Integrated Report to Congress on the Condition of Water Resources in Kentucky, 2014

Volume II. 303(d) List of Surface Waters

Kentucky Energy and Environment Cabinet Department for Environmental Protection Division of Water Water Quality Branch December 4, 2015

The Energy and Environment Cabinet (EEC) does not discriminate on the basis of race, color, national origin, sex, age, religion, or disability. The EEC will provide, on request, reasonable accommodations including auxiliary aids and services necessary to afford an individual with a disability an equal opportunity to participate in all services, programs and activities.

Integrated Report to Congress on the Condition of Water Resources in Kentucky, 2014

Volume II. 303(d) List of Surface Waters

This report has been approved for release:

Peter Goodmann, Director Kentucky Division of Water

4 December 2015

Date

TABLE OF CONTENTS

TABLE OF CONTENTS	iv
Summary of the 2014 303(d) List of Impaired Waters	1
Chapter 4. TMDLs Planned for Public Notice During 2014	
Chapter 5. TMDLs Planned for Public Notice During 2015	

Summary of the 2014 303(d) List of Impaired Waters

The 1972 Federal Water Pollution Control Act, commonly known as The Clean Water Act, requires States to assess and report current water quality conditions to Congress biannually. While many agencies and individuals contribute assessment data, the Kentucky Division of Water (KDOW) of the Kentucky Department for Environmental Protection is responsible for Section 305(b) and Section 303(d) reporting requirements for surface waters.

The 2014 Integrated Report (IR) replaces the 2012 IR previously prepared by KDOW. The 305(b) portion of the report (Volume I) lists all water quality assessment results for surface waters (streams, springs, ponds, and reservoirs) in Kentucky. The 303(d) portion of the report (Volume II)-(see Kentucky 2014 303(d) List.xls) is a subset of these assessed waters including all waters not supporting one or more designated uses and requiring the development of a Total Maximum Daily Load (TMDL). Only those segments that are impaired and still require a TMDL are in Category 5 (on the 303(d) list) of Volume II. It is suggested that the user refer to Volume I to obtain a listing of all waters assessed as impaired. This excel file contains a tab of proposed delistings for 2014 (see Kentucky 2014 303(d) List.xls). These segments appear on a separate tab in the 303(d) excel file because they are no longer in Category 5. Additionally, you can find a link to summaries of new listings in the '2014 New Listings' tab in the excel file.

Since 1998, Kentucky has monitored surface waters using a five-year rotating watershed management approach in which each of the five major Basin Management Units (BMUs) receives intensive monitoring in sequential years over the five-year cycle. To make the 303(d) list reflective of the current 305(b) assessment results, the 2014 303(d) list contains new and cumulative listings of impaired waters and designated uses from monitoring and assessment between April 2010 and March 2012 on 2124 stream miles in the Green River basin and 442 stream miles in the Tradewater River basin. An additional 799 stream miles are listed as less than full support in the Ohio River minor tributaries associated with the Green – Tradewater BMU. The report also incorporates assessment data and results from monitoring that occurred during this reporting cycle outside of the

1

BMUs of focus, thus providing a statewide update of monitoring results. There are 255 new listings, primarily from the above mentioned monitoring. Links to assessment summaries for these new listings can be found in the `Draft 2014 New Listings' Tab in the Draft 2014 303(d) List excel file as well as appended to the stream segments on the Kentucky Water Health Portal

<u>http://watermaps.ky.gov/WaterHealthPortal/</u>. The number of impaired waters does not represent a declining trend in water quality but instead is a result of increased monitoring efforts in regions that previously had only a few monitoring stations on large rivers and streams.

For this volume, DOW continued the river mile and stream name updates that began in 2006. River miles have been changed from those in the 2012 Integrated Report to more accurately match the location description with the river miles in the National Hydrography Data Set river miles. For updates in the 2014 303(d) list see the 'Comments' field in the Kentucky 2014 303(d) List.xls.

EPA and state TMDL program managers began developing a new path forward for the TMDL program in August 2011, the long term vision for the Clean Water Act Section 303(d) program (The Vision). Historically, KDOW's focus has been TMDL monitoring, resulting in monitoring for over 700 pollutant/waterbody combinations. The Vision identifies six components, Prioritization, Assessment, Engagement, Integration, Protection, and Alternatives. Moving forward at KDOW, the Vision will guide prioritization of TMDL development, for more effective management of resources and effort.

