | Jackson             | 71.7                 | 73                   | 56.9                   | 58.0                   | 57.1                           | 58.2                           | 67            |
| 280750003 | MS | Lauderdale          | 62.7                 | 63                   | 50.0                   | 50.2                   | 50.0                           | 50.2                           | 57            |
| 280810005 | MS | Lee                 | 65.0                 | 66                   | 49.7                   | 50.5                   | 49.7                           | 50.5                           | 59            |
| 281619991 | MS | Yalobusha           | 63.0                 | 63                   | 51.4                   | 51.4                   | 51.4                           | 51.4                           | 57            |
| 290030001 | MO | Andrew              | 73.3                 | 75                   | 58.3                   | 59.6                   | 58.3                           | 59.6                           | 63            |
| 290190011 | MO | Boone               | 69.0                 | 72                   | 54.0                   | 56.3                   | 54.0                           | 56.3                           | 64            |
| 290270002 | MO | Callaway            | 67.7                 | 70                   | 53.5                   | 55.3                   | 53.5                           | 55.3                           | 64            |
| 290370003 | MO | Cass                | 70.0                 | 72                   | 56.3                   | 57.9                   | 56.3                           | 57.9                           | 63            |
| 290390001 | MO | Cedar               | 71.7                 | 74                   | 58.0                   | 59.9                   | 58.0                           | 59.9                           | 61            |
| 290470003 | MO | Clay                | 77.0                 | 79                   | 61.9                   | 63.5                   | 61.9                           | 63.5                           | 65            |
| 290470005 | MO | Clay                | 75.3                 | 77                   | 59.8                   | 61.1                   | 59.8                           | 61.1                           | 64            |
| 290470006 | MO | Clay                | 77.7                 | 80                   | 61.7                   | 63.5                   | 61.7                           | 63.5                           | 67            |
| 290490001 | MO | Clinton             | 78.0                 | 80                   | 61.3                   | 62.9                   | 61.3                           | 62.9                           | 67            |
| 290770036 | MO | Greene              | 69.3                 | 71                   | 54.5                   | 55.8                   | 54.5                           | 55.8                           | 59            |
| 290770042 | MO | Greene              | 71.7                 | 74                   | 56.4                   | 58.2                   | 56.4                           | 58.2                           | 60            |
| 290970004 | MO | Jasper              | 76.7                 | 78                   | 60.2                   | 61.2                   | 60.2                           | 61.2                           | 61            |
| 290990019 | MO | Jefferson           | 76.3                 | 79                   | 58.7                   | 60.8                   | 58.7                           | 60.8                           | 70            |
| 291130003 | MO | Lincoln             | 77.0                 | 80                   | 59.6                   | 62.0                   | 59.6                           | 62.0                           | 65            |
| 291370001 | MO | Monroe              | 68.7                 | 71                   | 55.8                   | 57.7                   | 55.8                           | 57.7                           | 59            |
| 291570001 | MO | Perry               | 74.3                 | 77                   | 59.7                   | 61.9                   | 59.7                           | 61.9                           | 67            |
| 291831002 | MO | Saint Charles       | 82.3                 | 86                   | 63.2                   | 66.1                   | 63.2                           | 66.1                           | 72            |
| 291831004 | MO | Saint Charles       | 77.7                 | 80                   | 61.9                   | 63.8                   | 61.9                           | 63.8                           | 71            |
| 291860005 | MO | Sainte<br>Genevieve | 72.3                 | 75                   | 57.4                   | 59.5                   | 57.4                           | 59.5                           | 66            |
| 291890005 | MO | Saint Louis         | 72.0                 | 74                   | 54.4                   | 55.9                   | 54.4                           | 55.9                           | 65            |
| 291890014 | MO | Saint Louis         | 79.0                 | 82                   | 60.5                   | 62.8                   | 60.5                           | 62.8                           | 71            |
| 292130004 | MO | Taney               | 69.0                 | 70                   | 55.3                   | 56.1                   | 55.3                           | 56.1                           | 57            |
| 295100085 | MO | St. Louis City      | 75.7                 | 79                   | 58.7                   | 61.2                   | 58.7                           | 61.2                           | 65            |
| 300870001 | MT | Rosebud             | 55.5                 | 56                   | 51.6                   | 52.1                   | 51.6                           | 52.1                           | 56            |
| 310550019 | NE | Douglas             | 67.0                 | 67                   | 56.2                   | 56.2                   | 56.2                           | 56.2                           | 62            |
| 310550028 | NE | Douglas             | 58.7                 | 60                   | 49.3                   | 50.3                   | 49.3                           | 50.3                           | 59            |
| 310550035 | NE | Douglas             | 64.0                 | 66                   | 53.1                   | 54.7                   | 53.1                           | 54.7                           | N/A           |
| 311090016 | NE | Lancaster           | 53.3                 | 55                   | 43.4                   | 44.7                   | 43.4                           | 44.7                           | 60            |
| 320010002 | NV | Churchill           | 56.7                 | 58                   | 51.9                   | 53.1                   | 51.9                           | 53.1                           | 67            |
| 320030043 | NV | Clark               | 74.7                 | 76                   | 67.7                   | 68.8                   | 67.7                           | 68.8                           | 73            |
| 320030071 | NV | Clark               | 75.3                 | 76                   | 68.7                   | 69.4                   | 68.7                           | 69.4                           | 71            |
| 320030073 | NV | Clark               | 74.7                 | 76                   | 68.2                   | 69.4                   | 68.2                           | 69.4                           | 73            |
| 320030075 | NV | Clark               | 76.0                 | 77                   | 67.4                   | 68.3                   | 67.4                           | 68.3                           | 75            |
| 320030538 | NV | Clark               | 71.0                 | 72                   | 62.9                   | 63.8                   | 62.9                           | 63.8                           | N/A           |

| Site      | St | County       | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|--------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 320030540 | NV | Clark        | 71.0                 | 71                   | 62.9                   | 62.9                   | 62.9                           | 62.9                           | 70            |
| 320030601 | NV | Clark        | 72.0                 | 72                   | 65.7                   | 65.7                   | 65.7                           | 65.7                           | 67            |
| 320031019 | NV | Clark        | 74.3                 | 75                   | 66.8                   | 67.4                   | 66.8                           | 67.4                           | 70            |
| 320032002 | NV | Clark        | 71.7                 | 73                   | 63.4                   | 64.5                   | 63.4                           | 64.5                           | 73            |
| 320190006 | NV | Lyon         | 68.5                 | 69                   | 62.1                   | 62.5                   | 62.1                           | 62.5                           | 69            |
| 320310016 | NV | Washoe       | 66.0                 | 67                   | 59.2                   | 60.1                   | 59.2                           | 60.1                           | 70            |
| 320310020 | NV | Washoe       | 67.0                 | 68                   | 60.1                   | 61.0                   | 60.1                           | 61.0                           | 68            |
| 320310025 | NV | Washoe       | 66.3                 | 67                   | 60.0                   | 60.6                   | 60.0                           | 60.6                           | 67            |
| 320311005 | NV | Washoe       | 67.3                 | 68                   | 59.9                   | 60.5                   | 59.9                           | 60.5                           | 69            |
| 320312002 | NV | Washoe       | 61.7                 | 62                   | 54.3                   | 54.5                   | 55.2                           | 55.5                           | 62            |
| 320312009 | NV | Washoe       | 67.0                 | 68                   | 60.1                   | 61.0                   | 60.1                           | 61.0                           | 69            |
| 320330101 | NV | White Pine   | 72.0                 | 74                   | 65.8                   | 67.7                   | 65.8                           | 67.7                           | 64            |
| 325100002 | NV | Carson City  | 66.0                 | 66                   | 60.2                   | 60.2                   | 60.2                           | 60.2                           | N/A           |
| 330012004 | NH | Belknap      | 62.3                 | 63                   | 50.4                   | 51.0                   | 50.0                           | 50.6                           | 58            |
| 330050007 | NH | Cheshire     | 62.3                 | 63                   | 49.7                   | 50.2                   | 49.7                           | 50.2                           | 61            |
| 330074001 | NH | Coos         | 69.3                 | 70                   | 57.1                   | 57.7                   | 57.1                           | 57.7                           | 67            |
| 330074002 | NH | Coos         | 59.7                 | 61                   | 49.3                   | 50.4                   | 49.3                           | 50.4                           | 57            |
| 330090010 | NH | Grafton      | 59.7                 | 60                   | 48.1                   | 48.4                   | 48.1                           | 48.4                           | 57            |
| 330111011 | NH | Hillsborough | 66.3                 | 67                   | 53.6                   | 54.2                   | 53.6                           | 54.2                           | 63            |
| 330115001 | NH | Hillsborough | 69.0                 | 70                   | 55.5                   | 56.3                   | 55.5                           | 56.3                           | 68            |
| 330131007 | NH | Merrimack    | 64.7                 | 65                   | 51.6                   | 51.8                   | 51.6                           | 51.8                           | 61            |
| 330150014 | NH | Rockingham   | 66.0                 | 66                   | 53.6                   | 53.6                   | 53.4                           | 53.4                           | 65            |
| 330150016 | NH | Rockingham   | 66.3                 | 67                   | 53.8                   | 54.4                   | 53.6                           | 54.2                           | 67            |
| 330150018 | NH | Rockingham   | 68.0                 | 68                   | 55.1                   | 55.1                   | 55.1                           | 55.1                           | 65            |
| 340010006 | NJ | Atlantic     | 74.3                 | 76                   | 58.5                   | 59.9                   | 58.6                           | 60.0                           | 64            |
| 340030006 | NJ | Bergen       | 77.0                 | 78                   | 64.1                   | 65.0                   | 64.1                           | 65.0                           | 74            |
| 340071001 | NJ | Camden       | 82.7                 | 87                   | 66.3                   | 69.8                   | 66.3                           | 69.8                           | 69            |
| 340110007 | NJ | Cumberland   | 72.0                 | 75                   | 57.0                   | 59.4                   | 57.0                           | 59.4                           | 68            |
| 340130003 | NJ | Essex        | 78.0                 | 82                   | 64.3                   | 67.6                   | 64.3                           | 67.6                           | 70            |
| 340150002 | NJ | Gloucester   | 84.3                 | 87                   | 68.2                   | 70.4                   | 68.2                           | 70.4                           | 74            |
| 340170006 | NJ | Hudson       | 77.0                 | 78                   | 65.4                   | 66.3                   | 64.6                           | 65.4                           | 72            |
| 340190001 | NJ | Hunterdon    | 78.0                 | 80                   | 62.0                   | 63.6                   | 62.0                           | 63.6                           | 72            |
| 340210005 | NJ | Mercer       | 78.3                 | 81                   | 63.2                   | 65.4                   | 63.2                           | 65.4                           | 72            |
| 340219991 | NJ | Mercer       | 76.0                 | 76                   | 60.4                   | 60.4                   | 60.4                           | 60.4                           | 73            |
| 340230011 | NJ | Middlesex    | 81.3                 | 85                   | 65.0                   | 68.0                   | 65.0                           | 68.0                           | 74            |
| 340250005 | NJ | Monmouth     | 80.0                 | 83                   | 65.4                   | 67.8                   | 64.1                           | 66.5                           | 70            |
| 340273001 | NJ | Morris       | 76.3                 | 78                   | 62.4                   | 63.8                   | 62.4                           | 63.8                           | 69            |
| 340290006 | NJ | Ocean        | 82.0                 | 85                   | 65.8                   | 68.2                   | 65.8                           | 68.2                           | 73            |
| 340315001 | NJ | Passaic      | 73.3                 | 75                   | 61.3                   | 62.7                   | 61.3                           | 62.7                           | 70            |

| Site      | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 340410007 | NJ | Warren     | 66.0                 | 66                   | 54.0                   | 54.0                   | 54.0                           | 54.0                           | 64            |
| 350010023 | NM | Bernalillo | 68.0                 | 70                   | 59.0                   | 60.7                   | 59.0                           | 60.7                           | 65            |
| 350010024 | NM | Bernalillo | 69.3                 | 70                   | 60.1                   | 60.7                   | 60.1                           | 60.7                           | N/A           |
| 350010027 | NM | Bernalillo | 70.0                 | 71                   | 63.4                   | 64.3                   | 63.4                           | 64.3                           | N/A           |
| 350010029 | NM | Bernalillo | 68.7                 | 70                   | 59.2                   | 60.3                   | 59.2                           | 60.3                           | 65            |
| 350010032 | NM | Bernalillo | 70.0                 | 70                   | 60.6                   | 60.6                   | 60.6                           | 60.6                           | N/A           |
| 350011012 | NM | Bernalillo | 72.0                 | 74                   | 64.2                   | 66.0                   | 64.2                           | 66.0                           | 64            |
| 350011013 | NM | Bernalillo | 68.7                 | 69                   | 61.1                   | 61.3                   | 61.1                           | 61.3                           | N/A           |
| 350130008 | NM | Dona Ana   | 64.7                 | 67                   | 60.8                   | 63.0                   | 60.8                           | 63.0                           | 66            |
| 350130017 | NM | Dona Ana   | 66.7                 | 68                   | 63.1                   | 64.3                   | 63.1                           | 64.3                           | N/A           |
| 350130020 | NM | Dona Ana   | 67.7                 | 69                   | 62.8                   | 64.0                   | 62.8                           | 64.0                           | 66            |
| 350130021 | NM | Dona Ana   | 71.0                 | 72                   | 67.1                   | 68.1                   | 67.1                           | 68.1                           | 72            |
| 350130022 | NM | Dona Ana   | 70.3                 | 75                   | 66.3                   | 70.8                   | 66.3                           | 70.8                           | 68            |
| 350130023 | NM | Dona Ana   | 64.3                 | 65                   | 58.7                   | 59.3                   | 58.7                           | 59.3                           | 65            |
| 350151005 | NM | Eddy       | 70.3                 | 71                   | 67.7                   | 68.4                   | 67.7                           | 68.4                           | 67            |
| 350171003 | NM | Grant      | 65.0                 | 67                   | 61.9                   | 63.8                   | 61.9                           | 63.8                           | N/A           |
| 350250008 | NM | Lea        | 62.7                 | 66                   | 59.9                   | 63.0                   | 59.9                           | 63.0                           | 66            |
| 350290003 | NM | Luna       | 63.0                 | 67                   | 58.2                   | 61.9                   | 58.2                           | 61.9                           | N/A           |
| 350431001 | NM | Sandoval   | 61.7                 | 63                   | 55.4                   | 56.5                   | 55.4                           | 56.5                           | 64            |
| 350439004 | NM | Sandoval   | 63.0                 | 63                   | 58.8                   | 58.8                   | 58.8                           | 58.8                           | N/A           |
| 350450009 | NM | San Juan   | 65.3                 | 68                   | 56.7                   | 59.0                   | 56.7                           | 59.0                           | 62            |
| 350450018 | NM | San Juan   | 71.0                 | 71                   | 62.0                   | 62.0                   | 62.0                           | 62.0                           | 66            |
| 350451005 | NM | San Juan   | 66.0                 | 68                   | 55.3                   | 57.0                   | 55.3                           | 57.0                           | 62            |
| 350490021 | NM | Santa Fe   | 64.3                 | 66                   | 60.5                   | 62.1                   | 60.5                           | 62.1                           | 63            |
| 350610008 | NM | Valencia   | 68.5                 | 70                   | 60.1                   | 61.4                   | 60.1                           | 61.4                           | 64            |
| 360010012 | NY | Albany     | 68.0                 | 70                   | 55.4                   | 57.0                   | 55.4                           | 57.0                           | 64            |
| 360050133 | NY | Bronx      | 74.0                 | 76                   | 68.0                   | 69.9                   | 63.3                           | 65.0                           | 70            |
| 360130006 | NY | Chautauqua | 73.3                 | 76                   | 59.6                   | 61.7                   | 58.5                           | 60.7                           | 68            |
| 360130011 | NY | Chautauqua | 74.0                 | 76                   | 60.2                   | 61.8                   | 59.4                           | 61.0                           | N/A           |
| 360150003 | NY | Chemung    | 66.5                 | 67                   | 54.9                   | 55.3                   | 54.9                           | 55.3                           | N/A           |
| 360270007 | NY | Dutchess   | 72.0                 | 74                   | 58.6                   | 60.2                   | 58.6                           | 60.2                           | 68            |
| 360290002 | NY | Erie       | 71.3                 | 73                   | 58.3                   | 59.7                   | 58.2                           | 59.6                           | 69            |
| 360310002 | NY | Essex      | 70.3                 | 73                   | 57.5                   | 59.8                   | 57.5                           | 59.8                           | 62            |
| 360310003 | NY | Essex      | 67.3                 | 69                   | 55.1                   | 56.5                   | 55.1                           | 56.5                           | 65            |
| 360410005 | NY | Hamilton   | 66.0                 | 67                   | 53.7                   | 54.5                   | 53.7                           | 54.5                           | 60            |
| 360430005 | NY | Herkimer   | 62.0                 | 63                   | 50.5                   | 51.3                   | 50.5                           | 51.3                           | 63            |
| 360450002 | NY | Jefferson  | 71.7                 | 74                   | 59.0                   | 60.9                   | 59.4                           | 61.3                           | 63            |
| 360530006 | NY | Madison    | 67.0                 | 67                   | 55.0                   | 55.0                   | 55.0                           | 55.0                           | N/A           |
| 360610135 | NY | New York   | 73.3                 | 76                   | 65.3                   | 67.8                   | 64.2                           | 66.5                           | 69            |

| Site      | St | County      | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 360631006 | NY | Niagara     | 72.3                 | 75                   | 60.5                   | 62.8                   | 59.5                           | 61.7                           | 66            |
| 360650004 | NY | Oneida      | 61.5                 | 64                   | 50.5                   | 52.5                   | 50.5                           | 52.5                           | N/A           |
| 360671015 | NY | Onondaga    | 69.3                 | 72                   | 57.8                   | 60.1                   | 57.8                           | 60.1                           | 64            |
| 360715001 | NY | Orange      | 67.0                 | 69                   | 55.3                   | 56.9                   | 55.3                           | 56.9                           | 66            |
| 360750003 | NY | Oswego      | 68.0                 | 70                   | 55.7                   | 57.4                   | 55.6                           | 57.2                           | 60            |
| 360790005 | NY | Putnam      | 70.0                 | 71                   | 58.4                   | 59.2                   | 58.4                           | 59.2                           | 68            |
| 360810124 | NY | Queens      | 78.0                 | 80                   | 70.1                   | 71.9                   | 70.2                           | 72.0                           | 69            |
| 360830004 | NY | Rensselaer  | 67.0                 | 67                   | 54.4                   | 54.4                   | 54.4                           | 54.4                           | N/A           |
| 360850067 | NY | Richmond    | 81.3                 | 83                   | 71.9                   | 73.4                   | 67.1                           | 68.5                           | 76            |
| 360870005 | NY | Rockland    | 75.0                 | 76                   | 62.0                   | 62.8                   | 62.0                           | 62.8                           | 72            |
| 360910004 | NY | Saratoga    | 67.0                 | 68                   | 54.3                   | 55.1                   | 54.3                           | 55.1                           | 63            |
| 361010003 | NY | Steuben     | 65.3                 | 67                   | 54.4                   | 55.9                   | 54.4                           | 55.9                           | 59            |
| 361030002 | NY | Suffolk     | 83.3                 | 85                   | 72.5                   | 74.0                   | 74.0                           | 75.5                           | 72            |
| 361030004 | NY | Suffolk     | 78.0                 | 80                   | 66.3                   | 68.0                   | 65.2                           | 66.9                           | 72            |
| 361030009 | NY | Suffolk     | 78.7                 | 80                   | 68.5                   | 69.7                   | 67.6                           | 68.7                           | N/A           |
| 361111005 | NY | Ulster      | 69.0                 | 69                   | 57.4                   | 57.4                   | 57.4                           | 57.4                           | N/A           |
| 361173001 | NY | Wayne       | 65.0                 | 67                   | 53.4                   | 55.0                   | 53.4                           | 55.0                           | 64            |
| 361192004 | NY | Westchester | 75.3                 | 76                   | 68.1                   | 68.8                   | 63.8                           | 64.4                           | 74            |
| 370030004 | NC | Alexander   | 66.7                 | 68                   | 51.3                   | 52.3                   | 51.3                           | 52.3                           | N/A           |
| 370110002 | NC | Avery       | 63.3                 | 65                   | 48.1                   | 49.3                   | 48.1                           | 49.3                           | 62            |
| 370119991 | NC | Avery       | 63.0                 | 63                   | 48.9                   | 48.9                   | 48.9                           | 48.9                           | 64            |
| 370210030 | NC | Buncombe    | 66.7                 | 68                   | 48.8                   | 49.8                   | 48.8                           | 49.8                           | 63            |
| 370270003 | NC | Caldwell    | 66.0                 | 67                   | 49.6                   | 50.3                   | 49.6                           | 50.3                           | 64            |
| 370330001 | NC | Caswell     | 70.7                 | 73                   | 53.9                   | 55.7                   | 53.9                           | 55.7                           | 63            |
| 370370004 | NC | Chatham     | 64.0                 | 66                   | 47.4                   | 48.9                   | 47.4                           | 48.9                           | N/A           |
| 370510008 | NC | Cumberland  | 68.7                 | 70                   | 51.1                   | 52.0                   | 51.1                           | 52.0                           | 61            |
| 370511003 | NC | Cumberland  | 70.7                 | 72                   | 51.5                   | 52.4                   | 51.5                           | 52.4                           | N/A           |
| 370590003 | NC | Davie       | 71.0                 | 73                   | 53.5                   | 55.0                   | 53.5                           | 55.0                           | N/A           |
| 370630015 | NC | Durham      | 70.0                 | 72                   | 49.8                   | 51.3                   | 49.8                           | 51.3                           | 62            |
| 370650099 | NC | Edgecombe   | 70.0                 | 71                   | 51.3                   | 52.0                   | 51.3                           | 52.0                           | N/A           |
| 370670022 | NC | Forsyth     | 75.3                 | 78                   | 56.6                   | 58.6                   | 56.6                           | 58.6                           | 67            |
| 370670028 | NC | Forsyth     | 69.7                 | 72                   | 52.0                   | 53.7                   | 52.0                           | 53.7                           | N/A           |
| 370670030 | NC | Forsyth     | 72.7                 | 76                   | 55.0                   | 57.5                   | 55.0                           | 57.5                           | 68            |
| 370671008 | NC | Forsyth     | 72.3                 | 75                   | 54.5                   | 56.5                   | 54.5                           | 56.5                           | 67            |
| 370690001 | NC | Franklin    | 69.3                 | 71                   | 50.2                   | 51.5                   | 50.2                           | 51.5                           | N/A           |
| 370750001 | NC | Graham      | 70.3                 | 72                   | 54.4                   | 55.7                   | 54.4                           | 55.7                           | 64            |
| 370770001 | NC | Granville   | 70.7                 | 72                   | 51.2                   | 52.1                   | 51.2                           | 52.1                           | 64            |
| 370810013 | NC | Guilford    | 74.0                 | 76                   | 55.0                   | 56.5                   | 55.0                           | 56.5                           | 65            |
| 370870008 | NC | Haywood     | 61.0                 | 61                   | 48.6                   | 48.6                   | 48.6                           | 48.6                           | 62            |

| Site      | St | County      | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 370870036 | NC | Haywood     | 67.7                 | 69                   | 53.8                   | 54.8                   | 53.8                           | 54.8                           | 65            |
| 370990005 | NC | Jackson     | 67.0                 | 67                   | 53.1                   | 53.1                   | 53.1                           | 53.1                           | N/A           |
| 371010002 | NC | Johnston    | 71.7                 | 74                   | 51.5                   | 53.2                   | 51.5                           | 53.2                           | 65            |
| 371070004 | NC | Lenoir      | 67.7                 | 69                   | 51.7                   | 52.7                   | 51.7                           | 52.7                           | 63            |
| 371090004 | NC | Lincoln     | 72.7                 | 75                   | 55.4                   | 57.1                   | 55.4                           | 57.1                           | 67            |
| 371170001 | NC | Martin      | 66.3                 | 67                   | 50.7                   | 51.2                   | 50.7                           | 51.2                           | 60            |
| 371190041 | NC | Mecklenburg | 80.0                 | 83                   | 60.8                   | 63.1                   | 60.8                           | 63.1                           | 69            |
| 371191005 | NC | Mecklenburg | 75.0                 | 77                   | 56.4                   | 57.9                   | 56.4                           | 57.9                           | N/A           |
| 371191009 | NC | Mecklenburg | 79.7                 | 83                   | 58.2                   | 60.6                   | 58.2                           | 60.6                           | N/A           |
| 371239991 | NC | Montgomery  | 66.0                 | 66                   | 47.2                   | 47.2                   | 47.2                           | 47.2                           | 61            |
| 371290002 | NC | New Hanover | 63.0                 | 64                   | 46.0                   | 46.8                   | 46.9                           | 47.6                           | 60            |
| 371450003 | NC | Person      | 71.0                 | 74                   | 57.5                   | 59.9                   | 57.5                           | 59.9                           | 63            |
| 371470006 | NC | Pitt        | 69.7                 | 71                   | 52.6                   | 53.6                   | 52.6                           | 53.6                           | 62            |
| 371570099 | NC | Rockingham  | 71.0                 | 73                   | 56.2                   | 57.8                   | 56.2                           | 57.8                           | 66            |
| 371590021 | NC | Rowan       | 75.3                 | 78                   | 54.5                   | 56.5                   | 54.5                           | 56.5                           | 65            |
| 371590022 | NC | Rowan       | 75.0                 | 77                   | 53.7                   | 55.2                   | 53.7                           | 55.2                           | N/A           |
| 371730002 | NC | Swain       | 60.7                 | 62                   | 48.7                   | 49.7                   | 48.7                           | 49.7                           | 60            |
| 371790003 | NC | Union       | 71.0                 | 73                   | 50.9                   | 52.4                   | 50.9                           | 52.4                           | 68            |
| 371830014 | NC | Wake        | 70.3                 | 72                   | 51.3                   | 52.6                   | 51.3                           | 52.6                           | 65            |
| 371830016 | NC | Wake        | 73.0                 | 75                   | 54.2                   | 55.7                   | 54.2                           | 55.7                           | N/A           |
| 371990004 | NC | Yancey      | 69.7                 | 71                   | 53.0                   | 54.0                   | 53.0                           | 54.0                           | 65            |
| 390030009 | OH | Allen       | 73.0                 | 74                   | 59.6                   | 60.4                   | 59.6                           | 60.4                           | 66            |
| 390071001 | OH | Ashtabula   | 77.3                 | 79                   | 60.7                   | 62.1                   | 61.3                           | 62.7                           | 70            |
| 390090004 | OH | Athens      | 69.0                 | 69                   | 55.5                   | 55.5                   | 55.5                           | 55.5                           | N/A           |
| 390170004 | OH | Butler      | 77.0                 | 79                   | 62.2                   | 63.8                   | 62.2                           | 63.8                           | 72            |
| 390170018 | OH | Butler      | 79.7                 | 82                   | 63.0                   | 64.9                   | 63.0                           | 64.9                           | 71            |
| 390179991 | OH | Butler      | 77.0                 | 77                   | 59.7                   | 59.7                   | 59.7                           | 59.7                           | 69            |
| 390230001 | OH | Clark       | 75.0                 | 76                   | 58.6                   | 59.4                   | 58.6                           | 59.4                           | 69            |
| 390230003 | OH | Clark       | 74.0                 | 75                   | 58.6                   | 59.4                   | 58.6                           | 59.4                           | 67            |
| 390250022 | OH | Clermont    | 78.7                 | 82                   | 60.2                   | 62.7                   | 60.2                           | 62.7                           | 70            |
| 390271002 | OH | Clinton     | 78.7                 | 82                   | 59.3                   | 61.8                   | 59.3                           | 61.8                           | 70            |
| 390350034 | OH | Cuyahoga    | 77.7                 | 80                   | 57.0                   | 58.7                   | 62.1                           | 63.9                           | 69            |
| 390350060 | ОН | Cuyahoga    | 68.5                 | 70                   | 52.4                   | 53.6                   | 54.1                           | 55.3                           | 64            |
| 390350064 | OH | Cuyahoga    | 70.0                 | 73                   | 56.1                   | 58.5                   | 57.4                           | 59.9                           | 64            |
| 390355002 | ОН | Cuyahoga    | 76.7                 | 80                   | 56.9                   | 59.4                   | 61.0                           | 63.7                           | 68            |
| 390410002 | OH | Delaware    | 73.0                 | 74                   | 58.5                   | 59.3                   | 58.5                           | 59.3                           | 67            |
| 390479991 | OH | Fayette     | 72.0                 | 72                   | 55.6                   | 55.6                   | 55.6                           | 55.6                           | 68            |
| 390490029 | ОН | Franklin    | 80.3                 | 82                   | 65.3                   | 66.7                   | 65.3                           | 66.7                           | 71            |
| 390490037 | OH | Franklin    | 75.0                 | 76                   | 60.8                   | 61.6                   | 60.8                           | 61.6                           | 66            |

| Site      | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 390490081 | OH | Franklin   | 71.0                 | 73                   | 57.7                   | 59.4                   | 57.7                           | 59.4                           | 67            |
| 390550004 | OH | Geauga     | 74.7                 | 78                   | 59.0                   | 61.6                   | 59.0                           | 61.6                           | 71            |
| 390570006 | OH | Greene     | 73.0                 | 74                   | 55.4                   | 56.2                   | 55.4                           | 56.2                           | 68            |
| 390610006 | OH | Hamilton   | 82.0                 | 85                   | 65.0                   | 67.4                   | 65.0                           | 67.4                           | 72            |
| 390610010 | OH | Hamilton   | 76.3                 | 80                   | 60.4                   | 63.3                   | 60.4                           | 63.3                           | 72            |
| 390610040 | OH | Hamilton   | 78.7                 | 80                   | 63.2                   | 64.3                   | 63.2                           | 64.3                           | 71            |
| 390810017 | OH | Jefferson  | 70.3                 | 72                   | 57.9                   | 59.3                   | 57.9                           | 59.3                           | 65            |
| 390830002 | OH | Knox       | 73.7                 | 75                   | 57.6                   | 58.6                   | 57.6                           | 58.6                           | 67            |
| 390850003 | OH | Lake       | 80.0                 | 83                   | 58.0                   | 60.2                   | 63.5                           | 65.8                           | 75            |
| 390850007 | OH | Lake       | 71.7                 | 73                   | 53.0                   | 54.0                   | 56.1                           | 57.2                           | 67            |
| 390870011 | OH | Lawrence   | 65.0                 | 67                   | 51.8                   | 53.4                   | 51.8                           | 53.4                           | 64            |
| 390870012 | OH | Lawrence   | 70.0                 | 72                   | 57.6                   | 59.2                   | 57.6                           | 59.2                           | 67            |
| 390890005 | OH | Licking    | 74.3                 | 76                   | 57.5                   | 58.8                   | 57.5                           | 58.8                           | 67            |
| 390930018 | OH | Lorain     | 71.7                 | 75                   | 54.6                   | 57.1                   | 58.8                           | 61.5                           | 66            |
| 390950024 | OH | Lucas      | 68.0                 | 70                   | 53.9                   | 55.5                   | 55.3                           | 57.0                           | 67            |
| 390950027 | OH | Lucas      | 66.7                 | 68                   | 55.4                   | 56.5                   | 55.4                           | 56.5                           | 64            |
| 390950034 | ОН | Lucas      | 73.7                 | 76                   | 58.9                   | 60.7                   | 60.2                           | 62.1                           | N/A           |
| 390970007 | OH | Madison    | 74.3                 | 76                   | 56.5                   | 57.8                   | 56.5                           | 57.8                           | 68            |
| 390990013 | OH | Mahoning   | 70.7                 | 73                   | 57.0                   | 58.8                   | 57.0                           | 58.8                           | 63            |
| 391030004 | OH | Medina     | 69.0                 | 69                   | 55.9                   | 55.9                   | 55.9                           | 55.9                           | 64            |
| 391090005 | OH | Miami      | 73.3                 | 74                   | 57.2                   | 57.8                   | 57.2                           | 57.8                           | 67            |
| 391130037 | OH | Montgomery | 76.7                 | 78                   | 60.6                   | 61.6                   | 60.6                           | 61.6                           | 70            |
| 391331001 | OH | Portage    | 68.3                 | 71                   | 54.8                   | 57.0                   | 54.8                           | 57.0                           | 61            |
| 391351001 | OH | Preble     | 72.3                 | 74                   | 58.0                   | 59.3                   | 58.0                           | 59.3                           | 67            |
| 391510016 | OH | Stark      | 76.7                 | 79                   | 60.9                   | 62.7                   | 60.9                           | 62.7                           | 69            |
| 391510022 | OH | Stark      | 72.0                 | 73                   | 57.3                   | 58.1                   | 57.3                           | 58.1                           | 64            |
| 391514005 | OH | Stark      | 72.3                 | 75                   | 57.2                   | 59.3                   | 57.2                           | 59.3                           | 66            |
| 391530020 | OH | Summit     | 72.0                 | 74                   | 58.8                   | 60.4                   | 58.8                           | 60.4                           | 61            |
| 391550009 | OH | Trumbull   | 71.0                 | 73                   | 56.1                   | 57.7                   | 56.1                           | 57.7                           | N/A           |
| 391550011 | OH | Trumbull   | 76.3                 | 79                   | 60.8                   | 63.0                   | 60.8                           | 63.0                           | 68            |
| 391650007 | OH | Warren     | 77.7                 | 79                   | 59.5                   | 60.5                   | 59.5                           | 60.5                           | 72            |
| 391670004 | OH | Washington | 71.3                 | 74                   | 56.4                   | 58.5                   | 56.4                           | 58.5                           | 65            |
| 391730003 | OH | Wood       | 71.3                 | 73                   | 58.6                   | 60.0                   | 58.6                           | 60.0                           | 63            |
| 400019009 | OK | Adair      | 73.7                 | 76                   | 58.6                   | 60.4                   | 58.6                           | 60.4                           | 61            |
| 400159008 | OK | Caddo      | 74.7                 | 77                   | 61.2                   | 63.1                   | 61.2                           | 63.1                           | N/A           |
| 400170101 | OK | Canadian   | 75.7                 | 76                   | 60.4                   | 60.6                   | 60.4                           | 60.6                           | 65            |
| 400219002 | ОК | Cherokee   | 73.7                 | 76                   | 57.9                   | 59.7                   | 57.9                           | 59.7                           | 60            |
| 400270049 | ОК | Cleveland  | 75.0                 | 76                   | 61.8                   | 62.7                   | 61.8                           | 62.7                           | 66            |
| 400310651 | ОК | Comanche   | 74.7                 | 77                   | 62.6                   | 64.5                   | 62.6                           | 64.5                           | 65            |

