Nutrient Loads and Yields in Kentucky 2005-2017

Prepared by Caroline Chan, PhD KENTUCKY DIVISION OF WATER Watershed Management Branch

Contents

Tables	ii
Figures	ii
Introduction	1
Data Collection	2
Station selections and data screening	2
Analytes	7
Estimates of daily discharge	7
Load and yield estimation	10
Concentrations, and Estimated Loads and Yields of Nutrients	11
Discharge and Concentrations	11
Estimated Mean Annual Loads and Mean Yields	15
Land use and yield	20
Comparison to 1979-2004 results	26
Rolling 5-year averages	28
Conclusions	30
References	31
Appendix 1: Land Cover and Use	Appendix 1: 1
Appendix 2: Model Equations	Appendix 2: 1
Appendix 3: Rolling 5-Year Average Loads and Yields	Appendix 3 : 1

Tables

Table 1. Basic monitoring station identification4
Table 2. Censored values of nutrients.
Table 3. Rules for the calculation of total nitrogen. 7
Table 4. USGS gaging stations used for estimating discharge for ambient monitoring stations without a co-locatedgage or complete record.8
Table 5. Distribution of discharge and concentrations for each station. 12
Table 6. Estimated loads and yields 15
Table 7. Percent change between current study and 1979-2004 USGS study
Table 8. Monitoring stations with the largest differences in drainage areas between the two studies frequentlyhave correspondingly large differences in yield
Table 9. Mean and confidence interval of regression parameters for yields at all ambient monitoring stations,statewide
Table 10. Percent land cover and use of watersheds draining to each station
Table 11. Model equations and fit for total nitrogen load
Table 12. Regression equations and model fit for phosphorus loads

Figures

Figure 1. Stations used in this study with the delineated contributing basin. Stations are identified by the numeric portion of their Station ID, "PRIxxx"
Figure 2. An example (station PRI094) of the measured loads, used to develop the rating curve, with the estimated loads derived from the rating curve11
Figure 3. Loads and yields by basin management unit
Figure 4. Loads and yields by simplified physiographic region19
Figure 5. Regression showing the yield of total nitrogen versus the percent of land cover: agriculture, natural, or developed
Figure 6. Regression showing the yield of total phosphorus versus the percent of land cover: agriculture, natural, or developed
Figure 7. Mean total nitrogen yield and 95% confidence interval for percent land use of contributing watershed23
Figure 8. Mean total phosphorus yield and 95% confidence interval for percent land use of contributing watershed24
Figure 9. Nutrient loads and yields. Loads show the amount of nutrient at one point. Yields reflect the amount per area. Note that some of the contributing basins overlap, with the smaller basins drawn on top of the larger basins
Figure 10. Rolling 5-year mean annual loads along with the 2005-2017 annual yields for each ambient monitoring station
Figure 11. Mean 5-year averages for total nitrogen averages at each monitoring stationAppendix 3: 1
Figure 12. Mean 5-year averages for total phosphorus averages at each monitoring stationAppendix 3: 6

Introduction

Nutrient loads from the greater Mississippi River basin have created a hypoxic zone in the Gulf of Mexico, which measured a record 8,776 square miles in 2017. States within the basin determined in *The Gulf Hypoxia Action Plan 2008* (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2008) to develop strategies to reduce nutrient loads and develop reasonable and appropriate watershed-specific plans to further manage nutrients. The Division of Water, with its partners, is updating the Kentucky Nutrient Reduction Strategy to assist in this state and federal initiative to reduce nutrient loading to the basin and the size of the hypoxic zone.

To determine if implemented strategies are effective, baseline measures of loads and yields must be known. The Division has regularly sampled stations in the primary ambient monitoring network for water quality and other parameters for decades. While station changes occasionally occur for safety or other reasons, this network can be used to characterize and track changes to the Commonwealth's water quality over the long term. A United States Geological Survey (USGS) report, *Concentrations, and estimated loads and yields of total nitrogen and total phosphorus at selected stations in Kentucky, 1979-2004* (Crain, 2009) used these stations to evaluate nutrients. This study provides a broad baseline of nutrient loads and yields throughout the Commonwealth, but is not based on current data.

To build a nutrient reduction strategy, current information is needed. The goal of this study was to replicate the USGS study using data from 2005 – 2017. An effort was made to use the same monitoring stations and methods so that results can provide current nutrient load and yield information, but also be compared directly to the previous study results.

Nutrient loads and yields from this study provided similar results to the USGS study, with higher nutrient loads coming from basins with greater proportions of agricultural land uses. Individual stations, however, showed considerable differences. One explanation for variation was a four-fold increase in the detection limit for Total Kjeldahl Nitrogen (TKN), used in calculating total nitrogen (TN). In addition, the area of some contributing basins substantially differed, reflecting inconsistencies with the determination of whether a station was at the mouth of a tributary or on the main stem of a stream.

With the overall goal of building an effective nutrient reduction strategy, baseline values and measures of change over time must be consistent. To that end, an additional step was undertaken for this study: rolling 5-year mean annual loads were determined. Five-year terms both mitigates the variability found in weather cycles but also allows the detection of changes over time. Statewide, total nitrogen was found to be increasing, while no trend was found for total phosphorus (TP).

Data Collection

Station selections and data screening

Because this study was designed as an update of the 2009 USGS study, the 55 stations used in the USGS study were initially selected to be used in this study. Data for each station were reviewed to determine if the available data met inclusion criteria – mainly ongoing water quality measurements and the availability of discharge data from nearby USGS stream gages. Since site PRI024 was discontinued from the ambient monitoring program in 2007 and had only 13 samples available, this site was dropped from the study. The western part of the state was under-represented in comparison with the rest of the state, so 3 stations were added: PRI107, PRI112, and PRI113. With the additional stations, 57 total stations were used for this study. Discharge data were taken from co-located USGS gage stations, if available. Otherwise, nearby stations were used to estimate discharge based on drainage-area-ratio adjustment. Site PRI007 is located downstream from Wolf Creek Dam, the pool of which is regulated by the United States Army Corps of Engineers (USACE) – Nashville. No USGS gage was located downstream from the dam so the drainage-area-ratio adjustment was not feasible. Instead, dam discharge was obtained from the USACE – Nashville and used in place of flow.

Data were examined for outliers and laboratory flags. For outliers, original laboratory sheets were examined to determine if there was a quality assurance or other qualifying issue with the data, and retained and used or kept and discarded based on these findings. For flagged data, determinations to use or discard were based on the individual flag.

Contributing basins were derived using the StreamStats (USGS, 2017) web application and are shown in Figure 1. Three stations, PRI002, PRI003 and PRI064, could not be delineated using the application because part of their contributing area was in West Virginia where the StreamStats application has not yet been developed. Of these, two were located at the pour points of HUC12 basins and were delineated by selecting all of the HUC12 basins that drained to them. The third was delineated by selecting the full HUC12 basins that drained to that point, and editing the polygon to follow the topography of the partial basin to outline all of the contributing watershed. Delineated basins were used to determine area for the yield calculations as well as land use and cover. Table 1 provides basic station information, including the monitoring station location and drainage area. For detailed information on land cover and use for each station see Appendix 1: Land Cover and Use. Figure 1. Stations used in this study with the delineated contributing basin. Stations are identified by the numeric portion of their Station ID, "PRIXXX".

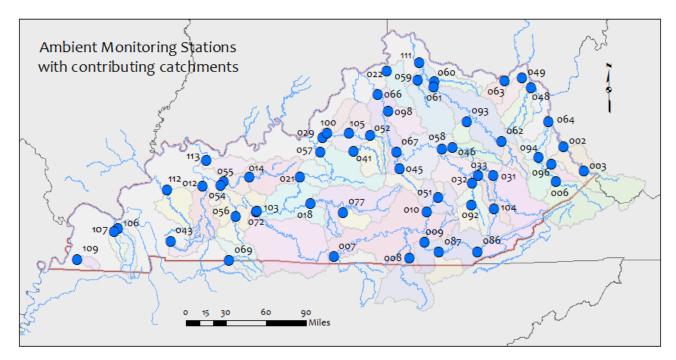


Table 1. Basic monitoring station identification.

DOW station	DOW Station Name	USGS stream- gaging station used for discharge	Drainage Area (mi²)	Latitude	Longitude
	Big and Lit				
PRI002	Tug Fork at Kermit, WV	03214500	1278	37.837594	-82.409706
PRI003	Tug Fork at Freeburn	03213700	781	37.566047	-82.143753
PRI006	Levisa Fork near Pikeville	03209500	1230	37.464424	-82.525984
PRI048	Tygarts Creek near Lynn	03217000	275	38.599805	-82.952652
PRI049	Little Sandy River at Argillite	03216500	539	38.490378	-82.834278
PRI064	Levisa Fork near Louisa	multiple stations	2323	38.115921	-82.600416
PRI094	Levisa Fork at Auxier	multiple stations	1723	37.729083	-82.754389
PRI096	Johns Creek at McCombs	03210000	121	37.65529	-82.587115
	Four Rivers, Upp	er & Lower Cumberla	nd		
PRI007	Cumberland River near Burkesville	Wolf Creek Dam	6245	36.688769	-85.567046
PRI008	Big South Fork Cumberland River at Blue Heron	03410500	964	36.670258	-84.548881
PRI009	Cumberland River at Cumberland Falls	multiple stations	1976	36.83565	-84.340219
PRI010	Rockcastle River at Billows	multiple stations	604	37.171358	-84.296759
PRI043	Little River near Cadiz	03438000	268	36.841044	-87.777291
PRI051	Rockcastle River near Lamero	multiple stations	62	37.320076	-84.138434
PRI069	Red River near Keysburg	multiple stations	550	36.640657	-86.979607
PRIo86	Cumberland River at Calvin	multiple stations	519	36.722422	-83.625354
PRI087	Clear Fork near Williamsburg	multiple stations	370	36.726148	-84.142205
PRI106	Clarks River near Sharpe	03610200	310	36.961331	-88.49321
PRI107	West Fork Clarks River nr Symsonia	03610200	186	36.932447	-88.54396
PRI109	Bayou de Chien near Cayce	07024000	103	36.615302	-89.030247

DOW station	DOW Station Name	USGS stream- gaging station used for discharge	Drainage Area (mi²)	Latitude	Longitude
		Kentucky River			
PRI022	Eagle Creek at Glenco	03291500	437	38.70629	-84.825055
PRI031	North Fork Kentucky River at Jackson	multiple stations	1101	37.551209	-83.384647
PRI032	Middle Fork Kentucky River at Tallega	03280000	536	37.554949	-83.593835
PRI033	South Fork Kentucky River at Booneville	03281500	692	37.475123	-83.670814
PRI045	Dix River near Danville	03285000	317	37.641763	-84.661148
PRI046	Red River Clay City	03283500	362	37.864708	-83.9332
PRI058	Kentucky River near Trapp	multiple stations	3235	37.846751	-84.081753
PRI066	Kentucky River near Lockport	03290500	6178	38.445126	-84.957282
PRI067	Kentucky River at High Bridge	multiple stations	4588	37.820085	-84.705092
PRI092	Goose Creek near Oneida	multiple stations	251	37.23254	-83.690969
PRI098	Elkhorn Creek near Peaks Mill	03289500	473	38.268559	-84.814284
PRI104	Middle Fork Kentucky River near Dryhill	multiple stations	227	37.182647	-83.382449

