Lead Corrosion & Control

Rengao Song, Bill Robertson, Brad Montgomery, and Justin Sensabaugh

Acknowledgement
Richard Brown, Michael Schock, & LWC Staff

Water Lead/LSLs Correlated to Blood Lead: Europe

- Lead in water > 5 ppb significantly increased blood lead (p > 0.001) in young women, and intervention excluding tap water a few months dropped blood lead 37% (Fertmann et al., 2004)
- Children in France (6 months-6 years) had 50% higher blood lead if they consumed tap water and had an LSL, and the 95% le blood lead level for this group was increased by 256% (Etchevers et al., 2014)

Presentation Outline

- Background
- . Corrosion chemistry in drinking water
- Corrosion control methods
- Bench-top corrosion research tools
- Long-Term LCR Revisions and impacts
- Take home messages
- LCR monitoring case study -LWC

Historical Corrosion Management

- Iron corrosion
 - Prevent Tuberculation
 - Prevent pipe loss
 - Prevent red water
- Controlled by
 - Ferric oxides & calcium carbonate films at pH >8
 - Polyphosphate addition -NOT orthophosphate

Daily Lead Intake: Water vs Other Sources Estimated daily lead intake for a 6 month old in Ottawa from environmental sources (µg/day) International Telephone Internation In

Historical Corrosion Management

- Copper corrosion
 - Prevent pitting corrosion
 - Prevent uniform (general) corrosion
- Controlled by
 - Prevent microbiological growth
 - Maintaining low DIC/high pH
 - Allowing time for films to form
 - Orthophosphate ongoing treatment but must be maintained

Abrasion

- Physical disturbances
 - Meter installation/replacement or damaged
 - Service line repair or partial replacement
 - External shut-off valve repair/replacement
 - Street excavation or construction near the house
 - Any part of home plumbing system disturbance
- Hydraulic factors
 - Significant flow changes
 - Flow reversals
 - Pressure transients

Corrosion Basics

- Corrosion in drinking water: An electrochemical interaction between metal surface and water, resulting in metal release into water
 - Reduction @ Cathode: 2e+ 1/20₂ + H₂O = 2OH
 - Oxidation @ Anode: Me = 2e + Me2+
- Types of corrosion
- General or uniform
- Non-uniform: galvanic, pitting, microbial
- Complex processes
 - Pipe material and plumbing practice
 - Water quality factors (pH, DIC, ORP, PO₄¹, Cl and SO₄¹ ...)
 - Hydraulic conditions

How to Minimize Corrosion

- pH/alkalinity/DIC
 - High pH and low DIC
- Orthophosphate (PO₄)
 - Best at pH 7.2 to 7.8
- Issues: microbial? wastewater P?
- Form insoluble Pb(IV) scale
 - High axidation state, e.g., via maintenance of free chlorine residual
- CI/5O4 Ratio
 - Higher chloride-to-sulfate mass ratio (CSMR) tends to increase lead release under the conditions of galvanic corrosion
 - CSMR<0.5

Effect of CSMR

- Higher chloride-to-sulfate mass ratio (CSMR) tends to increase lead release under the conditions of galvanic corrosion
- A threshold CSMR of 0.5 was reported: Significant lead leaching may occur when CSMR > 0.5

pH Adjustment

- Pb and Cu release generally decreases with pH increase from solubility point of view under most conditions. Raise pH in 0.3 unit increments towards 9-9.5 is recommended by EPA as a Pb control strategy if current pH is >7.8 and DIC >5 mg C/L
- pH adjustment may not always work when
 - pH not high enough throughout DS and need buffering (water blending, nitrification, CO2 exchange in tanks)
 - Dissimilar material on pipe surface or other corrosion mechanisms

Bench Scale Research Tools

- Two Types of coupons can be used
 - Non-galvanic solder (NGS) coupon 50:50
 Pb:Sn solder, 1" /1/8" (L/D), epoxied to the bottom of a 120 mL glass jar
 - Galvanic solder (GS) coupon -50:50 Pb:Sn solder placed inside copper coupling (right picture)
 - 50:50 Pb Sn solder 1"/1/2" (L/D)
 - Cu coupling = 1.2*/5/8* (L/D)

Determination (pH 8.0 – 9.0) Optimal range for PO. (pH 7.2 – 7.8) Historical iron corrosion control This formation increases Difficulty reaching CT increases

LCR-Year Monitoring Case Study

- Develop strategy to improve site representativeness and sample integrity – Noise Reduction
- · Establish team involving all key departments
- Historical data review
- Identify factors that may inadvertently alter sample representativeness – False Signal
- Irregular/abnormal distribution and/or residential disturbances
- · Customer performs the sampling

Take Home Messages

- Personal involvement from top management
- · A WQ team from across the company
- A WQ surveillance team with internal and external customers
- Be proactive: 5Cs (character, comprehensiveness, communication, commitment, and creativity)
- Define WQ signal from noise
- Review historical data to calculate 90th percentile using only LSL locations
- Profile (ten 1L samples) at selected homes
- Investigate high velocity flushing after LSL replacement
- If close to AL or ~8 ppb, look at Pb control alternatives (PO4)

LCR-Year Monitoring Case Study

3C's Required For Success:

Communication + Commitment + Collaboration

Quarter	LCR Tasks
Ø1	Form team with support from executive leadership Establish communications with team members & state regulators Initiate surveying of LCR sample sites
0.2	Collect field & residential information to finalize sample list Verbal & written communications with customers Upload all LCR sample sites into Gol Sync mapping tool for field usen Begin sample collection: coordinate delivery & pick-ups of samples
OJ .	Continue sample collections through September Laboratory analysis and reporting Customer result notifications
Q4	➤ Calculate 90 th percentiles, finalize all reporting

Take Home Message

- Three levels of WQ issues (Result-code)
 - System-wide treatment plant related (water source or and/or source WQ changes, treatment changes/loss of treatment control, unstable water leaving the plant(s)
 - Area-wide/Zip code: distribution tanks/reservoirs, major watermain breaks, downstream low demand, nitrification, etc.
 - Individual customers; low water use homes may perpetually have high lead; stagnation can affect protective scales within LSLs; LSL disturbances happen daily
- Distribution water quality management
 - Customers drink tap water not finished water in clear wells
 - Water quality can change as it travel from the plant to customer taps: pH drop, nitrification, bio-chemical reactions

LEVIL CONTROL | Contro

Sample Sites Selection

- Spatial representation of wide DS
- Field verification of LSL
- Identify significant D5 impacts in proximity of sample site within a 3 month period prior to collection
- Gather residential information: shut offs, water usage, contact information
- Customer communications: verbal commitment to participate, details about residence, schedule sample collection
- . Offer \$20 billing credit as incentive