| Site      | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 400370144 | OK | Creek      | 77.0                 | 78                   | 58.5                   | 59.2                   | 58.5                           | 59.2                           | 64            |
| 400430860 | OK | Dewey      | 72.3                 | 74                   | 63.4                   | 64.9                   | 63.4                           | 64.9                           | 65            |
| 400719010 | OK | Кау        | 73.0                 | 77                   | 60.3                   | 63.6                   | 60.3                           | 63.6                           | 63            |
| 400871073 | OK | McClain    | 74.0                 | 75                   | 60.2                   | 61.0                   | 60.2                           | 61.0                           | 66            |
| 400892001 | OK | McCurtain  | 68.0                 | 68                   | 58.9                   | 58.9                   | 58.9                           | 58.9                           | N/A           |
| 400979014 | OK | Mayes      | 76.3                 | 78                   | 56.6                   | 57.9                   | 56.6                           | 57.9                           | 62            |
| 401090033 | OK | Oklahoma   | 76.7                 | 78                   | 62.7                   | 63.8                   | 62.7                           | 63.8                           | 67            |
| 401090096 | OK | Oklahoma   | 76.0                 | 77                   | 61.5                   | 62.4                   | 61.5                           | 62.4                           | 65            |
| 401091037 | OK | Oklahoma   | 78.3                 | 79                   | 64.4                   | 65.0                   | 64.4                           | 65.0                           | 68            |
| 401159004 | OK | Ottawa     | 74.0                 | 76                   | 57.7                   | 59.3                   | 57.7                           | 59.3                           | 54            |
| 401210415 | OK | Pittsburg  | 73.3                 | 75                   | 61.8                   | 63.3                   | 61.8                           | 63.3                           | 60            |
| 401359021 | OK | Sequoyah   | 72.0                 | 72                   | 58.7                   | 58.7                   | 58.7                           | 58.7                           | 60            |
| 401430137 | OK | Tulsa      | 79.0                 | 80                   | 61.0                   | 61.7                   | 61.0                           | 61.7                           | N/A           |
| 401430174 | OK | Tulsa      | 75.3                 | 77                   | 59.0                   | 60.3                   | 59.0                           | 60.3                           | N/A           |
| 401430178 | OK | Tulsa      | 76.7                 | 78                   | 60.9                   | 61.9                   | 60.9                           | 61.9                           | 63            |
| 401431127 | OK | Tulsa      | 78.3                 | 80                   | 62.1                   | 63.5                   | 62.1                           | 63.5                           | N/A           |
| 410050004 | OR | Clackamas  | 64.0                 | 66                   | 55.0                   | 56.8                   | 55.0                           | 56.8                           | 65            |
| 410090004 | OR | Columbia   | 51.3                 | 53                   | 45.3                   | 46.8                   | 45.3                           | 46.8                           | 54            |
| 410170122 | OR | Deschutes  | 58.5                 | 59                   | 52.8                   | 53.2                   | 52.8                           | 53.2                           | N/A           |
| 410290201 | OR | Jackson    | 61.7                 | 63                   | 53.5                   | 54.7                   | 53.5                           | 54.7                           | 59            |
| 410390060 | OR | Lane       | 58.0                 | 59                   | 48.3                   | 49.2                   | 48.3                           | 49.2                           | 61            |
| 410391007 | OR | Lane       | 60.0                 | 61                   | 49.7                   | 50.5                   | 49.7                           | 50.5                           | 61            |
| 410470004 | OR | Marion     | 59.3                 | 61                   | 49.7                   | 51.1                   | 49.7                           | 51.1                           | 65            |
| 410510080 | OR | Multnomah  | 56.7                 | 57                   | 51.2                   | 51.5                   | 51.2                           | 51.5                           | 55            |
| 410591003 | OR | Umatilla   | 61.3                 | 62                   | 51.2                   | 51.8                   | 51.2                           | 51.8                           | 65            |
| 410671004 | OR | Washington | 57.7                 | 59                   | 50.6                   | 51.8                   | 50.6                           | 51.8                           | 59            |
| 420030008 | PA | Allegheny  | 76.3                 | 79                   | 65.5                   | 67.8                   | 65.5                           | 67.8                           | 67            |
| 420030010 | PA | Allegheny  | 73.7                 | 75                   | 63.3                   | 64.4                   | 63.3                           | 64.4                           | N/A           |
| 420030067 | PA | Allegheny  | 75.7                 | 78                   | 63.0                   | 65.0                   | 63.0                           | 65.0                           | 68            |
| 420031008 | PA | Allegheny  | 80.7                 | 82                   | 67.1                   | 68.2                   | 67.1                           | 68.2                           | 70            |
| 420050001 | PA | Armstrong  | 74.3                 | 75                   | 60.6                   | 61.2                   | 60.6                           | 61.2                           | 70            |
| 420070002 | PA | Beaver     | 70.7                 | 72                   | 59.5                   | 60.6                   | 59.5                           | 60.6                           | 70            |
| 420070005 | PA | Beaver     | 74.7                 | 77                   | 63.0                   | 64.9                   | 63.0                           | 64.9                           | 68            |
| 420070014 | PA | Beaver     | 72.3                 | 74                   | 61.0                   | 62.5                   | 61.0                           | 62.5                           | 65            |
| 420110006 | PA | Berks      | 71.7                 | 75                   | 56.2                   | 58.8                   | 56.2                           | 58.8                           | 66            |
| 420110011 | PA | Berks      | 76.3                 | 79                   | 58.9                   | 61.0                   | 58.9                           | 61.0                           | 71            |
| 420130801 | PA | Blair      | 72.7                 | 75                   | 60.3                   | 62.3                   | 60.3                           | 62.3                           | 63            |
| 420170012 | PA | Bucks      | 80.3                 | 83                   | 64.6                   | 66.8                   | 64.6                           | 66.8                           | 77            |
| 420210011 | PA | Cambria    | 70.3                 | 72                   | 58.0                   | 59.4                   | 58.0                           | 59.4                           | 63            |

| Site      | St | County       | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|--------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 420270100 | PA | Centre       | 71.0                 | 73                   | 59.1                   | 60.8                   | 59.1                           | 60.8                           | 63            |
| 420279991 | PA | Centre       | 72.0                 | 72                   | 59.8                   | 59.8                   | 59.8                           | 59.8                           | 65            |
| 420290100 | PA | Chester      | 76.3                 | 79                   | 58.7                   | 60.8                   | 58.7                           | 60.8                           | 73            |
| 420334000 | PA | Clearfield   | 72.3                 | 74                   | 60.3                   | 61.8                   | 60.3                           | 61.8                           | 64            |
| 420430401 | PA | Dauphin      | 69.0                 | 69                   | 54.7                   | 54.7                   | 54.7                           | 54.7                           | 66            |
| 420431100 | PA | Dauphin      | 74.7                 | 77                   | 58.3                   | 60.1                   | 58.3                           | 60.1                           | 67            |
| 420450002 | PA | Delaware     | 75.7                 | 78                   | 60.3                   | 62.1                   | 60.3                           | 62.1                           | 72            |
| 420490003 | PA | Erie         | 74.0                 | 76                   | 59.1                   | 60.7                   | 59.5                           | 61.1                           | 66            |
| 420550001 | PA | Franklin     | 67.0                 | 68                   | 53.2                   | 53.9                   | 53.2                           | 53.9                           | 60            |
| 420590002 | PA | Greene       | 69.0                 | 71                   | 56.5                   | 58.1                   | 56.5                           | 58.1                           | 67            |
| 420630004 | PA | Indiana      | 75.7                 | 79                   | 62.7                   | 65.4                   | 62.7                           | 65.4                           | 70            |
| 420690101 | PA | Lackawanna   | 71.0                 | 72                   | 55.8                   | 56.6                   | 55.8                           | 56.6                           | 67            |
| 420692006 | PA | Lackawanna   | 68.7                 | 71                   | 54.0                   | 55.8                   | 54.0                           | 55.8                           | N/A           |
| 420710007 | PA | Lancaster    | 77.0                 | 80                   | 60.1                   | 62.4                   | 60.1                           | 62.4                           | 69            |
| 420710012 | PA | Lancaster    | 78.0                 | 82                   | 60.2                   | 63.3                   | 60.2                           | 63.3                           | 66            |
| 420730015 | PA | Lawrence     | 71.0                 | 73                   | 58.0                   | 59.6                   | 58.0                           | 59.6                           | 68            |
| 420750100 | PA | Lebanon      | 76.0                 | 76                   | 58.6                   | 58.6                   | 58.6                           | 58.6                           | 71            |
| 420770004 | PA | Lehigh       | 76.0                 | 78                   | 59.5                   | 61.1                   | 59.5                           | 61.1                           | 70            |
| 420791100 | PA | Luzerne      | 65.0                 | 66                   | 49.9                   | 50.6                   | 49.9                           | 50.6                           | N/A           |
| 420791101 | PA | Luzerne      | 64.3                 | 66                   | 49.9                   | 51.2                   | 49.9                           | 51.2                           | 64            |
| 420810100 | PA | Lycoming     | 67.0                 | 69                   | 53.9                   | 55.5                   | 53.9                           | 55.5                           | 64            |
| 420850100 | PA | Mercer       | 76.3                 | 79                   | 60.0                   | 62.1                   | 60.0                           | 62.1                           | 69            |
| 420890002 | PA | Monroe       | 66.7                 | 70                   | 52.9                   | 55.6                   | 52.9                           | 55.6                           | 65            |
| 420910013 | PA | Montgomery   | 76.3                 | 78                   | 61.0                   | 62.4                   | 61.0                           | 62.4                           | 72            |
| 420950025 | PA | Northampton  | 74.3                 | 77                   | 58.5                   | 60.6                   | 58.5                           | 60.6                           | 70            |
| 420958000 | PA | Northampton  | 69.7                 | 71                   | 54.8                   | 55.9                   | 54.8                           | 55.9                           | 69            |
| 420990301 | PA | Perry        | 68.3                 | 70                   | 54.8                   | 56.2                   | 54.8                           | 56.2                           | N/A           |
| 421010004 | PA | Philadelphia | 66.0                 | 70                   | 53.9                   | 57.1                   | 53.9                           | 57.1                           | 61            |
| 421010024 | PA | Philadelphia | 83.3                 | 87                   | 67.3                   | 70.3                   | 67.3                           | 70.3                           | 77            |
| 421011002 | PA | Philadelphia | 80.0                 | 80                   | 64.7                   | 64.7                   | 64.7                           | 64.7                           | N/A           |
| 421119991 | PA | Somerset     | 65.0                 | 65                   | 50.8                   | 50.8                   | 50.8                           | 50.8                           | N/A           |
| 421174000 | PA | Tioga        | 69.7                 | 71                   | 57.3                   | 58.3                   | 57.3                           | 58.3                           | 63            |
| 421250005 | PA | Washington   | 70.0                 | 72                   | 57.6                   | 59.2                   | 57.6                           | 59.2                           | 68            |
| 421250200 | PA | Washington   | 70.7                 | 73                   | 57.6                   | 59.4                   | 57.6                           | 59.4                           | 65            |
| 421255001 | PA | Washington   | 70.3                 | 71                   | 57.9                   | 58.5                   | 57.9                           | 58.5                           | 68            |
| 421290006 | PA | Westmoreland | 71.7                 | 74                   | 60.1                   | 62.0                   | 60.1                           | 62.0                           | N/A           |
| 421290008 | PA | Westmoreland | 71.0                 | 73                   | 58.0                   | 59.6                   | 58.0                           | 59.6                           | 68            |
| 421330008 | PA | York         | 72.3                 | 74                   | 56.9                   | 58.3                   | 56.9                           | 58.3                           | 66            |
| 421330011 | PA | York         | 74.3                 | 77                   | 58.0                   | 60.1                   | 58.0                           | 60.1                           | N/A           |

| Site      | St | County       | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|--------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 440030002 | RI | Kent         | 73.7                 | 74                   | 60.4                   | 60.7                   | 60.4                           | 60.7                           | 70            |
| 440071010 | RI | Providence   | 74.0                 | 76                   | 60.1                   | 61.8                   | 59.5                           | 61.1                           | 68            |
| 440090007 | RI | Washington   | 76.3                 | 78                   | 63.6                   | 65.0                   | 62.6                           | 64.0                           | 70            |
| 450010001 | SC | Abbeville    | 62.0                 | 64                   | 45.3                   | 46.8                   | 45.3                           | 46.8                           | N/A           |
| 450030003 | SC | Aiken        | 64.3                 | 67                   | 47.6                   | 49.7                   | 47.6                           | 49.7                           | 60            |
| 450070005 | SC | Anderson     | 70.0                 | 73                   | 52.1                   | 54.4                   | 52.1                           | 54.4                           | 60            |
| 450150002 | SC | Berkeley     | 62.3                 | 64                   | 47.4                   | 48.7                   | 47.4                           | 48.7                           | N/A           |
| 450190046 | SC | Charleston   | 64.7                 | 66                   | 49.6                   | 50.6                   | 49.8                           | 50.8                           | N/A           |
| 450210002 | SC | Cherokee     | 67.3                 | 70                   | 49.2                   | 51.2                   | 49.2                           | 51.2                           | N/A           |
| 450250001 | SC | Chesterfield | 64.3                 | 66                   | 48.4                   | 49.6                   | 48.4                           | 49.6                           | 60            |
| 450290002 | SC | Colleton     | 61.0                 | 64                   | 46.4                   | 48.7                   | 46.4                           | 48.7                           | N/A           |
| 450310003 | SC | Darlington   | 68.0                 | 70                   | 52.1                   | 53.6                   | 52.1                           | 53.6                           | 62            |
| 450370001 | SC | Edgefield    | 63.0                 | 63                   | 46.2                   | 46.2                   | 46.2                           | 46.2                           | N/A           |
| 450450016 | SC | Greenville   | 68.0                 | 69                   | 50.5                   | 51.2                   | 50.5                           | 51.2                           | N/A           |
| 450451003 | SC | Greenville   | 65.3                 | 67                   | 48.9                   | 50.2                   | 48.9                           | 50.2                           | N/A           |
| 450730001 | SC | Oconee       | 64.5                 | 65                   | 48.6                   | 48.9                   | 48.6                           | 48.9                           | 63            |
| 450770002 | SC | Pickens      | 69.7                 | 71                   | 52.5                   | 53.5                   | 52.5                           | 53.5                           | N/A           |
| 450790007 | SC | Richland     | 70.0                 | 70                   | 51.2                   | 51.2                   | 51.2                           | 51.2                           | N/A           |
| 450790021 | SC | Richland     | 60.0                 | 62                   | 44.1                   | 45.6                   | 44.1                           | 45.6                           | N/A           |
| 450791001 | SC | Richland     | 71.7                 | 73                   | 52.4                   | 53.4                   | 52.4                           | 53.4                           | N/A           |
| 450830009 | SC | Spartanburg  | 73.7                 | 75                   | 54.6                   | 55.5                   | 54.6                           | 55.5                           | N/A           |
| 450910006 | SC | York         | 64.0                 | 65                   | 47.7                   | 48.4                   | 47.7                           | 48.4                           | 59            |
| 460330132 | SD | Custer       | 61.7                 | 63                   | 57.6                   | 58.8                   | 57.6                           | 58.8                           | 58            |
| 460710001 | SD | Jackson      | 57.0                 | 59                   | 52.2                   | 54.0                   | 52.2                           | 54.0                           | 58            |
| 460930001 | SD | Meade        | 58.5                 | 60                   | 52.0                   | 53.3                   | 52.0                           | 53.3                           | 57            |
| 460990008 | SD | Minnehaha    | 66.0                 | 68                   | 55.3                   | 56.9                   | 55.3                           | 56.9                           | 64            |
| 461270003 | SD | Union        | 62.5                 | 64                   | 52.6                   | 53.9                   | 52.6                           | 53.9                           | N/A           |
| 470010101 | ΤN | Anderson     | 70.7                 | 73                   | 54.3                   | 56.0                   | 54.3                           | 56.0                           | 63            |
| 470090101 | ΤN | Blount       | 76.7                 | 79                   | 59.0                   | 60.7                   | 59.0                           | 60.7                           | 67            |
| 470090102 | ΤN | Blount       | 66.3                 | 68                   | 50.8                   | 52.1                   | 50.8                           | 52.1                           | 60            |
| 470259991 | ΤN | Claiborne    | 62.0                 | 62                   | 48.0                   | 48.0                   | 48.0                           | 48.0                           | 63            |
| 470370011 | ΤN | Davidson     | 66.0                 | 69                   | 52.6                   | 54.9                   | 52.6                           | 54.9                           | 66            |
| 470370026 | ΤN | Davidson     | 67.0                 | 67                   | 52.7                   | 52.7                   | 52.7                           | 52.7                           | 67            |
| 470651011 | ΤN | Hamilton     | 72.3                 | 75                   | 54.9                   | 57.0                   | 54.9                           | 57.0                           | 65            |
| 470654003 | ΤN | Hamilton     | 73.3                 | 76                   | 55.4                   | 57.4                   | 55.4                           | 57.4                           | 68            |
| 470890002 | ΤN | Jefferson    | 74.7                 | 78                   | 56.9                   | 59.4                   | 56.9                           | 59.4                           | 68            |
| 470930021 | ΤN | Knox         | 69.0                 | 71                   | 52.6                   | 54.2                   | 52.6                           | 54.2                           | 64            |
| 470931020 | ΤN | Knox         | 71.7                 | 74                   | 54.2                   | 55.9                   | 54.2                           | 55.9                           | 66            |
| 471050109 | ΤN | Loudon       | 72.3                 | 75                   | 55.9                   | 58.0                   | 55.9                           | 58.0                           | N/A           |

| Site      | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 471210104 | ΤN | Meigs      | 71.3                 | 74                   | 54.4                   | 56.5                   | 54.4                           | 56.5                           | N/A           |
| 471490101 | ΤN | Rutherford | 68.5                 | 70                   | 52.8                   | 53.9                   | 52.8                           | 53.9                           | N/A           |
| 471550101 | ΤN | Sevier     | 74.3                 | 76                   | 57.6                   | 58.9                   | 57.6                           | 58.9                           | 68            |
| 471570021 | ΤN | Shelby     | 76.7                 | 79                   | 59.2                   | 61.0                   | 59.2                           | 61.0                           | 67            |
| 471570075 | ΤN | Shelby     | 78.0                 | 78                   | 60.5                   | 60.5                   | 60.5                           | 60.5                           | 66            |
| 471571004 | ΤN | Shelby     | 75.0                 | 78                   | 57.2                   | 59.5                   | 57.2                           | 59.5                           | 66            |
| 471632002 | ΤN | Sullivan   | 71.7                 | 74                   | 59.2                   | 61.1                   | 59.2                           | 61.1                           | 66            |
| 471632003 | ΤN | Sullivan   | 70.3                 | 72                   | 58.7                   | 60.1                   | 58.7                           | 60.1                           | 64            |
| 471650007 | ΤN | Sumner     | 76.7                 | 79                   | 59.9                   | 61.7                   | 59.9                           | 61.7                           | 67            |
| 471650101 | ΤN | Sumner     | 73.0                 | 75                   | 57.0                   | 58.5                   | 57.0                           | 58.5                           | N/A           |
| 471870106 | ΤN | Williamson | 70.3                 | 73                   | 53.9                   | 55.9                   | 53.9                           | 55.9                           | 61            |
| 471890103 | ΤN | Wilson     | 71.7                 | 74                   | 55.1                   | 56.8                   | 55.1                           | 56.8                           | 64            |
| 480271047 | ΤХ | Bell       | 74.5                 | 75                   | 63.8                   | 64.2                   | 63.8                           | 64.2                           | 67            |
| 480290032 | ΤХ | Bexar      | 76.7                 | 78                   | 66.3                   | 67.4                   | 66.3                           | 67.4                           | 73            |
| 480290052 | ΤХ | Bexar      | 78.7                 | 81                   | 68.4                   | 70.4                   | 68.4                           | 70.4                           | 73            |
| 480290059 | ΤХ | Bexar      | 68.3                 | 70                   | 59.4                   | 60.9                   | 59.4                           | 60.9                           | 64            |
| 480391004 | ΤХ | Brazoria   | 88.0                 | 89                   | 74.0                   | 74.9                   | 74.0                           | 74.9                           | 75            |
| 480391016 | ΤХ | Brazoria   | 71.7                 | 73                   | 61.3                   | 62.4                   | 61.3                           | 62.4                           | 64            |
| 480430101 | ΤХ | Brewster   | 70.0                 | 71                   | 67.9                   | 68.9                   | 67.9                           | 68.9                           | 62            |
| 480610006 | ΤХ | Cameron    | 62.7                 | 64                   | 56.7                   | 57.9                   | 56.7                           | 57.9                           | 57            |
| 480850005 | ΤХ | Collin     | 82.7                 | 84                   | 68.2                   | 69.2                   | 68.2                           | 69.2                           | 74            |
| 481130069 | ΤХ | Dallas     | 79.7                 | 84                   | 66.2                   | 69.8                   | 66.2                           | 69.8                           | 71            |
| 481130075 | ΤХ | Dallas     | 82.0                 | 83                   | 69.0                   | 69.9                   | 69.0                           | 69.9                           | 72            |
| 481130087 | ΤХ | Dallas     | 80.0                 | 81                   | 66.9                   | 67.8                   | 66.9                           | 67.8                           | 64            |
| 481210034 | ТΧ | Denton     | 84.3                 | 87                   | 69.7                   | 72.0                   | 69.7                           | 72.0                           | 80            |
| 481211032 | ΤХ | Denton     | 82.7                 | 84                   | 67.7                   | 68.8                   | 67.7                           | 68.8                           | 76            |
| 481390016 | ΤХ | Ellis      | 75.7                 | 77                   | 63.5                   | 64.6                   | 63.5                           | 64.6                           | 63            |
| 481391044 | ТΧ | Ellis      | 70.0                 | 72                   | 59.3                   | 61.0                   | 59.3                           | 61.0                           | 62            |
| 481410029 | ТΧ | El Paso    | 65.0                 | 65                   | 61.1                   | 61.1                   | 61.1                           | 61.1                           | 62            |
| 481410037 | ТΧ | El Paso    | 71.0                 | 72                   | 67.6                   | 68.5                   | 67.6                           | 68.5                           | 71            |
| 481410044 | ТΧ | El Paso    | 69.0                 | 70                   | 65.7                   | 66.6                   | 65.7                           | 66.6                           | 67            |
| 481410055 | ТΧ | El Paso    | 66.3                 | 68                   | 63.1                   | 64.7                   | 63.1                           | 64.7                           | 64            |
| 481410057 | ΤХ | El Paso    | 66.0                 | 66                   | 62.6                   | 62.6                   | 62.6                           | 62.6                           | 66            |
| 481410058 | ΤХ | El Paso    | 69.3                 | 71                   | 65.4                   | 67.0                   | 65.4                           | 67.0                           | 68            |
| 481671034 | ТΧ | Galveston  | 77.3                 | 80                   | 67.5                   | 69.9                   | 67.3                           | 69.6                           | 76            |
| 481830001 | ТΧ | Gregg      | 77.7                 | 79                   | 65.1                   | 66.2                   | 65.1                           | 66.2                           | 66            |
| 482010024 | ТΧ | Harris     | 80.3                 | 83                   | 70.4                   | 72.8                   | 70.4                           | 72.8                           | 79            |
| 482010026 | ΤХ | Harris     | 77.3                 | 80                   | 67.9                   | 70.2                   | 67.6                           | 70.0                           | 68            |
| 482010029 | ΤХ | Harris     | 83.0                 | 84                   | 68.7                   | 69.5                   | 68.7                           | 69.5                           | 69            |

| Site      | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 482010046 | ТΧ | Harris     | 75.7                 | 77                   | 66.4                   | 67.5                   | 66.4                           | 67.5                           | 67            |
| 482010047 | ТΧ | Harris     | 78.3                 | 79                   | 66.7                   | 67.3                   | 66.7                           | 67.3                           | 74            |
| 482010051 | ТΧ | Harris     | 80.3                 | 81                   | 67.5                   | 68.1                   | 67.5                           | 68.1                           | 71            |
| 482010055 | ΤХ | Harris     | 81.3                 | 83                   | 68.3                   | 69.8                   | 68.3                           | 69.8                           | 75            |
| 482010062 | ТΧ | Harris     | 76.7                 | 78                   | 66.0                   | 67.1                   | 66.0                           | 67.1                           | 65            |
| 482010066 | ТΧ | Harris     | 77.0                 | 79                   | 64.7                   | 66.4                   | 64.7                           | 66.4                           | 76            |
| 482010070 | ΤХ | Harris     | 77.0                 | 77                   | 66.5                   | 66.5                   | 66.5                           | 66.5                           | N/A           |
| 482010416 | ТΧ | Harris     | 78.7                 | 80                   | 66.7                   | 67.8                   | 66.7                           | 67.8                           | 72            |
| 482011015 | ТΧ | Harris     | 74.3                 | 77                   | 65.2                   | 67.6                   | 65.0                           | 67.4                           | 65            |
| 482011034 | ТΧ | Harris     | 81.0                 | 82                   | 70.8                   | 71.6                   | 70.8                           | 71.6                           | 73            |
| 482011035 | ТΧ | Harris     | 78.3                 | 80                   | 68.4                   | 69.9                   | 68.4                           | 69.9                           | 69            |
| 482011039 | ТΧ | Harris     | 82.0                 | 84                   | 71.8                   | 73.6                   | 71.8                           | 73.5                           | 67            |
| 482011050 | ТΧ | Harris     | 78.3                 | 80                   | 68.3                   | 69.8                   | 68.0                           | 69.5                           | 70            |
| 482030002 | ТΧ | Harrison   | 72.7                 | 74                   | 59.9                   | 61.0                   | 59.9                           | 61.0                           | 62            |
| 482150043 | ТΧ | Hidalgo    | 61.0                 | 62                   | 55.3                   | 56.2                   | 55.3                           | 56.2                           | 55            |
| 482151048 | ТΧ | Hidalgo    | 59.5                 | 60                   | 53.8                   | 54.2                   | 53.8                           | 54.2                           | N/A           |
| 482210001 | ТΧ | Hood       | 76.7                 | 77                   | 63.4                   | 63.7                   | 63.4                           | 63.7                           | 69            |
| 482311006 | ТΧ | Hunt       | 71.7                 | 74                   | 59.1                   | 61.0                   | 59.1                           | 61.0                           | 60            |
| 482450009 | ТΧ | Jefferson  | 73.3                 | 75                   | 63.5                   | 65.0                   | 63.5                           | 65.0                           | 64            |
| 482450011 | ТΧ | Jefferson  | 76.0                 | 76                   | 66.5                   | 66.5                   | 66.2                           | 66.2                           | 67            |
| 482450022 | ТΧ | Jefferson  | 71.3                 | 72                   | 61.1                   | 61.7                   | 61.1                           | 61.7                           | 68            |
| 482450101 | ТΧ | Jefferson  | 78.0                 | 80                   | 68.4                   | 70.2                   | 68.2                           | 70.0                           | 65            |
| 482450102 | ТΧ | Jefferson  | 69.7                 | 71                   | 60.8                   | 62.0                   | 61.0                           | 62.2                           | 62            |
| 482450628 | ТΧ | Jefferson  | 70.7                 | 73                   | 61.9                   | 63.9                   | 61.6                           | 63.6                           | N/A           |
| 482451035 | ТΧ | Jefferson  | 71.0                 | 72                   | 62.0                   | 62.8                   | 62.2                           | 63.0                           | 68            |
| 482510003 | ТΧ | Johnson    | 79.0                 | 79                   | 65.8                   | 65.8                   | 65.8                           | 65.8                           | 72            |
| 482570005 | ТΧ | Kaufman    | 70.7                 | 74                   | 60.5                   | 63.4                   | 60.5                           | 63.4                           | 61            |
| 483091037 | ТΧ | McLennan   | 72.7                 | 74                   | 61.9                   | 63.0                   | 61.9                           | 63.0                           | 63            |
| 483390078 | ΤХ | Montgomery | 77.3                 | 79                   | 65.7                   | 67.1                   | 65.7                           | 67.1                           | 72            |
| 483491051 | ТΧ | Navarro    | 71.0                 | 72                   | 61.4                   | 62.2                   | 61.4                           | 62.2                           | 61            |
| 483550025 | ТΧ | Nueces     | 71.0                 | 72                   | 62.9                   | 63.8                   | 63.5                           | 64.4                           | 64            |
| 483550026 | ТΧ | Nueces     | 70.7                 | 72                   | 62.9                   | 64.1                   | 62.9                           | 64.1                           | 63            |
| 483611001 | ΤХ | Orange     | 72.7                 | 75                   | 63.7                   | 65.7                   | 64.5                           | 66.6                           | 61            |
| 483611100 | ТΧ | Orange     | 68.7                 | 69                   | 60.7                   | 60.9                   | 60.7                           | 60.9                           | N/A           |
| 483670081 | ТΧ | Parker     | 78.7                 | 79                   | 65.8                   | 66.0                   | 65.8                           | 66.0                           | 73            |
| 483970001 | ТΧ | Rockwall   | 77.0                 | 77                   | 64.0                   | 64.0                   | 64.0                           | 64.0                           | 66            |
| 484230007 | ТΧ | Smith      | 75.0                 | 75                   | 62.3                   | 62.3                   | 62.3                           | 62.3                           | 65            |
| 484390075 | ΤХ | Tarrant    | 82.0                 | 83                   | 67.8                   | 68.7                   | 67.8                           | 68.7                           | 72            |
| 484391002 | ΤХ | Tarrant    | 81.0                 | 82                   | 67.5                   | 68.4                   | 67.5                           | 68.4                           | 74            |

| Site      | St | County         | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|----------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 484392003 | ТΧ | Tarrant        | 87.3                 | 90                   | 72.5                   | 74.8                   | 72.5                           | 74.8                           | 73            |
| 484393009 | ΤХ | Tarrant        | 86.0                 | 86                   | 70.6                   | 70.6                   | 70.6                           | 70.6                           | 75            |
| 484393011 | ΤХ | Tarrant        | 80.7                 | 83                   | 68.0                   | 70.0                   | 68.0                           | 70.0                           | 65            |
| 484530014 | ΤХ | Travis         | 73.7                 | 75                   | 62.9                   | 64.0                   | 62.9                           | 64.0                           | 66            |
| 484530020 | ΤХ | Travis         | 72.0                 | 73                   | 60.8                   | 61.6                   | 60.8                           | 61.6                           | 66            |
| 484690003 | ΤХ | Victoria       | 68.7                 | 70                   | 61.4                   | 62.6                   | 61.4                           | 62.6                           | 65            |
| 490030003 | UT | Box Elder      | 67.7                 | 69                   | 59.8                   | 60.9                   | 60.9                           | 62.1                           | 67            |
| 490050004 | UT | Cache          | 64.3                 | 67                   | 57.9                   | 60.3                   | 57.9                           | 60.3                           | N/A           |
| 490071003 | UT | Carbon         | 69.0                 | 69                   | 61.1                   | 61.1                   | 61.1                           | 61.1                           | 66            |
| 490110004 | UT | Davis          | 69.3                 | 71                   | 61.3                   | 62.8                   | 60.0                           | 61.5                           | 74            |
| 490131001 | UT | Duchesne       | 68.0                 | 68                   | 62.0                   | 62.0                   | 62.0                           | 62.0                           | N/A           |
| 490352004 | UT | Salt Lake      | 74.0                 | 76                   | 65.5                   | 67.2                   | 65.4                           | 67.1                           | N/A           |
| 490353006 | UT | Salt Lake      | 76.0                 | 76                   | 65.8                   | 65.8                   | 65.8                           | 65.8                           | 75            |
| 490370101 | UT | San Juan       | 68.7                 | 69                   | 63.6                   | 63.9                   | 63.6                           | 63.9                           | 64            |
| 490450003 | UT | Tooele         | 72.0                 | 73                   | 63.9                   | 64.8                   | 63.5                           | 64.4                           | N/A           |
| 490490002 | UT | Utah           | 70.0                 | 73                   | 62.5                   | 65.2                   | 62.7                           | 65.4                           | 71            |
| 490495010 | UT | Utah           | 69.3                 | 70                   | 61.9                   | 62.5                   | 62.3                           | 62.9                           | 73            |
| 490530006 | UT | Washington     | 67.0                 | 67                   | 61.4                   | 61.4                   | 61.4                           | 61.4                           | N/A           |
| 490530130 | UT | Washington     | 71.7                 | 73                   | 65.8                   | 67.0                   | 65.8                           | 67.0                           | N/A           |
| 490570002 | UT | Weber          | 71.7                 | 72                   | 64.0                   | 64.3                   | 64.0                           | 64.3                           | 71            |
| 490571003 | UT | Weber          | 72.7                 | 74                   | 64.1                   | 65.2                   | 65.3                           | 66.5                           | 72            |
| 500030004 | VT | Bennington     | 63.7                 | 65                   | 51.3                   | 52.4                   | 51.3                           | 52.4                           | 63            |
| 500070007 | VT | Chittenden     | 61.0                 | 62                   | 49.6                   | 50.4                   | 49.6                           | 50.4                           | 61            |
| 510030001 | VA | Albemarle      | 66.7                 | 68                   | 52.9                   | 53.9                   | 52.9                           | 53.9                           | N/A           |
| 510130020 | VA | Arlington      | 81.7                 | 86                   | 64.9                   | 68.3                   | 64.9                           | 68.3                           | 72            |
| 510330001 | VA | Caroline       | 72.0                 | 74                   | 56.0                   | 57.6                   | 56.0                           | 57.6                           | N/A           |
| 510360002 | VA | Charles        | 75.7                 | 79                   | 59.4                   | 62.0                   | 59.4                           | 62.0                           | 63            |
| 510410004 | VA | Chesterfield   | 72.0                 | 75                   | 56.8                   | 59.2                   | 56.8                           | 59.2                           | 62            |
| 510590030 | VA | Fairfax        | 82.3                 | 86                   | 65.1                   | 68.1                   | 65.1                           | 68.1                           | 70            |
| 510610002 | VA | Fauquier       | 62.7                 | 64                   | 49.5                   | 50.5                   | 49.5                           | 50.5                           | 59            |
| 510690010 | VA | Frederick      | 66.7                 | 69                   | 51.4                   | 53.2                   | 51.4                           | 53.2                           | 61            |
| 510719991 | VA | Giles          | 63.0                 | 63                   | 47.1                   | 47.1                   | 47.1                           | 47.1                           | 62            |
| 510850003 | VA | Hanover        | 73.7                 | 76                   | 56.9                   | 58.6                   | 56.9                           | 58.6                           | 62            |
| 510870014 | VA | Henrico        | 75.0                 | 78                   | 58.8                   | 61.2                   | 58.8                           | 61.2                           | N/A           |
| 511071005 | VA | Loudoun        | 73.0                 | 75                   | 57.8                   | 59.4                   | 57.8                           | 59.4                           | 67            |
| 511130003 | VA | Madison        | 70.7                 | 72                   | 57.0                   | 58.0                   | 57.0                           | 58.0                           | 63            |
| 511390004 | VA | Page           | 66.3                 | 68                   | 53.2                   | 54.6                   | 53.2                           | 54.6                           | N/A           |
| 511479991 | VA | Prince Edward  | 62.0                 | 62                   | 50.3                   | 50.3                   | 50.3                           | 50.3                           | 60            |
| 511530009 | VA | Prince William | 70.0                 | 72                   | 56.2                   | 57.8                   | 56.2                           | 57.8                           | 65            |