DOW station	DOW Station Name	USGS stream- gaging station used for discharge	Drainage Area (mi²)	Latitude	Longitude
		Salt, Licking			
PRI029	Salt River at Shepherdsville	03298500	1197	37.985173	-85.717199
PRI041	Beech Fork near Maud	03300400	436	37.832578	-85.296143
PRI052	Salt River at Glensboro	03295400	173	38.002316	-85.060223
PRI057	Rolling Fork near Lebanon Jct.	03310500	1374	37.822668	-85.74787
PRI059	South Fork Licking River at Morgan	03252500	838	38.603337	-84.400595
PRI060	North Fork Licking River near Milford	03251200	287	38.581237	-84.165948
PRI061	Licking River at Claysville	03250500	1966	38.520583	-84.183072
PRI062	Licking River at West Liberty	multiple stations	334	37.914694	-83.261704
PRI063	Kinniconick Creek near Tannery	multiple stations	229	38.574634	-83.188072
PRI093	Slate Creek near Owingsville	multiple stations	185	38.141506	-83.728511
PRI100	Floyds Fork near Shepherdsville	03298200	259	38.034488	-85.659494
PRI105	Brashears Creek at Taylorsville	03295890	262	38.030373	-85.35173
PRI111	Licking River at Butler	multiple stations	3375	38.789636	-84.36761
		Tradewater, Green			
PRI012	Pond River near Sacramento	03320500	578	37.441809	-87.352767
PRI014	Rough River near Dundee	03319000	757	37.547175	-86.721467
PRI018	Green River at Munfordville	03308500	1680	37.268591	-85.88532
PRI021	Nolin River at White Mills	03310300	351	37.555346	-86.031721
PRI054	Rough River near Livermore	03319000	1067	37.49934	-87.06574
PRI055	Green River at Livermore	multiple stations	6423	37.452963	-87.104537
PRI056	Mud River near Gus	multiple stations	268	37.123233	-86.900437
PRI072	Barren River near Woodbury	03314500	2264	37.170705	-86.620494
PRI077	Russell Creek near Bramlett	03307000	262	37.170126	-85.435343
PRI103	Green River near Woodbury	03316500	3136	37.182442	-86.610402
PRI112	Tradewater River nr Piney	multiple stations	605	37.396781	-87.844859
PRI113	Panther Creek nr West Louisville	03321350	372	37.724966	-87.315129

Analytes

Total nitrogen and total phosphorus were examined in this study. Total nitrogen is not a laboratory reported measure, but a calculated value taken from adding TKN and Nitrate/Nitrite (as N). A considerable difference between this study and the 2009 USGS study and an important consideration in how this study progressed is that the method detection limit for TKN increased from 0.05 to 0.2. This four-fold increase results in a considerable increase in the number of censored measures in this more recent study period. The censored values used in this study and the 2009 USGS study are shown in Table 2. Rules to calculate total nitrogen were the same as those in the previous study as shown in Table 3.

Table 2. Censored values of nutrients.

Nutrient	Reporting upits	Censored value						
	Reporting units	this study	2009 study					
TKN	mg/L as N	0.2	0.05					
Nitrate/Nitrite	mg/L as N	0.01	0.01					
Phosphorus, total	mg/L as P	0.01	0.01					

Table 3. Rules for the calculation of total nitrogen.

Scenario	Calculation
TKN and Nitrate/Nitrite > detection limit	TN = TKN + Nitrate/Nitrite
TKN > detection limit and Nitrate/Nitrite < detection limit	TN = TKN + detection limit of Nitrate/Nitrite
TKN < detection limit and Nitrate/Nitrite > detection limit	TN = detection limit of TKN + Nitrate/Nitrite
TKN < detection limit and Nitrate/Nitrite < detection limit	TN = Missing
TKN or Nitrate/Nitrite missing	TN = Missing

Estimates of daily discharge

Nineteen monitoring stations were co-located with USGS gaging stations providing daily discharge. For monitoring stations without co-located gages or with incomplete records, drainage area ratio adjustment was used when there were one or more gages on that body of water. Regression and drainage area ratio adjustment was used when there were no gages on a stream and data from gages on other streams with similar characteristic were used. The Maintenance of Variance Extension Type 1 (MOVE .1) method (Hirsch, 1982) was used to fill larger gaps. Monitoring station PRI007 was downstream from Wolf Creek Dam, which is managed by the USACE – Nashville. No gage was located along that segment of the Cumberland River but daily discharge was available from USACE – Nashville and used in its place. For small gaps (<10 consecutive missing values), discharge was estimated by filling in values that fit between the last available discharge with the next available value. For larger gaps, estimation methods were used from other stations. Table 4 indicates which gaging stations were used for ambient monitoring stations that did not have a co-located gaging station or had an incomplete record.

To avoid a divide by zero error with the model, any discharge value of o was changed to 0.01 cfs with the exception of station PRI007. For short periods of time, zero discharge was reported. The dam has a minimum discharge greater than zero and in addition, Wolf Creek National Fish Hatchery has persistent discharge just below the dam, therefore the minimum discharge value (50 cfs) was used instead of 0.01 cfs.

Table 4. USGS gaging stations used for estimating discharge for ambient monitoring stations without a co-located gage or complete record.

Ambient Monitoring Station	Monitoring Station Name	USGS Stream Gaging Station Number(s)	USGS Stream Gaging Station name(s)						
	Big	g and Little Sandy, Ty	garts						
PRI003	Tug Fork at Freeburn, WV	03213700	Tug Fork at Williamson, WV						
PRI048	Tygarts Creek near Lynn	03217000	Tygarts Creek near Greenup						
PRI049	Little Sandy at Argilite	03216500	Little Sandy River at Grayson						
PRI064	Levisa Fork near Louisa	03212500	Levisa Fork at Paintsville						
PK1004	Levisa FORK field Louisa	03209500	Levisa Fork at Pikeville						
DPI oo 4	Lovica Fork at Auxior	03212500	Levisa Fork at Paintsville						
PRI094	Levisa Fork at Auxier	03209500	Levisa Fork at Pikeville						
PRI096	Johns Creek at McCombs	03210000	Johns Creek near Meta						
Four Rivers, Upper & Lower Cumberland									
PRI007	Cumberland River near Burkesville	USACE	Wolf Creek Dam discharge record						
PRIoo8	South Fork Cumberland River at Blue Heron	03410500	South Fork Cumberland River at Leatherwood Ford, TN						
DDIago	Cumberland River at	03404000	Cumberland River at Williamsburg						
PRI009	Cumberland Falls	03404500	Cumberland River at Cumberland Falls						
		03404900	Lynn Camp Creek at Corbin						
PRI051	Rockcastle River near Lamero	03413200	Beaver Creek near Monticello						
FRIOSI	Rockcastle River fiear Lamero	03407500	Buck Creek near Shopville						
		03307000	Russell Creek near Columbia						
		03435305	Red River below Hwy 161 near Barren Plain, TN						
PRI069	Red River near Keysburg	03436100	Red River at Port Royal, TN						
FRIDOG	Red River field Reysburg	03314000	Drakes Creek near Alvaton						
		03438000	Little River near Cadiz						
		03402900	Cumberland River at Pineville						
PRI086	Cumberland River at Calvin	03404000	Cumberland River at Williamsburg						
		03401000	Cumberland River near Harlan						
		03403910	Clear Fork at Saxton						
PRI087	Clear Fork near Williamburg	03307000	Russell Creek near Columbia						
		03406500	Rockcastle River at Billows						
PRI106	Clarks River near Sharpe	03610200	Clarks River at Almo						
PRI107	West Fork Clarks River near Symsonia	03610200	Clarks River at Almo						
PRI109	Bayou de Chien near Cayce	07024000	Bayou De Chien near Clinton						

Ambient Monitoring Station	Monitoring Station Name	USGS Stream Gaging Station Number(s)	USGS Stream Gaging Station name(s)
		Kentucky River	
PRI033	South Fork Kentucky River at Booneville	03281500	South Fork Kentucky River at Booneville
		03284000	Kentucky River near Winchester
PRI058	Kentucky River near Trapp	03283500	Red River at Clay City
		03282290	Kentucky River near College Hill
PRI092	Goose Creek near Oneida	03281100	Goose Creek at Manchester
PR1092	Goose creek hear Offelda	03280700	Cutshin Creek at Wooton
		03280600	Middle Fork Kentucky River at Hyden
PRI104	Middle Fork Kentucky River at	03280700	Cutshin Creek at Wooton
P NII04	Dryhill	03281100	Goose Creek at Manchester
		03281500	South Fork Kentucky River at Booneville
		Salt, Licking	
PRI059	South Fork Licking River at Morgan	03252500	South Fork Licking River at Hayes
PRI060	North Fork Licking River near Milford	03251200	North Fork Licking River near Mt Olivet
PRI061	Licking River at Claysville	03250500	Licking River at Blue Springs
PRI062	Licking Divorat Wast Liberty	03248300	Licking River nr Salyersville
PK1002	Licking River at West Liberty	03283500	Red River at Clay City
		03217000	Tygarts Creek near Greenup
PRI063	Kinniconick Creek near Tannery	03248300	Licking River near Slayersville
	rannery	03252300	Hinkston Creek nr Carlisle
DBloop	Slate Creek near Owingsville	03250190	Slate Creek at Mt Sterling
PRI093	Slate Cleek hear Owingsville	03288100	North Elkhorn Creek at Georgetown
PRI100	Floyds Fork near Shepherdsville	03298200	Floyds Fork near Mt Washington
PRI105	Brashears Creek at Taylorsville	03295890	Brashears Creek at Taylorsville
PRI111	Licking River at Butler	03253500	Licking River at Catawba
	LICKING NIVEL AL DULIEL	03251500	Licking River at McKinneysburg

Ambient Monitoring Station	Monitoring Station Name	USGS Stream Gaging Station Number(s)	USGS Stream Gaging Station name(s)
		Tradewater, Green	ı
PRI012	Pond River near Sacramento	03320500	Pond River near Apex
P RIO12	Folid River field Sacramento	03383000	Tradewater River at Olney
PRI054	Rough River near Livermore	03319000	Rough River near Dundee
PPLoss	Green River at Livermore	03316500	Green River at Paradise
PRI055	Green River at Livermore	03320000	Green River at Calhoun
		03320500	Pond River near Apex
PRI056	Mud River near Gus	03316275	Mud River near Huntsville
P NI050	Mud River hear Gus	03383000	Tradewater River at Olney
		03314000	Drakes Creek near Alvaton
PRI072	Parron River at Weadbury	03314500	Barren River at Bowling Green
PRI0/2	Barren River at Woodbury	03313700	West Fork Drakes Creek near Franklin
PRI077	Russell Creak near Bramlett	03307000	Russell Creek near Columbia
PRI103	Green River near Woodbury	03316500	Green River at Paradise
PRI112	Tradewater Diver pr Dipey	03384100	Tradewater River near Providence
PKI112	Tradewater River nr Piney	03383000	Tradewater River at Olney
PRI113	Panther Creek near West Louisville	03321350	South Fork Panther Creek near Whitesville

Load and yield estimation

Loads were estimated with the USGS program, LOADEST (Runkel, 2004). LOADEST uses analyte measures and streamflow to develop a rating curve. It then uses daily streamflow data to generate the estimated load (See Figure 2 for a rating curve example). Nine pre-defined models are generated. The program allows the user to select the model, or to allow the program to select the model with the best fit as determined by the lowest Akaike Information Criterion (AIC). The AIC is a statistical method that compares models for best fit.