As of May 2012, KDOW has submitted and EPA has approved TMDLs for 313 pollutant/waterbody combinations. EPA has also approved delisting requests for 431 pollutant/waterbody combinations. Delisting approval is granted when KDOW has demonstrated that a listed pollutant/waterbody combination no longer requires a TMDL, although the segment may still be listed as impaired for other pollutants.

2

Chapter 4. TMDLs Planned for Pub	blic Notice During 2014
----------------------------------	-------------------------

Stream Name	River Miles	County	Pollutant	Quarter
Bat East Creek	3.4 to 7.5	Muhlenburg	E. coli	2nd
Bat East Creek	0.0 to 3.3	Muhlenburg	E. coli	2nd
Beech Creek	0.0 to 3.9	Muhlenburg	E. coli	2nd
Caney Creek	0.0 to 8.2	Hopkins	рH	3rd
Caney Creek	0.0 to 3.6	Muhlenburg	E. coli	2nd
Caney Creek	3.6 to 7.6	Muhlenburg	E. coli	2nd
Chenoweth Run	0.0 to 5.2	Jefferson	Fecal Coliform	1st
Chenoweth Run	5.2 to 9.2	Jefferson	Fecal Coliform	1st
Claylick Creek	4.8 to 10.7	Crittenden	Fecal Coliform	3rd
Copper Creek	0.0 to 2.7	Hopkins	рН	3rd
Copper Creek	0.0 to 2.7	Hopkins	Iron	3rd
Copper Creek	0.0 to 2.7	Hopkins	Zinc	3rd
Copperas Creek	0.0 to 3.6	Hopkins	pH	3rd
Copperas Creek	0.0 to 3.6	Hopkins	Iron	3rd
Copperas Creek	0.0 to 3.6	Hopkins	Cadmium	3rd
Copperas Creek	0.0 to 3.6	Hopkins	Zinc	3rd
Copperas Creek	0.0 to 3.6	Hopkins	Nickel	3rd
Crooked Creek	0.0 to 3.0	Daviess	Fecal Coliform	2nd
Currys Fork	0.0 to 4.8	Oldham	Fecal Coliform	1st
Deserter Creek	0.0 to 3.1	Daviess	Fecal Coliform	2nd
Floyds Fork	0.0 to 11.6	Bullitt	Fecal Coliform	1st
Floyds Fork	11.6 to 24.2	Jefferson	Fecal Coliform	1st
Floyds Fork	24.2 to 34.1	Jefferson	Fecal Coliform	1st
Fox Run	0.0 to 1.1	Hopkins	pН	3rd
Houston Creek	0.0 to 9.0	Bourbon	E. Coli	3rd
Hurricane Creek	0.0 to 1.8	Hopkins	Iron	3rd
Hurricane Creek	0.0 to 1.8	Hopkins	Zinc	3rd
Hurricane Creek	0.0 to 1.8	Hopkins	pH Facal Caliform	3rd
Indian Creek	0.0 to 0.7	Bourbon	Fecal Coliform	3rd
Knoblick Creek	0.0 to 2.1	Daviess	Fecal Coliform	2nd
Little Stoner Creek	0.0 to 5.0	Clark	E. Coli	3rd
Little Whipporwill Creek	0.0 to 4.2	Logan	E. coli	2nd
Long Falls Creek	0.0 to 7.6	McLean	Fecal Coliform	2nd
Long Falls Creek	7.6 to 11.8	McLean	Fecal Coliform	2nd
Long Run	0.0 to 10.0	Jefferson	Fecal Coliform	1st
North Fork Panther Creek	4.2 to 9.1	Daviess	Fecal Coliform	2nd
Northern Ditch	0.0 to 7.3	Jefferson	Fecal Coliform	3rd
Ohio River	475.1 to 477.6	Kenton, Boone	E. coli	2nd