| Site      | St | County          | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|-----------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 511611004 | VA | Roanoke         | 67.3                 | 70                   | 53.4                   | 55.5                   | 53.4                           | 55.5                           | 62            |
| 511630003 | VA | Rockbridge      | 62.3                 | 64                   | 50.2                   | 51.6                   | 50.2                           | 51.6                           | 58            |
| 511650003 | VA | Rockingham      | 66.0                 | 68                   | 53.7                   | 55.3                   | 53.7                           | 55.3                           | 60            |
| 511790001 | VA | Stafford        | 73.0                 | 76                   | 55.4                   | 57.7                   | 57.1                           | 59.4                           | 63            |
| 511970002 | VA | Wythe           | 64.3                 | 66                   | 51.9                   | 53.3                   | 51.9                           | 53.3                           | 61            |
| 515100009 | VA | Alexandria City | 80.0                 | 83                   | 63.4                   | 65.8                   | 63.4                           | 65.8                           | N/A           |
| 516500008 | VA | Hampton City    | 74.0                 | 76                   | 58.2                   | 59.8                   | 56.9                           | 58.4                           | 64            |
| 518000004 | VA | Suffolk City    | 71.3                 | 73                   | 58.7                   | 60.1                   | 56.2                           | 57.5                           | 60            |
| 518000005 | VA | Suffolk City    | 69.7                 | 71                   | 54.7                   | 55.7                   | 54.7                           | 55.7                           | 61            |
| 530110011 | WA | Clark           | 56.0                 | 57                   | 50.4                   | 51.3                   | 50.4                           | 51.3                           | 59            |
| 530330010 | WA | King            | 55.0                 | 57                   | 50.0                   | 51.8                   | 50.0                           | 51.8                           | 55            |
| 530330017 | WA | King            | 57.0                 | 59                   | 48.9                   | 50.6                   | 48.9                           | 50.6                           | 58            |
| 530330023 | WA | King            | 65.0                 | 67                   | 54.9                   | 56.6                   | 54.9                           | 56.6                           | 67            |
| 530531010 | WA | Pierce          | 53.3                 | 54                   | 46.2                   | 46.8                   | 46.2                           | 46.8                           | N/A           |
| 530630001 | WA | Spokane         | 58.7                 | 60                   | 51.8                   | 53.0                   | 51.8                           | 53.0                           | N/A           |
| 530630021 | WA | Spokane         | 59.0                 | 60                   | 53.1                   | 54.0                   | 53.1                           | 54.0                           | N/A           |
| 530630046 | WA | Spokane         | 58.7                 | 60                   | 51.0                   | 52.1                   | 51.0                           | 52.1                           | 59            |
| 530670005 | WA | Thurston        | 55.7                 | 56                   | 48.3                   | 48.6                   | 48.3                           | 48.6                           | 57            |
| 540030003 | WV | Berkeley        | 68.0                 | 70                   | 52.6                   | 54.2                   | 52.6                           | 54.2                           | 63            |
| 540110006 | WV | Cabell          | 69.3                 | 72                   | 57.0                   | 59.2                   | 57.0                           | 59.2                           | 64            |
| 540219991 | WV | Gilmer          | 60.0                 | 60                   | 49.5                   | 49.5                   | 49.5                           | 49.5                           | 59            |
| 540250003 | WV | Greenbrier      | 64.7                 | 66                   | 53.1                   | 54.1                   | 53.1                           | 54.1                           | 59            |
| 540291004 | WV | Hancock         | 73.0                 | 75                   | 60.2                   | 61.8                   | 60.2                           | 61.8                           | N/A           |
| 540390010 | WV | Kanawha         | 72.3                 | 74                   | 60.1                   | 61.5                   | 60.1                           | 61.5                           | N/A           |
| 540610003 | WV | Monongalia      | 69.7                 | 72                   | 58.0                   | 59.9                   | 58.0                           | 59.9                           | 64            |
| 540690010 | WV | Ohio            | 72.3                 | 74                   | 59.3                   | 60.7                   | 59.3                           | 60.7                           | 68            |
| 541071002 | WV | Wood            | 68.3                 | 71                   | 54.5                   | 56.6                   | 54.5                           | 56.6                           | 68            |
| 550090026 | WI | Brown           | 68.3                 | 70                   | 56.8                   | 58.2                   | 58.0                           | 59.4                           | 66            |
| 550210015 | WI | Columbia        | 67.0                 | 69                   | 55.3                   | 57.0                   | 55.3                           | 57.0                           | 67            |
| 550250041 | WI | Dane            | 66.3                 | 69                   | 55.8                   | 58.1                   | 55.8                           | 58.1                           | 65            |
| 550270001 | WI | Dodge           | 71.5                 | 72                   | 61.5                   | 61.9                   | 61.5                           | 61.9                           | 68            |
| 550290004 | WI | Door            | 75.7                 | 78                   | 63.6                   | 65.5                   | 63.3                           | 65.2                           | 72            |
| 550350014 | WI | Eau Claire      | 62.0                 | 62                   | 50.0                   | 50.0                   | 50.0                           | 50.0                           | 61            |
| 550390006 | WI | Fond du Lac     | 70.0                 | 72                   | 59.8                   | 61.5                   | 59.8                           | 61.5                           | 66            |
| 550410007 | WI | Forest          | 64.7                 | 67                   | 53.3                   | 55.2                   | 53.3                           | 55.2                           | 63            |
| 550550002 | WI | Jefferson       | 68.5                 | 70                   | 58.1                   | 59.4                   | 58.1                           | 59.4                           | N/A           |
| 550590019 | WI | Kenosha         | 81.0                 | 84                   | 58.7                   | 60.9                   | 64.8                           | 67.2                           | 77            |
| 550610002 | WI | Kewaunee        | 75.0                 | 78                   | 64.0                   | 66.5                   | 64.5                           | 67.1                           | 69            |
| 550630012 | WI | La Crosse       | 63.3                 | 65                   | 52.0                   | 53.4                   | 52.0                           | 53.4                           | 62            |

| Site      | St | County     | 2009-<br>2013<br>Avg | 2009-<br>2013<br>Max | 2023en<br>"3x3"<br>Avg | 2023en<br>"3x3"<br>Max | 2023en<br>"No<br>Water"<br>Avg | 2023en<br>"No<br>Water"<br>Max | 2014-<br>2016 |
|-----------|----|------------|----------------------|----------------------|------------------------|------------------------|--------------------------------|--------------------------------|---------------|
| 550710007 | WI | Manitowoc  | 78.7                 | 80                   | 65.6                   | 66.7                   | 67.6                           | 68.7                           | 72            |
| 550730012 | WI | Marathon   | 63.3                 | 65                   | 51.3                   | 52.7                   | 51.3                           | 52.7                           | 65            |
| 550790010 | WI | Milwaukee  | 69.7                 | 72                   | 55.8                   | 57.6                   | 60.6                           | 62.6                           | 64            |
| 550790026 | WI | Milwaukee  | 74.7                 | 78                   | 60.4                   | 63.1                   | 66.5                           | 69.4                           | 68            |
| 550790085 | WI | Milwaukee  | 80.0                 | 82                   | 65.4                   | 67.0                   | 71.2                           | 73.0                           | 71            |
| 550870009 | WI | Outagamie  | 69.3                 | 72                   | 59.1                   | 61.4                   | 59.1                           | 61.4                           | 67            |
| 550890008 | WI | Ozaukee    | 76.3                 | 80                   | 65.7                   | 68.8                   | 67.2                           | 70.5                           | 71            |
| 550890009 | WI | Ozaukee    | 74.7                 | 77                   | 62.2                   | 64.1                   | 63.6                           | 65.5                           | 73            |
| 551010017 | WI | Racine     | 77.7                 | 81                   | 57.5                   | 59.9                   | 62.2                           | 64.8                           | N/A           |
| 551050024 | WI | Rock       | 69.5                 | 72                   | 58.9                   | 61.1                   | 58.9                           | 61.1                           | N/A           |
| 551110007 | WI | Sauk       | 65.0                 | 67                   | 54.2                   | 55.8                   | 54.2                           | 55.8                           | 64            |
| 551170006 | WI | Sheboygan  | 84.3                 | 87                   | 70.8                   | 73.1                   | 72.8                           | 75.1                           | 79            |
| 551199991 | WI | Taylor     | 63.0                 | 63                   | 51.1                   | 51.1                   | 51.1                           | 51.1                           | 61            |
| 551270005 | WI | Walworth   | 69.3                 | 71                   | 59.7                   | 61.2                   | 59.7                           | 61.2                           | 70            |
| 551330027 | WI | Waukesha   | 66.7                 | 69                   | 58.1                   | 60.1                   | 58.1                           | 60.1                           | 66            |
| 560050123 | WY | Campbell   | 63.7                 | 65                   | 59.3                   | 60.5                   | 59.3                           | 60.5                           | 58            |
| 560050456 | WY | Campbell   | 63.0                 | 64                   | 59.1                   | 60.1                   | 59.1                           | 60.1                           | 60            |
| 560070100 | WY | Carbon     | 63.0                 | 64                   | 58.7                   | 59.6                   | 58.7                           | 59.6                           | 60            |
| 560130232 | WY | Fremont    | 65.0                 | 66                   | 61.2                   | 62.1                   | 61.2                           | 62.1                           | 61            |
| 560210100 | WY | Laramie    | 68.0                 | 68                   | 62.4                   | 62.4                   | 62.4                           | 62.4                           | 63            |
| 560350700 | WY | Sublette   | 64.0                 | 64                   | 59.9                   | 59.9                   | 59.9                           | 59.9                           | 61            |
| 560370200 | WY | Sweetwater | 63.7                 | 64                   | 57.9                   | 58.2                   | 57.9                           | 58.2                           | 55            |
| 560370300 | WY | Sweetwater | 66.0                 | 66                   | 60.0                   | 60.0                   | 60.0                           | 60.0                           | 66            |
| 560391011 | WY | Teton      | 65.3                 | 66                   | 62.6                   | 63.3                   | 62.4                           | 63.1                           | 60            |
| 560410101 | WY | Uinta      | 64.3                 | 65                   | 58.0                   | 58.6                   | 58.0                           | 58.6                           | 61            |

# Appendix B

# Alpine Geophysics Final Modeling Report

"Good Neighbor" Modeling for the 2008 8-Hour Ozone State Implementation Plans



**Final Modeling Report** 

## **"Good Neighbor" Modeling for the 2008 8-Hour Ozone State Implementation Plans**

**Final Modeling Report** 

Prepared by: Alpine Geophysics, LLC 7341 Poppy Way Arvada, CO 80007

December 2017 Project Number: TS-510

### Contents

|                                                         | Page            |
|---------------------------------------------------------|-----------------|
| 1.0 INTRODUCTION                                        | 1               |
| 1.1 OVERVIEW                                            | 1               |
| 1.2 STUDY Background                                    | 2               |
| 1.2.1 Current Ozone Air Quality at the Problem Monitors | 3               |
| 1.2.3 Purpose                                           | 5               |
| 1.3 Lead Agency and Principal Participants              | 5               |
| 1.4 Overview of Modeling Approach                       | 5               |
| 1.4.1 Episode Selection                                 | 5               |
| 1.4.2 Model Selection                                   | 5               |
| 1.4.3 Base and Future Year Emissions Data               | 6               |
| 1.4.4 Input Preparation and QA/QC                       | 6               |
| 1.4.5 Meteorology Input Preparation and QA/QC           | 6               |
| 1.4.6 Initial and Boundary Conditions Development       | 6               |
| 1.4.7 Air Quality Modeling Input Preparation and QA/QC  | 6               |
| 1.4.8 Model Performance Evaluation                      | 6               |
| 1.4.9 Diagnostic Sensitivity Analyses                   | 7               |
| 2.0 MODEL SELECTION                                     | 8               |
| 3.0 EPISODE SELECTION                                   | 11              |
| 4.0 MODELING DOMAIN SELECTION<br>4.1 HORIZONTAL Domain  | <b>12</b><br>12 |
| 4.2 VERTICAL Modeling Domain                            | 12              |
| 4.3 DATA Availability                                   | 13              |
| 4.3 DATA Availability<br>4.3.1 Emissions Data           | 14              |
|                                                         | 14              |
| 4.3.2 Air Quality<br>4.3.4 Meteorological Data          | 14              |
| 4.3.5 Initial and Boundary Conditions Data              | 14              |
| 5.0 MODEL INPUT PREPARATION PROCEDURES                  | 14<br>16        |
| 5.1 METEOROLOGICAL Inputs                               | 16              |
| 5.1.1 WRF Model Science Configuration                   | 16              |
| 5.1.2 WRF Input Data Preparation Procedures             | 16              |
| 5.1.3 WRF Model Performance Evaluation                  | 16              |
| 5.1.3 WRFCAMx/MCIP Reformatting Methodology             | 17              |
| 5.2 EMISSION Inputs                                     | 17              |
| 5.2.1 Available Emissions Inventory Datasets            | 17              |
| 5.2.2 Development of CAMx-Ready Emission Inventories    | 17              |
| 5.2.2.1 Episodic Biogenic Source Emissions              | 17              |
| 5.2.2.2 Point Source Emissions                          | 17              |
|                                                         |                 |
| 5.2.2.3 Area and Non-Road Source Emissions              | 18              |

#### ALPINE GEOPHYSICS

| 5.2.2.4 Wildfires, Prescribed Burns, Agricultural Burns            | 18 |
|--------------------------------------------------------------------|----|
| 5.2.2.5 QA/QC and Emissions Merging                                | 18 |
| 5.2.3 Use of the Plume-in-Grid (PiG) Subgrid-Scale Plume Treatment | 18 |
| 5.2.4 Future-Year Emissions Modeling                               | 18 |
| 5.3 PHOTOCHEMICAL Modeling Inputs                                  | 19 |
| 5.3.1 CAMx Science Configuration and Input Configuration           | 19 |
| 6.0 MODEL PERFORMANCE EVALUATION                                   | 20 |
| 6.1 EPA Model Performace Evaluation                                | 20 |
| 6.1.1 Overview of EPA Model Performance Evaluation Recommendations | 20 |
| 7.0 FUTURE YEAR MODELING                                           | 22 |
| 7.1 FUTURE Year to be Simulated                                    | 22 |
| 7.2 FUTURE Year Growth and Controls                                | 22 |
| 7.3 FUTURE Year Baseline Air Quality Simulations                   | 22 |
| 7.4 Conclusions from 2023 CAMx Modeling                            | 22 |
| 8.0 MODELING DOCUMENTATION AND DATA ARCHIVE                        | 24 |
| 9.0 REFERENCES                                                     | 25 |



### TABLES

| Table 1-1. | Final CSAPR Update-identified problem monitor base period and modeled future year design values (ppb) . | 3  |
|------------|---------------------------------------------------------------------------------------------------------|----|
| Table 1-2. | Final CSAPR Update-identified problem monitor design value observations (ppb).                          | 4  |
| Table 4-1. | WRF and CAMx layers and their approximate height above ground level.                                    | 13 |
| Table 4-2. | Overview of routine ambient data monitoring networks.                                                   | 15 |
| Table 7-1. | GNS Modeling results at Final CSAPR Update-identified problem monitors (ppb).                           | 23 |
| FIGURES    |                                                                                                         |    |

# Figure 4-1. Map of 12km CAMx modeling domains. Source: EPA NAAQS NODA. 12

# **1.0 INTRODUCTION**

#### **1.1 OVERVIEW**

Sections 110(a)(1) and (2) of the Clean Air Act (CAA) require all states to adopt and submit to the U. S. Environmental Protection Agency (EPA) any revisions to their infrastructure State Implementation Plans (SIP) which provide for the implementation, maintenance and enforcement of a new or revised national ambient air quality standard (NAAQS). The EPA revised the ozone NAAQS in March 2008 and completed the designation process to identify nonattainment areas in July 2012. Through final action and rulemaking of the Cross-State Air Pollution Rule (CSAPR) (81 FR 74504), EPA has indicated its intention to issue a Federal Implementation Plan (FIP) to multiple states in the absence of an approved revision to the SIP.

CAA section 110(a)(2)(D)(i)(I) requires each state to prohibit emissions that will significantly contribute to nonattainment of a NAAQS, or interfere with maintenance of a NAAQS, in a downwind state. According to EPA many states' infrastructure certification failed to demonstrate that emissions activities within those states will not significantly contribute to nonattainment or interfere with maintenance of the 2008 ozone NAAQS in a neighboring state.

This document serves to provide the air quality modeling results for 8-hour ozone modeling analysis in support of the revision of 2008 8-hour ozone Good Neighbor State Implementation Plan (GNS). The 2008 8-hour ozone NAAQS form is the three year average of the fourth highest daily maximum 8-hour ozone concentrations with a threshold not to be exceeded of 0.075 ppm (75 ppb). On October 26, 2015, the EPA promulgated a new 8-hour ozone NAAQS with a threshold not to be exceeded of 0.070 ppm (70 ppb). Attainment of this new (2015) ozone NAAQS will be addressed in future SIP actions and may use results of this effort to inform that determination.

This document describes the overall modeling activities performed in order to demonstrate that states do not significantly contribute to nonattainment or interfere with maintenance of the 2008 ozone NAAQS in a neighboring state. This effort was undertaken working closely with states, other local agencies, and stakeholder groups, including the Midwest Ozone Group which funded this modeling.

A comprehensive draft Modeling Protocol for an 8-hour ozone SIP revision study was prepared and provided to EPA for comment and review relative to Kentucky's Good Neighbor SIP requirements on which this modeling is established. Based on EPA comments, the draft document was revised to include many of the comments and recommendations submitted, most importantly, but not limited to, using EPA's 2023en modeling platform (EPA, 2017a). This 2023en modeling platform represents EPA's estimation of a projected "base case" that demonstrates compliance with final CSAPR update seasonal EGU NOx budgets. A final Modeling Protocol (Alpine, 2017) was prepared and submitted to the Midwest Ozone Group and KYDAQ.

#### **1.2 STUDY BACKGROUND**

Section 110(a)(2)(D)(i)(I) of the CAA requires that states address the interstate transport of pollutants and ensure that emissions within the state do not contribute significantly to nonattainment in, or interfere with maintenance by, any other state. The following section is intended to address eastern state interstate transport, or "Good Neighbor," responsibilities for the 2008 ozone NAAQS. Eastern states have many rules and limits currently in place that control ozone precursor pollutants and emissions of these pollutants are decreasing in the state. These facts strengthen the demonstration that no further controls or emission limits may be required to fulfil responsibilities under the Good Neighbor Provisions for the 2008 ozone NAAQS.

On October 26, 2016, EPA published in the Federal Register a final update to the Cross-State Air Pollution Rule (CSAPR) for the 2008 ozone NAAQS. In this final update, EPA outlines its fourtiered approach to addressing the interstate transport of pollution related to the ozone NAAQS, or states' Good Neighbor responsibilities. EPA's approach determines which states contribute significantly to nonattainment areas or significantly interfere with air quality in maintenance areas in downwind states. EPA has determined that if a state's contribution to downwind air quality problems is below one percent of the applicable NAAQS, then it does not consider that state to be significantly contributing to the downwind area's nonattainment or maintenance concerns. EPA's approach to addressing interstate transport has been shaped by public notice and comment and refined in response to court decisions.

As part of the final CSAPR update, EPA released regional air quality modeling to support the 2008 ozone NAAQS attainment date of 2017, indicating which states significantly contribute to nonattainment or maintenance area air quality problems in other states. To make these determinations, the EPA projected future ozone nonattainment and maintenance receptors, then conducted state-level ozone source apportionment modeling to determine which states contributed pollution over a pre-identified "contribution threshold."

Multiple upwind states' contributions to projected downwind nonattainment area air quality was found to be over the one-percent threshold at numerous final CSAPR-identified nonattainment and maintenance ("problem") monitors. The one percent threshold for the 2008 NAAQS is 0.75 parts per billion (ppb). These monitors and their final CSAPR update base period and modeled future year design values are shown in Table 1-1.

| Table 1-1. Final CSAPR Update-identified problem monitor base period and modeled future |
|-----------------------------------------------------------------------------------------|
| year design values (ppb)                                                                |

| Monitor ID    | State        | County       | 2009-2013<br>Base<br>Period<br>Average<br>Design<br>Value<br>(ppb) | 2009-2013<br>Base<br>Period<br>Maximum<br>Design<br>Value<br>(ppb) | 2017 Base<br>Case<br>Average<br>Design<br>Value<br>(ppb) | 2017 Base<br>Case<br>Maximum<br>Design<br>Value<br>(ppb) |
|---------------|--------------|--------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Nonattainmen  | t Monitors   |              | I                                                                  | Γ                                                                  | Γ                                                        |                                                          |
| 90019003      | Connecticut  | Fairfield    | 83.7                                                               | 87                                                                 | 76.5                                                     | 79.5                                                     |
| 90099002      | Connecticut  | New Haven    | 85.7                                                               | 89                                                                 | 76.2                                                     | 79.2                                                     |
| 480391004     | Texas        | Brazoria     | 88.0                                                               | 89                                                                 | 79.9                                                     | 80.8                                                     |
| 484392003     | Texas        | Tarrant      | 87.3                                                               | 90                                                                 | 77.3                                                     | 79.7                                                     |
| 484393009     | Texas        | Tarrant      | 86.0                                                               | 86                                                                 | 76.4                                                     | 76.4                                                     |
| 551170006     | Wisconsin    | Sheboygan    | 84.3                                                               | 87                                                                 | 76.2                                                     | 78.7                                                     |
| Maintenance N | Monitors     |              |                                                                    |                                                                    |                                                          |                                                          |
| 90010017      | Connecticut  | Fairfield    | 80.3                                                               | 83                                                                 | 74.1                                                     | 76.6                                                     |
| 90013007      | Connecticut  | Fairfield    | 84.3                                                               | 89                                                                 | 75.5                                                     | 79.7                                                     |
| 211110067     | Kentucky     | Jefferson    | 85.0                                                               | 85                                                                 | 76.9                                                     | 76.9                                                     |
| 240251001     | Maryland     | Harford      | 90.0                                                               | 93                                                                 | 78.8                                                     | 81.4                                                     |
| 260050003     | Michigan     | Allegan      | 82.7                                                               | 86                                                                 | 74.7                                                     | 77.7                                                     |
| 360850067     | New York     | Richmond     | 81.3                                                               | 83                                                                 | 75.8                                                     | 77.4                                                     |
| 361030002     | New York     | Suffolk      | 83.3                                                               | 85                                                                 | 76.8                                                     | 78.4                                                     |
| 390610006     | Ohio         | Hamilton     | 82.0                                                               | 85                                                                 | 74.6                                                     | 77.4                                                     |
| 421010024     | Pennsylvania | Philadelphia | 83.3                                                               | 87                                                                 | 73.6                                                     | 76.9                                                     |
| 481210034     | Texas        | Denton       | 84.3                                                               | 87                                                                 | 75.0                                                     | 77.4                                                     |
| 482010024     | Texas        | Harris       | 80.3                                                               | 83                                                                 | 75.4                                                     | 77.9                                                     |
| 482011034     | Texas        | Harris       | 81.0                                                               | 82                                                                 | 75.7                                                     | 76.6                                                     |
| 482011039     | Texas        | Harris       | 82.0                                                               | 84                                                                 | 76.9                                                     | 78.8                                                     |

Because upwind state contribution to projected downwind maintenance problems is above the one percent threshold and thus significant, additional analyses are required to fulfil these state responsibilities under the Good Neighbor Provisions for the 2008 ozone NAAQS.

#### 1.2.1 Current Ozone Air Quality at the Problem Monitors

Table 1-2 displays the maximum 8-hour ozone Design Values from 2008-2015 along with the highest fourth highest daily maximum 8-hour ozone concentration at the CSAPR-problem monitors. The fourth highest daily maximum 8-hour ozone concentration at these monitors exhibits high year-to-year variability that is primarily due to meteorological variations that can cause the values to change between successive years. Use of the three-year average of these fourth highest values in the ozone Design Value results in a suppression of this variability so that the differences in the maximum 8-hour ozone Design Value over this period is less pronounced.

# Table 1-2. Final CSAPR Update-identified problem monitor design value observations (ppb).

|            |                        |              |      | 4th Highest (ppb) |      |      |      |      |      | 3-yr Av | vg (ppb) |         |         |         |         |         |
|------------|------------------------|--------------|------|-------------------|------|------|------|------|------|---------|----------|---------|---------|---------|---------|---------|
| Site ID    | State                  | County       | 2008 | 2009              | 2010 | 2011 | 2012 | 2013 | 2014 | 2015    | 2008-10  | 2009-11 | 2010-12 | 2011-13 | 2012-14 | 2013-15 |
| Nonattainm | Nonattainment Monitors |              |      |                   |      |      |      |      |      |         |          |         |         |         |         |         |
| 90019003   | Connecticut            | Fairfield    | 90   | 73                | 79   | 87   | 89   | 86   | 81   | 87      | 80       | 79      | 85      | 87      | 85      | 84      |
| 90099002   | Connecticut            | New Haven    |      | 73                | 79   | 92   | 90   | 85   | 69   | 81      |          | 81      | 87      | 89      | 81      | 78      |
| 480391004  | Texas                  | Brazoria     | 75   | 91                | 88   | 90   | 87   | 84   | 71   | 86      | 84       | 89      | 88      | 87      | 80      | 80      |
| 484392003  | Texas                  | Tarrant      | 85   | 90                | 85   | 97   | 79   | 80   | 74   | 76      | 86       | 90      | 87      | 85      | 77      | 76      |
| 484393009  | Texas                  | Tarrant      | 77   | 86                | 83   | 91   | 86   | 83   | 73   | 79      | 82       | 86      | 86      | 86      | 80      | 78      |
| 551170006  | Wisconsin              | Sheboygan    | 75   | 74                | 85   | 84   | 93   | 78   | 72   | 81      | 78       | 81      | 87      | 85      | 81      | 77      |
| Maintenanc | e Monitors             |              |      |                   |      |      |      |      |      |         |          |         |         |         |         |         |
| 90010017   | Connecticut            | Fairfield    | 88   | 68                | 79   | 81   | 88   | 82   | 78   | 84      | 78       | 76      | 82      | 83      | 82      | 81      |
| 90013007   | Connecticut            | Fairfield    | 78   | 73                | 79   | 87   | 90   | 90   | 74   | 86      | 76       | 79      | 85      | 89      | 84      | 83      |
| 211110067  | Kentucky               | Jefferson    |      |                   | 85   | 82   | 90   | 65   | 70   | 76      |          |         | 85      | 79      | 75      | 70      |
| 240251001  | Maryland               | Harford      | 89   | 83                | 96   | 98   | 86   | 72   | 67   | 74      | 89       | 92      | 93      | 85      | 75      | 71      |
| 260050003  | Michigan               | Allegan      | 73   | 76                | 73   | 85   | 95   | 78   | 77   | 72      | 74       | 78      | 84      | 86      | 83      | 75      |
| 360850067  | New York               | Richmond     | 64   | 78                | 85   | 87   | 78   | 71   | 72   | 79      | 75       | 83      | 83      | 78      | 73      | 74      |
| 361030002  | New York               | Suffolk      | 83   | 79                | 85   | 89   | 83   | 72   | 66   | 78      | 82       | 84      | 85      | 81      | 73      | 72      |
| 390610006  | Ohio                   | Hamilton     | 86   | 72                | 80   | 88   | 87   | 69   | 70   | 72      | 79       | 80      | 85      | 81      | 75      | 70      |
| 421010024  | Pennsylvania           | Philadelphia | 87   | 72                | 88   | 89   | 85   | 68   | 72   | 79      | 82       | 83      | 87      | 80      | 75      | 73      |
| 481210034  | Texas                  | Denton       | 84   | 82                | 74   | 95   | 81   | 85   | 77   | 88      | 80       | 83      | 83      | 87      | 81      | 83      |
| 482010024  | Texas                  | Harris       | 83   | 80                | 87   | 83   | 75   | 74   | 68   | 95      | 83       | 83      | 81      | 77      | 72      | 79      |
| 482011034  | Texas                  | Harris       | 73   | 79                | 76   | 88   | 83   | 69   | 66   | 88      | 76       | 81      | 82      | 80      | 72      | 74      |
| 482011039  | Texas                  | Harris       | 76   | 82                | 85   | 83   | 85   | 69   | 63   | 77      | 81       | 83      | 84      | 79      | 72      | 69      |



#### 1.2.3 Purpose

This document serves to provide air quality modeling results for the 8-hour ozone modeling analysis in support of revisions of 2008 8-hour ozone Good Neighbor State Implementation Plans. This document demonstrates that emissions activities within eastern states will not significantly contribute to nonattainment or interfere with maintenance of the 2008 ozone NAAQS in a neighboring state with the four problem monitors identified in the final CSAPR update.

#### **1.3 LEAD AGENCY AND PRINCIPAL PARTICIPANTS**

Individual impacted states will be the lead agency in the development of 8-hour ozone SIP revisions. Relevant EPA Regional offices will be the local regional EPA office that will take the lead in the review and approval process for this SIP revision.

#### **1.4 OVERVIEW OF MODELING APPROACH**

The GNS 8-Hour ozone SIP modeling documented here includes an ozone simulation study using the 12 km grid based on EPA's 2023en modeling platform and preliminary source contribution assessment (EPA, 2016b).

#### 1.4.1 Episode Selection

Episode selection is an important component of an 8-hour ozone attainment demonstration. EPA guidance recommends that 10 days be used to project 8-hour ozone Design Values at each critical monitor. The May 1 through August 31 2011 ozone season period was selected for the ozone SIP modeling primarily due to the following reasons:

- It is aligned with the 2011 NEI year, which is the latest currently available NEI.
- It is not an unusually low ozone year.
- Ambient meteorological and air quality data are available.
- A 2011 12 km CAMx modeling platform is available from the EPA that can be leveraged for the GNS ozone SIP modeling.

More details of the summer 2011 episode selection and justification using criteria in EPA's modeling guidance are contained in Section 3.

#### 1.4.2 Model Selection

Details on the rationale for model selection are provided in Section 2. The Weather Research Forecast (WRF) prognostic meteorological model was selected for the GNS ozone modeling using a 12 km resolution grid. Additional emission modeling is not required as the 2023en platform was provided to Alpine in pre-merged CAMx ready format. Emissions processing was completed by EPA using the SMOKE emissions model for most source categories. The exceptions are that BEIS model was used for biogenic emissions and there are special processors for fires, windblown dust, lightning and sea salt emissions. The MOVES2014 on-road mobile source emissions model was used with SMOKE-MOVES to generate on-road mobile source emissions with EPA generated vehicle activity data provided in the NAAQS NODA. The CAMx photochemical grid model was also be used. The setup is based on the same WRF/SMOKE/BEIS/CAMx modeling system used in the EPA 2023en platform modeling.

#### 1.4.3 Base and Future Year Emissions Data

The 2023 future year was selected for the attainment demonstration modeling based on OAQPS Director Steven Page's October 27, 2017 memo (Page, 2017, page 4) to Regional Air Directors. In this memo, Director Page identified the two primary reasons the EPA selected 2023 for their 2008 NAAQS modeling; (1) the D.C. Circuit Court's response to *North Carolina v. EPA* in considering downwind attainment dates for the 2008 NAAQS, and (2) EPA's consideration of the timeframes that may be required for implementing further emission reductions as expeditiously as possible. The 2011 base case and 2023 future year emissions will be based on EPA's "en" inventories with no adjustment. This platform has been identified by EPA as the base case for compliance with the final CSAPR update seasonal EGU NOx emission budgets.

#### 1.4.4 Input Preparation and QA/QC

Quality assurance (QA) and quality control (QC) of the emissions datasets are some of the most critical steps in performing air quality modeling studies. Because emissions processing is tedious, time consuming and involves complex manipulation of many different types of large databases, rigorous QA measures are a necessity to prevent errors in emissions processing from occurring. The GNS 8-Hour ozone modeling study utilized EPA's pre-QA/QC'd emissions platform that followed a multistep emissions QA/QC approach.

#### 1.4.5 Meteorology Input Preparation and QA/QC

The CAMx 2011 12 km meteorological inputs are based on WRF meteorological modeling conducted by EPA. Details on the EPA 2011 WRF application and evaluation are provided by EPA (EPA 2014d).

#### 1.4.6 Initial and Boundary Conditions Development

Initial concentrations (IC) and Boundary Conditions (BCs) are important inputs to the CAMx model. We ran 15 days of model spin-up before the first high ozone days occur in the modeling domain so the ICs are washed out of the modeling domain before the first high ozone day of the May-August 2011 modeling period. The lateral boundary and initial species concentrations are provided by a three dimensional global atmospheric chemistry model, GEOS-Chem (Yantosca, 2004) standard version 8-03-02 with 8-02-01 chemistry.

#### 1.4.7 Air Quality Modeling Input Preparation and QA/QC

Each step of the air quality modeling was subjected to QA/QC procedures. These procedures included verification of model configurations, confirmation that the correct data were used and processed correctly, and other procedures.

#### 1.4.8 Model Performance Evaluation

The Model Performance Evaluation (MPE) relied on the CAMx MPE from EPA's associated modeling platforms. EPA's MPE recommendations in their ozone modeling guidance (EPA, 2007; 2014e) were followed in this evaluation. Many of EPA's MPE procedures have already been performed by EPA in their CAMx 2011 modeling database being used in the GNS ozone SIP modeling.

#### **1.4.9 Diagnostic Sensitivity Analyses**

Since no issues were identified in confirming Alpine's CAMx runs compared to EPA's using the same modeling platform and configuration, additional diagnostic sensitivity analyses were not required.

# **2.0 MODEL SELECTION**

This section documents the models used in the 8-hour ozone GNS SIP modeling study. The selection methodology presented in this chapter mirrors EPA's regulatory modeling in support of the 2008 Ozone NAAQS Preliminary Interstate Transport Assessment (Page, 2017; EPA, 2016b).

Unlike some previous ozone modeling guidance that specified a particular ozone model (e.g., EPA, 1991 that specified the Urban Airshed Model; Morris and Myers, 1990), the EPA now recommends that models be selected for ozone SIP studies on a "case-by-case" basis. The latest EPA ozone guidance (EPA, 2014) explicitly mentions the CMAQ and CAMx PGMs as the most commonly used PGMs that would satisfy EPA's selection criteria but notes that this is not an exhaustive list and does not imply that they are "preferred" over other PGMs that could also be considered and used with appropriate justification. EPA's current modeling guidelines lists the following criteria for model selection (EPA, 2014e):

- It should not be proprietary;
- It should have received a scientific peer review;
- It should be appropriate for the specific application on a theoretical basis;
- It should be used with data bases which are available and adequate to support its application;
- It should be shown to have performed well in past modeling applications;
- It should be applied consistently with an established protocol on methods and procedures;
- It should have a user's guide and technical description;
- The availability of advanced features (e.g., probing tools or science algorithms) is desirable; and
- When other criteria are satisfied, resource considerations may be important and are a legitimate concern.

For the GNS 8-hour ozone modeling, we used the WRF/SMOKE/MOVES2014/BEIS/CAMx-OSAT/APCA modeling system as the primary tool for demonstrating attainment of the ozone NAAQS at downwind monitors at downwind problem monitors. The utilized modeling system satisfies all of EPA's selection criteria. A description of the key models to be used in the GNS ozone SIP modeling follows.

<u>WRF/ARW:</u> The Weather Research and Forecasting (WRF)<sup>1</sup> Model is a mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs (Skamarock, 2004; 2006; Skamarock et al., 2005). The Advanced Research WRF (ARW) version of WRF was used in this ozone modeling study. It features multiple dynamical cores, a 3-dimensional variational (3DVAR) data assimilation system, and a software architecture allowing for computational parallelism and system extensibility. WRF is suitable for a broad spectrum of applications across scales ranging from meters to thousands of

kilometers. The effort to develop WRF has been a collaborative partnership, principally among the National Center for Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration (NOAA), the National Centers for Environmental Prediction (NCEP) and the Forecast Systems Laboratory (FSL), the Air Force Weather Agency (AFWA), the Naval Research Laboratory, the University of Oklahoma, and the Federal Aviation Administration (FAA). WRF allows researchers the ability to conduct simulations reflecting either real data or idealized configurations. WRF provides operational forecasting a model that is flexible and efficient computationally, while offering the advances in physics, numerics, and data assimilation contributed by the research community.

<u>SMOKE:</u> The Sparse Matrix Operator Kernel Emissions (SMOKE)<sup>2</sup> modeling system is an emissions modeling system that generates hourly gridded speciated emission inputs of mobile, non-road, area, point, fire and biogenic emission sources for photochemical grid models (Coats, 1995; Houyoux and Vukovich, 1999). As with most 'emissions models', SMOKE is principally an emission processing system and not a true emissions modeling system in which emissions estimates are simulated from 'first principles'. This means that, with the exception of mobile and biogenic sources, its purpose is to provide an efficient, modern tool for converting an existing base emissions inventory data into the hourly gridded speciated formatted emission files required by a photochemical grid model. SMOKE was used by EPA to prepare 2023en emission inputs for non-road mobile, area and point sources. These files were adopted and used as-is for this analysis.

<u>SMOKE-MOVES</u>: SMOKE-MOVES uses an Emissions Factor (EF) Look-Up Table from MOVES, gridded vehicle miles travelled (VMT) and other activity data and hourly gridded meteorological data (typically from WRF) and generates hourly gridded speciated on-road mobile source emissions inputs.

<u>MOVES2014</u>: MOVES2014<sup>3</sup> is EPA's latest on-road mobile source emissions model that was first released in July 2014 (EPA, 2014a,b,c). MOVES2014 includes the latest on-road mobile source emissions factor information. Emission factors developed by EPA were used in this analysis.

<u>BEIS:</u> Biogenic emissions were modeled by EPA using version 3.61 of the Biogenic Emission Inventory System (BEIS). First developed in 1988, BEIS estimates volatile organic compound (VOC) emissions from vegetation and nitric oxide (NO) emissions from soils. Because of resource limitations, recent BEIS development has been restricted to versions that are built within the Sparse Matrix Operational Kernel Emissions (SMOKE) system.