LOADEST can produce three estimation methods: Maximum Likelihood Estimation (MLE), Adjusted Maximum Likelihood Estimation (AMLE), and Least Absolute Deviation (LAD). The characteristics of the data determine which is most appropriate. The AMLE method is most commonly used when some of the data are below the detection limit. AMLE¹ produces the least biased model coefficients when left-censored data are present and residuals follow a normal distribution with constant variance. Data in this study were leftcensored and residuals were normally distributed with constant variance. Thus, the AMLE method was chosen. Appendix 2: Model Equations lists the chosen equations for each station and analyte. Bias diagnostics were calculated by the program, and the recommended threshold of ±25% was adopted for

¹ The MLE produces best results when there is no censoring of data (no data below the detection limit), the residuals are normally distributed with constant variance. LAD produces the best fit models for data do not have normally distributed residuals with constant variance.

model acceptability. The assumption of normality was also examined by creating residual plots as well as examining the Probability Plot Correlation Coefficient (PPCC) produced by LOADEST.

Yield was calculated from load by dividing the mean annual load by the area, in square miles, of the contributing watershed.

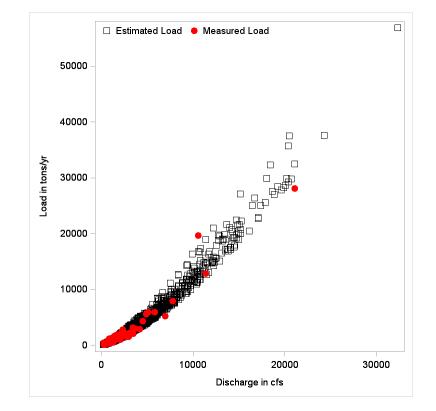


Figure 2. An example (station PRI094) of the measured loads, used to develop the rating curve, with the estimated loads derived from the rating curve.

Concentrations, and Estimated Loads and Yields of Nutrients

Discharge and Concentrations

Unacceptable load bias was found for phosphorus load estimations at three stations: PRI045, PRI063, and PRI100. While these estimated loads are reported, the values are flagged to indicate highly uncertain results.

Residuals were examined at all stations to determine if the station met the assumption of normality (data not shown). Tests for normality of model residuals found that the assumption was met.

Output from the program includes the distributions for streamflow and analyte concentrations created by the rating curve (Table 5).

	Period Streamflow (ft ³ /s)							Total nitrogen (mg/l)						Total phosphorus (mg/l)					
Station	of record	Mean	Min	25th	Median	75th	Max	Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th><th>Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th></dl)<></th></dl)<>	Min	25th	Median	75th	Max	Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th></dl)<>	Min	25th	Median	75th	Max
	Big and Little Sandy, Tygarts																		
PRI002	2005-2017	1503	109	438	919	1870	46900	87(0)	0.42	0.70	0.82	0.95	2.07	92(21)	0.004	0.017	0.025	0.035	0.231
PRI003	2005-2017	940	63	290	571	1128	29158	89(0)	0.25	0.48	0.59	0.74	2.67	94(31)	0.003	0.013	0.020	0.028	0.278
PRI006	2005-2017	1462	136	433	876	1688	28136	88(o)	0.46	0.60	0.68	0.78	1.29	93(36)	0.005	0.014	0.019	0.023	0.074
PRI048	2005-2017	312	0	27	116	332	17200	85(o)	0.06	0.48	0.59	0.68	1.12	91(33)	0.006	0.013	0.016	0.021	0.171
PRI049	2005-2017	646	17	82	252	732	14486	84(0)	0.47	0.59	0.67	0.80	1.65	87(14)	0.011	0.017	0.022	0.031	0.268
PRI064	2005-2017	2722	228	754	1519	3165	41117	83(0)	0.52	0.65	0.74	0.84	1.33	86(11)	0.007	0.022	0.029	0.040	0.227
PRI094	2005-2017	2026	199	578	1182	2370	32333	83(0)	0.47	0.67	0.74	0.83	1.86	85(11)	0.010	0.022	0.030	0.039	0.261
PRI096	2005-2017	193	5	46	95	218	11959	85(0)	0.11	0.70	0.82	0.97	1.32	89(23)	0.006	0.017	0.023	0.033	0.311
								Four Rivers	, Upper	& Lower	Cumberlan	d							
PRI007	2005-2017	8447	2	2682	5978	12578	29880	85(0)	0.49	0.59	0.63	0.7	0.99	83(70)	0.01	0.01	0.02	0.02	0.03
PRIoo8	2005-2017	1820	9	226	811	1953	54802	81(0)	0.23	0.32	0.36	0.40	0.54	94(55)	0.004	0.008	0.011	0.015	0.137
PRI009	2005-2017	3248	81	643	1710	3760	42800	83(0)	0.22	0.42	0.51	0.65	2.26	91(30)	0.007	0.013	0.018	0.028	0.542
PRI010	2005-2017	928	2	91	391	994	28900	76(0)	0.15	0.46	0.53	0.62	1.11	84(42)	0.004	0.011	0.017	0.022	0.051
PRI043	2005-2017	403	9	75	221	467	9920	91(0)	2.00	4.00	4.00	5.00	5.00	90(0)	0.066	0.100	0.128	0.165	1.196
PRI051	2005-2017	89	1	12	37	91	4231	72(0)	0.34	0.37	0.39	0.40	0.46	90(51)	0.007	0.009	0.010	0.012	0.014
PRI069	2005-2016	794	26	175	443	894	42280	77(0)	3.00	5.00	6.00	6.00	6.00	81(3)	0.018	0.040	0.054	0.072	4.161
PRIo86	2005-2017	1473	51	364	911	1865	31134	78(0)	0.25	0.47	0.57	0.70	2.22	81(34)	0.003	0.011	0.017	0.025	3.495
PRI087	2005-2017	577	2	60	249	613	23106	77(0)	0.27	0.43	0.46	0.47	0.48	82(32)	0.007	0.014	0.018	0.023	0.087
PRI106	2005-2017	394	3	41	97	221	26628	89(o)	0.41	1.00	1.37	1.82	2.30	87(0)	0.023	0.105	0.144	0.185	0.362
PRI107	2005-2017	234	2	24	57	132	15824	81(0)	0.08	0.82	1.28	1.79	4.46	87(0)	0.023	0.084	0.114	0.159	1.755
PRI109	2005-2017	273	34	62	96	175	8835	83(0)	0.30	0.68	1.10	1.80	3.83	83(0)	0.100	0.150	0.180	0.250	2.040

Table 5. Distribution of discharge and concentrations for each station.

	Period			Stream	nflow (ft³/:	s)			То	tal nitro	ogen (mg/	I)		Total phosphorus (mg/l)					
Station	of record	Mean	Min	25th	Median	75th	Max	Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th><th>Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th></dl)<></th></dl)<>	Min	25th	Median	75th	Max	Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th></dl)<>	Min	25th	Median	75th	Max
									Kentuc	ky River:									
PRI022	2005-2017	676	0	28	156	471	20800	74(0)	0.48	0.68	0.77	0.91	2.16	80(1)	0.033	0.063	0.080	0.117	1.069
PRI031	2005-2017	1368	40	326	735	1560	32400	78(o)	0.33	0.56	0.70	0.86	1.94	87(16)	0.006	0.016	0.022	0.033	2.803
PRI032	2005-2017	786	30	141	378	990	12200	79(0)	0.33	0.44	0.49	0.55	0.74	91(22)	0.007	0.013	0.016	0.022	0.177
PRI033	2005-2017	1004	0	111	445	1060	23100	79(0)	0.34	0.41	0.45	0.52	36.06	92(27)	0.010	0.015	0.018	0.023	29.904
PRI045	2005-2017	437	0	30	153	450	35200	82(0)	0.16	1.05	1.54	1.99	5.51	82(0)	0.035	0.076	0.086	0.099	0.180
PRI046	2006-2017	493	3	70	215	577	14100	8o(o)	0.46	0.52	0.56	0.60	0.81	83(10)	0.017	0.030	0.037	0.046	0.145
PRI058	2005-2017	4233	45	764	2148	5261	49814	74(0)	0.36	0.46	0.51	0.57	0.79	79(20)	0.002	0.015	0.021	0.033	0.666
PRI066	2005-2017	8294	114	1503	4580	10500	105000	72(0)	0.53	0.91	1.08	1.29	2.23	74(0)	0.033	0.087	0.115	0.156	0.695
PRI067	2005-2016	6517	8	1135	3490	8048	99000	72(0)	0.29	0.63	0.82	0.99	4.05	73(0)	0.012	0.042	0.059	0.079	0.459
PRI092	2006-2017	392	0	36	158	420	11672	75(0)	0.47	0.50	0.57	0.65	0.70	79(14)	0.009	0.018	0.024	0.033	0.078
PRI098	2005-2017	716	17	116	308	779	24400	82(0)	3.00	3.00	4.00	4.00	6.00	82(0)	0.400	0.410	0.450	0.570	2.640
PRI104	2005-2017	379	13	66	181	495	5100	72(0)	0.36	0.43	0.49	0.55	0.84	77(26)	0.007	0.015	0.021	0.030	0.055
									Salt,	Licking				1					
PRI029	2005-2017	1781	26	172	692	2670	40100	54(0)	1.00	1.00	2.00	2.00	5.00	54(0)	0.089	0.154	0.202	0.236	1.797
PRI041	2005-2017	641	0	24	161	506	31700	78(o)	0.50	0.78	0.97	1.28	5.59	86(0)	0.083	0.140	0.166	0.211	1.229
PRI052	2005-2017	233	0	19	66	204	11500	79(0)	0.55	1.53	1.95	2.42	5.24	79(0)	0.170	0.250	0.300	0.350	1.860
PRI057	2005-2017	1823	0	108	595	1733	48268	77(0)	1.00	1.00	2.00	2.00	3.00	78(1)	0.049	0.120	0.162	0.217	1.010
PRI059	2013-2017	1085	3	91	391	1091	18614	32(0)	0.57	1.31	1.86	2.37	4.64	32(0)	0.066	0.129	0.162	0.258	3.733
PRI060	2005-2017	419	0	12	98	366	11780	73(0)	0.67	1.04	1.51	2.05	6.63	77(0)	0.034	0.090	0.120	0.192	3.294
PRI061	2005-2017	2620	49	386	1150	4262	37180	75(0)	0.45	0.63	0.74	1.02	3.11	78(2)	0.024	0.055	0.077	0.106	1.000
PRI062	2005-2017	429	2	75	202	500	12166	79(0)	0.38	0.46	0.49	0.54	0.67	85(23)	0.013	0.019	0.024	0.029	0.047
PRI063	2005-2017	223	0	24	89	238	9215	8o(o)	0.25	0.37	0.47	0.59	0.80	89(64)	0.002	0.005	0.008	0.012	0.097
PRI093	2005-2017	316	0	25	91	272	12847	83(o)	0.40	0.94	1.07	1.20	1.79	86(0)	0.036	0.057	0.076	0.103	0.244
PRI100	2005-2017	423	5	52	150	354	24806	75(0)	1.00	2.00	2.00	3.00	5.00	76(0)	0.046	0.087	0.122	0.168	4.500
PRI105	2005-2017	417	0	23	139	381	20333	76(o)	0.48	0.80	1.37	1.99	14.12	79(1)	0.058	0.150	0.190	0.249	1.382
PRI111	2005-2017	4306	53	511	1969	5816	63187	60(0)	0.54	0.77	1.08	1.55	5.08	61(1)	0.030	0.072	0.095	0.172	2.980