Stream Name	River Miles	County	Pollutant	Quarter
	477.6 to			4
Ohio River	488.0	Boone	E. coli	2nd
	603.3 to			
Ohio River	608.1	Jefferson	E. coli	2nd
	608.1 to			
Ohio River	609.2	Jefferson	E. coli	2nd
	614.9 to	Jefferson,		
Ohio River	683.0	Hardin, Meade	E. coli	2nd
		Meade,		
	683.0 to	Breckinridge,		
Ohio River	719.5	Hancock	E. coli	2nd
	719.5 to			
Ohio River	735.7	Hancock	E. coli	2nd
	735.7 to	Hancock,		
Ohio River	756.4	Daviess	E. coli	2nd
	756.4 to			
Ohio River	760.6	Daviess	E. coli	2nd
	760.6 to	Daviess,		
Ohio River	789.3	Henderson	E. coli	2nd
	789.3 to			
Ohio River	792.1	Henderson	E. coli	2nd
	792.1 to			
Ohio River	793.2	Henderson	E. coli	2nd
	793.2 to			
Ohio River	798.4	Henderson	E. coli	2nd
	798.4 to			
Ohio River	799.8	Henderson	E. coli	2nd
	799.8 to			
Ohio River	802.9	Henderson	E. coli	2nd
	802.9 to			
Ohio River	820.1	Henderson	E. coli	2nd
	820.1 to			
Ohio River	826.4	Henderson	E. coli	2nd
	826.4 to	Henderson,		
Ohio River	847.3	Union	E. coli	2nd
	853.4 to			
Ohio River	857.6	Union	E. coli	2nd
	862.1 to			
Ohio River	872.8	Union	E. coli	2nd
	878.2 to			
Ohio River	882.9	Crittenden	E. coli	2nd
	894.6 to			
Ohio River	910.3	Livingston	E. coli	2nd
	920.5 to			
Ohio River	925.8	Livingston	E. coli	2nd
	317.2 to			
Ohio River	319.4	Boyd	E. coli	2nd
	319.4 to	Boyd,		
Ohio River	340.8	Greenup	E. coli	2nd
Ohio River	356.6 to	Greenup,	E. coli	2nd

Stream Name	River Miles	County	Pollutant	Quarter
	377.7	Lewis		
	382.9 to			
Ohio River	388.0	Lewis	E. coli	2nd
	464.5 to			
Ohio River	465.2	Campbell	E. coli	2nd
	469.3 to	Campbell,		
Ohio River	471.4	Kenton	E. coli	2nd
	471.4 to			
Ohio River	475.1	Kenton	E. coli	2nd
Panther Creek	3.0 to 5.9	Daviess	Fecal Coliform	2nd
			Phosphorus	
Panther Creek	17.9 to 20.4	Daviess	(Total)	2nd
Pennsylvania Run	0.0 to 3.3	Jefferson	Fecal Coliform	1st
Pleasant Grove Creek	0.0 to 2.2	Logan	E. coli	2nd
Plum Creek	0.0 to 1.7	Muhlenburg	E. coli	2nd
Pond Creek	0.0 to 4.8	Muhlenburg	E. coli	2nd
Pond Creek	14.4 to 18.1	Muhlenburg	E. coli	2nd 2nd
Pond Creek	18.1 to 22.1	Muhlenburg	E. coli	2nd 2nd
Pond Creek	4.8 to 7.6	Muhlenburg	E. coli	2nd 2nd
Pond Creek	7.6 to 11.7	Muhlenburg	E. coli	2nd 2nd
			E. coli	
Pond Creek	11.7 to 14.4 2.0 to 5.2	Muhlenburg Jefferson	Fecal Coliform	2nd 1st
Pope Lick Creek				
Red River	50.95 to 54.5	Robertson	E. coli	2nd
Red River	54.5 to 56.9	Logan	E. coli	2nd
Red River	57.0 to 65.8	Logan	E. coli	2nd
Red River	65.8 to 74.3	Logan	E. coli	2nd
Red River	74.3 to 81.3	Simpson	E. coli	2nd
Salt Lick Creek	0.0 to 3.7	Muhlenburg	E. coli	2nd
Sand Lick Creek	0.0 to 4.0	Muhlenburg	E. coli	2nd
Sinking Creek	0.0 to 9.95	Laurel	E. coli	2nd
South Fork Gunpowder Creek	4.1 - 6.8	Boone	Fecal Coliform	3rd
South Fork of Panther Creek	14.0 to 18.3	Daviess	Fecal Coliform	2nd
South Fork of Panther Creek	9.55 to 14.0	Daviess	Fecal Coliform	2nd
South Fork of Panther Creek	0.0 to 2.4	Daviess	Fecal Coliform	2nd
South Fork of Panther Creek	0.0 to 2.4	Daviess	Copper	2nd
South Fork of Red River	0.0 to 7.85	Logan	E. coli	2nd
Southern Ditch	0.0 to 5.9	Jefferson	Fecal Coliform	3rd
Stoner Creek	0.0 to 5.5	Bourbon	Fecal Coliform	3rd
Stoner Creek	5.5 to 15.0	Bourbon	Fecal Coliform	3rd
Strodes Creek	2.7 to 19.3	Bourbon	E. Coli	3rd
Sulphur Spring Creek	0.0 to 6.6	Simpson	E. coli	2nd
UT to Copperas Creek at RM				
0.6	0.0 to 0.9	Hopkins	pН	3rd
UT to Copperas Creek at RM				
0.6	0.0 to 0.9	Hopkins	Iron	3rd
UT to Copperas Creek at RM				
0.6	0.0 to 0.9	Hopkins	Cadmium	3rd
UT to Copperas Creek at RM				
0.6	0.0 to 0.9	Hopkins	Zinc	3rd
UT to Hurricane Creek at RM	0.0 to 0.2	Hopkins	Iron	3rd