<u>CAMx</u>: The Comprehensive Air quality Model with Extensions (CAMx<sup>4</sup>) is a state-of-science "One-Atmosphere" photochemical grid model capable of addressing ozone, particulate matter (PM), visibility and acid deposition at regional scale for periods up to one year (ENVIRON, 2015<sup>5</sup>). CAMx is a publicly available open-source computer modeling system for the integrated assessment of gaseous and particulate air pollution. Built on today's understanding that air

<sup>2</sup> http://www.smoke-model.org/index.cfm

<sup>3 &</sup>lt;u>http://www.epa.gov/otaq/models/moves/</u>

<sup>4</sup> http://www.camx.com

<sup>5</sup> http://www.camx.com/files/camxusersguide\_v6-20.pdf

quality issues are complex, interrelated, and reach beyond the urban scale, CAMx is designed to (a) simulate air quality over many geographic scales, (b) treat a wide variety of inert and chemically active pollutants including ozone, inorganic and organic PM<sub>2.5</sub> and PM<sub>10</sub> and mercury and toxics, (c) provide source-receptor, sensitivity, and process analyses and (d) be computationally efficient and easy to use. The U.S. EPA has approved the use of CAMx for numerous ozone and PM State Implementation Plans throughout the U.S., and has used this model to evaluate regional mitigation strategies including those for most recent regional rules (e.g., Transport Rule, CAIR, NO<sub>x</sub> SIP Call, etc.). The current version of CAMx is Version 6.40 that was used in this study.

<u>OSAT/APCA</u>: Ozone Source Apportionment Technique/Anthropogenic Precursor Culpability Assessment (OSAT/APCA) tool of CAMx was selected to develop source contribution and significant contribution calculations and was not required for this analysis.

# **3.0 EPISODE SELECTION**

EPA's most recent 8-hour ozone modeling guidance (EPA, 2014e) contains recommended procedures for selecting modeling episodes The GNS ozone SIP revision modeling used the May through end of August 2011 modeling period because it satisfies the most criteria in EPA's modeling guidance episode selection discussion.

EPA guidance recommends that 10 days be used to project 8-hour ozone Design Values at each critical monitor. The May through August 2011 period has been selected for the ozone SIP modeling primarily due to being aligned with the 2011 NEI year, not being an unusually low ozone year and availability of a 2011 12 km CAMx modeling platform from the EPA NAAQS NODA.

# 4.0 MODELING DOMAIN SELECTION

This section summarizes the modeling domain definitions for the GNS 8-hour ozone modeling, including the domain coverage, resolution, and map projection. It also discusses emissions, aerometric, and other data available for use in model input preparation and performance testing.

#### 4.1 HORIZONTAL DOMAIN

The GNS ozone SIP modeling used a 12 km continental U.S. (12US2) domain. The 12 km nested grid modeling domain configuration is shown in Figure 4-1. The 12 km domain shown in Figure 4-1 represents the CAMx 12km air quality and SMOKE/BEIS emissions modeling domain. The WRF meteorological modeling was run on larger 12 km modeling domains than used for CAMx as demonstrated in EPA's meteorological model performance evaluation document (EPA, 2014d). The WRF meteorological modeling domains are defined larger than the air quality modeling domains because meteorological models can sometimes produce artifacts in the meteorological variables near the boundaries as the prescribed boundary conditions come into dynamic balance with the coupled equations and numerical methods in the meteorological model.



Figure 4-1. Map of 12km CAMx modeling domains. Source: EPA NAAQS NODA.

#### 4.2 VERTICAL MODELING DOMAIN

The CAMx vertical structure is primarily defined by the vertical layers used in the WRF meteorological modeling. The WRF model employs a terrain following coordinate system defined by pressure, using multiple layer interfaces that extend from the surface to 50 mb (approximately 19 km above sea level). EPA ran WRF using 35 vertical layers. A layer averaging scheme is adopted for CAMx simulations whereby multiple WRF layers are combined into one CAMx layer to reduce the air quality model computational time. Table 4-1 displays the approach for collapsing the WRF 35 vertical layers to 25 vertical layers in CAMx.

|       |        |         |          | Approx.   |  |
|-------|--------|---------|----------|-----------|--|
| CAMx  | WRF    |         | Pressure | Height (m |  |
| Layer | Layers | Sigma P | (mb)     | AGL)      |  |
| 25    | 35     | 0.00    | 50.00    | 17,556    |  |
|       | 34     | 0.05    | 97.50    | 14,780    |  |
| 24    | 33     | 0.10    | 145.00   | 12,822    |  |
|       | 32     | 0.15    | 192.50   | 11,282    |  |
| 23    | 31     | 0.20    | 240.00   | 10,002    |  |
|       | 30     | 0.25    | 287.50   | 8,901     |  |
| 22    | 29     | 0.30    | 335.00   | 7,932     |  |
|       | 28     | 0.35    | 382.50   | 7,064     |  |
| 21    | 27     | 0.40    | 430.00   | 6,275     |  |
|       | 26     | 0.45    | 477.50   | 5,553     |  |
| 20    | 25     | 0.50    | 525.00   | 4,885     |  |
|       | 24     | 0.55    | 572.50   | 4,264     |  |
| 19    | 23     | 0.60    | 620.00   | 3,683     |  |
| 18    | 22     | 0.65    | 667.50   | 3,136     |  |
| 17    | 21     | 0.70    | 715.00   | 2,619     |  |
| 16    | 20     | 0.74    | 753.00   | 2,226     |  |
| 15    | 19     | 0.77    | 781.50   | 1,941     |  |
| 14    | 18     | 0.80    | 810.00   | 1,665     |  |
| 13    | 17     | 0.82    | 829.00   | 1,485     |  |
| 12    | 16     | 0.84    | 848.00   | 1,308     |  |
| 11    | 15     | 0.86    | 867.00   | 1,134     |  |
| 10    | 14     | 0.88    | 886.00   | 964       |  |
| 9     | 13     | 0.90    | 905.00   | 797       |  |
|       | 12     | 0.91    | 914.50   | 714       |  |
| 8     | 11     | 0.92    | 924.00   | 632       |  |
|       | 10     | 0.93    | 933.50   | 551       |  |
| 7     | 9      | 0.94    | 943.00   | 470       |  |
|       | 8      | 0.95    | 952.50   | 390       |  |
| 6     | 7      | 0.96    | 962.00   | 311       |  |
| 5     | 6      | 0.97    | 971.50   | 232       |  |
| 4     | 5      | 0.98    | 981.00   | 154       |  |
|       | 4      | 0.99    | 985.75   | 115       |  |
| 3     | 3      | 0.99    | 990.50   | 77        |  |
| 2     | 2      | 1.00    | 995.25   | 38        |  |
| 1     | 1      | 1.00    | 997.63   | 19        |  |

#### 4.3 DATA AVAILABILITY

The CAMx modeling systems requires emissions, meteorology, surface characteristics, initial and boundary conditions (IC/BC), and ozone column data for defining the inputs.

#### 4.3.1 Emissions Data

Without exception, the 2011 base year and 2023 base case emissions inventories for ozone modeling for this analysis were based on emissions obtained from the EPA's "en" modeling platform. This platform was obtained from EPA, via LADCO, in late September of 2017 and represents EPA's best estimate of all promulgated national, regional, and local control strategies, including final implementation of the seasonal EGU NOx emission budgets outlined in CSAPR.

#### 4.3.2 Air Quality

Data from ambient monitoring networks for gas species are used in the model performance evaluation. Table 4-2 summarizes routine ambient gaseous and PM monitoring networks available in the U.S.

#### 4.3.4 Meteorological Data

Meteorological data were generated by EPA using the WRF prognostic meteorological model (EPA, 2014d). WRF was run on a continental U.S. 12 km grid for the NAAQS NODA platform.

#### 4.3.5 Initial and Boundary Conditions Data

The lateral boundary and initial species concentrations are provided by a three dimensional global atmospheric chemistry model, GEOS-Chem (Yantosca, 2004) standard version 8-03-02 with 8-02-01 chemistry. The global GEOS-Chem model simulates atmospheric chemical and physical processes driven by assimilated meteorological observations from the NASA's Goddard Earth Observing System (GEOS-5; additional information available at:

http://gmao.gsfc.nasa.gov/GEOS/ and http://wiki.seas.harvard.edu/geos-

chem/index.php/GEOS-5). This model was run for 2011 with a grid resolution of 2.0 degrees x 2.5 degrees (latitude-longitude). The predictions were used to provide one-way dynamic boundary concentrations at one-hour intervals and an initial concentration field for the CAMx simulations. The 2011 boundary concentrations from GEOS-Chem will be used for the 2011 and 2023 model simulations.

# Table 4-2. Overview of routine ambient data monitoring networks.

| Monitoring Network        | Chemical Species Measured           | Sampling Period      | Data Availability/Source                                              |
|---------------------------|-------------------------------------|----------------------|-----------------------------------------------------------------------|
| The Interagency           |                                     |                      |                                                                       |
| Monitoring of Protected   |                                     |                      |                                                                       |
| Visual Environments       | Speciated PM25 and PM10 (see        | 1 in 3 days; 24 hr   |                                                                       |
| (IMPROVE)                 | species mappings)                   | average              | http://vista.cira.colostate.edu/improve/Data/IMPROVE/improve_data.htm |
| Clean Air Status and      |                                     |                      |                                                                       |
| Trends Network            | Speciated PM25, Ozone (see species  | Approximately 1-week |                                                                       |
| (CASTNET)                 | mappings)                           | average              | http://www.epa.gov/castnet/data.html                                  |
|                           | Wet deposition (hydrogen (acidity   |                      |                                                                       |
|                           | as pH), sulfate, nitrate, ammonium, |                      |                                                                       |
| National Atmospheric      | chloride, and base cations (such as |                      |                                                                       |
| Deposition Program        | calcium, magnesium, potassium and   |                      |                                                                       |
| (NADP)                    | sodium)), Mercury                   | 1-week average       | http://nadp.sws.uiuc.edu/                                             |
| Air Quality System (AQS)  |                                     |                      |                                                                       |
| or Aerometric Information |                                     | Typically hourly     |                                                                       |
| Retrieval System (AIRS)   | CO, NO2, O3, SO2, PM25, PM10, Pb    | average              | http://www.epa.gov/air/data/                                          |
| Chemical Speciation       |                                     |                      |                                                                       |
| Network (CSN)             | Speciated PM                        | 24-hour average      | http://www.epa.gov/ttn/amtic/amticpm.html                             |
| Photochemical             |                                     |                      |                                                                       |
| Assessment Monitoring     |                                     |                      |                                                                       |
| Stations (PAMS)           | Varies for each of 4 station types. |                      | http://www.epa.gov/ttn/amtic/pamsmain.html                            |
| National Park Service     | Acid deposition (Dry; SO4, NO3,     |                      |                                                                       |
| Gaseous Pollutant         | HNO3, NH4, SO2), O3,                |                      |                                                                       |
| Monitoring Network        | meteorological data                 | Hourly               | http://www2.nature.nps.gov/ard/gas/netdata1.htm                       |

# **5.0 MODEL INPUT PREPARATION PROCEDURES**

This section summarizes the procedures used in developing the meteorological, emissions, and air quality inputs to the CAMx model for the GNS 8-hour ozone modeling on the 12 km grid for the May through August 2011 period. The 12 km CAMx modeling databases are based on the EPA "en" platform (EPA, 2017a; Page, 2017) databases. While some of the data prepared for this platform are new, many of the files are largely based on the NAAQS NODA platform. More details on the NAAQS NODA 2011 CAMx database development are provided in EPA documentation as follows:

- Technical Support Document (TSD) Preparation of Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform (EPA, 2016a).
- Meteorological Model Performance for Annual 2011 WRF v3.4 Simulation (EPA, 2014d).
- Air Quality Modeling Technical Support Document for the 2015 Ozone NAAQS Preliminary Interstate Transport Assessment (EPA, 2016b).

The modeling procedures used in the modeling are consistent with over 20 years of EPA ozone modeling guidance documents (e.g., EPA, 1991; 1999; 2005a; 2007; 2014), other recent 8-hour ozone modeling studies conducted for various State and local agencies using these or other state-of-science modeling tools (see, for example, Morris et al., 2004a,b, 2005a,b; 2007; 2008a,b,c; Tesche et al., 2005a,b; Stoeckenius et al., 2009; ENVIRON, Alpine and UNC, 2013; Adelman, Shanker, Yang and Morris, 2014; 2015), as well as the methods used by EPA in support of the recent Transport analysis (EPA, 2010; 2015b, 2016b).

#### **5.1 METEOROLOGICAL INPUTS**

#### 5.1.1 WRF Model Science Configuration

Version 3.4 of the WRF model, Advanced Research WRF (ARW) core (Skamarock, 2008) was used for generating the 2011 simulations. Selected physics options include Pleim-Xiu land surface model, Asymmetric Convective Model version 2 planetary boundary layer scheme, KainFritsch cumulus parameterization utilizing the moisture-advection trigger (Ma and Tan, 2009), Morrison double moment microphysics, and RRTMG longwave and shortwave radiation schemes (Gilliam and Pleim, 2010). The WRF model configuration was prepared by EPA (EPA, 2014d).

#### 5.1.2 WRF Input Data Preparation Procedures

A summary of the WRF input data preparation procedures that were used are listed in EPA's documentation (EPA, 2014d).

#### 5.1.3 WRF Model Performance Evaluation

The WRF model evaluation approach was based on a combination of qualitative and quantitative analyses. The quantitative analysis was divided into monthly summaries of 2-m temperature, 2-m mixing ratio, and 10-m wind speed using the boreal seasons to help generalize the model bias and error relative to a set of standard model performance benchmarks. The qualitative approach was to compare spatial plots of model estimated

monthly total precipitation with the monthly PRISM precipitation. The WRF model performance evaluation for the 12km domain is provided in EPA's documentation (EPA, 2014d).

#### 5.1.3 WRFCAMx/MCIP Reformatting Methodology

The WRF meteorological model output data was processed to provide inputs for the CAMx photochemical grid model. The WRFCAMx processor maps WRF meteorological fields to the format required by CAMx. It also calculates turbulent vertical exchange coefficients (Kz) that define the rate and depth of vertical mixing in CAMx. A summary of the methodology used by EPA to reform the meteorological data into CAMx format is provided in EPA's documentation (EPA, 2014d).

#### **5.2 EMISSION INPUTS**

#### 5.2.1 Available Emissions Inventory Datasets

The base year and future year base case emission inventories used for the GNS 8-hour ozone modeling study were based on EPA's "en" modeling platform (EPA, 2017a) without exception.

#### 5.2.2 Development of CAMx-Ready Emission Inventories

CAMx-ready emission inputs were generated by EPA mainly by the SMOKE and BEIS emissions models. CAMx requires two emission input files for each day: (1) low level gridded emissions that are emitted directly into the first layer of the model from sources at the surface with little or no plume rise; and (2) elevated point sources (stacks) with plume rise calculated from stack parameters and meteorological conditions. For this analysis, CAMx will be operated using version 6 revision 4 of the Carbon Bond chemical mechanism (CB6r4).

EPA's 2011 base year and 2023 future year inventories from the "en" platform were used for all categories.

#### 5.2.2.1 Episodic Biogenic Source Emissions

Biogenic emissions were generated by EPA using the BEIS biogenic emissions model within SMOKE. BEIS uses high resolution GIS data on plant types and biomass loadings and the WRF surface temperature fields, and solar radiation (modeled or satellite-derived) to develop hourly emissions for biogenic species on the 12 km grids. BEIS generates gridded, speciated, temporally allocated emission files

#### 5.2.2.2 Point Source Emissions

2011 point source emissions were from the 2011 "en" modeling platform. Point sources were developed in two categories: (1) major point sources with Continuous Emissions Monitoring (CEM) devices; and (2) point sources without CEMs. For point sources with continuous emissions monitoring (CEM) data, day-specific hourly NOX and SO2 emissions were used for the 2011 base case emissions scenario. The VOC, CO and PM emissions for point sources with CEM data were based on the annual emissions temporally allocated to each hour of the year using the CEM hourly heat input. The locations of the point sources were converted to the LCP coordinate system used in the modeling. They were processed by EPA using SMOKE to generate the temporally varying (i.e., day-of-week and hour-of-day) speciated emissions needed by CAMx, using profiles by source category from the EPA "en" modeling platform.

#### 5.2.2.3 Area and Non-Road Source Emissions

2011 area and non-road emissions were from the 2011 "en" modeling platform. The area and non-road sources were spatially allocated to the grid using an appropriate surrogate distribution (e.g., population for home heating, etc.). The area sources were temporally allocated by month and by hour of day using the EPA source-specific temporal allocation factors. The SMOKE source-specific CB6 speciation allocation profiles were also used.

#### 5.2.2.4 Wildfires, Prescribed Burns, Agricultural Burns

Fire emissions in 2011NEIv2 were developed based on Version 2 of the Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation (SMARTFIRE) system (Sullivan, et al., 2008). SMARTFIRE2 was the first version of SMARTFIRE to assign all fires as either prescribed burning or wildfire categories. In past inventories, a significant number of fires were published as unclassified, which impacted the emissions values and diurnal emissions pattern. Recent updates to SMARTFIRE include improved emission factors for prescribed burning.

#### 5.2.2.5 QA/QC and Emissions Merging

EPA processed the emissions by major source category in several different "streams", including area sources, on-road mobile sources, non-road mobile sources, biogenic sources, non-CEM point sources, CEM point sources using day-specific hourly emissions, and emissions from fires. Separate Quality Assurance (QA) and Quality Control (QC) were performed for each stream of emissions processing and in each step following the procedures utilized by EPA. SMOKE includes advanced quality assurance features that include error logs when emissions are dropped or added. In addition, we generated visual displays that included spatial plots of the hourly emissions for each major species (e.g., NOX, VOC, some speciated VOC, SO2, NH3, PM and CO).

Scripts to perform the emissions merging of the appropriate biogenic, on-road, non-road, area, low-level, fire, and point emission files were written to generate the CAMx-ready twodimensional day and domain-specific hourly speciated gridded emission inputs. The point source and, as available elevated fire, emissions were processed into the day-specific hourly speciated emissions in the CAMx-ready point source format.

The resultant CAMx model-ready emissions were subjected to a final QA using spatial maps to assure that: (1) the emissions were merged properly; (2) CAMx inputs contain the same total emissions; and (3) to provide additional QA/QC information.

#### 5.2.3 Use of the Plume-in-Grid (PiG) Subgrid-Scale Plume Treatment

Consistent with the EPA 2011 modeling platform, no PiG subgrid-scale plume treatment will be used.

#### 5.2.4 Future-Year Emissions Modeling

Future-year emission inputs were generated by processing the 2023 emissions data provided with EPA's "en" modeling platform without exception.

#### **5.3 PHOTOCHEMICAL MODELING INPUTS**

#### 5.3.1 CAMx Science Configuration and Input Configuration

This section describes the model configuration and science options used in the GNS 8-hour ozone modeling effort.

The latest version of CAMx (Version 6.40) was used in the GNS ozone modeling. The CAMx model setup used is defined by EPA in its air quality modeling technical support document (EPA, 2016b, 2017).

# **6.0 MODEL PERFORMANCE EVALUATION**

The CAMx 2011 base case model estimates are compared against the observed ambient ozone and other concentrations to establish that the model is capable of reproducing the current year observed concentrations so it is likely a reliable tool for estimating future year ozone levels.

#### 6.1 EPA MODEL PERFORMACE EVALUATION

#### 6.1.1 Overview of EPA Model Performance Evaluation Recommendations

EPA current (EPA, 2007) and draft (EPA, 2014e) ozone modeling guidance recommendations for model performance evaluation (MPE) describes a MPE framework that has four components:

- Operation evaluation that includes statistical and graphical analysis aimed at determining how well the model simulates observed concentrations (i.e., does the model get the right answer).
- Diagnostic evaluation that focuses on process-oriented evaluation and whether the model simulates the important processes for the air quality problem being studied (i.e., does the model get the right answer for the right reason).
- Dynamic evaluation that assess the ability of the model air quality predictions to correctly respond to changes in emissions and meteorology.
- Probabilistic evaluation that assess the level of confidence in the model predictions through techniques such as ensemble model simulations.

EPA's guidance recommends that "At a minimum, a model used in an attainment demonstration should include a complete operational MPE using all available ambient monitoring data for the base case model simulations period" (EPA, 2014, pg. 63). And goes on to say "Where practical, the MPE should also include some level of diagnostic evaluation. EPA notes that there is no single definite test for evaluation model performance, but instead there are a series of statistical and graphical MPE elements to examine model performance in as many ways as possible while building a "weight of evidence" (WOE) that the model is performing sufficiently well for the air quality problem being studied.

Because this 2011 ozone modeling is using a CAMx 2011 modeling database developed by EPA, we include by reference the air quality modeling performance evaluation as conducted by EPA (EPA, 2016b) on the national 12km domain and will include any additional documentation provided in the future on the use of the 2011en modeling configuration.

In summary, EPA conducted an operational model performance evaluation for ozone to examine the ability of the CAMx v6.32 and v.6.40 modeling systems to simulate 2011 measured concentrations. This evaluation focused on graphical analyses and statistical metrics of model predictions versus observations. Details on the evaluation methodology, the calculation of performance statistics, and results are provided in Appendix A of that report.

Overall, the ozone model performance statistics for the CAMx v6.32 2011 simulation are similar to those from the CAMx v6.20 2011 simulation performed by EPA for the final CSAPR Update. The 2011 CAMx model performance statistics are within or close to the ranges found in other

recent peer-reviewed applications (e.g., Simon et al, 2012). As described in Appendix A of the AQ TSD, the predictions from the 2011 modeling platform correspond closely to observed concentrations in terms of the magnitude, temporal fluctuations, and geographic differences for 8-hour daily maximum ozone. We fully anticipate that the MPE performed for the 2011en platform will demonstrate similar results and will document final evaluation metrics in the documentation associated with the final SIP revision. Thus, the current model performance results demonstrate the scientific credibility of the 2011 modeling platform chosen and used for this analysis. These results provide confidence in the ability of the modeling platform to provide a reasonable projection of expected future year ozone concentrations and contributions.

# 7.0 FUTURE YEAR MODELING

This chapter discusses the future year modeling used in the GNS 8-hour ozone modeling effort.

#### 7.1 FUTURE YEAR TO BE SIMULATED

As discussed in Section 1, to support the 2008 ozone NAAQS preliminary interstate transport assessment, EPA conducted air quality modeling to project ozone concentrations at individual monitoring sites to 2023 and to estimate state-by-state contributions to those 2023 concentrations. The projected 2023 ozone concentrations were used to identify ozone monitoring sites that are projected to be nonattainment or have maintenance problems for the 2008 ozone NAAQS in 2023.

#### 7.2 FUTURE YEAR GROWTH AND CONTROLS

In September 2017, EPA released the revised "en" modeling platform that was the source for the 2023 future year emissions in this analysis. This platform has been identified by EPA as the base case for compliance with the final CSAPR update seasonal EGU NOx emission budgets. Additionally, there were several emission categories and model inputs/options that were held constant at 2011 levels as follows:

- Biogenic emissions.
- Wildfires, Prescribed Burns and Agricultural Burning (open land fires).
- Windblown dust emissions.
- Sea Salt.
- 36 km CONUS domain Boundary Conditions (BCs).
- 2011 12 km meteorological conditions.
- All model options and inputs other than emissions.

The effects of climate change on the future year meteorological conditions were not accounted. It has been argued that global warming could increase ozone due to higher temperatures producing more biogenic VOC and faster photochemical reactions (the so called climate penalty). However, the effects of inter-annual variability in meteorological conditions will be more important than climate change given the 12 year difference between the base (2011) and future (2023) years. It has also been noted that the level of ozone being transported into the U.S. from Asia has also increased.

#### 7.3 FUTURE YEAR BASELINE AIR QUALITY SIMULATIONS

A 2023 future year base case CAMx simulation was conducted and 2023 ozone design value projection calculations were made based on EPA's latest ozone modeling guidance (EPA, 2014).

#### 7.4 CONCLUSIONS FROM 2023 CAMX MODELING

All sites identified in the final CSAPR update are predicted to be well below the 2008 ozone standard by 2023. Table 7-1 provides the GNS 2023 future year average and maximum design value modeling results from this analysis for the eastern state problem monitors identified in Section 1.

Based on these calculations, none of the problem monitors are predicted to be in nonattainment or have issues with maintenance in 2023 and therefore no states are required to estimate their contribution to these monitors.

| Monitor ID                 | State                | County           | 2009-2013<br>Base<br>Period<br>Average<br>Design<br>Value<br>(ppb) | 2009-2013<br>Base<br>Period<br>Maximum<br>Design<br>Value<br>(ppb) | 2023 Base<br>Case<br>Average<br>Design<br>Value<br>(ppb) | 2023 Base<br>Case<br>Maximum<br>Design<br>Value<br>(ppb) |
|----------------------------|----------------------|------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Nonattainmen               |                      | <b>Fainfield</b> | 02.7                                                               | 07                                                                 | 70 7                                                     | 75.0                                                     |
| 90019003                   | Connecticut          | Fairfield        | 83.7                                                               | 87                                                                 | 72.7                                                     | 75.6                                                     |
| 90099002                   | Connecticut          | New Haven        | 85.7                                                               | 89                                                                 | 71.2                                                     | 73.9                                                     |
| 480391004                  | Texas                | Brazoria         | 88.0                                                               | 89                                                                 | 74.0                                                     | 74.9                                                     |
| 484392003                  | Texas                | Tarrant          | 87.3<br>86.0                                                       | 90<br>86                                                           | 72.5<br>70.6                                             | 74.8                                                     |
| 484393009                  | Texas<br>Wisconsin   | Tarrant          | 86.0                                                               | 86                                                                 | 70.8                                                     | 70.6<br>73.1                                             |
| 551170006<br>Maintenance M |                      | Sheboygan        | 84.3                                                               | 87                                                                 | 70.8                                                     | /3.1                                                     |
| 90010017                   | Connecticut          | Fairfield        | 80.3                                                               | 83                                                                 | 69.8                                                     | 72.1                                                     |
| 90010017                   | Connecticut          | Fairfield        | 80.3                                                               | 89                                                                 | 71.2                                                     | 75.2                                                     |
| 211110067                  |                      | Jefferson        | 85.0                                                               | 89                                                                 | 70.1                                                     | 75.2                                                     |
| 240251001                  | Kentucky             | Harford          | 90.0                                                               | 93                                                                 | 70.1                                                     | 70.1                                                     |
| 260050003                  | Maryland<br>Michigan | Allegan          | 82.7                                                               | 86                                                                 | 69.0                                                     | 73.8                                                     |
| 360850067                  | New York             | Richmond         | 81.3                                                               | 83                                                                 | 71.9                                                     | 73.4                                                     |
| 361030002                  | New York             | Suffolk          | 83.3                                                               | 85                                                                 | 72.5                                                     | 73.4                                                     |
| 390610006                  | Ohio                 | Hamilton         | 82.0                                                               | 85                                                                 | 65.0                                                     | 67.4                                                     |
|                            |                      |                  |                                                                    | 85                                                                 |                                                          |                                                          |
| 421010024                  | Pennsylvania         | Philadelphia     | 83.3                                                               | _                                                                  | 67.3                                                     | 70.3                                                     |
| 481210034                  | Texas                | Denton           | 84.3                                                               | 87                                                                 | 69.7                                                     | 72.0                                                     |
| 482010024                  | Texas                | Harris           | 80.3                                                               | 83                                                                 | 70.4                                                     | 72.8                                                     |
| 482011034                  | Texas                | Harris           | 81.0                                                               | 82                                                                 | 70.8                                                     | 71.6                                                     |
| 482011039                  | Texas                | Harris           | 82.0                                                               | 84                                                                 | 71.8                                                     | 73.6                                                     |

#### Table 7-1. GNS Modeling results at Final CSAPR Update-identified problem monitors (ppb).

Through this modeling analysis, has all upwind states identified in the final CSAPR Update demonstrated compliance with CAA Section 110(a)(2)(D)(i)(I) for the 2008 Ozone National Ambient Air Quality Standard.

# 8.0 MODELING DOCUMENTATION AND DATA ARCHIVE

EPA recommends that certain types of documentation be provided along with a photochemical modeling attainment demonstration. Alpine Geophysics is committed to supplying the material needed to ensure that the technical support for this SIP revision is understood by all stakeholders, EPA and states.

Alpine Geophysics plans to archive all documentation and modeling input/output files generated as part of the 8-hour modeling analysis and will maintain a copy for additional internal use. Key participants in this modeling effort will be given data access to the archived modeling information.

# **9.0 REFERENCES**

- Abt. 2014. Modeled Attainment Test Software Users Manual. Abt Associates Inc., Bethesda, MD. April. (<u>http://www.epa.gov/ttn/scram/guidance/guide/MATS 2-6-1 manual.pdf</u>).
- Alpine Geophysics, LLC. 2017. ""Good Neighbor" Modeling for the Kentucky 2008 8-Hour Ozone State Implementation Plan - Final Modeling Protocol." October 2017. (http://midwestozonegroup.com/files/Interstate\_Transport\_Model\_Protocol\_to\_addre ss\_Kentucky\_SIP\_obligations2.pdf)
- Arnold, J.R., R.L. Dennis, and G.S. Tonnesen. 2003. "Diagnostic Evaluation of Numerical Air Quality Models with Specialized Ambient Observations: Testing the Community Multiscale Air Quality Modeling System (CMAQ) at Selected SOS 95 Ground Sites", *Atmos. Environ.*, Vol. 37, pp. 1185-1198.
- Arnold, J.R.; R.L. Dennis, and G.S. Tonnesen. 1998. Advanced techniques for evaluating Eulerian air quality models: background and methodology. In: Preprints of the 10th Joint Conference on the Applications of Air Pollution Meteorology with the Air & Waste Management Association, January, Phoenix, Arizona. American Meteorological Society, Boston, Massachusetts, paper no. 1.1, pp. 1-5.
- Arunachalam, S. 2009. Peer Review of Source Apportionment Tools in CAMx and CMAQ. University of North Carolina Institute for the Environment, Chapel Hill, NC. August 31. (http://www.epa.gov/scram001/reports/SourceApportionmentPeerReview.pdf).
- Boylan, J. W. 2004. "Calculating Statistics: Concentration Related Performance Goals", paper presented at the EPA PM Model Performance Workshop, Chapel Hill, NC. 11 February.
- Byun, D.W., and J.K.S. Ching. 1999. "Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System", EPA/600/R-99/030.
- Carter, W.P.L. 1999. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment, Draft report to the California Air Resources Board, Contracts 92-329 and 95-308, 9/13/99.
- Coats, C.J. 1995. Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System, MCNC Environmental Programs, Research Triangle Park, NC.
- Colella, P., and P.R. Woodward. 1984. The Piecewise Parabolic Method (PPM) for Gasdynamical Simulations. *J. Comp. Phys.*, **54**, 174201.
- Emery, C., E. Tai, and G. Yarwood. 2001. "Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Episodes", report to the Texas Natural Resources Conservation Commission, prepared by ENVIRON, International Corp, Novato, CA.
- Emery, C.A., E. Tai, E., R. E. Morris, G. Yarwood. 2009a. Reducing Vertical Transport Over Complex Terrain in CMAQ and CAMx; AWMA Guideline on Air Quality Models Conference, Raleigh, NC, October 26-30, 2009.
- Emery, C.A., E. Tai, R.E. Morris, G. Yarwood. 2009b. Reducing Vertical Transport Over Complex Terrain in Photochemical Grid Models; 8th Annual CMAS Conference, Chapel Hill, NC, October 19-21, 2009.

- Emery, C., E. Tai, G. Yarwood and R. Morris. 2011. Investigation into approaches to reduce excessive vertical transport over complex terrain in a regional photochemical grid model. *Atmos. Env.*, Vol. 45, Issue 39, December 2011, pp. 7341-7351. (<u>http://www.sciencedirect.com/science/article/pii/S1352231011007965</u>).
- ENVIRON and UCR. 2004. "Modeling Protocol for the CENRAP 2002 Annual Emissions and Air Quality Modeling." ENVIRON International Corporation and University of California at Riverside. November.
- ENVIRON and Alpine. 2005. CONCEPT Emissions Modeling User's Guide. ENVIRON International Corporation, Novato, CA. Alpine Geophysics, LLC, Arvada, CO. May 27 (http://www.ladco.org/reports/rpo/emissions/new\_emissions\_model\_concept\_introdu ction\_alpine\_environ.pdf)
- ENVIRON. 2015. User's Guide Comprehensive Air-quality Model with extensions Version 6.3. ENVIRON International Corporation, Novato, CA. March. (<u>http://www.camx.com/files/camxusersguide\_v6-3.pdf</u>).
- EPA. 1991. "Guidance for Regulatory Application of the Urban Airshed Model (UAM), "Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, N.C.
- EPA. 1999. "Draft Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-hr Ozone NAAQS". Draft (May 1999), U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, N.C
- EPA. 2001. "Guidance Demonstrating Attainment Air Quality Goals for PM2.5 and Regional Haze". Draft Final (17 February 2005), U.S. Environmental Protection Agency, Atmospheric Sciences Modeling Division, Research Triangle Park, N.C.
- EPA. 2003a. A Conceptual Model to Adjust Fugitive Dust Emissions to Account for Near Source Particle Removal in Grid Model Applications, prepared by Tom Pace, U.S. EPA, August. <u>http://www.epa.gov/ttn/chief/emch/invent/statusfugdustemissions\_082203.pdf</u>.
- EPA. 2003b. National Emission Inventory QA and Augmentation Memo, prepared by Anne Pope, U.S. EPA, June. <u>http://www.epa.gov/ttn/chief/emch/invent/qaaugmementationmemo\_99nei\_60603.p</u> <u>df</u>
- EPA. 2005a. Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-hr Ozone NAAQS -- Final. U.S. Environmental Protection Agency, Atmospheric Sciences Modeling Division, Research Triangle Park, N.C. October.
- EPA. 2005b. Technical Support Document for the Final Clean Air Interstate Rule Air Quality Modeling. U.S. Environmental Protection Agency, Office of Air Quality and Planning Standards, Research Triangle Park, North Carolina, 27711. March.
- EPA. 2005c. "Regional Haze Regulations and Guidelines for Best Available Technology (BART) Determinations". Fed. Reg./Vol. 70, No. 128/Wed. July, Rules and Regulations, pp. 39104-39172. 40 CFR Part 51, FRL-7925-9, RIN AJ31.