	Period			Strear	nflow (ft³/	s)			Тс	tal nitro	ogen (mg/	I)		Total phosphorus (mg/l)					
Station	of record	Mean	Min	25th	Median	75th	Max	Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th><th>Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th></dl)<></th></dl)<>	Min	25th	Median	75th	Max	Samples (<dl)< th=""><th>Min</th><th>25th</th><th>Median</th><th>75th</th><th>Max</th></dl)<>	Min	25th	Median	75th	Max
									Tradewa	ter, Gree	en								
PRI012	2005-2017	947	0	38	212	766	34238	88(o)	0.66	1.12	1.26	1.47	2.37	94(0)	0.063	0.083	0.087	0.091	0.101
PRI014	2014-2017	1325	73	173	812	1776	8692	25(0)	0.66	0.95	1.19	1.48	2.03	22(2)	0.012	0.040	0.061	0.089	0.227
PRI018	2005-2017	2760	112	481	1205	4010	54400	82(0)	0.58	1.04	1.36	1.56	1.82	82(11)	0.010	0.023	0.036	0.059	0.348
PRI021	2005-2017	543	21	118	292	606	13800	83(0)	2.00	3.00	4.00	4.00	4.00	84(1)	0.052	0.096	0.131	0.194	1.391
PRI054	2014-2017	1869	103	244	1145	2506	12262	25(0)	1.00	1.00	1.00	1.00	2.00	22(2)	0.014	0.045	0.066	0.105	0.276
PRI055	2005-2017	9759	150	2582	6032	13955	62568	85(o)	0.97	1.47	1.72	2.04	2.90	86(1)	0.023	0.042	0.055	0.075	0.230
PRI056	2009-2017	467	5	46	163	463	19941	58(o)	0.84	1.02	1.25	1.47	1.84	59(1)	0.026	0.048	0.058	0.073	0.222
PRI072	2005-2017	2509	20	568	1746	3927	53750	74(0)	1.00	2.00	2.00	3.00	4.00	71(1)	0.037	0.060	0.070	0.085	0.138
PRI077	2005-2017	442	2	57	186	453	28593	95(0)	0.14	1.00	1.60	2.11	3.37	95(8)	0.011	0.031	0.046	0.063	2.489
PRI103	2005-2017	8249	118	2159	5012	11865	53839	69(0)	0.98	1.29	1.51	1.73	2.20	71(7)	0.012	0.030	0.043	0.064	0.157
PRI112	2005-2017	913	0	32	299	1230	13600	86(0)	0.25	0.76	0.94	1.25	1.7	91(0)	0.032	0.061	0.07	0.081	0.103
PRI113	2011-2017	486	0	10	89	393	16746	46(0)	0.77	1.71	2.42	3.16	5.14	44(0)	0.028	0.12	0.164	0.206	0.514

Estimated Mean Annual Loads and Mean Yields

As expected, loads were greater at stations with larger drainage areas (Table 6) while yields did not follow this pattern. The highest total nitrogen yields were in the Tradewater, Green and Salt, Licking River basins. The highest total phosphorus yields were in the Salt, Licking and Four Rivers, Upper & Lower Cumberland basins. The Big and Little Sandy, Tygarts basins had the lowest yields of both nitrogen and phosphorus.

Station	Period of	Drainage Area	Estimate annua			ed mean al yield	Predict	ion error
Station	record	(mi ²)	TN	ТР	TN	ТР	TN	ТР
			(ton/yr)((+/-SEP)	(ton/	yr)/mi²	(pe	rcent)
			Big and	Little Sandy	, Tygarts			
PRI002	2005-2017	1278	1507(102)	69(15)	1.18	0.05	7	21
PRI003	2005-2017	781	861(58)	37(11)	1.10	0.05	7	30
PRI006	2005-2017	1230	1197(58)	40(7)	0.97	0.03	5	18
PRI048	2005-2017	275	219(26)	29(3)	0.80	0.11	12	10
PRI049	2005-2017	539	427(37)	37(7)	0.79	0.07	9	20
PRI064	2005-2017	2323	2464(128)	157(22)	1.06	0.07	5	14
PRI094	2005-2017	1723	1898(120)	113(15)	1.10	0.07	6	13
PRI096	2005-2017	121	153(11)	0(5)	1.27	0.00	7	-
		Fo	our Rivers, U	pper & Low	er Cumber	rland		
PRI007	2005-2017	6245	5606(208)	150(11)	0.90	0.02	4	7
PRI008	2005-2017	964	756(55)	55(18)	0.78	0.06	7	33
PRI009	2005-2017	1976	2832(321)	245(62)	1.43	0.12	11	25
PRI010	2005-2017	604	551(51)	26(7)	0.91	0.04	9	29
PRI043	2005-2017	268	1701(55)	73(11)	6.34	0.27	3	15
PRI051	2005-2017	62	37(4)	3(0)	0.59	0.04	10	4
PRI069	2005-2016	534	4490(150)	186(80)	8.41	0.34	3	43
PRIo86	2005-2017	519	1179(77)	164(91)	2.27	0.32	7	56
PRI087	2005-2017	370	263(18)	29(3)	0.71	0.08	7	9
PRI106	2005-2017	310	635(80)	91(11)	2.05	0.29	13	12
PRI107	2005-2017	186	500(73)	113(22)	2.69	0.61	15	19
PRI109	2005-2017	103	577(106)	183(33)	5.59	1.77	18	18

Table 6. Estimated loads and yields.

Station	Period of	Drainage Area	Estimate annua			ted mean al yield	Predict	ion error
Station	record	(mi ²)	TN	ТР	TN	ТР	TN	ТР
			(ton/yr)	(+/-SEP)	(ton/	yr)/mi²	(pei	rcent)
			K	entucky Riv	er			
PRI022	2005-2017	437	796(88)	183(29)	1.82	0.42	11	16
PRI031	2005-2017	1101	1215(102)	153(47)	1.10	0.14	8	31
PRI032	2005-2017	536	416(22)	33(3)	0.78	0.06	5	8
PRI033	2005-2017	692	668(84)	40(11)	0.97	0.06	13	27
PRI045	2005-2017	317	1139(99)	47(4)*	3.59	0.15*	9	8
PRI046	2006-2017	362	288(22)	15(4)	0.80	0.04	8	27
PRI058	2005-2017	3235	2438(164)	347(120)	0.75	0.11	7	35
PRI066	2005-2017	6178	10844(642)	1464(128)	1.76	0.24	6	9
PRI067	2005-2016	4588	6048(631)	664(99)	1.32	0.14	10	15
PRI092	2006-2017	251	208(15)	4(1)	0.83	0.01	7	31
PRI098	2005-2017	473	2774(193)	449(55)	5.87	0.95	7	12
PRI104	2005-2017	227	201(11)	29(1)	0.89	0.13	5	3
				Salt, Licking	g			
PRI029	2005-2017	1197	4106(332)	621(69)	3.43	0.52	8	11
PRI041	2005-2017	436	1449(204)	237(33)	3.33	0.54	14	14
PRI052	2005-2017	173	741(66)	117(15)	4.29	0.68	9	13
PRI057	2005-2017	1374	3676(493)	515(88)	2.68	0.37	13	17
PRI059	2013-2017	838	3300(299)	741(197)	3.94	0.88	9	27
PRI060	2005-2017	287	1340(157)	230(37)	4.66	0.80	12	16
PRI061	2005-2017	1966	3110(270)	431(80)	1.58	0.22	9	19
PRI062	2005-2017	334	230(11)	26(2)	0.69	0.08	5	7
PRI063	2005-2017	229	135(11)	0(1)*	0.59	0.00	8	*
PRI093	2005-2017	185	434(37)	26(5)	2.35	0.14	8	19
PRI100	2005-2017	259	971(183)	197(91)*	3.74	0.76*	19	46
PRI105	2005-2017	262	1803(318)	164(29)	6.88	0.63	18	18
PRI111	2005-2017	3384	8833(1E3)	1818(398)	2.62	0.54	11	22

Station	Period of	Drainage Area	Estimate annua			ed mean al yield	Prediction error		
Station	record	(mi ²)	TN	ТР	TN	ТР	TN	ТР	
			(ton/yr)(+/-SEP)	(ton/	yr)/mi²	(pe	rcent)	
			Tra	dewater, G	reen				
PRI012	2005-2017	578	1380(142)	88(7)	2.39	0.15	10	8	
PRI014	2014-2017	757	1792(226)	113(26)	2.37	0.15	13	23	
PRI018	2005-2017	1680	4227(219)	219(29)	2.52	0.13	5	13	
PRI021	2005-2017	351	1748(62)	110(26)	4.98	0.31	4	23	
PRI054	2014-2017	1067	2730(266)	190(44)	2.56	0.18	10	23	
PRI055	2005-2017	6423	19684(763)	814(55)	3.06	0.13	4	7	
PRI056	2009-2017	268	690(55)	47(7)	2.57	0.18	8	15	
PRI072	2005-2017	2264	6001(347)	197(15)	2.65	0.09	6	7	
PRI077	2005-2017	262	1106(164)	99(51)	4.23	0.38	15	52	
PRI103	2005-2017	3136	13852(690)	537(73)	4.42	0.17	5	14	
PRI112	2005-2017	605	697(47)	58(4)	1.15	0.1	7	6	
PRI113	2011-2017	372	1737(237)	139(22)	4.68	0.37	14	16	

*Bp (load bias in percent) > ±25%, indicating load estimation is highly uncertain.

Figure 3. Loads and yields by basin management unit.