Stream Name	River Miles	County	Pollutant	Quarter
0.3				
UT to Hurricane Creek at RM				
0.3	0.0 to 0.2	Hopkins	Zinc	3rd
UT to Hurricane Creek at RM				
0.3	0.0 to 0.2	Hopkins	рН	3rd
UT to Little Whippoorwill				
Creek	0.1 to 0.6	Logan	E. coli	2nd
UT to Pond Creek	0.0 to 2.4	Muhlenburg	E. coli	2nd
Whippoorwill Creek	0.0 to 13.2	Logan	E. coli	2nd

The TMDLs will be developed if there are approved protocols in place. Data collection is ongoing for some of these TMDLs, which may cause pollutant or segment additions or removals from the above list. If approved protocols for specific pollutants are not in place, other TMDLs will be pursued for development.

Stream Name	River Miles	County	Pollutant	Quarter
Caney Creek	0.0 to 8.2	Hopkins	pН	1st
Canoe Creek	0.0 to 4.05	Henderson	E. coli	4th
Canoe Creek	0.0 to 4.05	Henderson	Chromium	4th
Canoe Creek	0.0 to 4.05	Henderson	Copper	4th
Canoe Creek	0.0 to 4.05	Henderson	Zinc	4th
Canoe Creek	4.05 to 14.4	Henderson	E. coli	4th
Canoe Creek	14.4 to 23.8	Henderson	E. coli	4th
Copper Creek	0.0 to 2.7	Hopkins	pН	1st
Copper Creek	0.0 to 2.7	Hopkins	Iron	1st
Copper Creek	0.0 to 2.7	Hopkins	Zinc	1st
Copperas Creek	0.0 to 3.6	Hopkins	pН	1st
Copperas Creek	0.0 to 3.6	Hopkins	Iron	1st
Copperas Creek	0.0 to 3.6	Hopkins	Cadmium	1st
Copperas Creek	0.0 to 3.6	Hopkins	Zinc	1st
Copperas Creek	0.0 to 3.6	Hopkins	Nickel	1st
Fowlers Fork	0.0 to 3.7	Boone	E. coli	1st
Fox Run	0.0 to 1.1	Hopkins	pН	1st
Gunpowder Creek	0.0 to 15.35	Boone	E. coli	1st
Hurricane Creek	0.0 to 1.8	Hopkins	Iron	1st
Hurricane Creek	0.0 to 1.8	Hopkins	Zinc	1st
Hurricane Creek	0.0 to 1.8	Hopkins	pН	1st
Long Branch	0.0 to 2.55	Boone	E. coli	1st
Ohio River	319.4 to 317.4	Boyd	E. coli	3rd
Ohio River	340.8 to 319.4	Boyd, Greenup	E. coli	3rd
Ohio River	377.7 to 356.6	Greenup, Lewis	E. coli	3rd
Ohio River	388.0 to 382.2	Lewis	E. coli	3rd
Ohio River	465.2 to 464.5	Campbell	E. coli	3rd
		Campbell,	5	2
Ohio River	471.4 to 469.4	Kenton	E. coli	3rd
Ohio River	475.1 to 471.4	Kenton Kenton,	E. coli	3rd
Ohio River	477.5 to 475.1	Boone	E. coli	3rd
Ohio River	488.2 to 477.5	Boone	E. coli	3rd
Ohio River	595.8 to 593.4	Jefferson	E. coli	3rd
Ohio River	604.3 to 603.1	Jefferson	E. coli	3rd
Ohio River	608.7 to 604.3	Jefferson	E. coli	3rd
Ohio River	614.0 to 608.7	Jefferson	E. coli	3rd
Ohio River	676.8 to 614.0	Jefferson, Hardin,	E. coli	3rd