- EPA. 2007. Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5 and Regional Haze. U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA-454/B-07-002. April. (<u>http://www.epa.gov/ttn/scram/guidance/guide/final-03-pm-rh-guidance.pdf</u>).
- EPA. 2010. Technical Support Document for the Transport Rule. Docket ID No. EPA-HQ-OAR-2009-0491. Air Quality Modeling. U.S. Environmental Protection Agency, Office of Pair Quality Planning and Standards, Air Quality Assessment Division, Research Triangle Park, NC. June.
- EPA. 2014a. Motor Vehicle Emissions Simulator (MOVES) User Guide for MOVES2014. Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency. (EPA-420-B-14-055). July. (<u>http://www.epa.gov/oms/models/moves/documents/420b14055.pdf</u>).
- EPA. 2014b. Motor Vehicle Emissions Simulator (MOVES) –MOVES2014 User Interface Manual. Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency. (EPA-420-B-14-067). July. (http://www.epa.gov/oms/models/moves/documents/420b14057.pdf).
- EPA. 2014c. Motor Vehicle Emissions Simulator (MOVES) –MOVES2014 Software Design Reference Manual. Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency. (EPA-420-B-14-058). December. (<u>http://www.epa.gov/oms/models/moves/documents/420b14056.pdf</u>).
- EPA. 2014d. Meteorological Model Performance for Annual 2011 WRF v3.4 Simulation, U.S. Environmental Protection Agency. November 2014.
- EPA. 2014e. Draft Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze, U.S. Environmental Protection Agency. December 2014.
- EPA. 2015b. Air Quality Modeling Technical Support Document for the 2008 Ozone NAAQS Transport Assessment. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. January. (http://www.epa.gov/airtransport/O3TransportAQModelingTSD.pdf).
- EPA. 2016a. Technical Support Document (TSD) Preparation of Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform. U.S. Environmental Protection Agency. August 2016.
- EPA. 2016b. Air Quality Modeling Technical Support Document for the 2015 Ozone NAAQS
   Preliminary Interstate Transport Assessment. U.S. Environmental Protection Agency,
   Office of Air Quality Planning and Standards. December 2016.
- EPA. 2017a. Technical Support Document (TSD) Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2023. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. October 2017. <u>https://www.epa.gov/sites/production/files/2017-11/documents/2011v6.3 2023en update emismod tsd oct2017.pdf</u>
- EPA. 2017b. Use of Photochemical Grid Models for Single-Source Ozone and secondary PM2.5 impacts for Permit Program Related Assessments and for NAAQS Attainment

Demonstrations for Ozone, PM2.5 and Regional Haze. Memorandum from Tyler Fox, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. August 2017. <u>https://www3.epa.gov/ttn/scram/guidance/clarification/20170804-Photochemical Grid Model Clarification Memo.pdf</u>

- Gery, M. W., G.Z. Whitten, J.P. Killus, and M.C. Dodge. 1989. A photochemical mechanism for urban and regional-scale computer modeling. *J. Geophys. Res.* 94, 12925-12956.
- Gilliam, R. 2010. Evaluation of Multi-Annual CONUS 12 km WRF Simulations. U.S. Environmental Protection Agency, NREL, Atmospheric Modeling and Analysis Division. (<u>http://epa.gov/scram001/adhoc/gilliam2010.pdf</u>).
- Kemball-Cook, S., Y. Jia, C. Emery, R. Morris, Z. Wang and G. Tonnesen. 2004. Comparison of CENRAP, VISTAS and WRAP 36 km MM5 Model Runs for 2002, Task 3: Meteorological Gatekeeper Report.
   <u>http://pah.cert.ucr.edu/aqm/cenrap/ppt\_files/CENRAP\_VISTAS\_WRAP\_2002\_36km\_M</u> M5\_eval.ppt. December.
- Michalakes, J., J. Dudhia, D. Gill, J. Klemp and W. Skamarock. 1998. Design of a Next-Generation Regional Weather Research and Forecast Model. Mesoscale and Microscale Meteorological Division, National Center for Atmospheric Research, Boulder, CO. (http://www.mcs.anl.gov/~michalak/ecmwf98/final.html).
- Michalakes, J., S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff and W. Skamarock. 2001. Development of a Next-Generation Regional Weather Research and Forecast Model. Developments in Teracomputing: Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology. Eds. Walter Zwieflhofer and Norbet Kreitz. World Scientific, Singapore. Pp. 269-276. (http://www.mmm.ucar.edu/mm5/mpp/ecmwf01.htm).
- Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock and W. Wang. 2004. The Weather Research and Forecast Model: Software Architecture and Performance. Proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology. October 25-29, 2005, Reading UK. Ed. George Mozdzynski. (<u>http://wrf-model.org/wrfadmin/docs/ecmwf\_2004.pdf</u>).
- Moore, C.T. et al. 2011. "Deterministic and Empirical Assessment of Smoke's Contribution to Ozone – Final Report. Western Governors' Association, Denver, CO. (https://wraptools.org/pdf/11-1-6-6 final report DEASCO3 project.pdf)
- Morris, R. E. and T. C. Myers. 1990. "User's Guide for the Urban Airshed Model. Volume I: User's Manual for UAM (CB-IV)" prepared for the U.S. Environmental Protection Agency (EPA-450/4-90-007a), Systems Applications International, San Rafael, CA.
- Page. S. (October 27, 2017). Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone national Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I) [Memorandum]. Research Triangle Park, NC: U.S. EPA, Office of Air Quality Planning and Standards. Retrieved from <u>https://www.epa.gov/sites/production/files/2017-</u> 10/documents/final 2008 o3 naags transport memo 10-27-17b.pdf

Simon, H., K. Baker and S. Phillips. 2012. Compilations and Interpretation of Photochemical Model Performance Statistics Published between 2006 and 2012. Atmos. Env. 61 (2012) 124-139. December.

(http://www.sciencedirect.com/science/article/pii/S135223101200684X).

- Skamarock, W. C. 2004. Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra. Mon. Wea. Rev., Volume 132, pp. 3019-3032. December. (http://www.mmm.ucar.edu/individual/skamarock/spectra mwr 2004.pdf).
- Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang and J. G. Powers. 2005. A Description of the Advanced Research WRF Version 2. National Center for Atmospheric Research (NCAR), Boulder, CO. June. (http://www.mmm.ucar.edu/wrf/users/docs/arw v2.pdf)
- Skamarock, W. C. 2006. Positive-Definite and Monotonic Limiters for Unrestricted-Time-Step Transport Schemes. Mon. Wea. Rev., Volume 134, pp. 2241-2242. June. (http://www.mmm.ucar.edu/individual/skamarock/advect3d mwr.pdf).
- Sullivan D.C., Raffuse S.M., Pryden D.A., Craig K.J., Reid S.B., Wheeler N.J.M., Chinkin L.R., Larkin N.K., Solomon R., and Strand T. (2008) Development and applications of systems for modeling emissions and smoke from fires: the BlueSky smoke modeling framework and SMARTFIRE: 17<sup>th</sup> International Emissions Inventory Conference, Portland, OR, June 2-5. Available at: http://www.epa.gov/ttn/chief/conferences.html.
- UNC. 2008. Atmospheric Model Evaluation Tool (AMET) User's Guide. Institute for the Environment, University of North Carolina at Chapel Hill. May 30. (https://www.cmascenter.org/amet/documentation/1.1/AMET Users Guide V1.1.pdf).
- UNC and ENVIRON, 2014a. Three-State Air Quality Modeling Study (3SAQS) Draft Modeling Protocol 2011 Emissions & Air Quality Modeling. University of North Carolina at Chapel Hill and ENVIRON International Corporation, Novato, CA. July. (http://vibe.cira.colostate.edu/wiki/Attachments/Modeling/3SAQS\_2011\_Modeling\_Pr otocol Finalv2.pdf).
- UNC. 2015. SMOKE v3.6.5 User's Manual. University of North Carolina at Chapel Hill, Institute for the Environment.

(https://www.cmascenter.org/smoke/documentation/3.6.5/html/).

UNC and ENVIRON, 2015a. Three-State Air Quality Modeling Study (3SAQS) – Weather Research Forecast 2011 Meteorological Model Application/Evaluation. University of North Carolina at Chapel Hill and ENVIRON International Corporation, Novato, CA. March 5. (http://vibe.cira.colostate.edu/wiki/Attachments/Modeling/3SAQS 2011 WRF MPE v0

5Mar2015.pdf).

- Wesely, M.L. 1989. Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models. Atmos. Environ., 23, 1293-1304.
- Xiu, A. and J.E. Pleim. 2000. Development of a land surface model. Part I: application in a mesoscale meteorology model. J. App. Met., 40, pp. 192-209.
- Yantosca, B. 2004. GEOS-CHEMv7-01-02 User's Guide, Atmospheric Chemistry Modeling Group, Harvard University, Cambridge, MA.

.pdf)

Yarwood, G., J. Jung, G. Z. Whitten, G. Heo, J. Mellberg and M. Estes. 2010. Updates to the Carbon Bond Mechanism for Version 6 (CB6). 2010 CMAS Conference, Chapel Hill, NC. October. (<u>http://www.cmascenter.org/conference/2010/abstracts/emery\_updates\_carbon\_2010</u>

Zhang, L., S. Gong, J. Padro, L. Barrie. 2001. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. *Atmos. Environ.*, **35**, 549-560.

Zhang, L., J. R. Brook, and R. Vet. 2003. A revised parameterization for gaseous dry deposition in air-quality models. *Atmos. Chem. Phys.*, **3**, 2067–2082.



# **Public Hearing**

&

Statement of Consideration

# Appendix C-1 Public Hearing

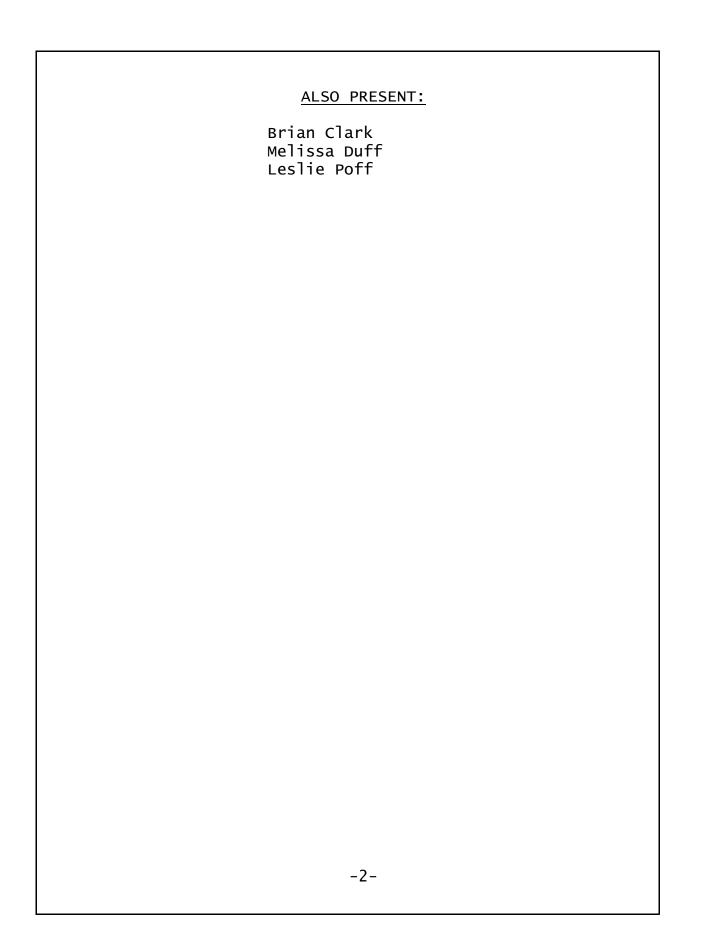
#### KENTUCKY DIVISION FOR AIR QUALITY NOTICE OF PUBLIC HEARING STATE IMPLEMENTATION PLAN REVISION RELATING TO THE 2008 OZONE CAA SECTION 110(a)(2)(D)(i)(I) SUBMITTAL

The Kentucky Energy and Environment Cabinet will conduct a public hearing on March 30, 2018, at 10:00 a.m. (EDT) in Conference Room 111 on the first floor of the 300 Building, located at 300 Sower Boulevard, Frankfort, Kentucky 40601. This hearing is being held to receive comments on a proposed revision to Kentucky's 2008 Ozone Standard Infrastructure State Implementation Plan (SIP) to address Clean Air Act section 110(a)(2)(D)(i)(I), also known as the "Good Neighbor" provision.

This hearing is open to the public and all interested persons will be given the opportunity to present testimony. The hearing will be held at the date, time and place given above. It is not necessary that the hearing be attended in order for persons to comment on the proposed submittal to EPA. To assure that all comments are accurately recorded, the Division requests that oral comments presented at the hearing also be provided in written form, if possible. To be considered part of the hearing record, written comments must be received by the close of the hearing on March 30, 2018. Written comments should be sent to the contact person.

The full text of the proposed SIP revision is available for public inspection and copying during regular business hours (8:00 a.m. to 4:30 p.m.) at the following location: Division for Air Quality, 300 Sower Boulevard, Frankfort, Kentucky 40601. Any individual requiring copies may submit a request to the Division for Air Quality in writing, by telephone or by fax. Requests for copies should be directed to the contact person. In addition, an electronic version of the proposed SIP revision document and relevant attachments can be downloaded from the Division for Air Quality's website at: http://air.ky.gov/Pages/PublicNoticesandHearings.aspx.

The hearing facility is accessible to people with disabilities. An interpreter or other auxiliary aid or service will be provided upon request. Please direct these requests to the contact person.


CONTACT PERSON: Lauren Hedge, Environmental Scientist, Evaluation Section, Division for Air Quality, 300 Sower Boulevard, Frankfort, Kentucky 40601. Phone: (502) 782-6561; E-mail: Lauren.Hedge@ky.gov.

The Energy and Environment Cabinet does not discriminate on the basis of race, color, national origin, sex, age, religion or disability and provides, upon request, reasonable accommodation including auxiliary aids and services necessary to afford an individual with a disability an equal opportunity to participate in all services, programs and activities.

#### Energy and Environment Cabinet DIVISION FOR AIR QUALITY Public Hearing March 30, 2018

| Name: Melitza                 | n Duff  |      |           | TESTIN  | IONY         |                  |
|-------------------------------|---------|------|-----------|---------|--------------|------------------|
|                               | LY DAQ  |      | Verbal    | Written | None         | Time<br>limited? |
| Address:                      |         |      |           |         | V            |                  |
| City:                         | State:  | Zip: | Copy of S | SOC?    |              |                  |
| Name: Brian                   | Clark   |      |           | TESTIN  | IONY         |                  |
| Affiliation/Company:          | KPMA    |      | Verbal    | Written | None         | Time<br>limited? |
| Address:                      |         |      |           |         | 1            |                  |
| City:                         | State:  | Zip: | Copy of S | OC?     | _            |                  |
| Name: Leslie R                | )ff     |      |           | TESTIN  | IONY         |                  |
| V                             | YDAQ    |      | Verbal    | Written | None         | Time<br>limited? |
| Address:                      |         |      |           |         |              |                  |
| City:                         | State:  | Zip: | Copy of S | OC?     |              |                  |
| Name: Laurch                  | - Hedge |      |           | TESTIN  | MONY         |                  |
|                               | KY DAQ  |      | Verbal    | Written | None         | Time<br>limited? |
| Address:                      |         | 3    |           |         | $\checkmark$ |                  |
| City:                         | State:  | Zip: | Copy of S | 50C?    |              |                  |
|                               | _       |      |           | TESTIN  | MONY         |                  |
| Name:<br>Affiliation/Company: |         |      | Verbal    | Written | None         | Time<br>limited? |
| Address:                      |         |      |           |         |              |                  |
| City:                         | State:  | Zip: | Copy of S | SOC?    |              |                  |

| COMMONWEALTH OF KENTUCKY<br>KENTUCKY DIVISION FOR AIR QUALITY<br>EVALUATION SECTION                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| RE: PROPOSED REVISION TO KENTUCKY 2008 OZONE<br>STANDARD INFRASTRUCTURE STATE IMPLEMENTATION PLAN<br>CLEAN AIR ACT SECTION 110(a)(2)(D)(i)(I) |
| PUBLIC HEARING                                                                                                                                |
| * * * * * * *                                                                                                                                 |
| 10:00 A.M.<br>March 30, 2018<br>Sower Building<br>300 Sower Boulevard<br>Conference Room 111<br>Frankfort, Kentucky                           |
| <u>APPEARANCES</u>                                                                                                                            |
| Hon. Lauren Hedge<br>MODERATOR                                                                                                                |
|                                                                                                                                               |
| MOORE COURT REPORTING SERVICES<br>RITA S. MOORE<br>74 REILLY ROAD<br>FRANKFORT, KENTUCKY 40601<br>(502) 223-3507                              |



| 1  | MS. HEDGE: Good morning. It is March                       |
|----|------------------------------------------------------------|
| 2  | 30th, 2018 at 10 a.m. My name is Lauren Hedge with the     |
| 3  | Kentucky Division for Air Quality, Evaluation Section. As  |
| 4  | your Moderator, I declare this Public Hearing in session.  |
| 5  | The Division asks that everyone                            |
| 6  | attending today's hearing provide all the information      |
| 7  | requested on the attendance roster located at the entrance |
| 8  | to the Conference Room. Today's hearing announcement was   |
| 9  | mailed to everyone on the Division's current mailing list. |
| 10 | In addition, the notice was published on the Division's    |
| 11 | website.                                                   |
| 12 | This is a non-adversarial hearing.                         |
| 13 | So, the Division will not respond to comments or questions |
| 14 | regarding the proposed actions. And individuals who        |
| 15 | present testimony will not be questioned by anyone         |
| 16 | attending this hearing. A Division representative may,     |
| 17 | however, ask questions in order to clarify the meaning or  |
| 18 | intent of a comment.                                       |
| 19 | All comments received in an                                |
| 20 | appropriate format by the close of the comment period will |
| 21 | receive equal consideration. The Statement of              |
| 22 | Consideration will be provided to anyone who requests a    |
| 23 | copy.                                                      |
| 24 | Ms. Rita Moore, to my right, is                            |
| 25 | recording today's hearing. Anyone interested in obtaining  |

-3-

| 1  | a copy of the transcript should contact Ms. Moore. Are    |
|----|-----------------------------------------------------------|
| 2  | there any questions?                                      |
| 3  | Today's hearing is being conducted in                     |
| 4  | order to receive public comments concerning a proposed    |
| 5  | revision to Kentucky's 2008 Ozone Standard Infrastructure |
| 6  | State Implementation Plan or SIP to address Clean Air Act |
| 7  | Section 110(a)(2)(D)(i)(I), also known as the Good        |
| 8  | Neighbor Provision.                                       |
| 9  | Since no one has indicated to present                     |
| 10 | testimony at today's hearing, we'll pause the hearing     |
| 11 | record for ten to 15 minutes to allow for late arrivals   |
| 12 | and reopen the session. The time is 10:02 a.m., roughly.  |
| 13 | (OFF THE RECORD)                                          |
| 14 | MS. HEDGE: It is now 10:12 a.m. The                       |
| 15 | hearing record is reopened. Are there any late arrivals   |
| 16 | who would like to present testimony? Does anyone present  |
| 17 | who has not offered comments previously have any final    |
| 18 | comments before we close the hearing? In the absence of   |
| 19 | any testimony, this public hearing is adjourned.          |
| 20 | (END OF PUBLIC HEARING)                                   |
| 21 |                                                           |
| 22 |                                                           |
| 23 |                                                           |
| 24 |                                                           |
| 25 |                                                           |
|    |                                                           |

STATE OF KENTUCKY

COUNTY OF FRANKLIN

I, Rita Susan Moore, a notary public in and for the state and county aforesaid, do hereby certify that the foregoing four pages are a true, correct and complete transcript of the public hearing in the above-styled matter taken at the time and place set out in the caption hereof; that said public hearing was taken down by me in shorthand and afterwards transcribed by me.

Given under my hand as notary public aforesaid, this the 9th day of April, 2018.

Notary Public State of Kentucky at Large

My commission expires January 8, 2020.

# Appendix C-2 Public Comments



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 4 ATLANTA FEDERAL CENTER 61 FORSYTH STREET ATLANTA, GEORGIA 30303-8960

March 27, 2018

Mr. Sean Alteri, Director Division for Air Quality Kentucky Department of Environmental Protection 300 Sower Blvd, 2<sup>nd</sup> Floor Frankfort, Kentucky 40601

Dear Mr. Alteri:

Thank you for your email dated February 27, 2018, transmitting a prehearing package of Kentucky's demonstration related to 110(a)(2)(D)(i)(I) for the 2008 ozone National Ambient Air Quality Standards. We understand that written comments are due by the close of the hearing on March 30, 2018. We have completed our preliminary review of the prehearing package and have no comments at this time.

We look forward to continuing to work with you and your staff. If you have any questions, please contact Ms. Lynorae Benjamin, Chief, Air Regulatory Management Section at (404) 562-9040, or have your staff contact Ms. Ashten Bailey at (404) 562-9164.

Sincerely,

R. Acott 2

R. Scott Davis Chief Air Planning and Implementation Branch



79 Elm Street • Hartford, CT 06106-5127

www.ct.gov/deep

Affirmative Action/Equal Opportunity Employer

March 29, 2018

Ms. Melissa Duff Assistant Director Kentucky Energy and Environment Cabinet Division for Air Quality 300 Sower Boulevard Frankfort, KY, 40601

Via email to Lauren.Hedge@ky.gov

## Subject: Comments on Kentucky's Proposed State Implementation Plan Revision regarding the 2008 Ozone Standard Section CAA 110(a)(2)(D)(i)(I)

Dear Ms. Duff:

The Connecticut Department of Energy and Environmental Protection (CT DEEP) appreciates the opportunity to comment on Kentucky's proposed Good Neighbor State Implementation Plan (SIP) for the 2008 ozone national ambient air quality standard (NAAQS). Kentucky's efforts to date to reduce emissions is a critical step towards meeting Kentucky's obligations. However, CT DEEP disagrees that the proposed SIP is a complete remedy and urges Kentucky to consider additional emission reductions to fully satisfy its obligations under Clean Air Act (CAA) section 110(a)(2)(D)(i)(I).

Kentucky relies on EPA's CSAPR Update modeling for 2017 and 2023, as well as modeling conducted by Alpine Geophysics for 2023, to conclude that it is in full compliance with the CAA Good Neighbor requirements for the 2008 NAAQS. Both CT DEEP and the Ozone Transport Commission have previously expressed strong concerns<sup>1</sup> that EPA's modeling platform, which was also used by Alpine Geophysics,<sup>2</sup> produces overly optimistic projections of future year ozone levels. As shown in Table 1 (attached), actual measured 2017 ozone design values are considerably higher than modeled projections by 5 to 10 ppb at all Connecticut monitoring sites, confirming this concern. Table 1 also shows that ozone contributions from Kentucky sources exceed the one percent significance threshold at two violating Connecticut monitors after scaling contributions relative to the 2017 measured air quality levels. Kentucky's proposed SIP does not address this critical under prediction by the model of current measured ozone levels, which undermines Kentucky's conclusion that it has fully met its Good Neighbor obligations to Connecticut.

Kentucky's proposed SIP also relies on modeling projections that indicate all areas outside California will achieve attainment with the 2008 NAAQS by 2023. We note that some Connecticut monitors are projected to only barely comply by this late date (see Table 7-1 in Appendix B of the proposed SIP). Notwithstanding Connecticut's concerns about model under prediction of future year ozone levels, Kentucky's reliance on the 2023 modeling should be accompanied by enforceable regulations that ensure the lower 2023 emissions are achieved. For example, emissions from electric generating units (EGUs) are assumed in the modeling to decrease between 2017 and 2023, both annually and seasonally. Kentucky's

<sup>&</sup>lt;sup>1</sup> https://www.regulations.gov/document?D=EPA-HQ-OAR-2015-0500-0342,

https://www.regulations.gov/document?D=EPA-HQ-OAR-2015-0500-0025

<sup>&</sup>lt;sup>2</sup> Although Kentucky's SIP narrative briefly mentions that adjustments were made to emission inventories, no details are provided. The Alpine Geophysics document included as Appendix B to the TSD indicates in several places that the modeling they conducted did not make any adjustments to EPA's emission inventories. The associated modeling results are identical to those produced by EPA's modeling. Therefore, the Alpine Geophysics modeling also likely under predicts future year ozone levels and does not provide any additional useful information beyond that provided previously by EPA.

2017 actual ozone season emissions (i.e., 20,023 tons) were less than EPA CSAPR Update budget level for the state (21,115 tons<sup>3</sup>). The 2023 modeling assumes ozone season EGU emissions will be even lower (16,954 tons). The projected level of 2023 emissions must be made federally enforceable, especially given the narrow margin by which the EPA/Alpine modeling projects Connecticut monitors will reach compliance in 2023.

Connecticut also challenges the arbitrary selection of using a 2023 timeline for determining Good Neighbor compliance with the 2008 ozone NAAQS. Connecticut was originally designated marginal with compliance expected by the end of the 2014 ozone season. Connecticut's nonattainment areas were last reclassified to moderate, and are currently faced with another reclassification to serious with an attainment deadline of 2020. Connecticut has not met attainment due to overwhelming transport from upwind areas including Kentucky. The arbitrary selection of 2023 only perpetuates the unjust economic and health burdens on Connecticut's citizens suffer due to the failure of Kentucky and other upwind states to fully meet their Good Neighbor obligations in a timely manner.

Connecticut's concerns regarding emissions from Kentucky's sources are buttressed by the recent CAA section 126 petition submitted to the EPA by New York.<sup>4</sup> New York's petition requests EPA to take action regarding stationary sources in nine upwind states, including Kentucky, that continue to interfere with attainment in the NY-NJ-CT nonattainment area for the 2008 ozone standard.

We encourage Kentucky to take proactive steps to adopt additional measures to fully meet its Good Neighbor obligations for the 2008 ozone NAAQS. The Ozone Transport Commission (OTC) recently adopted a <u>statement</u> identifying minimum control strategies that should be in all good neighbor SIPs.<sup>5</sup> Kentucky should ensure all these strategies are included in its SIP, as well as the other points noted in the OTC statement. Additionally, Connecticut believes targeting emissions reductions strategies on high emitting days can be especially effective for achieving maximum air quality benefit and urges Kentucky to adopt such targeted strategies. Together these focused strategies can target the emissions that most effect downwind air quality exceedances.

Connecticut appreciates Kentucky's efforts to date and urges Kentucky to take the final steps to fulfill the Good Neighbor obligations. We look forward to a cleaner future together.

Sincerely.

Richard A. Pirolli, Director Air Planning and Standards Division

RAP:KK:jad

<sup>&</sup>lt;sup>3</sup> See: <u>https://www.epa.gov/sites/production/files/2016-11/documents/budgets\_ozoneseasonnox.pdf</u>.

<sup>&</sup>lt;sup>4</sup> See: <u>http://www.dec.ny.gov/press/112981.html</u>.

<sup>&</sup>lt;sup>5</sup> https://otcair.org/upload/Documents/Formal%20Actions/GoodNeighSIPResolu\_Final.pdf

| Monitor       | State       | County     | 2017<br>Modeled<br>Average DV<br>(ppb) | KY<br>Contribution to<br>Modeled Value<br>(%) | Monitored<br>2017 DV<br>(ppb) | Scaled KY<br>Impact<br>(ppb) |
|---------------|-------------|------------|----------------------------------------|-----------------------------------------------|-------------------------------|------------------------------|
| Greenwich     | Connecticut | Fairfield  | 74.1                                   | 0.5%                                          | 79                            | 0.43                         |
| Danbury       | Connecticut | Fairfield  | 71.6                                   | 1.0%                                          | 77                            | 0.80                         |
| Stratford     | Connecticut | Fairfield  | 75.5                                   | 0.6%                                          | 83                            | 0.48                         |
| Westport      | Connecticut | Fairfield  | 76.5                                   | 0.6%                                          | 83                            | 0.49                         |
| East Hartford | Connecticut | Hartford   | 65.1                                   | 1.5%                                          | 72                            | 1.11                         |
| Cornwall      | Connecticut | Litchfield | 61.4                                   | 0.8%                                          | 72                            | 0.562866                     |
| Middletown    | Connecticut | Middlesex  | 69.5                                   | 1.3%                                          | 79                            | 1.00                         |
| New Haven     | Connecticut | New Haven  | 66.8                                   | 0.6%                                          | 77                            | 0.43                         |
| Madison       | Connecticut | New Haven  | 76.2                                   | 0.6%                                          | 82                            | 0.47                         |
| Groton        | Connecticut | New London | 70.8                                   | 0.4%                                          | 76                            | 0.30                         |
| Stafford      | Connecticut | Tolland    | 65.7                                   | 0.8%                                          | 71                            | 0.56                         |

Table 1. EPA Modeled 2017 Air Quality and KY Contributions Scaled to Measured Values



State of New Jersey Department of Environmental Protection Air Quality, Energy and Sustainability Division of Air Quality Mail Code 401-02 P.O. Box 420

P.O. Box 420 Trenton, NJ 08625-0420 TEL (609) 984-1484 CATHERINE R. MCCABE Acting Commissioner

March 29, 2018

Ms. Melissa Duff, Assistant Director Division for Air Quality 300 Sower Boulevard Frankfort, KY 40601

Dear Ms. Duff,

The New Jersey Department of Environmental Protection is submitting comments to the proposed revision to the Kentucky State Implementation Plan, "Demonstration that Kentucky Satisfies the "Good Neighbor" Requirements of Clean Air Act Section 110(a)(2)(D)(i)(I), 2008 Ozone National Ambient Air Quality Standard, March 2018.". Kentucky does not demonstrate that it has addressed its significant contribution to ozone pollution in New Jersey and its shared, multi-state nonattainment areas in a timely fashion.

The Clean Air Act requires states to attain the ozone health standard as expeditiously as practicable. However, states significantly impacted by ozone pollution from upwind states will be unable to do so if "Good Neighbor" SIPs are not done prior to the attainment deadline of the downwind nonattainment areas. The Clean Air Act recognized this since the "Good Neighbor" provisions (upwind significant contributions to downwind ozone pollution) are required to be addressed ahead of the Attainment Demonstrations by nonattainment areas. Per the Clean Air Act, Kentucky's significant contributions for the 2008 ozone NAAQS should have been addressed by March 2011. The choice of 2023 for future year modeling to meet the Clean Air Act "Good Neighbor" requirements is not appropriate since it is after the Moderate classification attainment deadline of July 2018, as well as, the Serious classification attainment deadline of July 2021.

The northern counties of New Jersey share a Moderate classified nonattainment area with portions of New York and Connecticut, referred to as the NNJ-NY-CT nonattainment area. This area was required to attain the 2008 ozone NAAQS of 75 parts per billion (ppb) by July 20, 2018 based on a 2017 Design Value (DV) using monitoring data from 2015-2017. The highest, preliminary 2017 DVs within the NNJ-NY-CT nonattainment area are 83 ppb at the Stratford

PHILIP D. MURPHY Governor

SHEILA OLIVER Lt. Governor

New Jersey is an Equal Opportunity Employer • Printed on Recycled Paper and Recyclable

monitor (AQS code 90013007) and 82 ppb at the Westport monitor (AQS code 90019003) in Connecticut. The NNJ-NY-CT nonattainment area and its citizens should not have to wait until 2023 to receive the benefits of clean air quality for the human health-based ozone NAAQS. Since the moderate attainment deadline has passed, Kentucky should conduct a modeling run for the next attainment date of July 2021 (2020 DV) for the serious classification.

Kentucky is relying upon reductions made in the state through its adherence to CSAPR and the CSAPR update rule. The USEPA guidance memorandum for the "Good Neighbor" SIP specifically states that "EPA acknowledged in the CSAPR Update that the rule may not fully address the requirements of the good neighbor provision for the 2008 ozone NAAQS for most of the states included and that further analysis was needed of air quality and oxides of nitrogen (NOx) reductions after 2017." The 2023 modeling provided by Kentucky, through Alpine Geophysics, shows that Kentucky significantly contributes to ozone levels in NJ's nonattainment area and has a 1.48 ppb modeled ozone contribution in 2023, greater than the 1% of the NAAQS (0.75 ppb) considered as a significant contribution to ozone. Although the Kentucky 2023 modeling predicts attainment of the 75 ppb NAAQS in Connecticut with a result of 75.9 at the Westport monitor, Kentucky should not presume a bright line of attainment in 2023 or that the Connecticut sites will actually reach attainment by then.

Kentucky's 2017 EGU Point Source Ozone Season NOx Emissions as shown in Table 2 of Alpine's Report are very close to the CSAPR Update allocations. They are not significantly lower as alluded to on page 17 of your SIP. These actual and allocated amounts should be lowered in 2018 to reduce Kentucky's significant contribution to the ozone levels in New Jersey's nonattainment areas now rather than wait 5 more years to make the needed "Good Neighbor" reductions. Kentucky should, therefore, be immediately investigating other measures to reduce its ozone impact on New Jersey and other northeastern States. Specifically, these reductions should consider the following:

- Reasonably Available Control Technology (RACT) NOx levels on Electric Generating Units and other large NOx sources to the same stringent levels as done in the Ozone Transport Region including:
  - Implementation of a High Electric Demand Day (HEDD) program to reduce NOx emissions on high ozone days,
  - Distributed generation unit controls, and
  - Control measures at municipal waste combustors.
- Control measures for Mobile Sources including:
  - An automobile emissions Inspection / Maintenance Program,
  - An anti-idling program to prevent automobiles from idling more than three consecutive minutes, and
  - Implementation of the California Car program.

In summary, Kentucky has not demonstrated that it has reduced its significant contribution to New Jersey's ozone levels in a timely fashion. More needs to be done immediately to reduce NOx emissions in Kentucky to meet its Good Neighbor obligations under the federal Clean Air Act. Should you have any questions, please call me at (609) 633-8220. Thank you for your consideration of these comments.

Sincerely, Van Francis C. Steitz, Director

Division of Air Quality

C:\ Kenneth Ratzman Sharon Davis Ray Papalski

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

**Division of Air Resources** 625 Broadway, Albany, New York 12233-3250 P: (518) 402-8452 | F: (518) 402-9035 www.dec.ny.gov

MAR 3 0 2018

Ms. Lauren Hedge Environmental Scientist Evaluation Section Division for Air Quality 300 Sower Boulevard Frankfort, Kentucky 40601

Dear Ms. Hedge:

The New York State Department of Environmental Conservation (DEC) is submitting comments on the March 2018 State Implementation Plan (SIP) revision proposed by the Kentucky Energy and Environment Cabinet (KEEC) regarding its "good neighbor" obligations under Clean Air Act (CAA) section 110(a)(2)(D)(i)(I) for the 2008 ozone National Ambient Air Quality Standards (NAAQS). This section of the CAA requires states to develop SIPs that contain adequate provisions prohibiting sources from contributing to nonattainment in, or interfering with maintenance by, any other state with respect to a NAAQS. DEC is submitting these comments on Kentucky's March 8<sup>th</sup> good neighbor SIP because the New York City nonattainment area has been, and continues to be, impacted by significant contributions of ozone precursors from sources in Kentucky.

DEC commends KEEC on the reductions in nitrogen oxide (NOx) emissions (an ozone precursor) that have been obtained from electric generating units (EGUs) as noted in the proposed SIP revision. However, DEC urges KEEC to continue its progress in reducing NOx, and ensure these reductions are sustained through enforceable permit limitations and compliance schedules. While New York has been seeking EPA's assistance in ameliorating the ozone transport issue, DEC continues to enact stringent control measures through enforceable limits in permits and regulations to reduce ozone precursors from its own sources. DEC regularly reviews and updates its nonpoint sector volatile organic compound regulations, and utilizes a \$5,500/ton Reasonably Available Control Technology (RACT) threshold for NOx reductions from major EGU and non-EGU point sources, a number that greatly exceeds the \$1,400/ton threshold in the Cross-State Air Pollution Rule (CSAPR) Update for the 2008 ozone NAAQS.

DEC notes that KEEC's proposed good neighbor SIP is requesting that EPA find that Kentucky is not required to make any further reductions, beyond those required by the CSAPR Update. While EPA intended for the CSAPR Update rule to serve as a partial Federal Implementation Plan (FIP) for states that had failed to submit adequate SIPs, to obtain emission reductions before the 2018 moderate area attainment date, EPA



NEW YORK STATE OF OPPORTUNITY CONSERVATION admitted that the inherent NOx emission budgets "may not be sufficient to fully address these states' good neighbor obligations" (81 FR 74521). More specifically, EPA's focus on short-term reductions at a control cost of only \$1,400 per ton of NOx reduced does not fully mitigate Kentucky's significant contribution. Moreover, the CSAPR program budgets are based on cumulative ozone season emissions, a modeling assumption that does not account for the individual hot and stagnant days that are most conducive to ozone formation and therefore, does not assist downwind nonattainment and maintenance areas in New York on these critical days.

KEEC's reliance on EPA's updated transport modeling, dated October 27, 2017, which uses a 2023 inventory projection and modeling analysis, is also inappropriate. The 2023 modeling does not address Kentucky's existing and ongoing contribution to present nonattainment at downwind New York receptors of the 2008 ozone NAAQS, nearly ten years after these standards were promulgated, and it ignores deadlines for downwind areas to attain the NAAQS. See North Carolina v. EPA, 531 F.3d 896, 911-12 (D. C. Cir. 2008). EPA Director of the Office of Air Quality Planning and Standards Stephen D. Page provided a memorandum dated October 27, 2017 accompanying EPA's updated transport modeling stating that EPA's technical analysis was made available to "assist states' efforts to develop, supplement or resubmit good neighbor SIPs for the 2008 ozone NAAQS to fully address their transport obligations." However, the memorandum further stated that "the information provided by this memorandum is not a final determination regarding states' remaining obligations under the good neighbor provision." Kentucky may not rely on EPA's arbitrary selection and use of a 2023 projection to satisfy its obligation to develop a SIP that contains adequate provisions prohibiting sources from contributing to nonattainment in, or interfering with maintenance. Considering Kentucky's heavy reliance on the admittedly inadequate CSAPR Update and EPA's overly optimistic 2023 modeling analysis, KEEC's proposed good neighbor SIP does not meet the requirements of the CAA.