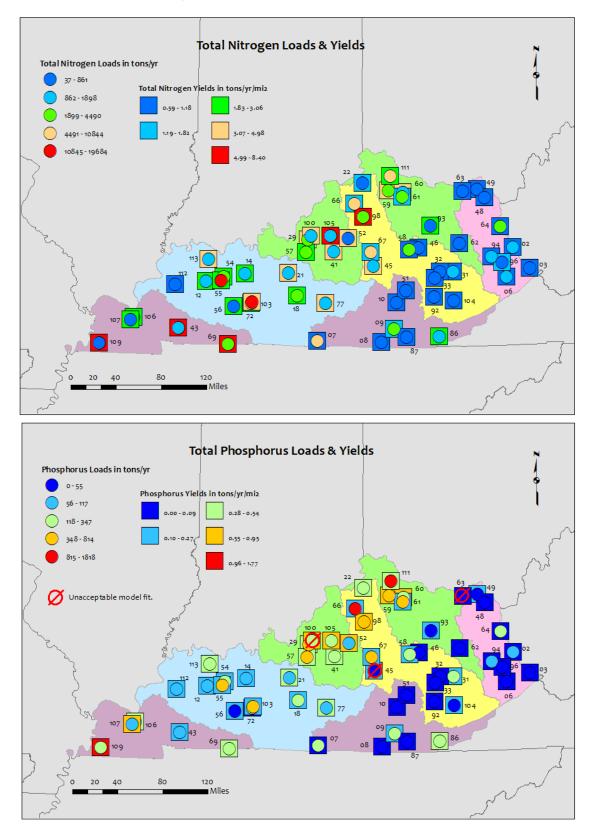
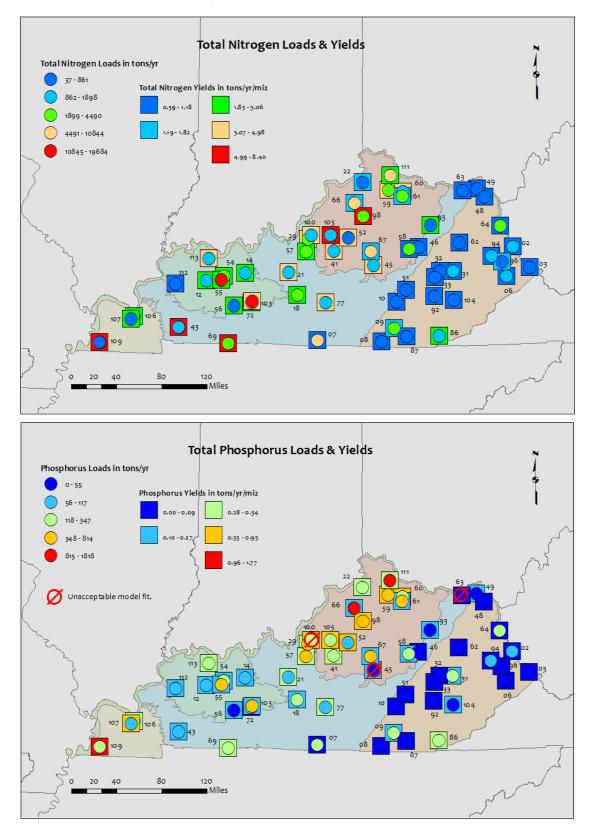



Figure 4. Loads and yields by simplified physiographic region.

Land use and yield

An examination of yield on a map (Figure 3) illustrates that nutrient yields are highest in two areas; in the far western part of the state and in some parts of the Bluegrass. When comparing maps by river basin and physiographic region, it is apparent that yields are better characterized by physiographic region than basin. Each physiographic region has a unique geology leading to differences in land use and antecedent soil conditions, particularly with regard to phosphorus. The Jackson Purchase, in the far west, is flat and has rich soils. Row crops are a prevalent land use in this region. In the Bluegrass, limestone is naturally high in phosphorus and has benefits for livestock. Equine and cattle agriculture are more predominant than row crop acreage in this region. Appendix 1: Land Cover and Use gives the percentages of contributing watersheds in row crops, pasture, forest, and developed. Close examination shows that monitoring stations in the Four Rivers Basin Management Unit (far west) with the highest yields also have the highest percentages of row crop. Conversely, stations in the Bluegrass with the highest yield have the highest percentages of pasture.

The relationship between land use and total nitrogen and phosphorus yields was examined via regression analyses (Figure 5 and Figure 6). The relationships between agricultural land use and natural land cover show strong relationships. As expected, the greater the portion of the contributing watershed in agricultural use, the higher the yield of both total nitrogen and phosphorus. The relationship is stronger for nitrogen than phosphorus. The inverse is true for natural land cover. Higher yields are associated with lower natural cover. For developed land, while still significant, the relationships between percent developed land use and yield are weaker. While the data span a wide range of watershed coverage for agriculture and natural land use classes, most developed land uses fall below 10% coverage for the studied watersheds, with only two contributing basins reaching about 20% developed land use.

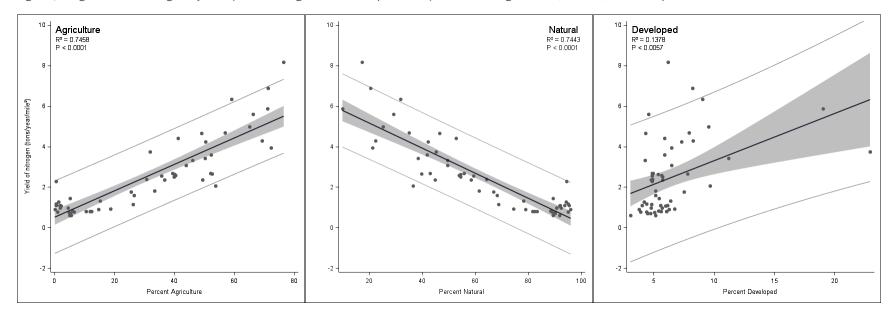


Figure 5. Regression showing the yield of total nitrogen versus the percent of land cover: agriculture, natural, or developed.

Figure 6. Regression showing the yield of total phosphorus versus the percent of land cover: agriculture, natural, or developed.

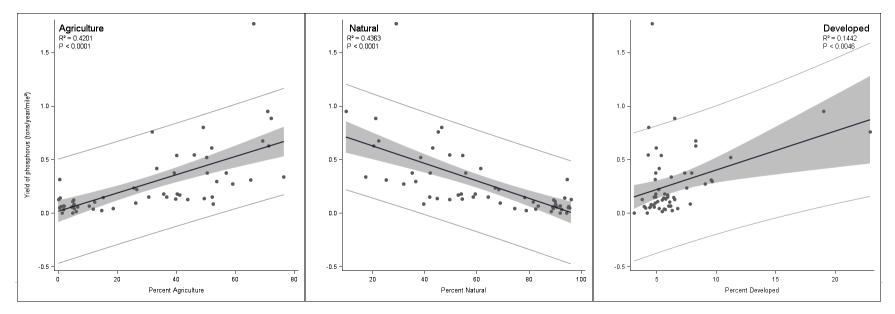


Figure 7 and Figure 8 exhibit the same information with the 95% confidence interval for each station. These plots illustrate the greater variability in yield at stations with higher percentages of agriculture in the contributing watershed or lower natural land coverage. This variability may result from the seasonality of fertilizer application on agricultural lands. Increased rates of nutrient application may result in higher concentrations in runoff during the growing season resulting in higher variability in the calibration file from samples taken at different times of the year. Because this study did not include seasonality as a factor, stations with a higher percentage of agricultural lands in the area of contribution, and consequently lower natural land acreages, would be expected to have greater variability in the calibration dataset and less certainty (larger confidence intervals) in the output. No clear pattern of uncertainty is perceived for developed land use. None of the stations in this study are predominated by developed land use in their contributing watersheds; yields more likely reflect impacts from the predominant land use or class in the contributing watershed.

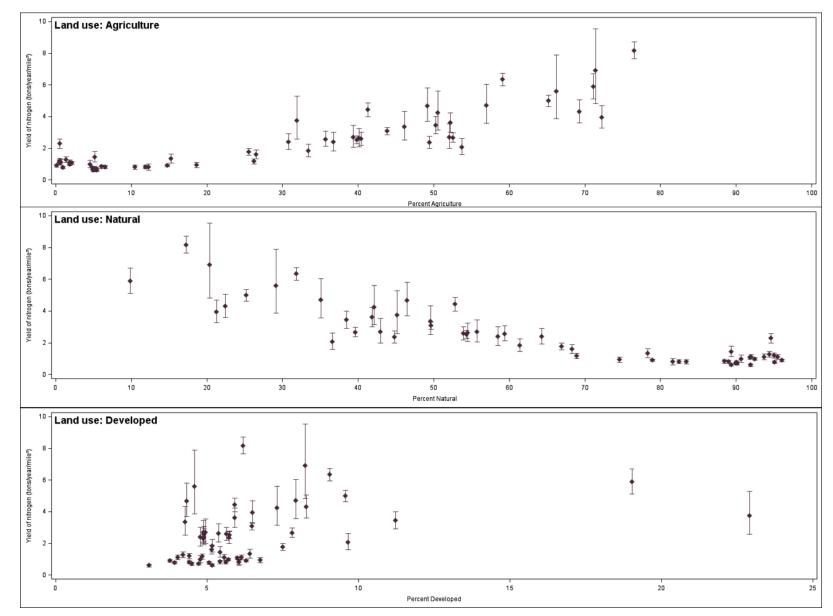


Figure 7. Mean total nitrogen yield and 95% confidence interval for percent land use of contributing watershed.

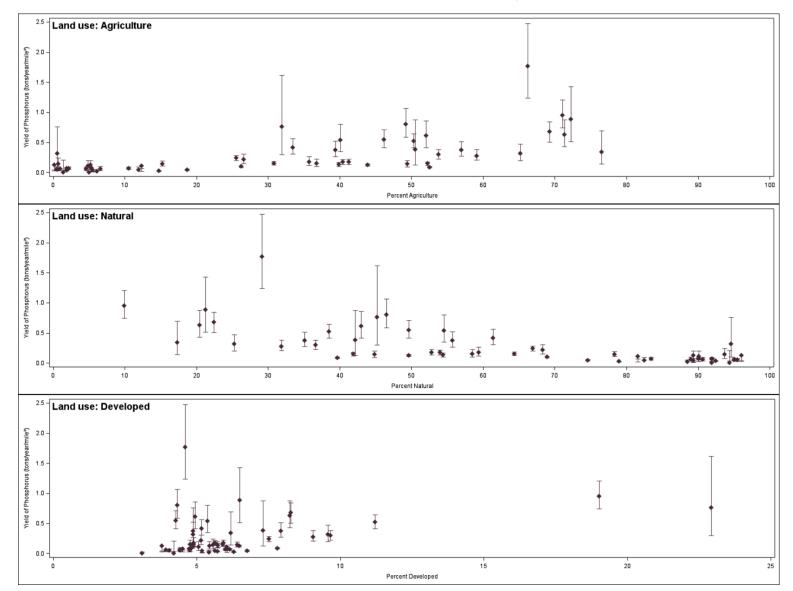
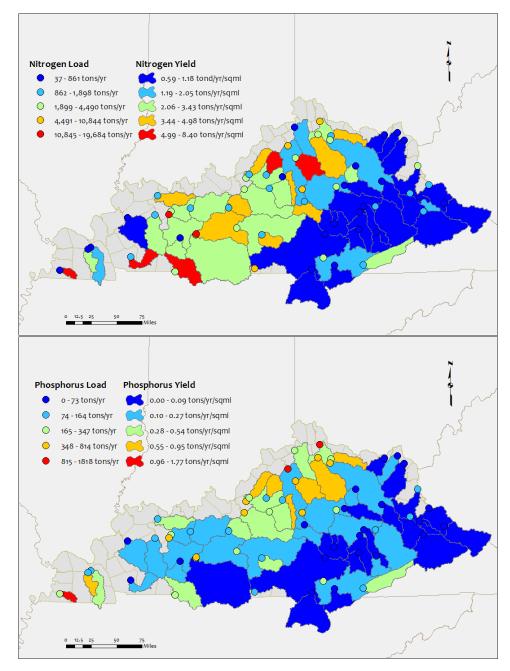



Figure 8. Mean total phosphorus yield and 95% confidence interval for percent land use of contributing watershed.