Chapter 5. TMDLs Planned for Public Notice During 2015

Stream Name	River Miles	County	Pollutant	Quarter
		Meade	I onatant	Quarter
		Meade, Breckinridge,		
Ohio River	720.8 to 676.8	Hancock	E. coli	3rd
Ohio River	736.7 to 720.8	Hancock	E. coli	3rd
Ohio River	756.3 to 736.7	Hancock, Daviess	E. coli	3rd
Ohio River	760.6 to 756.3	Daviess	E. coli	3rd
Ohio River	776.0 to 760.6	Daviess, Henderson	E. coli	3rd
Ohio River	789.3 to 776.0	Henderson	E. coli	3rd
Ohio River	793.2 to 792.1	Henderson	E. coli	3rd
Ohio River	795.7 to 793.2	Henderson	E. coli	3rd
Ohio River	799.8 to 795.7	Henderson	E. coli	3rd
Ohio River	802.9 to 799.8	Henderson	E. coli	3rd
Ohio River	820.1 to 802.9	Henderson	E. coli	3rd
Ohio River	826.4 to 820.1	Henderson	E. coli	3rd
	020.1 10 020.1	Henderson,	2. com	510
Ohio River	846.3 to 826.4	Union	E. coli	3rd
Ohio River	849.7 to 846.3	Union	E. coli	3rd
Ohio River	857.6 to 853.4	Union	E. coli	3rd
Ohio River	872.8 to 862.1	Union	E. coli	3rd
Ohio River	882.9 to 878.2	Crittenden	E. coli	3rd
Ohio River	910.3 to 894.6	Livingston	E. coli	3rd
Ohio River	925.8 to 920.5	Livingston	E. coli	3rd
Riddle Run	0.0 to 4.7	Boone	E. coli	1st
South Fork Gunpowder Creek	4.2 to 6.6	Boone	E. coli	1st
South Fork Gunpowder Creek	6.6 to 8.0	Boone	E. coli	1st
UT of Gunpowder Creek	0.0 to 3.85	Boone	E. coli	1st
UT of South Fork Gunpowder				
Creek	0.0 to 2.5	Boone	E. coli	1st
UT to Copperas Creek at RM 0.6	0.0 to 0.9	Hopkins	рН	1st
UT to Copperas Creek at RM 0.6	0.0 to 0.9	Hopkins	Iron	1st
UT to Copperas Creek at RM 0.6	0.0 to 0.9	Hopkins	Cadmium	1st
UT to Copperas Creek at RM 0.6	0.0 to 0.9	Hopkins	Zinc	1st
UT to Hurricane Creek at RM 0.3	0.0 to 0.2	Hopkins	Iron	1st
UT to Hurricane Creek at RM 0.3	0.0 to 0.2	Hopkins	Zinc	1st
UT to Hurricane Creek at RM 0.3	0.0 to 0.2	Hopkins	pН	1st

The TMDLs will be developed if there are approved protocols in place. If approved protocols for specific pollutant are not in place, other TMDLs will be pursued for development.