Despite EPA's attempted justification for selecting the 2023 modeling year to address the requirements of the "good neighbor" provision for the 2008 NAAQS, the New York metropolitan area (NYMA) failed to attain by the July 20, 2015 attainment deadline for "marginal" areas; will fail to attain the July 20, 2018 attainment deadline for "moderate" areas; and will be elevated to "serious" nonattainment status with a July 20, 2021 attainment deadline. At this point, the NYMA's continuing struggle to attain the 2008 ozone NAAQS is due, in large part, to transported ozone precursors from upwind states such as Kentucky. By not assessing Kentucky's existing contribution to current nonattainment in the NYMA and ignoring the 2021 serious nonattainment area deadline, KEEC cannot conclude that this SIP revision satisfies the requirements of 110(a)(2)(D)(i)(I). The convenience and availability of an arbitrary and, as described below, overly optimistic projection inventory five years in the future falls far short of meeting KEEC's existing CAA good neighbor obligations.

KEEC's reliance on EPA's modeling is also inappropriate because it relies on reductions that are not federally enforceable. For example, as noted on page seven of Appendix A, "[t]he EPA then extended these observed emissions levels forward to 2023, made

unit-specific adjustments to account for upcoming retirements, post-combustion control retrofits, coal-to-gas conversions, combustion control upgrades, new units, CSAPR Update compliance, state rules and Best Available Retrofit Technology (BART) requirements." Since KEEC relied on the CSAPR Update as the primary basis to support this submission, it must demonstrate that the additional emission reductions EPA projected, across the modeling domain, are federally enforceable. To the extent that any actions and reductions are not federally enforceable, there is no basis for KEEC to rely upon them in concluding that Kentucky will meet its good neighbor obligations. *See* 40 C.F.R. § 51.260 ("Each [implementation] plan shall contain legally enforceable compliance schedules setting forth the dates by which all stationary and mobile sources or categories of such sources must be in compliance with any applicable requirement of the plan."); *see also* 40 C.F.R. § 51.230 ("requiring a state implementation plan to "show that the State has the legal authority to carry out the plan" including by adopting emission standards and limitations and enforcing applicable laws, regulations and standards").

Furthermore, KEEC's reliance on EPA's assumption in the Page Memo that installation of emission controls would likely take up to 4 years is not supported by any analysis. Additionally, EPA's assumptions only account for the installation of new controls. EPA did not evaluate optimizing existing controls, the ability to switch to lower emitting units, or including permit limits to lock in the assumed emissions reductions.

DEC is also concerned about EPA's continued efforts to repeal and delay existing standards, and if such repeals and delays are effective, the impact EPA's actions will have on the projections relied upon by KEEC. In particular, KEEC must evaluate the emissions impacts of EPA's actions in the transportation sector, including, but not limited to, "glider kits," and the oil-and-gas sector where, for example, EPA's most recent action was to propose the withdrawal of the Control Techniques Guidelines for the Oil and Natural Gas Industry. 83 FR 10478.

KEEC did not perform any modeling analysis to demonstrate that Kentucky's current emissions, from all sectors, do not contribute to nonattainment and interference with maintenance in downwind areas such as the NYMA. Therefore, there is no way to assess whether Kentucky is actually satisfying the state's good neighbor obligations under CAA section 110(a)(2)(D)(i)(I). In the meantime, NYMA will be reclassified to "serious" nonattainment, with an attainment date of July 20, 2021, due to its continued inability to attain the 2008 ozone NAAQS, in large part because of transported precursors from upwind states such as Kentucky. As an upwind state that significantly contributes to nonattainment in the area, Kentucky should expeditiously comply with its good neighbor obligations. Thank you for the opportunity to comment on KEEC's proposed SIP revision. Should you have any questions, please contact me at (518) 402-8452.

Sincerely,

Steven E. Flint, PE Director, Division of Air Resources

aceo frioring alle ma ni wijha



Chase Tower, 17th Floor P.O. Box 1588 Charleston, WV 25326-1588 (304) 353-8000 (304) 353-8180 Fax www.steptoe-johnson.com Writer's Contact Information (304) 353-8171 Dave.Flannery@steptoe-johnson.com

March 26, 2018

Ms. Lauren Hedge Environmental Scientist Evaluation Section Division for Air Quality 300 Sower Boulevard Frankfort, Kentucky 40601

### Re: <u>Proposed Good Neighbor SIP for the 2008 Ozone NAAQS</u>

Dear Ms. Hedge:

The Midwest Ozone Group ("MOG") is pleased to have the opportunity to offer these comments in support of the agency's proposal entitled "Proposed Kentucky State Implementation Plan (SIP) Revision to address the requirements of Section 110(a)(2)(D)(i)(I) of the Clean Air Act."

By way of background, MOG is an affiliation of companies, trade organizations, and associations<sup>1</sup> which have drawn upon their collective resources to advance the objective of seeking solutions to the development of national ambient air quality programs based on sound science and the rule of law. MOG has been actively engaged in a wide variety of issues and initiatives related to the development and implementation of air quality policy including not only the development of National Ambient Air Quality Standards ("NAAQS") but also such programs as transport rules, petitions under 176A and 126 of the Clean Air Act and the development of state-based alternatives to transport rules. MOG members operate 75,000 MW of coal-fired and coal-refuse-fired electric power generation in more than ten states.

As your proposal correctly notes, much has been done by the Commonwealth of Kentucky to discharge its obligations under the Clean Air Act to assure the attainment and maintenance of the NAAQS for ozone. These efforts include a wide-array of VOC and NOx emission control requirements that apply not only to electric generating units, but also industrial and mobile sources, that have allowed the 2008 and 2015 ozone NAAQS to be attained throughout Kentucky.

<sup>&</sup>lt;sup>1</sup> The members of and participants in the Midwest Ozone Group include: American Coalition for Clean Coal Electricity, American Electric Power, American Forest & Paper Association, Ameren, Alcoa, ARIPPA, Associated Electric Cooperative, Big Rivers Electric Corp., Citizens Energy Group, City Water Light and Power (Springfield IL), Council of Industrial Boiler Owners, Duke Energy, East Kentucky Power Cooperative, FirstEnergy, Indiana Energy Association, Indiana Utility Group, LGE / KU, Ohio Utility Group and Olympus Power.

Ms. Lauren Hedge Page 2 March 26, 2018

The issue being addressed in the proposed Good Neighbor SIP, is whether these existing measures also satisfy the Good Neighbor requirements of Section 110(a)(2)(D)(i)(I) which prohibits a state from significantly contributing to nonattainment or interfering with maintenance of any primary or secondary NAAQS in another state.

The proposed Kentucky SIP revision correctly notes the October 27, 2017, guidance memorandum by EPA's Stephen D. Page<sup>2</sup>, in which a four step process is to be used by EPA to address Good Neighbor requirements. These four steps are:

Step 1: identify downwind air quality problems;

Step 2: identify upwind states that contribute enough to those downwind air quality problems to warrant further review and analysis;

Step 3: identify the emissions reductions necessary to prevent an identified upwind state from contributing significantly to those downwind air quality problems; and

Step 4: adopt permanent and enforceable measure needed to achieve those emission reductions.

We support the conclusion stated in the proposed SIP that the state has clearly demonstrated that the measures currently being implemented in Kentucky are the only ones that are economical and economically feasible - a conclusion that alone satisfies Good Neighbor requirements by adequately addressing Step 4 above.

We also support the conclusion reached by Kentucky with respect to Step 4, that there is now overwhelming data, prepared by both Alpine Geophysics, LLC ("Alpine") on behalf of Kentucky and EPA, related to Step 1 which demonstrates that there are no downwind air quality problems related to the 2008 ozone NAAQS. On the basis of these modeling results, there does not appear to be any reason to conduct any further analysis of the four step process. This conclusion is reached not only regarding the monitors linked to Kentucky in the Cross State Air Pollution Rule (CSAPR) Update, but also for all monitors in the East.

In addition to the modeling analysis performed by Alpine for Kentucky that is referenced in the proposed Kentucky SIP revision, Alpine prepared a report for MOG that is consistent with the Kentucky study and corroborates the conclusion that there are no downwind problem areas related to the 2008 Ozone NAAQS. As can be seen in the attached report<sup>3</sup> on the Alpine

<sup>&</sup>lt;sup>2</sup> Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone National Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I), by Stephen D. Page, October 27, 2017 (<u>https://www.epa.gov/sites/production/files/2017-10/documents/final 2008 o3 naags transport memo 10-27-17b.pdf</u>).

<sup>&</sup>lt;sup>3</sup> "Good Neighbor" Modeling for the 2008 8-Hour Ozone State Implementation Plans, Final Modeling Report, by Alpine Geophysics, LLC, December 2017

Ms. Lauren Hedge Page 3 March 26, 2018

modeling, all sites identified in the final CSAPR update are predicted to be well below the 2008 ozone standard by 2023. Table 1 below provides the GNS 2023 future year average and maximum design value modeling results from this analysis for the eastern state problem monitors. Based on these calculations, none of the problem monitors are predicted to be in nonattainment or have issues with maintenance in 2023 and therefore no states are required to estimate their contribution to these monitors.

| Table 1.      | GNS Modeling results at Final CSAPR Update-identified problem monitors |
|---------------|------------------------------------------------------------------------|
| <b>(ppb).</b> |                                                                        |

| Monitor ID<br>Nonattainment | State           | County       | 2009-2013<br>Base<br>Period<br>Average<br>Design<br>Value<br>(ppb) | 2009-2013<br>Base<br>Period<br>Maximum<br>Design<br>Value<br>(ppb) | 2023 Base<br>Case<br>Average<br>Design<br>Value<br>(ppb) | 2023 Base<br>Case<br>Maximum<br>Design<br>Value<br>(ppb) |
|-----------------------------|-----------------|--------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 90019003                    | Connecticut     | Fairfield    | 83.7                                                               | 87                                                                 | 72.7                                                     | 75.6                                                     |
| 90099002                    | Connecticut     | New Haven    | 85.7                                                               | 89                                                                 | 71.2                                                     | 73.9                                                     |
| 480391004                   | Texas           | Brazoria     | 88.0                                                               | 89                                                                 | 74.0                                                     | 74.9                                                     |
| 484392003                   | Texas           | Tarrant      | 87.3                                                               | 90                                                                 | 72.5                                                     | 74.8                                                     |
| 484393009                   | Texas           | Tarrant      | 86.0                                                               | 86                                                                 | 70.6                                                     | 70.6                                                     |
| 551170006                   | Wisconsin       | Sheboygan    | 84.3                                                               | 87                                                                 | 70.8                                                     | 73.1                                                     |
| Maintenance N               | <b>Ionitors</b> |              |                                                                    |                                                                    |                                                          |                                                          |
| 90010017                    | Connecticut     | Fairfield    | 80.3                                                               | 83                                                                 | 69.8                                                     | 72.1                                                     |
| 90013007                    | Connecticut     | Fairfield    | 84.3                                                               | 89                                                                 | 71.2                                                     | 75.2                                                     |
| 211110067                   | Kentucky        | Jefferson    | 85.0                                                               | 85                                                                 | 70.1                                                     | 70.1                                                     |
| 240251001                   | Maryland        | Harford      | 90.0                                                               | 93                                                                 | 71.4                                                     | 73.8                                                     |
| 260050003                   | Michigan        | Allegan      | 82.7                                                               | 86                                                                 | 69.0                                                     | 71.8                                                     |
| 360850067                   | New York        | Richmond     | 81.3                                                               | 83                                                                 | 71.9                                                     | 73.4                                                     |
| 361030002                   | New York        | Suffolk      | 83.3                                                               | 85                                                                 | 72.5                                                     | 74.0                                                     |
| 390610006                   | Ohio            | Hamilton     | 82.0                                                               | 85                                                                 | 65.0                                                     | 67.4                                                     |
| 421010024                   | Pennsylvania    | Philadelphia | 83.3                                                               | 87                                                                 | 67.3                                                     | 70.3                                                     |
| 481210034                   | Texas           | Denton       | 84.3                                                               | 87                                                                 | 69.7                                                     | 72.0                                                     |
| 482010024                   | Texas           | Harris       | 80.3                                                               | 83                                                                 | 70.4                                                     | 72.8                                                     |
| 482011034                   | Texas           | Harris       | 81.0                                                               | 82                                                                 | 70.8                                                     | 71.6                                                     |
| 482011039                   | Texas           | Harris       | 82.0                                                               | 84                                                                 | 71.8                                                     | 73.6                                                     |

(http://midwestozonegroup.com/files/Ozone\_Modeling\_Results\_Supporting\_GN\_SIP\_Obligations\_Final\_ \_Dec\_2017\_.pdf). Ms. Lauren Hedge Page 4 March 26, 2018

This modeling analysis is consistent with the work performed for Kentucky and with the EPA modeling that demonstrates that all upwind states identified in the final CSAPR Update are in compliance with CAA Section 110(a)(2)(D)(i)(I) for the 2008 ozone NAAQS. Significantly, the October 27, 2017, guidance memorandum by Stephen D. Page discussed above not only includes data that demonstrates that there are no 2008 ozone NAAQS problem areas, it concludes that "states may consider using this modeling to develop SIPs that fully address requirements of the good neighbor provisions for the 2008 ozone NAAQS."

#### Conclusion

Recent modeling by Alpine Geophysics, LLC for both Kentucky and MOG, as well as modeling by EPA itself, clearly demonstrate that implementation of the CSAPR Update rule in addition to the other on-the-books controls is all that is needed to satisfy requirements related to the 2008 ozone NAAQS. We therefore support the request by Kentucky that EPA approve its Good Neighbor SIP.

Very truly yours,

Hannen

David M. Flannery Legal Counsel for the Midwest Ozone Group

# Dinsmôre

Legal Counsel.

Carolyn M. Brown (859) 425-1092 (direct) ^ (859) 425-1099 (fax) carolyn.brown@dinsmore.com

March 29, 2018

### VIA EMAIL: Lauren.Hedge@ky.gov

Lauren Hedge Environmental Scientist Evaluation Section Division for Air Quality 300 Sower Boulevard Frankfort, Kentucky 40601

Re: UIEK Comments on Proposed Good Neighbor SIP for the 2008 Ozone NAAQS

Dear Ms. Hedge:

The Utility Information Exchange of Kentucky (UIEK) appreciates the opportunity to comment on Kentucky's proposed State Implementation Plan (SIP) Revision Relating to the 2008 Ozone CAA Section 110(a)(2)(D)(i)(I) Submittal, also known as the Proposed Good Neighbor SIP. UIEK is a voluntary organization consisting of representatives from the electric generating utilities in the Commonwealth of Kentucky. For more than 20 years, UIEK has provided input to regulatory authorities on key environmental regulatory issues affecting its member companies. This law firm serves as legal counsel to UIEK and submits the following comments on UIEK's behalf.

UIEK supports Kentucky's Proposed SIP Revision. As Kentucky's submittal demonstrates, the Commonwealth has taken a number of steps to assure attainment of the 2008 Ozone NAAQS. These include measures to reduce both VOC and NOx emissions. Annual and ozone season NOx emissions from UIEK member operations have been reduced substantially from 2008 through 2017. The CSAPR Update Rule has further reduced Kentucky's NOx budget to 21,115 tons.

EPA's technical evaluation and Kentucky's independent modeling effort support the conclusion that Kentucky has fulfilled its Good Neighbor SIP obligations. EPA's October 17, 2017 updated modeling showed that no monitoring sites, outside of California, will violate the 2008 Ozone NAAQS in 2023. Kentucky retained Alpine Geophysics, LLC to perform an independent

Lauren Hedge Division for Air Quality March 29, 2018 Page 2

modeling analysis which shows problem monitors previously identified by EPA will attain the standard.

UIEK further adopts the March 26, 2018 comments submitted by the Midwest Ozone Group in support of the proposed SIP revision. (Copy attached.) Kentucky has demonstrated that implementation of the CSAPR Update Rule, along with other measures already in place, are sufficient to satisfy the Good Neighbor requirements of the Clean Air Act. Kentucky's SIP revision should be approved.

If you have any questions, please do not hesitate to contact me.

Sincerely yours,

mh

Carolyn M. Brown Counsel for UIEK

CMB/ccr Attachment

cc: Dick Brewer, UIEK Chair

## **ATTACHMENT**

March 26, 2018 Comments Submitted by Midwest Ozone Group



Chase Tower, 17th Floor P.O. Box 1588 Charleston, WV 25326-1588 (304) 353-8000 (304) 353-8180 Fax www.steptoe-johnson.com Writer's Contact Information (304) 353-8171 Dave.Flannery@steptoe-johnson.com

March 26, 2018

Ms. Lauren Hedge Environmental Scientist Evaluation Section Division for Air Quality 300 Sower Boulevard Frankfort, Kentucky 40601

### Re: <u>Proposed Good Neighbor SIP for the 2008 Ozone NAAQS</u>

Dear Ms. Hedge:

The Midwest Ozone Group ("MOG") is pleased to have the opportunity to offer these comments in support of the agency's proposal entitled "Proposed Kentucky State Implementation Plan (SIP) Revision to address the requirements of Section 110(a)(2)(D)(i)(I) of the Clean Air Act."

By way of background, MOG is an affiliation of companies, trade organizations, and associations<sup>1</sup> which have drawn upon their collective resources to advance the objective of seeking solutions to the development of national ambient air quality programs based on sound science and the rule of law. MOG has been actively engaged in a wide variety of issues and initiatives related to the development and implementation of air quality policy including not only the development of National Ambient Air Quality Standards ("NAAQS") but also such programs as transport rules, petitions under 176A and 126 of the Clean Air Act and the development of state-based alternatives to transport rules. MOG members operate 75,000 MW of coal-fired and coal-refuse-fired electric power generation in more than ten states.

As your proposal correctly notes, much has been done by the Commonwealth of Kentucky to discharge its obligations under the Clean Air Act to assure the attainment and maintenance of the NAAQS for ozone. These efforts include a wide-array of VOC and NOx emission control requirements that apply not only to electric generating units, but also industrial and mobile sources, that have allowed the 2008 and 2015 ozone NAAQS to be attained throughout Kentucky.



<sup>&</sup>lt;sup>1</sup> The members of and participants in the Midwest Ozone Group include: American Coalition for Clean Coal Electricity, American Electric Power, American Forest & Paper Association, Ameren, Alcoa, ARIPPA, Associated Electric Cooperative, Big Rivers Electric Corp., Citizens Energy Group, City Water Light and Power (Springfield IL), Council of Industrial Boiler Owners, Duke Energy, East Kentucky Power Cooperative, FirstEnergy, Indiana Energy Association, Indiana Utility Group, LGE / KU, Ohio Utility Group and Olympus Power.

Ms. Lauren Hedge Page 2 March 26, 2018

The issue being addressed in the proposed Good Neighbor SIP, is whether these existing measures also satisfy the Good Neighbor requirements of Section 110(a)(2)(D)(i)(I) which prohibits a state from significantly contributing to nonattainment or interfering with maintenance of any primary or secondary NAAQS in another state.

The proposed Kentucky SIP revision correctly notes the October 27, 2017, guidance memorandum by EPA's Stephen D. Page<sup>2</sup>, in which a four step process is to be used by EPA to address Good Neighbor requirements. These four steps are:

Step 1: identify downwind air quality problems;

Step 2: identify upwind states that contribute enough to those downwind air quality problems to warrant further review and analysis;

Step 3: identify the emissions reductions necessary to prevent an identified upwind state from contributing significantly to those downwind air quality problems; and

Step 4: adopt permanent and enforceable measure needed to achieve those emission reductions.

We support the conclusion stated in the proposed SIP that the state has clearly demonstrated that the measures currently being implemented in Kentucky are the only ones that are economical and economically feasible – a conclusion that alone satisfies Good Neighbor requirements by adequately addressing Step 4 above.

We also support the conclusion reached by Kentucky with respect to Step 4, that there is now overwhelming data, prepared by both Alpine Geophysics, LLC ("Alpine") on behalf of Kentucky and EPA, related to Step 1 which demonstrates that there are no downwind air quality problems related to the 2008 ozone NAAQS. On the basis of these modeling results, there does not appear to be any reason to conduct any further analysis of the four step process. This conclusion is reached not only regarding the monitors linked to Kentucky in the Cross State Air Pollution Rule (CSAPR) Update, but also for all monitors in the East.

In addition to the modeling analysis performed by Alpine for Kentucky that is referenced in the proposed Kentucky SIP revision, Alpine prepared a report for MOG that is consistent with the Kentucky study and corroborates the conclusion that there are no downwind problem areas related to the 2008 Ozone NAAQS. As can be seen in the attached report<sup>3</sup> on the Alpine

<sup>&</sup>lt;sup>2</sup> Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone National Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I), by Stephen D. Page, October 27, 2017 (<u>https://www.epa.gov/sites/production/files/2017-</u>10/documents/final 2008 o3 naags transport memo 10-27-17b.pdf ).

<sup>&</sup>lt;sup>3</sup> "Good Neighbor" Modeling for the 2008 8-Hour Ozone State Implementation Plans, Final Modeling Report, by Alpine Geophysics, LLC, December 2017

Ms. Lauren Hedge Page 3 March 26, 2018

modeling, all sites identified in the final CSAPR update are predicted to be well below the 2008 ozone standard by 2023. Table 1 below provides the GNS 2023 future year average and maximum design value modeling results from this analysis for the eastern state problem monitors. Based on these calculations, none of the problem monitors are predicted to be in nonattainment or have issues with maintenance in 2023 and therefore no states are required to estimate their contribution to these monitors.

| Table 1. | GNS Modeling results at Final CSAPR Update-identified problem monitors |
|----------|------------------------------------------------------------------------|
| (ppb).   |                                                                        |

| Monitor ID    | State        | County       | 2009-2013<br>Base<br>Period<br>Average<br>Design<br>Value<br>(ppb) | 2009-2013<br>Base<br>Period<br>Maximum<br>Design<br>Value<br>(ppb) | 2023 Base<br>Case<br>Average<br>Design<br>Value<br>(ppb) | 2023 Base<br>Case<br>Maximum<br>Design<br>Value<br>(ppb) |
|---------------|--------------|--------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Nonattainmen  |              |              |                                                                    |                                                                    |                                                          |                                                          |
| 90019003      | Connecticut  | Fairfield    | 83.7                                                               | 87                                                                 | 72.7                                                     | 75.6                                                     |
| 90099002      | Connecticut  | New Haven    | 85.7                                                               | 89                                                                 | 71.2                                                     | 73.9                                                     |
| 480391004     | Texas        | Brazoria     | 88.0                                                               | 89                                                                 | 74.0                                                     | 74.9                                                     |
| 484392003     | Texas        | Tarrant      | 87.3                                                               | 90                                                                 | 72.5                                                     | 74.8                                                     |
| 484393009     | Texas        | Tarrant      | 86.0                                                               | 86                                                                 | 70.6                                                     | 70.6                                                     |
| 551170006     | Wisconsin    | Sheboygan    | 84.3                                                               | 87                                                                 | 70.8                                                     | 73.1                                                     |
| Maintenance N | Monitors     |              |                                                                    |                                                                    |                                                          |                                                          |
| 90010017      | Connecticut  | Fairfield    | 80.3                                                               | 83                                                                 | 69.8                                                     | 72.1                                                     |
| 90013007      | Connecticut  | Fairfield    | 84.3                                                               | 89                                                                 | 71.2                                                     | 75.2                                                     |
| 211110067     | Kentucky     | Jefferson    | 85.0                                                               | 85                                                                 | 70.1                                                     | 70.1                                                     |
| 240251001     | Maryland     | Harford      | 90.0                                                               | 93                                                                 | 71.4                                                     | 73.8                                                     |
| 260050003     | Michigan     | Allegan      | 82.7                                                               | 86                                                                 | 69.0                                                     | 71.8                                                     |
| 360850067     | New York     | Richmond     | 81.3                                                               | 83                                                                 | 71.9                                                     | 73.4                                                     |
| 361030002     | New York     | Suffolk      | 83.3                                                               | 85                                                                 | 72.5                                                     | 74.0                                                     |
| 390610006     | Ohio         | Hamilton     | 82.0                                                               | 85                                                                 | 65.0                                                     | 67.4                                                     |
| 421010024     | Pennsylvania | Philadelphia | 83.3                                                               | 87                                                                 | 67.3                                                     | 70.3                                                     |
| 481210034     | Texas        | Denton       | 84.3                                                               | 87                                                                 | 69.7                                                     | 72.0                                                     |
| 482010024     | Texas        | Harris       | 80.3                                                               | 83                                                                 | 70.4                                                     | 72.8                                                     |
| 482011034     | Texas        | Harris       | 81.0                                                               | 82                                                                 | 70.8                                                     | 71.6                                                     |
| 482011039     | Texas        | Harris       | 82.0                                                               | 84                                                                 | 71.8                                                     | 73.6                                                     |

(http://midwestozonegroup.com/files/Ozone\_Modeling\_Results\_Supporting\_GN\_SIP\_Obligations\_Final\_ \_Dec\_2017\_.pdf). Ms. Lauren Hedge Page 4 March 26, 2018

This modeling analysis is consistent with the work performed for Kentucky and with the EPA modeling that demonstrates that all upwind states identified in the final CSAPR Update are in compliance with CAA Section 110(a)(2)(D)(i)(I) for the 2008 ozone NAAQS. Significantly, the October 27, 2017, guidance memorandum by Stephen D. Page discussed above not only includes data that demonstrates that there are no 2008 ozone NAAQS problem areas, it concludes that "states may consider using this modeling to develop SIPs that fully address requirements of the good neighbor provisions for the 2008 ozone NAAQS."

#### Conclusion

Recent modeling by Alpine Geophysics, LLC for both Kentucky and MOG, as well as modeling by EPA itself, clearly demonstrate that implementation of the CSAPR Update rule in addition to the other on-the-books controls is all that is needed to satisfy requirements related to the 2008 ozone NAAQS. We therefore support the request by Kentucky that EPA approve its Good Neighbor SIP.

Very truly yours,

Hannery David N

David M. Flannery Legal Counsel for the Midwest Ozone Group



March 30, 2018

Lauren Hedge Environmental Scientist Kentucky Department for Environmental Protection Division for Air Quality, Evaluation Section 300 Sower Boulevard Frankfort, KY 40601 (502) 782-6561 lauren.hedge@ky.gov

Comments Submitted Via Electronic Mail to Lauren.Hedge@ky.gov

## **Re:** Proposed Kentucky State Implementation Plan (SIP) Revision to address the requirements of Section 110(a)(2)(D)(i)(I) of the Clean Air Act submitted by Kentucky Energy and Environment Cabinet on February 28, 2018.

Dear Lauren Hedge:

Sierra Club submits the following comments in response to Kentucky's recent Proposed SIP Revision ("SIP Revision"), subtitled "Demonstration that Kentucky Satisfies the "Good Neighbor" Requirements of Clean Air Act Section 110(a)(2)(D)(i)(I)" regarding the 2008 Ozone National Ambient Air Quality Standard ("Ozone NAAQS"). Sierra Club is a national organization with over 6,000 members in Kentucky and tens of thousands more in downwind states adversely impacted by Kentucky emissions of ozone precursors. As detailed below, the proposed SIP Revision suffers from significant flaws and legal failings that must be addressed before any such Revision is finalized.

The Sierra Club believes that the SIP Revision, which essentially asks approval for inaction, is fundamentally flawed in at least three ways:

- The SIP Revision is contrary to law and does not satisfy the requirements of section 110(a)(2)(D). It contains no provisions, let alone "adequate provisions . . . prohibiting . . . any source or other type of emissions activity within the State from emitting any air pollutant in amounts which will . . . contribute significantly to nonattainment in, or interfere with maintenance by, any other State." 42 U.S.C. § 7410(a)(2)(D).
- (2) EPA's recent guidance on which Kentucky relies—itself badly flawed—only purports to support avoiding control strategies that take longer than four years to implement. It does not support inaction.
- (3) Kentucky's decision to limit its analysis of downwind impacts to a single year, 2023, five years in the future, is arbitrary and capricious. It ignores factors Congress clearly

intended that states consider, such as present and projected significant contributions of instate emissions activity to downwind nonattainment. Moreover, the predicted conditions in 2023 are uncertain and highly contingent on the survival of regulations EPA is working hard to undo or undermine. In sum, Kentucky has more work to do.

For these reasons, and as explained in more detail below, Kentucky must modify its SIP Revision to adhere to the requirements of the Clean Air Act. In particular, Kentucky must implement the framework EPA historically relied on for assessing good neighbor obligations, introduced (and abandoned) in its recent guidance on section 110(a)(2)(D)(i)(I) SIPS for the 2008 Ozone NAAQS, which Kentucky attached as Appendix A to its SIP Revision. In addition to that framework, Kentucky must focus on applicable statutory deadlines, as follows:

- (1) Quantify the extent to which its current and future emissions will interfere with downwind NAAQS attainment or maintenance.
- (2) Determine compliance deadlines for affected states, as required by law.
- (3) Craft a plan consistent with the provisions of Clean Air Act section 110(a)(2), setting enforceable timelines and limits on in-state emissions activity to ensure compliance with the applicable attainment deadlines faced by downwind states.

### **Background**

### A. Statutory Background

The Clean Air Act requires EPA to set national ambient air quality standards (NAAQS) for certain pollutants that endanger public health or welfare. 42 U.S.C. §§ 7408, 7409. These standards must be established at a level that protects public health "with an adequate margin of safety." *Id.* § 7409. States and EPA then must identify areas of the country where air quality fails to meet the standard and designate them as "nonattainment" areas. *Id.* § 7407(d). Nonattainment areas that subsequently attain the standard are called "maintenance" areas. *Nat. Res. Def. Council v. EPA* ("*NRDC*"), 777 F.3d 456, 458-59 (D.C. Cir. 2014).

Within three years of the promulgation of a new or updated NAAQS, states must adopt plans providing for implementation, maintenance, and enforcement of the ambient standards, and submit these plans to EPA for approval. 42 U.S.C. § 7410(a); *see EPA v. EME Homer City Generation, L.P.*, 134 S. Ct. 1584, 94 (2014). If EPA finds that a state has failed to make a required submission or disapproves a plan submitted by a state, EPA must issue a federal implementation plan ("FIP") for the state within two years. *Id.* § 7410(c)(1).

Since substantial amounts of air pollution often travel across state borders and cause harms downwind, state plans must include "good neighbor" provisions in accordance with 42 U.S.C. 7410(a)(2)(D)(i)(I), which provides:

Each such plan shall . . . contain adequate provisions prohibiting, consistent with the provisions of this subchapter, any source or other type of emissions activity within the State from emitting any air pollutant in amounts which will contribute significantly to

nonattainment in, or interfere with maintenance by, any other State with respect to any such [NAAQS].

Critically, the D.C. Circuit has held that the requirement that good neighbor plans be "consistent" with the provisions of the subchapter—i.e., Title I of the Clean Air Act—means that good neighbor plans must eliminate significant contributions by the deadlines for downwind areas to attain the NAAQS. *North Carolina v. EPA* ("*North Carolina*"), 531 F.3d 896, 911-12 (D.C. Cir. 2008) (quoting 42 U.S.C. § 7410(a)(2)(D)). The deadline for attainment of the ozone NAAQS is "as expeditiously as practicable but not later than" three, six, nine, fifteen, or twenty years—depending on the "classification" of the area—after the date the area is designated nonattainment. 42 U.S.C. § 7511(a)(1) & tbl.1; *NRDC*, 777 F.3d at 460.

### B. Regulatory Background

EPA adopted the 2008 ozone NAAQS of 75 parts per billion on March 12, 2008, 73 Fed. Reg. 16,436, triggering EPA's obligation to promulgate nonattainment designations by March 12, 2010. *NRDC*, 777 F.3d at 463. EPA extended the two-year deadline by an additional year, to March 12, 2011, 77 Fed. Reg. 30,088, 30,090-91 (May 21, 2012), then missed the extended deadline. *NRDC*, 777 F.3d at 463. Multiple groups filed suit to compel the designations. In response EPA designated 46 nonattainment areas (many containing multiple counties), effective July 20, 2012-36 of them marginal, three moderate, two serious, three severe, and two extreme. 77 Fed. Reg. 30,160 (May 21, 2012).<sup>1</sup>

Although the Act provides that attainment deadlines are calculated from the date of designation—here, July 20, 2012—EPA attempted to extend those attainment deadlines by several months, to December 31 of the corresponding year. *NRDC*, 777 F.3d at 463; 77 Fed. Reg. 30,160. Conservation groups filed suit once more, and the D.C. Circuit Court rejected the delay of attainment deadlines as "untethered to Congress' approach." *NRDC*, 777 F.3d at 469. In response, EPA affirmed that attainment deadlines for marginal and moderate ozone nonattainment areas are July 20, 2015 and July 20, 2018, respectively. 80 Fed. Reg. 12,264, 12,268/2 (Mar. 6, 2015).<sup>2</sup>

Meanwhile, on July 13, 2015, EPA finally took action on 24 states—Kentucky not among them—that had failed to submit plans adequately fulfilling their good neighbor obligations under 42 U.S.C. section 7410(a) by the statutory deadline of March 12, 2011. 81 Fed. Reg. at 74,512/1. This, in turn, triggered EPA's obligation to issue a federal plan within two years. 42 U.S.C. § 7410(c)(1).

### C. The 2016 CSAPR Update

Faced with pressing attainment deadlines and obliged to issue federal implementation plans ("FIPs") for the 2008 Ozone NAAQS, EPA issued the 2016 CSAPR Update (also known

<sup>&</sup>lt;sup>1</sup> Several areas were subsequently reclassified. See 81 Fed. Reg. 90,207 (Dec. 14, 2016).

<sup>&</sup>lt;sup>2</sup> Several marginal nonattainment areas were subsequently granted one-year extensions of the applicable attainment deadline, to July 20, 2016, pursuant to 42 U.S.C. § 7511(a)(5). *See* 81 Fed. Reg. 26,697 (May 4, 2016).

as the "Transport Rule"). 81 Fed. Reg. 74,504. Rather than fully resolve good neighbor obligations, the CSAPR Update was designed to compel emitters in upwind states to make certain readily achievable reductions in NO<sub>x</sub> emissions prior to the 2017 ozone season, the last opportunity for downwind states designated in "moderate" nonattainment to achieve attainment deadlines. 81 Fed. Reg. at 74,507/3. It is was limited to cost-effective measures quickly implementable by electric generating units ("EGU"). *Id.* at 74,508/1-2.

Consequently, the emission budgets that EPA set with the CSAPR Update for the 2017 ozone season—which remain in place—do not actually completely resolve good neighbor obligations for most states. *Id.* 74,508/2-3. Instead, as EPA admitted in when issuing the CSAPR Update, the "action represent a partial remedy to address interstate emission transport for the 2008 ozone NAAQS" and "**additional reductions** may be required to fully address the states' interstate transport obligations." *Id.* 74, 508/3 (emphasis added).

Kentucky was included in the CSAPR Update because its submission was partially disapproved by the EPA. *Id.* 74,506/2; 78 Fed. Reg. 14,683 (Mar. 7, 2013) (partially disapproving Kentucky's SIP).

These comments focus on a new "Proposed Kentucky State Implementation Plan (SIP) Revision to address the requirements of Section 110(a)(2)(D)(i)(I) of the Clean Air Act" that Kentucky jointly submitted to EPA and released for public comment in Kentucky at the beginning of March 2018. The thrust of the SIP Revision is simple: Kentucky apparently proposes to wash its hands of any further duties under the good neighbor provision. *See, e.g.*, SIP Revision at 1.

### **Substantive Comments**

### I. The SIP Revision proposed by Kentucky does not satisfy the Clean Air Act good neighbor requirements because it illegally endorses and ratifies continued contribution to downwind non-attainment of the 2008 NAAQS until 2023

Kentucky's SIP Revision does not satisfy the good neighbor obligations plainly stated in section 110(a)(2)(D)(i)(I) and ignores controlling case law limiting discretion to delay attainment of the Ozone NAAQS. Even granting Kentucky's questionable premise that all downwind states might be in attainment by 2023, the proposed SIP Revision's plan to depend entirely on CSAPR compliance fails to satisfy Kentucky's good neighbor obligation. The Clean Air Act requires that a SIP "contain adequate provisions . . . prohibiting . . . any source or other type of emissions activity within the State from emitting any air pollutant in amounts which will . . . contribute significantly to nonattainment in, or interfere with maintenance by, any other State with respect to any such national primary or secondary ambient air quality standard . . . ." 42 U.S.C. § 7410(a)(2)(D). The Proposed SIP does not do this.