Figure 9 more clearly illustrates loads and yields by showing the loads as point values and the yields by the contributing basin. Results are as anticipated, reflecting the highest total nitrogen yields in the areas of the state with the most agriculture. Phosphorus yields similarly reflect higher levels where agriculture is present, but also reflect increased yields in the Bluegrass physiographic region where geology contributes to naturally higher concentrations of the nutrient. Loads, shown as points, reflect not only the amount of the nutrient, but also the size of the contributing basin.

Figure 9. Nutrient loads and yields. Loads show the amount of nutrient at one point. Yields reflect the amount per area. Note that some of the contributing basins overlap, with the smaller basins drawn on top of the larger basins.

Comparison to 1979-2004 results

An objective of this study was to compare the results of this study with the earlier USGS study. A puzzling finding was that differences in yield were quite variable as shown in Table 7. As noted earlier, the substantial increase in the detection limit for TKN was expected to influence the comparability for total nitrogen, which may account for the great differences at stations PRI043 and PRI069. However, the variability found between the studies for total phosphorus was also mutable. One potential source of error was that for some stations, the drainage area was found to be substantially different than the 2009 study. The USGS study did not indicate how contributing watershed area was determined. One possibility for this large difference may be confusion as to whether a monitoring station was on the main stem of a river or at the mouth of the tributary. These differences could result in much different yields, but would not be expected to influence loads. In fact, this pattern can be seen for the stations with the greatest difference in areas, as shown in Table 8.

			Percent	change		
Station	Concen- tration	Load	Yield	Concen- tration	Load	Yield
		Nitrogen			Phosphoru	IS
		Big an	d Little Sandy	/, Tygarts		
PRI002	4%	0%	-2%	-17%	-5%	-10%
PRI003	31%	13%	-61%	100%	-48%	-82%
PRI006	10%	-82%	-82%	-5%	-86%	-85%
PRI048	-7%	-81%	-83%	60%	-50%	-56%
PRI049	-14%	-18%	-21%	10%	-22%	-25%
PRI064	9%	17%	18%	45%		•
PRI094	25%	19%	18%	50%	33%	31%
PRI096	-4%	-38%	-15%	15%	-100%	-100%
		Four Rivers,	Upper & Low	er Cumberl	and	
PRI007	12%	-3%	-6%	60%	3%	20%
PRI008	-72%	-31%	-29%	10%	-50%	-53%
PRI009	-2%	8%	-67%	-10%	-21%	-77%
PRI010	-7%	-32%	-30%	70%	-51%	-53%
PRI043	18%	27%	15%	1180%	-45%	-50%
PRI051	-90%	156%	107%	26%	30%	32%
PRI069	30%	17%	9%	440%	343%	336%
PRI086	33%	22%	-31%	70%		•
PRI087	48%	17%	17%	-64%	265%	295%
PRI106	-14%	5%	8%	11%	19%	18%
PRI109	18%	-4%	64%	20%	105%	254%

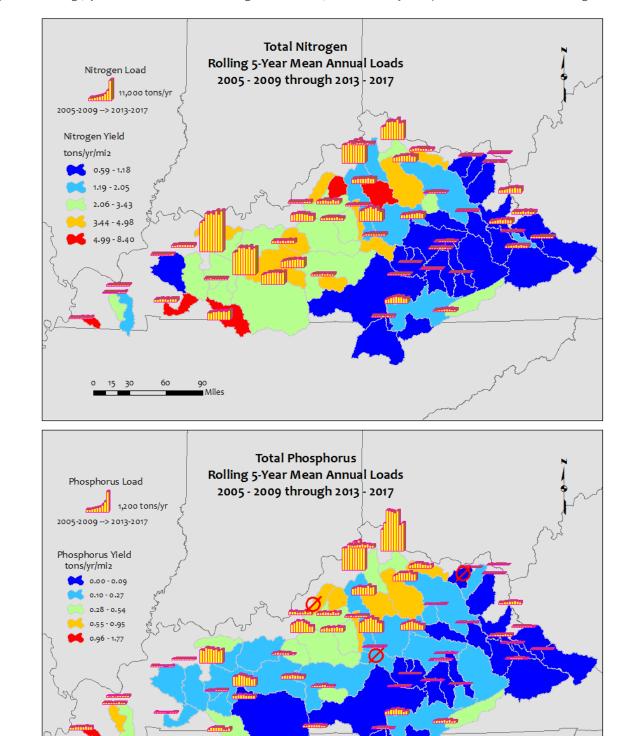
Table 7. Percent change between current study and 1979-2004 USGS study.

	Percent change									
Station	Concen- tration	Load	Yield	Concen- tration	Load	Yield				
		Nitrogen			Phosphorus					
			Kentucky Riv	ver						
PRI022	-18%	-30%	-30%	14%	-31%	-30%				
PRI031	3%	-7%	-8%	10%	-36%	-37%				
PRI032	20%	1%	1%	60%	-41%	-81%				
PRI033	7%	-3%	1%	80%	-74%	-72%				
PRI045	10%	-2%	0%	43%	-44%	87%				
PRI046	8%	-27%	-28%	85%	-81%	-81%				
PRI058	-6%	-13%	-13%	110%						
PRI066	-10%	-13%	-12%	64%	22%	25%				
PRI067	8%	27%	39%	18%	4%	11%				
PRI092	12%	17%	17%	20%	-39%	-27%				
PRI098	5%	-18%	-18%	15%	-34%	-32%				
PRI104	29%	35%	92%	110%	317%	544%				
			Salt, Licking	g						
PRI029	18%	3%	4%	-4%	-35%	116%				
PRI041	-12%	-11%	-10%	19%	-33%	148%				
PRI052	-11%	-24%	-25%	7%	-27%	-27%				
PRI057	54%	-1%	-1%	25%	-54%	-54%				
PRI059	9%	-29%	-28%	8%	16%	16%				
PRI060	8%	8%	8%	33%	65%	67%				
PRI061	-1%	178%	182%	93%	373%	338%				
PRI062	-4%	-22%	-24%	20%	-74%	-75%				
PRI063	-11%	-48%	-61%	-20%	-91%	-92%				
PRI093	-3%	-13%	2245%	52%	-31%	-14%				
PRI100	18%	7%	7%	-6%	-43%	-42%				
PRI105	-14%	-40%	-37%	-10%	-53%	-52%				
PRI111	23%	13%	13%	58%	136%	134%				
		Т	radewater, G	reen						
PRI012	64%	144%	117%	74%	137%	116%				
PRI014	8%	30%	32%	53%	35%	36%				
PRI018	24%	1%	1%	-10%	1%	161%				
PRI021	29%	15%	16%	19%	0%	1%				
PRI054	-9%	52%	51%	32%	49%	48%				
PRI055	23%	30%	28%	38%	6%	6%				
PRI056	14%	37%	35%	-3%	53%	47%				
PRI072	0%	-14%	-24%	40%	-23%	-33%				
PRI077	23%	20%	32%	53%	135%	151%				
PRI103	-11%	-39%	5%	7%	326%	755%				

27 | P a g e

Table 8. Monitoring stations with the largest differences in drainage areas between the two studies frequently have correspondingly large differences in yield.

Station	Drainage area (mi²)	Drainage area (mi²)	Difference	Difference in Yield			
	this study	USGS study	in area	Nitrogen	Phosphorus		
PRI003	781	271	65%	-61%	-82%		
PRI009	1976	562	72%	-77%	-67%		
PRIo86	519	770	-48%	-	-31%		
PRI103	3137	5404	-72%	5%	755%		
PRI104	227	324	-43%	92%	544%		
PRI109	103	178	-73%	254%	64%		


Rolling 5-year averages

Because of the inconsistencies found between the original USGS study and the current study, using the USGS study as the baseline for loading does not appear prudent. Because of the continuous record available for these stations, a rolling 5-year average loading appeared to be a method that would work to detect changes over time while mitigating the variability of weather cycles. For the 2005 through 2017 time period, nine 5-year mean loads and yields were calculated. Figure 10, below, depicts the loads for each 5-year period, starting with 2005-2011 and ending with 2013-2017. The yields for the contributing area to each station depict the mean annual yield for the entire 2005-2017 time period. Appendix 3 depicts loads for each station over time.

Examining regressions of yields over time (Table 9), the mean slopes with 95% confidence interval show an increasing trend for total nitrogen and no trend for total phosphorus. As more years and 5-year means are added to this dataset, any trends will become apparent.

Regression parameter	lower 95% Cl	mean	upper 95% Cl
	Total Nitr	ogen	
slope	0.043	0.064	0.085
intercept	-168.4	-125.8	-83.2
R ²	0.37	0.44	0.52
	Total Pho	osphorus	
slope	-0.001	0.003	0.006
intercept	-11.6	-5.1	1.4
R ²	0.21	0.28	0.35

Table 9. Mean and confidence interval of regression parameters for yields at all ambient monitoring stations, statewide.

Ounacceptable model fit.

60

90 Miles

15 30

0

Figure 10. Rolling 5-year mean annual loads along with the 2005-2017 annual yields for each ambient monitoring station.

Conclusions

Nutrient loads reflect both nutrient concentrations and contributing basin size. Yields are a better measure of where reduction strategies might be most effective.

Yields, as anticipated, are greater in areas with more agriculture. The western part of the state, particularly the Jackson Purchase physiographic region/Four Rivers basin, has the greatest concentration of row crops. This region of the state has the highest total nitrogen yields. Total agriculture land use, with larger percentages of pasture/hay, are found in the Salt, Licking and Tradewater Green river basins as well as individual contributing watersheds in the Kentucky River Basin. These watersheds are reflected with moderate to high yields of nitrogen and phosphorus in these areas. The limestone in the Bluegrass contributes to naturally higher levels of phosphorus in the water, and this certainly contributes to the phosphorus yield in this part of the state. The eastern part of state has the lowest rates of agricultural land uses, and this is reflected by the lowest calculated loads and yields for both nitrogen and phosphorus.

Because the comparison between the 2009 USGS study and the current study showed unexplained inconsistencies, the calculation of 5-year rolling means for loads and yields was undertaken. This provides a consistent baseline for evaluating implemented reduction strategies while mitigating the effects of extreme weather years and provides a means for continuing assessments as additional sample years accrue. These rolling means found a slight, but significant, increasing trend for total nitrogen, while no trend was found for total phosphorus.