Indeed, Kentucky's proposal fails this requirement in at least three regards. First, the attainment deadline for downwind states under the 2008 Ozone NAAQS is July of 2018, not 2023. Second, CSAPR alone—by its terms merely mitigating *some but not all* downwind

impacts—does not discharge the requirements of section 110(a)(2)(D)(i)(I). Third, the SIP Revision provides no enforceable mechanism or plan for achieving even 2023 downwind attainment, let alone 2018. Thus, Kentucky's SIP Revision does not prevent its significant contribution to non-attainment downwind, violating the Clean Air Act and leaving those states to face the harms and penalties of non-attainment.

A. The attainment timeline relied on by the Kentucky SIP Revision violates the plain language of section 110(a)(2)(D)(i) by allowing Kentucky to continue significant contributions of downwind states struggling to meet attainment deadlines under the 2008 Ozone NAAQS

Kentucky may not wait for some potential compliance to spontaneously occur in 2023. The good neighbor provisions require Kentucky's SIP to resolve its contribution to downwind nonattainment in time to allow downwind states to meet attainment deadlines—by the 2017 ozone season for areas in "moderate" nonattainment. Kentucky's proposed SIP Revision, which contemplates Kentucky taking no further action than complying with CSAPR, leaves downwind states to bear the costs in health and regulatory burden of continued nonattainment. To avoid violating the Clean Air Act in this manner, Kentucky must include in its plan provisions to immediately cease significant contributions to downwind non-attainment.

The plain meaning of section 110(a)(2)(D) requires Kentucky's SIP Revision to prohibit contributing emissions *at least* prior to 2008 Ozone NAAQS attainment deadlines set for downwind states (2018 for areas in "moderate" nonattainment).

"[SIPs] shall . . . (D) contain adequate provisions--(i) prohibiting, consistent with the provisions of [CAA Title I], any source or other type of emissions activity within the State from emitting any air pollutant in amounts which will--(I) contribute significantly to nonattainment in, or interfere with maintenance by, any other State with respect to any such national primary or secondary ambient air quality standard . . . .<sup>3</sup>

42 U.S.C. 7410(a)(2). Plans that delay eliminating of such emissions past NAAQS attainment deadlines for downwind areas contribute to nonattainment, and are therefore incomplete and contrary to the Clean Air Act.

The D.C. Circuit has adopted this plain reading of section 110(a)(2)(D)(i), finding it unambiguously requires compliance with NAAQS attainment deadlines. *North Carolina*, 531 F.3d at 911-12. The *North Carolina* court remanded an EPA rule (the Clean Air Interstate Rule or CAIR, the predecessor of CSAPR) in part because "EPA did not make any effort to harmonize CAIR's . . . deadline for upwind contributors to eliminate their significant contribution with the attainment deadlines for downwind areas." *Id.* at 912. The court based this conclusion on the section 110(a)(2)(D) requirement that implementing provisions be consistent with Title I of the Clean Air Act, finding that a plan must be consistent both with the substance and procedural requirements of NAAQS compliance. *Id.* at 911. Indeed, the court went further than insisting

<sup>&</sup>lt;sup>3</sup> 42 U.S.C. 7410(a)(2)(D).

good neighbor deadlines be consistent with compliance deadlines for downwind areas expected to be in non-attainment: compliance must be achieved in time for attainment determinations for downwind states expected to be even close to the NAAQS standard, i.e. to not "interfere with maintenance." *Id.* at 908-09 (finding CAIR inadequate because it focused only on non-attainment, and not on maintenance, thus ignoring part of section 110(a)(2)(D)).

For Kentucky and the 2008 Ozone NAAQS, this means immediate action. The1990 amendments to the Clean Air Act, recent controlling precedent, and EPA clearly establish attainment deadlines for the 2008 Ozone NAAQS as "as expeditiously as practicable but not later than" three, six, nine, fifteen, or twenty years—depending on the "classification" of the area—after the date the area is designated nonattainment. 42 U.S.C. § 7511(a)(1) & tbl.1; *NRDC*, 777 F.3d 456, 458-59 (D.C. Cir. 2014). In fact, *NRDC* specifically dealt with an attempt by EPA to extend 2008 Ozone NAAQS compliance deadlines for several months, to include the 2018 ozone season. The court rejected this delay as "untethered to Congress' approach." *NRDC*, 777 F.3d at 469. The court held that EPA was required to adhere to the 1997 Ozone NAAQS attainment timeline set by the 1990 Clean Air Act amendments, plumbed to the date of attainment designations. As EPA had published attainment designations effective July 20, 2012, 77 Fed. Reg. 30,160 (May 21, 2012), it was compelled to set attainment deadlines for marginal and moderate ozone nonattainment areas are July 20, 2015 and July 20, 2018, respectively. 80 Fed. Reg. 12,264, 12,268/2 (Mar. 6, 2015).

The proposed Kentucky SIP Revision ignores these long-established deadlines for fulfilling section 110(a)(2)(D) obligations. It does not even raise the issue. Instead, it asserts that "downwind monitors previously identified as being impacted by Kentucky's upwind emissions showed compliance with 2023, and that Kentucky will not interfere with any downwind maintenance monitors in 2023." SIP Revision at 4 (emphasis added). But section 110(a)(2)(D)(i)(I) does not allow Kentucky to wait until 2023, nor grant EPA discretion to extend compliance deadlines. *NRDC*, 777 F.3d at 469. By 2023, all the harms that the good neighbor provisions were intended to avoid will have befallen downwind states. Those states will have be forced to either over-control their own sources to offset Kentucky's failure, or will face the steep regulatory cost of a non-attainment designation. Moreover, to avoid contributing to downwind non-attainment in states attempting to demonstrate compliance before the 2018 ozone season, a showing which requires three years of historical data, Kentucky must take steps to offset past over-pollution.<sup>4</sup>

In conclusion, by ignoring downwind attainment deadlines, this SIP Revision fails to satisfy the requirements of section 110(a)(2)(D). North Carolina, 531 F.3d at 911-12. This is no

<sup>&</sup>lt;sup>4</sup> Just as nothing in section 110(a)(2)(D)(i)(I) or controlling precedent like *NRDC* allows delay, Kentucky has no excuse of surprise or inability. Kentucky has been aware of the obligation since at least 2008 and was in fact one of the first states to submit a good neighbor SIP under the updated Ozone NAAQS. Kentucky's own egregious lateness in submitting a SIP (it is now 10 years since the 2008 Ozone NAAQS and 4 years since the *NRDC* decision) does not warrant accommodation. At this late hour, that Kentucky's favored control strategy may allow yet another attainment deadline to pass does not justify inaction. As the D.C. Circuit previously held, the attainment deadlines are "central to the regulatory scheme," *Sierra Club v. EPA*, 294 F.3d 155, 161 (D.C. Cir. 2002), and "leave no room for claims of technological or economic infeasibility." *NRDC*, 777 F.3d at 468 (quoting *Sierra Club*, 294 F.3d at 161).

surprise—the deadlines flow from the plain language of the Clean Air Act, as was recognized by the D.C. Circuit in the *NRDC* decision in 2014. Kentucky must include provision for immediate action in its SIP.

### B. Kentucky may not rely only on CSAPR compliance because it is at best a partial resolution of some good neighbor obligations

The CSAPR Update does not fully satisfy section 110(a)(2)(D) for the 2008 Ozone NAAQS and therefore Kentucky must do more. Section 110(a)(2)(D)(i)(I) requires elimination of states' significant contributions to downwind nonattainment before the deadlines discussed above. *See North Carolina*, 531 F.3d at 908. In contrast, the CSAPR Update by design only leads to partial reduction of substantial upwind contributions. This is clear from EPA's statements in the Federal Register, from the CSAPR Update's limited, last-minute nature, and from EPA's current guidance. Rather than punt to the CSAPR Update, Kentucky's SIP Revision must evaluate the State's expected contribution to downwind nonattainment and include provisions to prevent those contributions in a timely fashion. As the *North Carolina* court concluded: "[A] complete remedy to section  $110(a)(2)(D)(i)(I) \dots$  must do more than achieve something measurable; it must actually require elimination of emissions from sources that contribute significantly and interfere with maintenance in downwind nonattainment areas." *Id.* at 908.

The CSAPR Update is a half measure, intended only to "mitigate" upwind contributions. *See* 81 Fed. Reg. at 75,512/1.<sup>5</sup> As EPA explained in the final rule, "when all the emission reductions required by this rule are in place, both attainment and maintenance problems at downwind receptors may remain." *Id.* at 75,520/3. "[T]he emission reductions required by this rulemaking do not fully resolve most of the air quality problems identified in this rule." *Id.* at 75,536/2. Instead, the rule is limited by EPA's focus on "immediately available reductions" and reflects EPA's estimation of "those activities that can be implemented by the 2017 ozone season." *Id.* at 75,521/3; 75,516/3-17/1.<sup>6</sup> Finally, even the EPA's "Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone NAAQS under Clean Air Act Section 110(a)(2)(D)(i)(I)" (the "EPA Memo"), which was attached to the Kentucky proposal as Appendix A, concedes that the CSAPR Update only "partially address[ed] the requirements of the good neighbor provision." EPA Memo at 2.

Therefore, instead of relying on the CSAPR Update, Kentucky must issue a final SIP that independently ensures no contributions to nonattainment or interference with maintenance at downwind sites immediately, to comply with deadlines describe above. *See North Carolina*, 531 F.3d at 908. This means at the very least beginning by assessing its current residual downwind impacts after the CSAPR Update. Accordingly, the Kentucky SIP Revision's exclusive focus on 2023, and not on any of the intervening years,<sup>7</sup> is arbitrary and capricious. *See Motor Vehicle* 

<sup>&</sup>lt;sup>5</sup> Cross-State Air Pollution Rule Update for the 2008 Ozone NAAQS, Final Rule, October 26, 2016.

<sup>&</sup>lt;sup>6</sup> Indeed, the EPA Memo (despite relying on dubious and inaccurate grounds to inaccurately suggest attainment in 2023 might happen all by itself) is itself premised on the reality that the CSAPR Update is insufficient to resolve transport obligations on its own.

<sup>&</sup>lt;sup>7</sup> Although not part of the proposed SIP itself, Kentucky does make the unsupported and incorrect claim that ozone precursors emitted in Kentucky somehow do not contribute significantly to nonattainment or interfere with maintenance in any other downwind states. *See* SIP Revision, Cover Letter to EPA (Feb. 28, 2018). Notably, this is

*Mfrs. Ass'n v. State Farm Mut. Auto. Ins. Co.*, 103 S. Ct. 2856, 2867 (1983). ("[An action is arbitrary and capricious if the] agency has relied on factors which Congress has not intended it to consider [or] entirely failed to consider an important aspect of the problem . . . .").

Nonetheless, even without data from Kentucky to support its Proposed SIP Revision, an estimate can still be made of their post-CSAPR Update downwind contributions; this assessment confirms that Kentucky continues to cause problems for downwind NAAQS attainment. First, as part of the CSAPR Update technical support materials, EPA reported predictions of 2017 ozone season design values without CSAPR Update-based emission reductions. These values indicated that among Kentucky's largest downwind contributions was a contribution of 10.8 ppb to ozone design value levels at a maintenance monitor in Ohio in 2017. See CSAPR Update Technical Support Document (TSD)<sup>8</sup>, Appendix C. Second, Kentucky has only reduced NO<sub>x</sub> emissions during ozone season by about one third in implementing the CSAPR Update, and accordingly retained a similar majority of its downwind impacts, well above the 0.75 ppb threshold of "significant contributions." See SIP Revision at 18-tbl 2, 19; CASPR Update, 81 Fed. Reg. at 74,518/2-3(defining significance threshold). See also CSAPR Update TSD, Appendix C (indicating that Kentucky emissions, without CSAPR, would contribute ~2 ppb to maintenance or nonattainment sites in Maryland and Pennsylvania); EPA Memo at 24 (listing monitored 2014-2016 and predicted 2023 ozone design values for linked Maryland site as 73 and 73.3 ppb and for linked Pennsylvania site as 77 and 70.3 ppb).

## *C.* The SIP Revision must include enforceable prohibitions or commitments, not merely list events or actions that could hypothetically produce eventual elimination of downwind contributions

The Kentucky proposed SIP Revision fails to meet the primary SIP requirement of section 110(a)(2), which lists the necessary elements of a state implementation plan:

(2)... Each such plan shall—(A) include enforceable limitations and other control measures  $\ldots$ , as well as schedules and timetables for compliance, as may be necessary or appropriate to meet the applicable requirements of this Act  $\ldots$ .

42 U.S.C. 7410(a)(2). Kentucky points to modeling to assert that downwind non-attainment will hopefully cease to be an issue in 2023 and lists a bevy of unenforceable and aspirational changes that it hopes will lead to that outcome—but makes no commitment or plan for ensuring that result. Thus, even if Kentucky's reliance on 2023 were valid—and it is not—its plan is still fatally flawed in its lack of any proposed enforceable limitations and lack of compliance timelines.

As described in sections I.A and I.B, above, Kentucky does not confront the question of what is necessary, and what emissions must be prohibited, to eliminate its contributions to

contradicted by the EPA Memo itself. *See* EPA Memo at 24 (indicating continued nonattainment in Philadelphia, Pennsylvania, at a site linked to Kentucky); 81 Fed. Reg. at 74,538 (listing CSAPR Update linkages for Kentucky). <sup>8</sup> Available at https://www.epa.gov/sites/production/files/2017-05/documents/aq\_modeling\_tsd\_final

<sup>•</sup> Available at https://www.epa.gov/sites/production/files/2017-05/documents/aq\_modeling\_ta\_csapr\_update.pdf.

downwind nonattainment or interference with maintenance. Between now and 2023, when Kentucky hopes it might no longer contribute to downwind non-attainment, Kentucky points to *nothing* that would enforceably require any emission reduction at all. SIP Revision at 4, 18.

Instead, CASPR Update aside, Kentucky alludes to uncertain and external factors as resolving hopefully the issue for the state. For example, Kentucky discusses some generation retirements that it expects to contribute to future reductions of NO<sub>x</sub> emissions—but Kentucky's proposed SIP Revision includes no authority to insist that the retirements occur as planned, or that the hoped-for emissions reductions are actually realized. *See SIP Revision* at 4-15, 18. Likewise, Kentucky's hoped-for elimination of transport contributions in 2023 rests on nothing more substantial than a hazy, hopeful line by EPA that notes that "[g]enerally" emissions are "expected" to decline "in the future." *Id.* at 18. Moreover, as discussed further in section II below, the emission reductions predicted by EPA's modeling is dependent on many federal regulatory limits that EPA is currently attempting to rescind.<sup>9</sup> These include CAFE standards, exceptions for glider kits, mercury air toxics, and many others—all likely to lead to increased NO<sub>x</sub> emissions if the current EPA achieves its objectives of rolling back these measures so as to allow *greater* levels of NO<sub>x</sub> pollution, not lesser.

In sum, instead of evaluating current downwind impacts, recognizing deadlines, and producing a plan with enforceable limits and timelines, Kentucky has simply expressed an extraregulatory hope that the problem will go away. Therefore, even disregarding 2023's irrelevance to Kentucky's good neighbor obligations, Kentucky's failure to include enforceable provisions in its SIP Revision to achieve compliance by 2023 violates the requirements section 110(a)(2)(A).

### II. Kentucky' SIP Revision must adhere to the Clean Air Act and may not instead rely on the EPA Memo.

Kentucky's uncritical use of the EPA Memo leads it to ignore the Clean Air Act and controlling precedent, yet at the same time leads it to not take seriously the limits of EPA's exemptions. The SIP Revision fails to satisfy section 110(a)(2) as a result of both flaws. First, where unenforceable EPA guidance clearly conflicts with plain statutory requirements and controlling precedent, a state is bound by the law. Second, even by its own terms the analysis in the EPA Memo is not a carte blanche. It only applies where a state has no means of controlling NO<sub>x</sub> emissions that do not take four years to bring into application and does avoid a duty to set enforceable rules.

Merely pointing to the predictions of future ozone levels in the EPA Memo does not allow Kentucky to violate the Clean Air Act or ignore controlling precedent. Agency guidance, like the EPA Memo, which does not pass through notice and comment, cannot be binding. *See Appalachian Power Co. v. EPA*, 208 F.3d 1015, 1027 (D.C. Cir. 2000) (explaining that guidance may not be binding on any party). More to the point, it can create no safe harbor for a party to

<sup>&</sup>lt;sup>9</sup> Sierra Club recognizes that Kentucky conducted modeling essentially identical to EPA's, relying on a similar set of flawed assumptions, and the same emissions inventories, and, therefore, producing essentially identical and identically unreliable results.

claim compliance. See GE v. EPA, 290 F.3d 377, 383 (D.C. Cir. 2002) (explaining that, even without mandatory language, a guidance document that creates safe harbors is binding on the agency and therefore violate the rulemaking requirements of the APA). It is of course textbook, well-settled law that a mere guidance memorandum, such as the EPA Memo, has no authority to override the legal statutory obligations described in the previous section, or to allow arbitrary and capricious selection of data as described in the next.

Moreover, the EPA Memo, as Kentucky uses it, directly contrasts with the Clean Air Act. In the scheme of the Clean Air Act, attainment with the NAAQS is ensured without the good neighbor clause. The purpose of the good neighbor obligations is to ensure that downwind states do not have to compensate for upwind polluters. Simply waiting for downwind states to achieve attainment despite upwind contributions, as the EPA Memo contemplates, is directly contrary to Clean Air Act section 110(a)(2)(D). Kentucky must instead take the requirements of section 110(a)(2)(D) at face value as described above.

Kentucky could not justify inaction or ignore section 110(a)(2)(D), even if the rationale of the EPA Memo were legally sound. Its guidance only addresses a narrow issue-whether emission controls that take longer than four years to implement are necessary when downwind compliance is expected sooner. The Memo does not (and could not) relieve Kentucky of good neighbor obligations—particularly those that could be addressed through NO<sub>x</sub> emission reductions that could be made before downwind states come into compliance. But EPA's unsupported musings that such timely emission reductions might not be readily available are irrelevant. They misstate the inquiry-Kentucky is not on the hook for just the easy, low-hanging fruit of control options that are readily available, but for eliminating its transport contributions. Because the CSAPR Update was limited to cost-effective and easily implemented controls on EGUs, it is far from an exhaustive program of reductions.<sup>10</sup> There are a wide range of non-EGU controls alone that have not been implemented, from process controls to revocation of operating licenses. Finally, neither Kentucky's nor EPA's entirely irrelevant claim of impossibility is at all supported by a shred of evidence. See 5 U.S.C. § 706(2); Nat'l Clients Council, Inc. v. Legal Servs. Corp., 617 F. Supp. 480, 486 (D.D.C. 1985) ("In the eyes of the law an administrative action not supported by evidence or lacking a rational basis is deemed arbitrary and capricious.").

## III. The SIP Revision's exclusive focus on downwind attainment in 2023 is arbitrary and capricious because it ignores current, relevant good neighbor problems and relies on flawed and aspirational modeling assumptions

The SIP Revision is arbitrary and capricious because it entirely fails to consider basic aspects of its good neighbor obligations—how much its emissions currently contribute to

<sup>&</sup>lt;sup>10</sup> Even in the EGU context, the CSAPR Update was far from exhausting readily available control options. For example, Kentucky could require 100% operation of already-installed control equipment. Kentucky could also insist on optimized performance of control equipment. Kentucky could discontinue the use of "banked allowances" included in the CSAPR Update. Finally, CSAPR did not require any re-dispatch, or shifting power generation from higher-emitting to lower-emitting plants, which are also feasible methods of emission reduction in the short term.

downwind nonattainment, what steps are necessary to prohibit such emissions, and when such prohibitions are due—and instead focuses on legally irrelevant estimates by the EPA of emissions five years in the future. Further, the EPA modeling itself—which contemplates attainment of 2008 Ozone NAAQS by only the barest margin in 2023—has at least three serious issues. To predict nationwide attainment, EPA assumed strict compliance with rules EPA is actively seeking to rescind, included biases such as assumed overcompliance with CSAPR, and ignored significant modeling uncertainty. These each make the predictions less dependable and still more irrelevant, each makes Kentucky's unexplained reliance more arbitrary and capricious.

It is textbook administrative law that agency action is arbitrary and capricious when the agency fails to "examine the <u>relevant</u> data and articulate a satisfactory explanation" for its decision. *Motor Vehicle Mfrs. Ass'n v. State Farm Mut. Auto. Ins. Co.*, 103 S. Ct. 2856, 2866 (1983) (emphasis added). Likewise, an action is arbitrary and capricious if the "agency has relied on factors which Congress has not intended it to consider [or] entirely failed to consider an important aspect of the problem . . . ." *Id.* at 2867. By focusing on speculative and flawed modeling of future conditions to the exclusion of present data, and by failing to address the significant errors in the EPA Memo's approach, this is precisely what Kentucky has done.

### A. The Proposed SIP Revision's total reliance on speculative and flawed modeling that suggests attainment by only 0.1 ppb is arbitrary and capricious

Kentucky proposes to rely entirely on projections of future emissions based on a current regulatory framework that EPA is actively attempting to dismantle. This is a critical problem with the EPA Memo: EPA in one breath predicts future ozone levels by assuming that current regulations continue to control, in the next seeks to rescind, weaken, and undo many of those same regulations. Accordingly, a proper SIP revision must actually include provisions to reduce transport-causing pollution.

Among the current EPA actions not accounted for in EPA's modeling, the recently proposed "Repeal of Emission Requirements for Glider Vehicles, Glider Engines, and Glider Kits" stands out. 82 Fed. Reg. 53,442 (Nov. 16, 2017). The rule applies to glider vehicles, which are heavy duty diesel trucks which are constructed from a new body assembly (cab, brakes, front axle, etc.) mated to a previously owned power train (engine and transmission). Id. at 53,443/2. Gliders are typically ~25% cheaper than new trucks, mechanically simpler, and more fuel efficient due largely to less stringent emissions controls. Id. at 53,443/3-44/2. But the older, less stringently controlled engines that would be allowed in glider vehicles if the repeal were achieved emit extremely significant amounts of NOx. See EPA-420-R-16-901, "Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles -Phase 2," Response to Comments for Joint Rulemaking, at 1875-6 (Aug. 2016) (responding to comments on the original regulation of glider vehicles). As discussed in EPA's response to comments on the original rule, EPA estimated that unregulated, glider vehicles would increase emissions from heavy-duty highway vehicles by ~300,000 tons annually in 2025. Id. Conversely, the entire CSAPR Update only reduces annual NO<sub>x</sub> emissions by 75,000 tons, meaning that EPA's proposed regulatory action would swamp multiple times over the emission reductions from the CSAPR Update—severely undercutting the assumptions baked into the EPA Memo.

*See* EPA-452/R-16-004, "Regulatory Impact Analysis of the CSAPR Update," at ES-8, tbl. ES-1 (Sept. 2016).

Other ozone significant, deregulatory actions by EPA include efforts to weaken the Corporate Average Fuel Economy (CAFE) standards. 77 Fed. Reg. 62,624 (Oct. 15, 2012). When promulgated, the 2017 and later CAFE standards were anticipated to reduce annual light-duty highway vehicle emissions of NO<sub>x</sub> by 904 tons in 2020 and 6,509 tons in 2030, and emissions of VOCs, another ozone precursor, by 11,712 and 123,070 tons in 2020 and 2030. *Id.* at 62,900. EPA is also considering rescinding 2016 Control Techniques Guidelines for the Oil and Natural Gas Industry, which are estimated to reduce VOC emissions by 80,000 tons annually. 81 Fed. Reg. 74,798 (Oct. 27, 2016); Final Control Techniques Guidelines Fact Sheet<sup>11</sup> at 3.

None of these actions are accounted for by EPA or Kentucky's modeling. *See* EPA, "Technical Support Document, Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2023," ("2023 Model TSD") at 96, tbl 4-1 (Oct. 2017). These steps by EPA would doubtless ensure that the exceedingly narrow compliance margins assumed by its modeling in 2023 are not achieved. Kentucky should therefore include provisions, such as enforceable timelines and regular progress assessments to ensure that good neighbor compliance is both achieved and permanent. To the extent that Kentucky stakes good neighbor compliance entirely on an unenforced and actively undercut prediction, its reliance is arbitrary and capricious.

## B. Reliance on modeling that predicts future compliance by 0.1 ppb when inherent uncertainties are much larger that such a margin is arbitrary and capricious

The EPA Memo speculatively suggests ozone NAAQS attainment without performance of any sensitivity analyses and through incorporation of a series of dubious assumptions, and even then projects attainment on only the narrowest of margins: by 0.1 ppb. Electing to rely on such modeling, and in the process ignoring all other data, is the very essence of arbitrary and capricious agency decision-making. The uncertainty in the EPA Memo's projection is immense.

EPA's recent prediction of near-nationwide compliance in 2023—by a margin of 0.1 ppb—is the product of thousands upon thousands of inputs, assumptions, and simplifications. *See generally* 2023 Model TSD. Emission inventories may be drawn from reported data or based on separate models, and even sub-models. Quantities like future power consumption, fuel prices, and vehicle miles traveled must be predicted. Meteorological conditions must be assumed and simplified, along with atmospheric mixing dynamics. Chemical reactions that involve thousands of species and complex interactions with airborne particles, clouds droplets, and sunlight must be reduced to highly simplified approximations.

Natural gas prices—which have been low in recent history, causing significant reduction in coal generation and NO<sub>x</sub> emissions—are a great example of the huge degree of uncertainty in

<sup>&</sup>lt;sup>11</sup> Available at https://www.epa.gov/sites/production/files/2016-10/documents/fact-sheet-2016-oil-and-gas-ctg.pdf.

this prediction. Even before the photochemical model runs, 2023 emissions must be predicted. An element in the emissions modeling predicts power plant fuel utilization based on a guess of future fuel prices in 2023. If gas prices are higher than predicted, the model will predict greater dependence on coal-fired generation, predicting higher  $NO_x$  emissions, and ultimately under - predict ozone formation.

In sum, Kentucky proposes to rely on an uncertain prediction of compliance by inches, and—worse—relies on it exclusively, to justify inaction. Kentucky must include provisions in its plan, like regular monitoring and assessment, to ensure that any its predictions hold. Kentucky's failure to do anything other than uncritically assume that EPA's flawed modeling somehow absolves Kentucky from any further need to address its good neighbor obligations is an arbitrary and capricious rejection of relevant data in favor of speculation.

#### **Conclusion**

For the foregoing reasons, the proposed SIP Revision is improper and contrary to the Clean Air Act. It contains no provisions that prevent emissions in Kentucky from making significant contributions to nonattainment or interfering with maintenance of the 2008 Ozone NAAQS in downwind states as required by section 110(a)(2)(D)(i)(I) of the Clean Air Act. Nor does the CSAPR Update, on which Kentucky wishes to rely, resolve all good neighbor obligations under the act; by its own terms it is a partial, provisional solution. Therefore, Kentucky must revise its proposal to take account of current conditions, squarely confront the terms of the Clean Air Act, and acknowledge controlling precedent. Kentucky's proposed inaction based on future downwind attainment avoids these duties and violates the Act.

Sincerely,

/s/

Nathan F. Taylor Legal Fellow Sierra Club 50 F Street NW, 8th Floor Washington, DC 20001 (202) 650-6072 nathan.taylor@sierraclub.org

Matthew E. Miller Staff Attorney Sierra Club 50 F Street NW, 8th Floor Washington, DC 20001 (202) 650-6069 matthew.miller@sierraclub.org Zachary M. Fabish Senior Attorney The Sierra Club 50 F Street NW, 8th Floor Washington, D.C. 20001 (202) 675-7917 zachary.fabish@sierraclub.org

# Appendix C-3 Statement of Consideration

### STATEMENT OF CONSIDERATION **Relating to Proposed SIP Revision Good Neighbor Provision for the 2008 Ozone NAAQS**

### **Energy and Environment Cabinet Kentucky Department for Environmental Protection Division for Air Quality**

Response to Comments for Kentucky's proposed SIP submittal to address Clean Air Act Section 110(a)(2)(D)(i)(I), also known as the "Good Neighbor" provision, regarding the 2008 ozone NAAQS.

- I. Beginning March 2, 2018, until March 30, 2018, the Cabinet provided an opportunity for the public to review and comment on the proposed SIP revision addressing the Good Neighbor provision for the 2008 ozone NAAQS (hereafter known as the "Good Neighbor SIP"). The Cabinet made available the public notice of the comment period and public hearing on the Division for Air Quality's website, and mailed the public notice to interested individuals registered on the regulatory mailing lists maintained by the Cabinet.
- II. The following people submitted written statements during the public comment period:

| Name and Title                                                                                              | Agency/Organization/Entity/Other                                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Scott Davis<br>Richard Pirolli                                                                              |                                                                                                                        |  |  |
| Francis Steitz<br>Steven Flint                                                                              | <ul><li>Director, New Jersey Division of Air Quality</li><li>Director, Division of Air Resources of New York</li></ul> |  |  |
| David Flannery<br>Carolyn Brown                                                                             |                                                                                                                        |  |  |
| Nathan Taylor, Matthew Miller,<br>and Zachary Fabish                                                        |                                                                                                                        |  |  |
| A public hearing was conducted March 30, 2018, at 10:00 a.m. at 300 Sower Boulevard in Frankfort, Kentucky. |                                                                                                                        |  |  |
| The following people attended this public hearing:                                                          |                                                                                                                        |  |  |
| Name and Title Agency/Or                                                                                    | ganization/Entity/Other Testimony                                                                                      |  |  |
| Drian Clark Kantuaky                                                                                        | Detroloum Montrating Association No.                                                                                   |  |  |

| Name and Title | Agency/Organization/Entity/Other         | <u>Testimony</u> |
|----------------|------------------------------------------|------------------|
| Brian Clark    | Kentucky Petroleum Marketing Association | No               |

**IV.** The following people from the Division for Air Quality attended this public hearing:

### Name and Title

Melissa Duff, Assistant Director Leslie Poff, Environmental Control Supervisor Lauren Hedge, Environmental Scientist\*

\*Cabinet Representative

Appendix C of this final SIP Revision package includes all comments as received during the public comment period, as well as the transcript from the public hearing.

### V. Summary of Comments and Responses

**1. Comment:** "Kentucky relies on EPA's CSAPR Update modeling for 2017 and 2023, as well as modeling conducted by Alpine Geophysics for 2023, to conclude that it is in full compliance with the CAA Good Neighbor requirements for the 2008 NAAQS. Both CT DEEP and the Ozone Transport Commission have previously expressed strong concerns that EPA's modeling platform, which was also used by Alpine Geophysics, produces overly optimistic projections of future year ozone levels. As shown in Table 1 (attached), actual measured 2017 ozone design values are considerably higher than modeled projections by 5 to 10 ppb at all Connecticut monitoring sites, confirming this concern. Table 1 also shows that ozone contributions from Kentucky sources exceed the one percent significance threshold at two violating Connecticut monitors after scaling contributions relative to the 2017 measured air quality levels. Kentucky's proposed SIP does not address this critical under prediction by the model of current measured ozone levels, which undermines Kentucky's conclusion that it has fully met its Good Neighbor obligations to Connecticut."

(Richard Pirolli, Director, Air Planning and Standards Division of Connecticut Department of Energy & Environmental Protection)

**Response:** The Cabinet does not concur. The modeling conducted by EPA relied upon up-todate data, which incorporated stakeholder feedback into its electric generating units (EGUs) and non-EGU emissions projections and its modeling platform. As detailed in the October 27, 2017 memo from Stephen Page, EPA's updated modeling projecting to 2023 accounted for upcoming retirements, post-combustion control retrofits, coal-to-gas conversions, combustion controls upgrades, new units, Cross-State Air Pollution Rule (CSAPR) Update compliance, state rules, Best Available Retrofit Technology (BART) requirements and updates to the oil and gas sector.

The Cabinet finds the basis for EPA and Alpine Geophysics modeling to be conservative and EPA's use of apportionment modeling to determine which states contribute pollution to nonattainment or maintenance area air quality problems in other states a reliable method to determine Kentucky's influence on downwind receptors. For instance, EPA's modeled results did not account for the local emission control strategies implemented as a result of RACT requirements. Related to Connecticut's "Scaled KY Impact" contributions in Table 1 of their comment letter, the Cabinet does not agree with Connecticut's methodology nor the results of

that methodology. Without an explanation as to how these numbers were determined, the Cabinet cannot provide a meaningful response to the methodology used to extrapolate to a "scaled" figure.

**2. Comment:** "Kentucky's proposed SIP also relies on modeling projections that indicate all areas outside California will achieve attainment with the 2008 NAAQS by 2023. We note that some Connecticut monitors are projected to only barely comply by this late date" (*Richard Pirolli, Director, Air Planning and Standards Division of Connecticut DEEP*)

**Response:** The Cabinet acknowledges the comment. EPA's model demonstrates that Connecticut monitors attain the standard.

**3. Comment:** "Notwithstanding Connecticut's concerns about model under prediction of future year ozone levels, Kentucky's reliance on the 2023 modeling should be accompanied by enforceable regulations that ensure the lower 2023 emissions are achieved. For example, emissions from electric generating units (EGUs) are assumed in the modeling to decrease between 2017 and 2023, both annually and seasonally. Kentucky's 2017 actual ozone emissions (i.e., 20,023 tons) were less than EPA CSAPR Update budget level for the state (21,115 tons). The 2023 modeling assumes ozone season EGU emissions will be even lower (16,954 tons). The projected level of 2023 emissions must be made federally enforceable, especially given the narrow margin by which the EPA/Alpine modeling projects Connecticut monitors will reach compliance in 2023."

(Richard Pirolli, Director, Air Planning and Standards Division of Connecticut DEEP)

**Response:** The Cabinet does not concur. The assumptions applied in EPA's modeling utilize the best available projections of electric generation and emissions. As noted in response to comment No. 1, EPA's modeling does not fully account for Connecticut's local reductions through RACT.

**4. Comment:** "Connecticut also challenges the arbitrary selection of using a 2023 timeline for determining Good Neighbor compliance with the 2008 ozone NAAQS. Connecticut was originally designated marginal with compliance expected by the end of the 2014 ozone season. Connecticut's nonattainment areas were last reclassified to moderate, and are currently faced with another reclassification to serious with an attainment deadline of 2020. Connecticut has not met attainment due to overwhelming transport from upwind areas including Kentucky. The arbitrary selection of 2023 only perpetuates the unjust economic and health burdens on Connecticut's citizens suffer due to the failure of Kentucky and other upwind states to fully meet their Good Neighbor obligations in a timely manner."

(Richard Pirolli, Director, Air Planning and Standards Division of Connecticut DEEP)

**Response:** The Cabinet does not concur. EPA's October 27, 2017 memo provides an explanation as to why EPA chose 2023 even though it is later than the attainment date for nonattainment areas classified as Serious (July 20, 2021), or prior to the attainment date for areas classified as Severe (July 20, 2027). Specifically, "In selecting its future analytic year for the air quality modeling, the EPA balanced considerations such as attainment dates in downwind states, including the obligation to attain as expeditiously as practicable, the EPA's obligation to avoid unnecessary over-control

of upwind state emissions, the timeframe in which any necessary emissions reductions could be feasibly implemented, and the timeframe required for rulemaking to impose any such emissions reductions that might be required."

Further, in EPA's proposal to approve Kentucky's 2008 ozone Good Neighbor SIP, "EPA proposes that 2023 is an appropriate future analytic year because it is the first ozone season for which significant new cost-effective post-combustion controls to reduce NOx could be feasibly installed across the CSAPR Update region, and thus represents the timeframe that is as expeditious as practicable for upwind states to implement additional emission reductions."<sup>1</sup> Therefore, the Cabinet determines that 2023 is an appropriate future analytical year.

**5. Comment:** "Connecticut's concerns regarding emissions from Kentucky's sources are buttressed by the recent CAA section 126 petition submitted to the EPA by New York. New York's petition requests EPA to take action regarding stationary sources in nine upwind states, including Kentucky, that continue to interfere with attainment in the NY-NJ-CT nonattainment area for the 2008 ozone standard."

(Richard Pirolli, Director, Air Planning and Standards Division of Connecticut DEEP)

**Response:** The Cabinet does not concur with New York's modeling results and technical analysis applied in the CAA section 126 Petition relating to Kentucky's alleged contributions to the New York, Richmond County monitor. In the CAA section 126 Petition that NYDEC filed on March 12, 2018, New York failed to include EPA's updated modeling platform released in October of 2017.

For instance, Kentucky's actual 2017 NO<sub>x</sub> emissions from EGUs totaled 7,444.1 tons; whereas, the New York model used a projected emissions rate of 10,543.6 tons of NO<sub>x</sub> for Kentucky EGUs in 2017, which is a considerable difference. If New York had performed modeling with the actual 2017 NO<sub>x</sub> data, it would demonstrate no modeled significant contribution from Kentucky. Section V within the proposed Kentucky 2008 ozone Good Neighbor SIP details the downward trend in NOx emissions since the implementation of trading programs such as CAIR and CSAPR (Table 1).

**6. Comment:** "The Ozone Transport Commission (OTC) recently adopted a statement identifying minimum control strategies that should be in all good neighbor SIPs.<sup>5</sup> Kentucky should ensure all these strategies are included in its SIP, as well as the other points noted in the OTC statement."

(Richard Pirolli, Director, Air Planning and Standards Division of Connecticut DEEP)

**Response:** The Cabinet acknowledges the comment. It should be noted that Section IV of the proposed Kentucky 2008 ozone Good Neighbor SIP lists regulations, specifically RACT rules that apply to stationary sources. Additionally, 401 KAR 50:012 mandates the use of reasonable and available controls for all major sources of VOC emissions in a nonattainment area for ozone.

Not all OTC states have adopted these minimum control strategies, therefore it should not be expected that Kentucky bear all of the weight for NO<sub>x</sub> reduction strategies. The U.S. Supreme

<sup>&</sup>lt;sup>1</sup> 83 FR 17125

Court and D.C. Circuit Court held that EPA may not require emissions reductions greater than necessary, thus avoiding over-control of states to achieve attainment and maintenance of the NAAQS in downwind areas.<sup>2</sup>

**7. Comment:** "Connecticut believes targeting emissions reductions strategies on high emitting days can be especially effective for achieving maximum air quality benefit and urges Kentucky to adopt such targeted strategies."

(Richard Pirolli, Director, Air Planning and Standards Division of Connecticut DEEP)

**Response:** The Cabinet concurs with the recommendation to apply local controls, specifically on peak demand days. The use of uncontrolled, peak-demand electric generators during high emitting days should be limited, as they are more conducive to ground-level ozone formation.

**8.** Comment: "Per the Clean Air Act, Kentucky's significant contributions for the 2008 ozone NAAQS should have been addressed by March 2011." (*Francis Steitz, Director, New Jersey Division of Air Quality*)

**Response:** The Cabinet acknowledges the comment. On July 17, 2012, the Cabinet submitted the required Infrastructure SIP for the 2008 ozone NAAQS. At the time of the submittal, EPA had not met their statutory obligation of determining Kentucky's significant contribution to downwind monitors. Beginning January 1, 2009, Kentucky sources were required to comply with the CAIR ozone season budgets, as adopted into the Kentucky SIP. Therefore, Kentucky met its Good Neighbor obligation.

**9. Comment:** "The choice of 2023 for future year modeling to meet the Clean Air Act "Good Neighbor" requirements is not appropriate since it is after the Moderate classification attainment deadline of July 2018, as well as, the Serious classification attainment deadline of July 2021." (*Francis Steitz, Director, New Jersey Division of Air Quality*)

**Response:** The Cabinet does not concur. EPA's October 27, 2017 memo provides an explanation as to why EPA chose 2023 even though it is later than the attainment date for nonattainment areas classified as Serious (July 20, 2021), or prior to the attainment date for areas classified as Severe (July 20, 2027). Specifically, "In selecting its future analytic year for the air quality modeling, the EPA balanced considerations such as attainment dates in downwind states, including the obligation to attain as expeditiously as practicable, the EPA's obligation to avoid unnecessary over-control of upwind state emissions, the timeframe in which any necessary emissions reductions could be feasibly implemented, and the timeframe required for rulemaking to impose any such emissions reductions that might be required."

Further, in EPA's proposal to approve Kentucky's 2008 ozone Good Neighbor SIP, "EPA proposes that 2023 is an appropriate future analytic year because it is the first ozone season for which significant new cost-effective post-combustion controls to reduce NOx could be feasibly installed across the CSAPR Update region, and thus represents the timeframe that is as expeditious

<sup>&</sup>lt;sup>2</sup> *EPA v. EME Homer City Generation, L.P.,* 134 S. Ct. 1584, 1600-01 (2014); *EME Homer City Generation, L.P. v. EPA,* 795 F. 3d 118, 127 (D.C. Circ. 2015).

as practicable for upwind states to implement additional emission reductions."<sup>3</sup> Therefore, the Cabinet determines that 2023 is an appropriate future analytical year.

**10. Comment:** "The NNJ-NY-CT nonattainment area and its citizens should not have to wait until 2023 to receive the benefits of clean air quality for the human health-based ozone NAAQS. Since the moderate attainment deadline has passed, Kentucky should conduct a modeling run for the next attainment date of July 2021 (2020 DV) for the serious classification." (*Francis Steitz, Director, New Jersey Division of Air Quality*)

**Response:** The Cabinet acknowledges the comment. The Cabinet finds EPA's modeling projections to be more appropriate for national consistency. As noted in EPA's CSAPR Update Rule, "section 110(a)(2)(D)(i)(I) of the CAA only requires upwind states to prohibit emissions that will significantly contribute to nonattainment or interfere with maintenance of the NAAQS in other states. It does not shift to upwind states the full responsibility for ensuring that all areas in downwind states attain and maintain the NAAQS."<sup>4</sup>

**11. Comment:** "Kentucky is relying upon reductions made in the state through its adherence to CSAPR and the CSAPR update rule. The USEPA guidance memorandum for the "Good Neighbor" SIP specifically states that "EPA acknowledged in the CSAPR Update that the rule may not fully address the requirements of the good neighbor provision for the 2008 ozone NAAQS for most of the states included and that further analysis was needed of air quality and oxides of nitrogen (NOx) reductions after 2017."

(Francis Steitz, Director, New Jersey Division of Air Quality)

**Response:** The Cabinet does not concur. The Cabinet's proposed Good Neighbor SIP does not rely solely upon reductions made through the adherence to CSAPR and the CSAPR Update rule. Section IV within the Kentucky 2008 ozone Good Neighbor SIP lists State and Local regulations used to control the release of emissions from Kentucky sources. Section IV also discusses upcoming Federal programs that will effectively lower emissions throughout the nation. Section V lists several EGU facilities that are scheduled to retire while others plan to switch from coal to natural gas. The SIP concludes by stating that "no additional control strategies beyond what is "on the books" are necessary to fully address the requirements of Section 110(a)(2)(i)(I) of the Clean Air Act."

**12. Comment:** "The 2023 modeling provided by Kentucky, through Alpine Geophysics, shows that Kentucky significantly contributes to ozone levels in NJ's nonattainment area and has a 1.48 ppb modeled ozone contribution in 2023, greater than the 1% of the NAAQS (0.75 ppb) considered as a significant contribution to ozone. Although the Kentucky 2023 modeling predicts attainment of the 75 ppb NAAQS in Connecticut with a result of 75.9 at the Westport monitor, Kentucky should not presume a bright line of attainment in 2023 or that the Connecticut sites will actually reach attainment by then."

(Francis Steitz, Director, New Jersey Division of Air Quality)

<sup>&</sup>lt;sup>3</sup> 83 FR 17125

<sup>&</sup>lt;sup>4</sup> 81 FR 74515

**Response:** The Cabinet acknowledges the comment. The 2023 modeling conducted by Alpine Geophysics does not indicate that Kentucky emissions significantly contribute to ozone levels in New Jersey's nonattainment area and predicts attainment of the 75 ppm ozone standard at Connecticut's Westport monitor (monitor ID 90019003) in 2023 with a design value of 75.6.

**13. Comment:** "Kentucky's 2017 EGU Point Source Ozone Season NOx Emissions as shown in Table 2 of Alpine's Report are very close to the CSAPR Update allocations. They are not significantly lower as alluded to on page 17 of your SIP." (*Francis Steitz, Director, New Jersey Division of Air Quality*)

**Response:** The Cabinet does not concur. Table 2, which displays Kentucky's 2017 EGU Point Source Ozone Season NOx Emissions, is located on page 18 of Kentucky's Good Neighbor SIP and not in Alpine's Report, as stated by the Commenter. The significantly lower actual ozone season NOx emissions referred to on page 17 of Kentucky's Good Neighbor SIP pertains to the overall reduction in NOx emissions over the course of the 2015 - 2017 time period; this 3-year period produced an average reduction in NOx emissions of 25% when compared to the allotted budgets. Furthermore, 2023 NOx emissions are projected to be even lower than the 20,053.01 tons emitted in Kentucky in the year 2017.

**14. Comment:** "These actual and allocated amounts should be lowered in 2018 to reduce Kentucky's significant contribution to the ozone levels in New Jersey's nonattainment areas now rather than wait 5 more years to make the needed "Good Neighbor" reductions. Kentucky should, therefore, be immediately investigating other measures to reduce its ozone impact on New Jersey and other northeastern States. Specifically, these reductions should consider the following:

- Reasonable Available Control Technology (RACT) NOx levels on Electric Generating Units and other large NOx sources to the same stringent levels as done in the Ozone Transport Region including:
  - Implementation of a High Electric Demand Day (HEDD) program to reduce NOx emissions on high ozone days,
  - Distributed generation unit controls, and
  - Control measures at municipal waste combustors.
- Control measures for Mobile Sources including:
  - An automobile emissions Inspection/Maintenance Program,
  - An anti-idling program to prevent automobiles from idling more than three consecutive minutes, and
  - Implementation of the California Car program."

(Francis Steitz, Director, New Jersey Division of Air Quality)

**Response:** The Cabinet does not concur. The modeling completed by EPA, and confirmed by Alpine Geophysics, "indicates that there are no monitoring sites, outside of California, that are projected to have nonattainment or maintenance problems with respect to the 2008 ozone

NAAQS of 75 ppb in 2023."<sup>5</sup> In addition, EPA's CSAPR Update Rule states "section 110(a)(2)(D)(i)(I) of the CAA only requires upwind states to prohibit emissions that will significantly contribute to nonattainment or interfere with maintenance of the NAAQS in other states. It does not shift to upwind states the full responsibility for ensuring that all areas in downwind states attain and maintain the NAAQS."<sup>6</sup>

**15. Comment:** "DEC commends KEEC on the reductions in nitrogen oxide (NOx) emissions (an ozone precursor) that have been obtained from electric generating units (EGUs) as noted in the proposed SIP revision. However, DEC urges KEEC to continue its progress in reducing NOx, and ensure these reductions are sustained through enforceable permit limitations and compliance schedules. While New York has been seeking EPA's assistance in ameliorating the ozone transport issue, DEC continues to enact stringent control measures through enforceable limits in permits and regulations to reduce ozone precursors from its own sources. DEC regularly reviews and updates its nonpoint sector volatile organic compound regulations, and utilizes a \$5,500/ton Reasonable Available Control Technology (RACT) threshold for NOx reductions from major EGU and non-EGU point sources, a number that greatly exceeds the \$1,400/ton threshold in the Cross-State Air Pollution Rule (CSAPR) Update for the 2008 ozone NAAQS.

(Steven Flint, Director, New York Division of Air Resources)

**Response:** The Cabinet acknowledges the comment. The Cabinet includes enforceable limitations in the title V operating permits issued to Kentucky EGUs, including the regulatory requirements of CSAPR under 40 CFR Part 97. Additionally, Section IV of the proposed Kentucky 2008 ozone Good Neighbor SIP lists the Kentucky Administrative Regulations that include standards of performance for new and existing facilities, as well as RACT requirements, applicable to VOC and NOx-emitting facilities.

For EGUs, EPA explained in the CSAPR Update rule the reasoning behind the \$1,400 per ton cost threshold, "emission budgets reflecting the \$1,400 per ton cost threshold do not over-control upwind states' emissions relative to either the downwind air quality problems to which they are linked or the 1 percent contribution threshold that triggered further evaluation."<sup>7</sup>

**16. Comment:** DEC notes that KEEC's proposed good neighbor SIP is requesting that EPA find that Kentucky is not required to make any further reductions, beyond those required by the CSAPR Update. While EPA intended for the CSAPR Update rule to serve as a partial Federal Implementation Plan (FIP) for states that had failed to submit adequate SIPs, to obtain emission reductions before the 2018 moderate area attainment date, EPA admitted that the inherent NOx emission budgets "may not be sufficient to fully address these states' good neighbor obligations" (81 FR 74521). More specifically, EPA's focus on short-term reductions at a control cost of only \$1,400 per ton of NOx reduced does not fully mitigate Kentucky's significant contribution. Moreover, the CSAPR program budgets are based on cumulative ozone season emissions, a

<sup>&</sup>lt;sup>5</sup> Memorandum, Stephen D. Page, Supplemental Information on the Interstate Transport State Implementation Plan Submissions for the 2008 Ozone National Ambient Air Quality Standards under Clean Air Act Section 110(a)(2)(D)(i)(I) (October 2017 Transport Memo)

<sup>&</sup>lt;sup>6</sup> 81 FR 74515

<sup>7 81</sup> FR 74508

modeling assumption that does not account for the individual hot and stagnant days that are most conducive to ozone formation and therefore, does not assist downwind nonattainment and maintenance areas in New York on these critical days. *(Steven Flint, Director, New York Division of Air Resources)* 

**Response:** The Cabinet does not concur. The Cabinet's proposed Kentucky 2008 ozone Good Neighbor SIP does not rely solely upon reductions made through the adherence to CSAPR and the CSAPR Update rule. Section IV within the Good Neighbor SIP lists State and Local regulations used to control the release of emissions from Kentucky sources. Section IV also discusses upcoming Federal programs that will effectively lower emissions throughout the nation. Section V lists several EGU facilities that are scheduled to retire while others plan to switch from coal to natural gas. The SIP concludes by stating that "no additional control strategies beyond what is "on the books" are necessary to fully address the requirements of Section 110(a)(2)(i)(I) of the Clean Air Act."

Additionally, the Cabinet determines the use of local, uncontrolled, peak-demand electric generators during high emitting days should be limited, as they are more conducive to ground-level ozone formation.

17. Comment: "KEEC's reliance on EPA's updated transport modeling, dated October 27, 2017, which uses a 2023 inventory projection and modeling analysis, is also inappropriate. The 2023 modeling does not address Kentucky's existing and ongoing contribution to present nonattainment at downwind New York receptors of the 2008 ozone NAAQS, nearly ten years after these standards were promulgated, and it ignores deadlines for downwind areas to attain the NAAQS. See North Carolina v. EPA, 531 F.3d 896, 911-12 (D. C. Cir. 2008). EPA Director of the Office of Air Quality Planning and Standards Stephen D. Page provided a memorandum dated October 27, 2017 accompanying EPA's updated transport modeling stating that EPA's technical analysis was made available to "assist states' efforts to develop, supplement or resubmit good neighbor SIPs for the 2008 ozone NAAQS to fully address their transport obligations." However, the memorandum further stated that "the information provided by this memorandum is not a final determination regarding states' remaining obligations under the good neighbor provision." Kentucky may not rely on EPA's arbitrary selection and use of a 2023 projection to satisfy its obligation to develop a SIP that contains adequate provisions prohibiting sources from contributing to nonattainment in, or interfering with maintenance. Considering Kentucky's heavy reliance on the admittedly inadequate CSAPR Update and EPA's overly optimistic 2023 modeling analysis, KEEC's proposed good neighbor SIP does not meet the requirements of the CAA."

(Steven Flint, Director, New York Division of Air Resources)

**Response:** The Cabinet does not concur. EPA's October 27, 2017 memo provides an explanation as to why they chose 2023 even though it is later than the attainment date for nonattainment areas classified as Serious (July 20, 2021), or prior to the attainment date for areas classified as Severe (July 20, 2027). Specifically, "In selecting its future analytic year for the air quality modeling, the EPA balanced considerations such as attainment dates in downwind states, including the obligation to attain as expeditiously as practicable, the EPA's obligation to avoid unnecessary over-control of upwind state emissions, the timeframe in which any necessary

emissions reductions could be feasibly implemented, and the timeframe required for rulemaking to impose any such emissions reductions that might be required."

Further, in EPA's proposal to approve Kentucky's 2008 ozone Good Neighbor SIP, "EPA proposes that 2023 is an appropriate future analytic year because it is the first ozone season for which significant new cost-effective post-combustion controls to reduce NOx could be feasibly installed across the CSAPR Update region, and thus represents the timeframe that is as expeditious as practicable for upwind states to implement additional emission reductions."<sup>8</sup> Therefore, the Cabinet determines that 2023 is an appropriate future analytical year.

**18. Comment:** "Despite EPA's attempted justification for selecting the 2023 modeling year to address the requirements of the "good neighbor" provisions for the 2008 NAAQS, the New York metropolitan area (NYMA) failed to attain by the July 20, 2015 attainment deadline for "marginal" areas; will fail to attain the July 20, 2018 attainment deadline for "moderate" areas; and will be elevated to "serious" nonattainment status with a July 20, 2021 attainment deadline. At this point, the NYMA's continuing struggled to attain the 2008 ozone NAAQS is due, in large part, to transported ozone precursors from upwind states such as Kentucky. By not assessing Kentucky's existing contribution to current nonattainment in the NYMA and ignoring the 2021 serious nonattainment area deadline, KEEC cannot conclude that this SIP revision satisfies the requirements of 110(a)(2)(D)(i)(I). The convenience and availability of an arbitrary and, as described below, overly optimistic projection inventory five years in the future falls far short of meeting KEEC's existing CAA good neighbor obligations." (*Steven Flint, Director, New York Division of Air Resources*)

**Response:** The Cabinet does not concur. EPA's October 27, 2017 memo provides an explanation as to why they chose 2023 even though it is later than the attainment date for nonattainment areas classified as Serious (July 20, 2021), or prior to the attainment date for areas classified as Severe (July 20, 2027). Specifically, "In selecting its future analytic year for the air quality modeling, the EPA balanced considerations such as attainment dates in downwind states, including the obligation to attain as expeditiously as practicable, the EPA's obligation to avoid unnecessary over-control of upwind state emissions, the timeframe in which any necessary emissions reductions could be feasibly implemented, and the timeframe required for rulemaking to impose any such emissions reductions that might be required."

Further, in EPA's proposal to approve Kentucky's 2008 ozone Good Neighbor SIP, "EPA proposes that 2023 is an appropriate future analytic year because it is the first ozone season for which significant new cost-effective post-combustion controls to reduce NOx could be feasibly installed across the CSAPR Update region, and thus represents the timeframe that is as expeditious as practicable for upwind states to implement additional emission reductions."<sup>9</sup> Therefore, the Cabinet determines that 2023 is an appropriate future analytical year.

**19. Comment:** "KEEC's reliance on EPA's modeling is also inappropriate because it relies on reductions that are not federally enforceable. For example, as noted on page seven of Appendix A, "[t]he EPA then extended these observed emissions levels forward to 2023, made unit-

<sup>&</sup>lt;sup>8</sup> 83 FR 17125

<sup>&</sup>lt;sup>9</sup> 83 FR 17125

specific adjustments to account for upcoming retirements, post-combustion control retrofits, coal-to-gas conversions, combustion control upgrades, new units, CSAPR Update compliance, state rules and Best Available Retrofit Technology (BART) requirements." Since KEEC relied on the CSAPR Update as the primary basis to support this submission, it must demonstrate that the additional emission reductions EPA projected, across the modeling domain, are federally enforceable. To the extent that any actions and reductions are not federally enforceable, there is no basis for KEEC to rely upon them in concluding that Kentucky will meet its good neighbor obligations. *See* 40 C.F.R. § 51.260 ("Each [implementation] plan shall contain legally enforceable compliance schedules setting forth the dates by which all stationary and mobile sources or categories of such sources must be in compliance with any applicable requirement of the plan."); *see also* 40 C.F.R. §51.230 ("requiring a state implementation plan to "show that the State has the legal authority to carry out the plan" including by adopting emission standards and limitations and enforcing applicable laws, regulations and standards")." (*Steven Flint, Director, New York Division of Air Resources*)

**Response:** The Cabinet acknowledges the comment. The Cabinet includes enforceable limitations in the title V operating permits issued to Kentucky EGUs, including the regulatory requirements of CSAPR under 40 CFR Part 97. Additionally, Section IV of the proposed Kentucky 2008 ozone Good Neighbor SIP lists the Kentucky Administrative Regulations that include standards of performance for new and existing facilities, as well as RACT requirements, applicable to VOC and NOx-emitting facilities.

**20. Comment:** "KEEC's reliance on EPA's assumption in the Page Memo that installation of emission controls would likely take up to 4 years is not supported by any analysis. Additionally, EPA's assumptions only account for the installation of new controls. EPA did not evaluate optimizing existing controls, the ability to switch to lower emitting units, or including permit limits to lock in the assumed emissions reductions." (*Steven Flint, Director, New York Division of Air Resources*)

**Response:** The Cabinet does not concur. EPA's proposal to approve Kentucky's 2008 ozone Good Neighbor SIP provides insight to their analysis of control measures and implementation schedules. EPA assessed the time in which it takes to install and run selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) control technologies and the costeffectiveness of turning on existing idled SNCRs. EPA concluded "implementation of any of the control strategies considered herein is likely not feasible until during or after the 2022 ozone season. Considering the time to implement the controls with the time to promulgate a final rule, EPA believes that such reductions are unlikely to be implemented for a full ozone season until 2023."<sup>10</sup>

**21. Comment:** "DEC is also concerned about EPA's continued efforts to repeal and delay existing standards, and if such repeals and delays are effective, the impact EPA's actions will have on the projections relied upon by KEEC. In particular, KEEC must evaluate the emission impacts of EPA's actions in the transportation sector, including, but not limited to, "glider kits," and the oil-and-gas sector where, for example, EPA's most recent action was to propose the

<sup>&</sup>lt;sup>10</sup> 83 FR 17128

withdrawal of the Control Techniques Guidelines for the Oil and Natural Gas Industry. 83 FR 10478."

(Steven Flint, Director, New York Division of Air Resources)

**Response:** The Cabinet acknowledges the comment. Through the promulgation process, EPA determines the environmental impact of each action. As required by the CAA, those rulemakings must provide an opportunity for public participation and comment.

**22. Comment:** "KEEC did not perform any modeling analysis to demonstrate that Kentucky's current emissions, from all sectors, do not contribute to nonattainment and interference with maintenance in downwind areas such as the NYMA. Therefore, there is no way to assess whether Kentucky is actually satisfying the state's good neighbor obligations under CAA section 110(a)(2)(D)(i). In the meantime, NYMA will be reclassified to "serious" nonattainment, with an attainment date of July 20, 2021, due to its continued inability to attain the 2008 ozone NAAQS, in large part because of transported precursors from upwind state such as Kentucky. As an upwind state that significantly contributes to nonattainment in the area, Kentucky should expeditiously comply with its good neighbor obligations." (*Steven Flint, Director, New York Division of Air Resources*)

**Response:** The Cabinet acknowledges this comment. As stated on page 9 of EPA's October 27 memo, "The EPA believes that states may consider using this national modeling to develop SIPs that fully address requirements of the good neighbor provision for the 2008 ozone NAAQS. States may also be able to use this information to address other CAA obligations." Therefore, the Cabinet relied upon EPA's most recent modeling assessment.

**23. Comment:** "The Sierra Club believes that the SIP Revision, which essentially asks for approval for inaction, is fundamentally flawed..."

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

**Response:** The Cabinet does not concur. The commenter fails to recognize the control strategies identified in the proposed Kentucky 2008 ozone Good Neighbor SIP revision that limit NOx and VOC emissions from Kentucky sources. Further, the commenter does not acknowledge the significant decline in emissions from Kentucky sources as detailed in Section IV of the proposed SIP.

**24. Comment:** (1) The SIP Revision is contrary to law and does not satisfy the requirements of section 110(a)(2)(D). It contains no provisions, let alone "adequate provisions...prohibiting...any source or other type of emissions activity within the State from emitting any air pollutant in amounts which will...contribute significantly to nonattainment in, or interfere with maintenance by, any other State." 42 U.S.C. § 7410(a)(2)(D). (*Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club*)

**Response:** The Cabinet does not concur. Section IV of the proposed Kentucky 2008 ozone Good Neighbor SIP lists Federal, State, and Local regulations used to control the release of emissions

from Kentucky stationary sources. Additionally, Section V lists several EGU facilities that are scheduled to retire, while others plan to switch from coal to natural gas.

The proposed SIP concludes by stating that "no additional control strategies beyond what is "on the books" are necessary to fully address the requirements of Section 110(a)(2)(i)(I) of the Clean Air Act." Further, the Cabinet agrees with EPA's ruling "that section 110(a)(2)(D)(i)(I) of the CAA only requires upwind states to prohibit emissions that will significantly contribute to nonattainment or interfere with maintenance of the NAAQS in other states. It does not shift to upwind states the full responsibility for ensuring that all areas in downwind states attain and maintain the NAAQS."<sup>11</sup>

**25. Comment:** (I) The SIP Revision proposed by Kentucky does not satisfy the Clean Air Act good neighbor requirements because it illegally endorses and ratifies continued contribution to downwind non-attainment of the 2008 NAAQS until 2023.

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

**Response:** The Cabinet does not concur. The proposed Good Neighbor SIP does not rely solely upon reductions made through the adherence to CSAPR and the CSAPR Update rule. Section IV within the proposed Kentucky 2008 ozone Good Neighbor SIP lists Federal, State, and Local regulations used to control the release of emissions from Kentucky sources. Section V lists several EGU facilities that are scheduled to retire while others plan to switch from coal to natural gas. Section V also demonstrates the downward trend in NOx emissions since the implementation of trading programs such as CAIR and CSAPR (Table 1). The Cabinet expects this trend to continue with the implementation of future federal and state programs.

**26. Comment:** (I.A) The attainment timeline relied on by the Kentucky SIP Revision violates the plain language of section 110(a)(2)(D)(i) by allowing Kentucky to continue significant contributions of downwind states struggling to meet attainment deadlines under the 2008 Ozone NAAQS.

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

**Response:** The Cabinet does not concur. On July 17, 2012, the Cabinet submitted the required Infrastructure SIP for the 2008 ozone NAAQS. At the time of the submittal, EPA had not met their statutory obligation of determining Kentucky's significant contribution to downwind monitors. Beginning January 1, 2009, Kentucky sources were required to comply with the CAIR ozone season budgets, as adopted into the Kentucky SIP. Therefore, Kentucky met its SIP obligations, specifically the Good Neighbor provision.

**27.** Comment: (I.B) Kentucky may not rely only on CSAPR compliance because it is at best a partial resolution of some good neighbor obligations.

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

<sup>&</sup>lt;sup>11</sup> 81 FR 74515

**Response:** The Cabinet does not concur. The proposed Kentucky 2008 ozone Good Neighbor SIP does not rely solely upon reductions made through the adherence to CSAPR and the CSAPR Update rule. Section IV within the proposed SIP lists Federal, State, and Local regulations used to control the release of emissions from Kentucky sources.

**28.** Comment: (I.C) The SIP Revision must include enforceable prohibitions or commitments, not merely list events or actions that could hypothetically produce eventual elimination of downwind contributions.

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

**Response:** The Cabinet does not concur. Section IV within the proposed Kentucky 2008 ozone Good Neighbor SIP lists Federal, State, and Local regulations used to control the release of emissions from Kentucky sources.

**29.** Comment: (2) EPA's recent guidance on which Kentucky relies – itself badly flawed – only purports to support avoiding control strategies that take longer than four years to implement. It does not support inaction.

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

**Response:** The Cabinet does not concur. EPA's proposal to approve Kentucky's 2008 ozone Good Neighbor SIP provides insight to their analysis of control measures and implementation schedules. EPA assessed the time in which it takes to install and run SCR and SNCRs and the cost-effectiveness of turning on existing idled SNCRs. EPA concluded "implementation of any of the control strategies considered herein is likely not feasible until during or after the 2022 ozone season. Considering the time to implement the controls with the time to promulgate a final rule, EPA believes that such reductions are unlikely to be implemented for a full ozone season until 2023."<sup>12</sup>

Further, Section IV of the proposed Kentucky 2008 ozone Good Neighbor SIP lists Federal, State, and Local regulations used to control the release of emissions from Kentucky sources. Section V lists several EGU facilities that are scheduled to retire while others plan to switch from coal to natural gas. Section V also demonstrates the downward trend in NOx emissions since the implementation of trading programs such as CAIR and CSAPR (Table 1).

**30. Comment:** (II) Kentucky's SIP Revision must adhere to the Clean Air Act and may not instead rely on the EPA Memo.

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

**Response:** The Cabinet acknowledges the comment. The commenter does not specifically identify which portions of the memo conflict with the CAA. The proposed SIP revision meets all the statutory and regulatory requirements of the CAA.

<sup>&</sup>lt;sup>12</sup> 83 FR 17128

**31. Comment:** (3) Kentucky's decision to limit its analysis of downwind impacts to a single year, 2023, five years in the future, is arbitrary and capricious. It ignores factors Congress clearly intended that states consider, such as present and projected significant contributions of instate emissions activity to downwind nonattainment. Moreover, the predicted conditions in 2023 are uncertain and highly contingent on the survival of regulations EPA is working hard to undo or undermine. In sum, Kentucky has more work to do.

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

**Response:** The Cabinet does not concur. The Cabinet determines the basis for 2023 as the future analytic year to be appropriate. The EPA states in its 2017 Memorandum that, "Thus, in selecting its future analytic year for the air quality modeling, the EPA balanced considerations such as attainment dates in downwind states, including the obligation to attain as expeditiously as practicable, the EPA's obligation to avoid unnecessary over-control of upwind state emissions, the timeframe in which any necessary emissions reductions could be feasibly implemented, and the timeframe required for rulemaking to impose any such emissions reductions that might be required."<sup>13</sup>

**32.** Comment: (III) The SIP Revision's exclusive focus on downwind attainment in 2023 is arbitrary and capricious because it ignores current, relevant good neighbor problems and relies on flawed and aspirational modeling assumptions.

(Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club)

**Response:** The Cabinet does not concur. The Cabinet determines the basis for 2023 as the future analytic year appropriate. The EPA states in its 2017 Memorandum that, "Thus, in selecting its future analytic year for the air quality modeling, the EPA balanced considerations such as attainment dates in downwind states, including the obligation to attain as expeditiously as practicable, the EPA's obligation to avoid unnecessary over-control of upwind state emissions, the timeframe in which any necessary emissions reductions could be feasibly implemented, and the timeframe required for rulemaking to impose any such emissions reductions that might be required."<sup>14</sup>

**33. Comment:** (III.A) The Proposed SIP Revision's total reliance on speculative and flawed modeling that suggests attainment by only 0.1 ppb is arbitrary and capricious. (*Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club*)

**Response:** The Cabinet does not concur. The modeling completed by EPA, and confirmed by Alpine Geophysics, "indicates that there are no monitoring sites, outside of California, that are projected to have nonattainment or maintenance problems with respect to the 2008 ozone NAAQS of 75 ppb in 2023."<sup>15</sup>

<sup>&</sup>lt;sup>13</sup> Stephen D. Page Memorandum, p.6

<sup>&</sup>lt;sup>14</sup> Ibid.

<sup>&</sup>lt;sup>15</sup> Stephen D. Page Memorandum, p.1

**34. Comment:** (III.B) Reliance on modeling that predicts future compliance by 0.1 ppb when inherent uncertainties are much larger that such a margin is arbitrary and capricious. (*Nathan F. Taylor, Legal Fellow; Matthew E. Miller, Staff Attorney; Zachary M. Fabish, Senior Attorney, Sierra Club*)

**Response:** The Cabinet does not concur. The Cabinet finds the basis for EPA and Alpine Geophysics modeling to be conservative and EPA's use of apportionment modeling to determine which states contribute pollution to nonattainment or maintenance area air quality problems in other states a reliable method to determine Kentucky's influence on downwind receptors.

**35.** Comment: "As your proposal correctly notes, much has been done by the Commonwealth of Kentucky to discharge its obligations under the Clean Air Act to assure the attainment and maintenance of the NAAQS for ozone. These efforts include a wide-array of VOC and NOx emission control requirements that apply not only to electric generating units, but also industrial and mobile sources, that have allowed the 2008 and 2015 ozone NAAQS to be attained throughout Kentucky."

(David M. Flannery, Legal Counsel, Midwest Ozone Group)

**Response:** The Cabinet acknowledges this comment.

**36.** Comment: "We support the conclusion stated in the proposed SIP that the state has clearly demonstrated that the measures currently being implemented in Kentucky are the only ones that are economical and economically feasible – a conclusion that alone satisfies Good Neighbor requirements by adequately addressing Step 4 above." (*David M. Flannery, Legal Counsel, Midwest Ozone Group*)

**Response:** The Cabinet acknowledges this comment.

**37. Comment:** "We also support the conclusion reached by Kentucky with respect to Step 4, that there is now overwhelming data, prepared by both Alpine Geophysics, LLC (Alpine) on behalf of Kentucky and EPA, related to Step 1 which demonstrates that there are no downwind air quality problems related to the 2008 ozone NAAQS. On the basis of these modeling results, there does not appear to be any reason to conduct any further analysis of the four step process. This conclusion is reached not only regarding the monitors linked to Kentucky in the Cross State Air Pollution Rule (CSAPR) Update, but also for all monitors in the East." (*David M. Flannery, Legal Counsel, Midwest Ozone Group*)

**Response:** The Cabinet acknowledges this comment.

**38.** Comment: "In addition to the modeling analysis performed by Alpine for Kentucky that is referenced in the proposed Kentucky SIP revision, Alpine prepared a report for MOG that is consistent with the Kentucky study and corroborates the conclusion that there are no downwind problem areas related to the 2008 Ozone NAAQS. As can be seen in the attached report on the Alpine modeling, all sites identified in the final CSAPR update are predicted to be well below the 2008 ozone standard by 2023."

(David M. Flannery, Legal Counsel, Midwest Ozone Group)

**Response:** The Cabinet acknowledges this comment.

**39. Comment:** "Recent modeling by Alpine Geophysics, LLC for both Kentucky and MOG, as well as modeling by EPA itself, clearly demonstrate that implementation of the CSAPR Update rule in addition to the other on-the-books controls is all that is needed to satisfy requirements related to the 2008 ozone NAAQS. We therefore support the request by Kentucky that EPA approve its Good Neighbor SIP."

(David M. Flannery, Legal Counsel, Midwest Ozone Group)

**Response:** The Cabinet acknowledges this comment.

**40. Comment:** "UIEK supports Kentucky's Proposed SIP Revision. As Kentucky's submittal demonstrates, the Commonwealth has taken a number of steps to assure attainment of the 2008 Ozone NAAQS. These include measures to reduce both VOC and NOx emissions. Annual and ozone season NOx emissions from UIEK member operations have been reduced substantially from 2008 through 2017. The CSAPR Update Rule has further reduced Kentucky's NOx budget to 21,115 tons."

(Carolyn M. Brown, Legal Counsel, Utility Information Exchange of Kentucky)

**Response:** The Cabinet acknowledges this comment.

**41. Comment:** "EPA's technical evaluation and Kentucky's independent modeling effort support the conclusion that Kentucky has fulfilled its Good Neighbor SIP obligations. EPA's October 17, 2017 updated modeling showed that no monitoring sites, outside of California, will violate the 2008 Ozone NAAQS in 2023."

(Carolyn M. Brown, Legal Counsel, Utility Information Exchange of Kentucky)

**Response:** The Cabinet acknowledges this comment.

**42. Comment:** "UIEK further adopts the March 26, 2018 comments submitted by the Midwest Ozone Group in support of the proposed SIP revision. (Copy attached.) Kentucky has demonstrated that implementation of the CSAPR Update Rule, along with other measures already in place, are sufficient to satisfy the Good Neighbor requirements of the Clean Air Act. Kentucky's SIP revision should be approved."

(Carolyn M. Brown, Legal Counsel, Utility Information Exchange of Kentucky)

**Response:** The Cabinet acknowledges this comment.