The western part of state is still under-represented in this study despite the addition of three more stations. To be included in this study, both a primary ambient monitoring station and a nearby gage that can be used to estimate daily discharge must be present. The presence of controls on discharge (dams) must also be taken into account. A closer look at monitoring stations and gages should be undertaken to determine if additional stations can be added to this ongoing assessment of loading, or if additional monitoring and/or gaging stations are needed.

The results of this study provides the basis for updating the Kentucky Nutrient Reduction Strategy and the means of evaluating the effectiveness of the implemented strategy. This study can inform decisions for where mitigation efforts can best achieve goals.

References

- Crain, A. S. (2009). Concentrations, and estimated loads and yields of total nitrogen and total phosphorus at selected stations in Kentucky, 1979–2004. U.S. Geological Survey Scientific Investigations Report 2009–5240.
- Hirsch, R. M. (1982, August). A comparison of four streamflow record extension techniques. *Water Resources Research*, *18*(4), 1081-1088.
- Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. (2008). Gulf Hypoxia Action Plan 2008 for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf. Washington DC: EPA. Retrieved January 14, 2019, from https://www.epa.gov/sites/production/files/2015-03/documents/2008_828_msbasin_ghap2008_update082608.pdf
- Runkel, R. C. (2004). Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers. In U.S. Geological Survey Techniques and Methods (p. 75). USGS.
- USGS. (2017). StreamStats. Retrieved January 21, 2019, from United States Geological Survey: https://streamstats.usgs.gov/ss/

Appendix 1: Land Cover and Use

Table 10. Percent land cover and use of watersheds draining to each station.

Station		Drainage			Pe	ercent land co	ver in 2016		
ID	Station Name	Area (mi²)	Pasture /Hay	Row Crop	Total Ag	Forested	Wetlands	Natural	Developed
		Big and Lit	tle Sandy,	Гygarts					
PRI002	Tug Fork at Kermit, WV	1278	0.6	0.0	0.6	86	0.00	95	4.4
PRI003	Tug Fork at Freeburn	781	0.5	0.0	0.5	89	0.00	95	4.0
PRI006	Levisa Fork near Pikeville	1230	1.8	0.0	1.8	84	0.01	92	5.7
PRI048	Tygarts Creek near Lynn	275	12.2	0.1	12.3	77	0.03	82	6.1
PRI049	Little Sandy River at Argillite	539	10.3	0.2	10.5	81	0.02	83	6.1
PRI064	Levisa Fork near Louisa	2323	2.1	0.0	2.1	85	0.01	92	6.0
PRI094	Levisa Fork at Auxier	1723	1.9	0.0	1.9	84	0.01	92	6.1
PRI096	Johns Creek at McCombs	121	1.4	0.0	1.4	85	0.00	94	4.2
	Four	Rivers, Upp	er & Lower	Cumber	land				
PRI007	Cumberland River near Burkesville	6245	13.5	1.3	14.8	73	0.09	79	6.3
PRIoo8	Big South Fork Cumberland River at Blue Heron	964	6.5	0.1	6.6	83	0.03	89	4.4
PRI009	Cumberland River at Cumberland Falls	1976	5.2	0.0	5.2	82	0.08	89	5.4
PRI010	Rockcastle River at Billows	604	18.4	0.3	18.7	72	0.02	75	6.8
PRI043	Little River near Cadiz	268	17.2	41.9	59.1	30	0.34	32	9.0
PRI051	Rockcastle River near Lamero	62	5.5	0.0	5.5	88	0.00	89	5.2
PRI069	Red River near Keysburg	534	55.1	0.4	76.5	16	0.45	17	6.2
PRIo86	Cumberland River at Calvin	519	0.5	0.0	0.5	87	0.02	95	4.9
PRI087	Clear Fork near Williamsburg	370	5.3	0.0	5.4	82	0.16	90	4.5
PRI106	Clarks River near Sharpe	310	15.3	38.4	53.8	30	5.39	37	9.7
PRI109	Bayou de Chien near Cayce	103	11.1	55.1	66.3	22	6.87	29	4.6

Ci - Li		Drainage			Pe	ercent land co	ver in 2016		
Station ID	Station Name	Area (mi²)	Pasture /Hay	Row Crop	Total Ag	Forested	Wetlands	Natural	Developed
		Ken	tucky Rive	r					
PRI022	Eagle Creek at Glenco	437	33.2	0.3	33.4	60	0.03	61	5.2
PRI031	North Fork Kentucky River at Jackson	1101	0.7	0.0	0.7	82	0.00	94	5.6
PRI032	Middle Fork Kentucky River at Tallega	536	1.0	0.0	1.0	88	0.01	95	3.9
PRI033	South Fork Kentucky River at Booneville	692	4.5	0.0	4.5	88	0.01	91	4.8
PRI045	Dix River near Danville	317	47.3	4.9	52.2	40	0.06	42	5.9
PRI046	Red River Clay City	362	10.8	1.1	11.9	80	0.05	82	5.6
PRI058	Kentucky River near Trapp	3235	4.7	0.1	4.9	83	0.02	90	5.1
PRI066	Kentucky River near Lockport	6178	24.2	1.3	25.6	62	0.05	67	7.5
PRI067	Kentucky River at High Bridge	4588	14.8	0.4	15.2	73	0.03	78	6.4
PRI092	Goose Creek near Oneida	251	6.1	0.0	6.1	85	0.01	88	5.4
PRI098	Elkhorn Creek near Peaks Mill	473	66.7	4.4	71.1	9	0.11	10	19.0
PRI104	Middle Fork Kentucky River near Dryhill	227	0.1	0.0	0.1	87	0.00	96	3.8
		Sa	lt, Licking						
PRI029	Salt River at Shepherdsville	1197	39.7	10.6	50.3	36	0.11	38	11.2
PRI041	Beech Fork near Maud	436	42.6	3.6	46.1	48	0.01	50	4.3
PRI052	Salt River at Glensboro	173	62.9	6.4	69.3	21	0.01	22	8.3
PRI057	Rolling Fork near Lebanon Jct.	1374	31.6	7.8	39.4	54	0.23	56	4.9
PRI059	South Fork Licking River at Morgan	838	68.9	3.3	72.3	20	0.06	21	6.5
PRI060	North Fork Licking River near Milford	287	43.2	6.0	49.2	45	0.00	46	4.3
PRI061	Licking River at Claysville	1966	25.2	1.4	26.6	66	0.05	68	5.2
PRI062	Licking River at West Liberty	334	5.2	0.0	5.3	86	0.01	90	4.7
PRI063	Kinniconick Creek near Tannery	229	4.8	0.2	5.0	90	0.03	92	3.1
PRI093	Slate Creek near Owingsville	185	48.9	0.6	49.4	44	0.06	45	5.7
PRI100	Floyds Fork near Shepherdsville	259	27.0	4.9	31.9	43	0.06	45	22.9
PRI105	Brashears Creek at Taylorsville	262	48.8	22.5	71.4	19	0.03	20	8.2
PRI111	Licking River at Butler	3384	37.9	2.2	40.1	52	0.05	55	5.4

Station ID	Station Name	Drainage	Percent land cover in 2016						
		Area (mi²)	Pasture /Hay	Row Crop	Total Ag	Forested	Wetlands	Natural	Developed
Tradewater, Green									
PRI012	Pond River near Sacramento	578	13.1	17.7	30.8	54	6.36	64	4.9
PRI014	Rough River near Dundee	757	25.6	11.1	36.7	56	0.14	59	4.8
PRI018	Green River at Munfordville	1680	33.4	6.4	39.9	52	0.16	54	5.7
PRI021	Nolin River at White Mills	351	31.0	34.2	65.2	24	0.18	25	9.6
PRI054	Rough River near Livermore	1067	22.1	13.6	35.7	56	0.93	59	4.9
PRI055	Green River at Livermore	6423	31.5	12.3	43.8	46	0.61	50	6.4
PRI056	Mud River near Gus	268	26.3	14.1	40.4	51	1.05	54	5.6
PRI072	Barren River near Woodbury	2264	13.2	0.1	52.5	37	0.16	40	7.8
PRI077	Russell Creek near Bramlett	262	44.0	6.5	50.5	41	0.01	42	7.3
PRI103	Green River near Woodbury	3136	31.0	10.2	41.3	50	0.19	53	5.9

Appendix 2: Model Equations Table 11. Model equations and fit for total nitrogen load.

Station	Total nitrogen regression equations		Estimated residual variance	
	Big and Little Sandy, Tygarts			
PRI002	7.33 + 1.26 Ln(Q) - 0.01 Sin(2πdt) + 0.18 Cos(2πdt) - 0.04dt	91	0.138	
PRI003	6.6 + 1.44 Ln(Q) - 0.06 Sin(2πdt) + 0.2 Cos(2πdt) - 0.03dt	94	0.111	
PRI006	7.58 + 1.18 Ln(Q) - 0.02dt	94	0.096	
PRI048	4.04 + 1.13 $Ln(Q)$ - 0.01 $Ln(Q)^2$ + 0.17 $Sin(2\pi dt)$ + 0.03 $Cos(2\pi dt)$ + 0(dt) + 0.01(dt) ²	96	0.164	
PRI049	5.75 + 0.86 Ln(Q) + 0.07 Ln(Q) ² + 0.1 Sin(2πdt) - 0.06 Cos(2πdt) - 0.02(dt) + 0(dt) ²	95	0.082	
PRI064	8.08 + 1.18 Ln(Q)	95	0.095	
PRI094	7.82 + 1.23 Ln(Q) + 0.04 Ln(Q)² - 0.11 Sin(2πdt) + 0.17 Cos(2πdt) - 0.02(dt)	93	0.106	
PRI096	5.2 + 1.19 Ln(Q) - 0.12 Ln(Q) ² - 0.05 <i>d</i> t	94	0.114	
	Four Rivers, Upper & Lower Cumberland			
PRI007	7.04 + 1.01 Ln(Q) + 0.02 Ln(Q) ² + 0.09 Sin($2\pi dt$) + 0.01 Cos($2\pi dt$) + 0.02(dt) + 0.01(dt) ²	97	0.012	
PRI008	5.81 + 1.09 Ln(Q) - 0.02dt	96	0.121	
PRI009	7.15 + 1.34 Ln(Q) + 0.05 Ln(Q)² + 0.31 Sin(2πdt) - 0.06 Cos(2πdt) - 0.03(dt)	95	0.115	
PRI010	5.3 + 1.19 Ln(Q) - 0.03 Ln(Q)² - 0.11 Sin(2πdt) + 0.18 Cos(2πdt) - 0.04(dt) + 0.01(dt)²	97	0.100	
PRI043	7.43 + 1.09 Ln(Q) - 0.04 Ln(Q)² - 0.05 Sin(2πdt) + 0.07 Cos(2πdt)	99	0.024	
PRI051	2.89 + 1.04 Ln(Q)	95	0.111	
PRI069	8.58 + 1.13 Ln(Q) - 0.05 Ln(Q)² + 0.01dt	99	0.024	
PRI086	7.11 + 1.36 Ln(Q) - 0.01 Sin(2πdt) + 0.26 Cos(2πdt)	94	0.127	
PRI087	5.06 + 1.05 Ln(Q) - 0.02 Ln(Q) ²	97	0.095	
PRI106	6.6 + 1.09 Ln(Q) - 0.03 Ln(Q)² - 0.25 Sin(2πdt) + 0.24 Cos(2πdt)	94	0.189	
PRI107	6.22 + 1.33 Ln(Q) - 0.07 Ln(Q)² + 0.14 Sin(2πdt) + 0.14 Cos(2πdt) - 0.02(dt) + 0.01(dt)²	94	0.225	
PRI109	$6.89 + 1.54 \ln(Q) - 0.19 \ln(Q)^2 - 0.19 \sin(2\pi dt) + 0.2 \cos(2\pi dt)$	89	0.273	
Kentucky River				
PRI022	4.07 + 1.08 Ln(Q) + 0.01 Ln(Q)² - 0.02 Sin(2πdt) - 0.16 Cos(2πdt) - 0.01(dt) - 0.01(dt)²	98	0.137	
PRI031	7 + 1.2 Ln(Q) - 0.06dt	91	0.189	
PRI032	5.91 + 1.07 Ln(Q) - 0.04dt	95	0.113	
PRI033	4.46 + 0.96 Ln(Q) + 0.05 Ln(Q) ² - 0.02dt	95	0.194	
PRI045	5.09 + 1.24 Ln(Q)	97	0.185	
PRI046	5.05 + 1.08 Ln(Q) + 0.03 Sin(2πdt) - 0.16 Cos(2πdt)	94	0.146	
PRI058	7.41 + 1.11 Ln(Q) + 0.14 Sin(2πdt) - 0.07 Cos(2πdt)	94	0.101	
PRI066	8.71 + 1.16 Ln(Q) + 0.2 Sin(2πdt) - 0.13 Cos(2πdt) - 0.03dt	96	0.084	
PRI067	8.11 + 1.05 Ln(Q) + 0.06 Ln(Q) ² + 0.04 Sin(2πdt) + 0.22 Cos(2πdt) - 0.05(dt) - 0.01(dt) ²	93	0.120	
PRI092	4.2 + 1.01 Ln(Q) - 0.04 Sin(2πdt) - 0.19 Cos(2πdt)	96	0.117	
PRI098	8.1 + 0.93 Ln(Q) + 0.03 Ln(Q)² - 0.17 Sin(2πdt) - 0.24 Cos(2πdt)	93	0.130	
PRI104	5.19 + 1.04 Ln(Q) + 0.03 Ln(Q) ² - 0.04 <i>dt</i>	96	0.079	

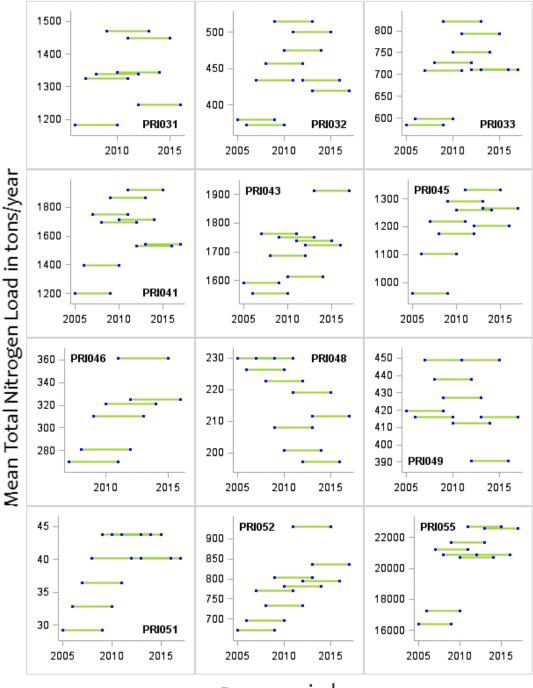
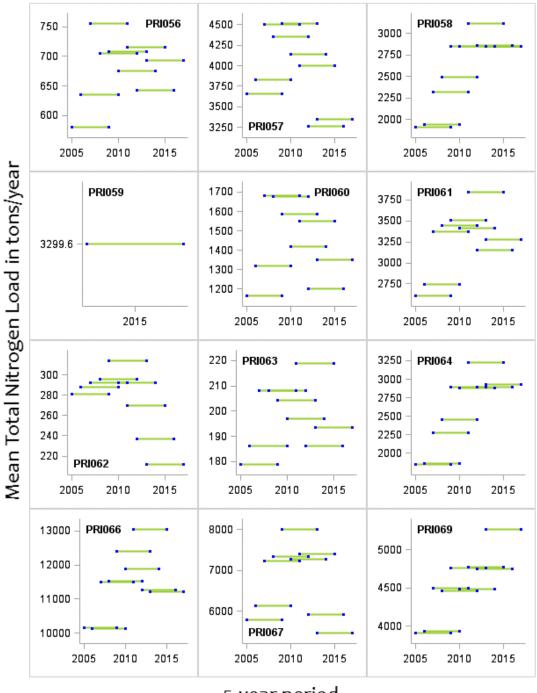
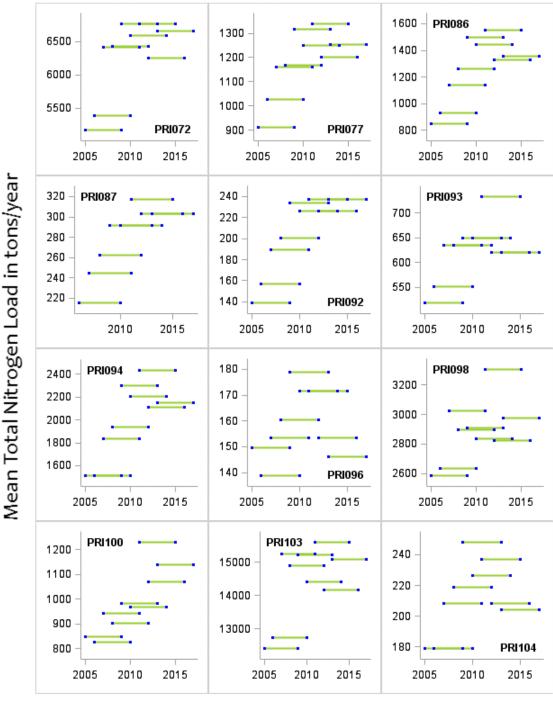
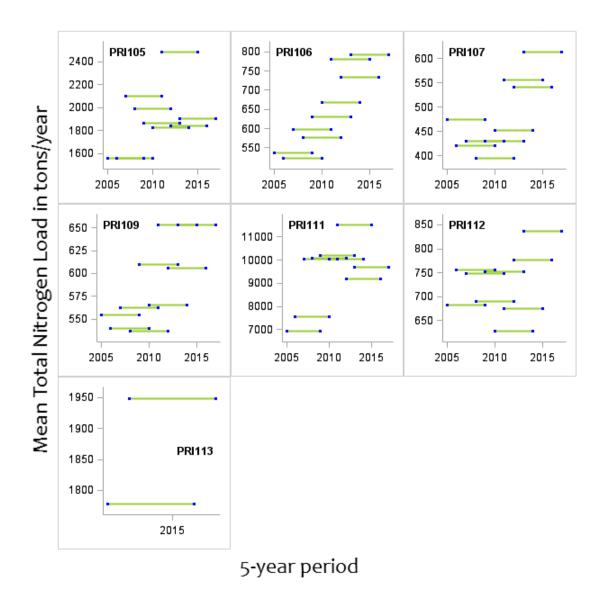

Station	Total nitrogen regression equations		Estimated residual variance		
	Salt, Licking				
PRI029	7.7 + 1.08 Ln(Q) + 0.06 Ln(Q) ² + 0.06 Sin($2\pi dt$) - 0.05 Cos($2\pi dt$) - 0.01(dt) + 0(dt) ²	96	0.092		
PRI041	3.68 + 1.13 Ln(Q) + 0.02 Ln(Q)² + 0.13 Sin(2πdt) - 0.09 Cos(2πdt) + 0(dt) - 0.01(dt)²	98	0.162		
PRI052	5.5 + 1.19 Ln(Q)	96	0.173		
PRI057	3.13 + 1 Ln(Q) + 0.01 Ln(Q)² + 0.14 Sin(2πdt) - 0.12 Cos(2πdt)	97	0.219		
PRI059	6.74 + 1.24 Ln(Q)	98	0.086		
PRI060	3.67 + 1.16 Ln(Q) + 0.02 Ln(Q) ² + 0.02 <i>dt</i>	98	0.188		
PRI061	7.49 + 1.26 Ln(Q) + 0.05 Ln(Q)² + 0.21 Sin(2πdt) + 0.1 Cos(2πdt)	94	0.177		
PRI062	5.23 + 1.06 Ln(Q) - 0.02dt	96	0.010		
PRI063	3.96 + 1.08 Ln(Q) - 0.22 Sin(2πdt) - 0.04 Cos(2πdt)	95	0.095		
PRI093	3.34 + 1.1 Ln(Q)	96	0.136		
PRI100	6.64 + 0.96 Ln(Q) + 0.04 Ln(Q)² + 0.22 Sin(2πdt) - 0.16 Cos(2πdt) + 0.03(dt)	88	0.159		
PRI105	3.77 + 1.25 Ln(Q) + 0.03 Ln(Q) ²	96	0.242		
PRI111	8.16 + 1.28 Ln(Q) + 0.05 Ln(Q) ² + 0.03 <i>dt</i>	95	0.194		
	Tradewater, Green				
PRI012	3.88 + 1.06 Ln(Q) + 0.04 Sin(2πdt) + 0.22 Cos(2πdt) + 0.03dt	96	0.304		
PRI014	7.28 + 1.09 Ln(Q) - 0.26dt	93	0.167		
PRI018	8.42 + 1.17 Ln(Q) - 0.05 Ln(Q)² - 0.14 Sin(2πdt) - 0.01 Cos(2πdt)	97	0.069		
PRI021	7.93 + 0.98 Ln(Q) - 0.04 Ln(Q)² + 0.01dt	97	0.032		
PRI054	7.68 + 1.11 Ln(Q)	95	0.110		
PRI055	9.72 + 1.14 Ln(Q) - 0.17 Sin(2πdt) + 0.11 Cos(2πdt) + 0.01dt	97	0.055		
PRI056	6.21 + 1.06 Ln(Q) + 0.18 Sin(2πdt) - 0.06 Cos(2πdt)	95	0.130		
PRI072	8.26 + 1.06 Ln(Q) - 0.23 Sin(2πdt) - 0.3 Cos(2πdt)	95	0.090		
PRI077	5.82 + 1.38 Ln(Q) - 0.04 Ln(Q) ²	96	0.142		
PRI103	9.34 + 1.09 Ln(Q) - 0.17 Sin(2πdt) - 0.01 Cos(2πdt)	95	0.061		
PRI112	5.69 + 0.96 Ln(Q) - 0.02 Ln(Q) ² - 0.11 Sin(2πdt) + 0.31 Cos(2πdt) - 0.01(dt) - 0.01(dt) ²	97	0.164		
PRI113	4.33 + 1.1 Ln(Q) - 0.19 Sin(2πdt) - 0.19 Cos(2πdt)	97	0.252		

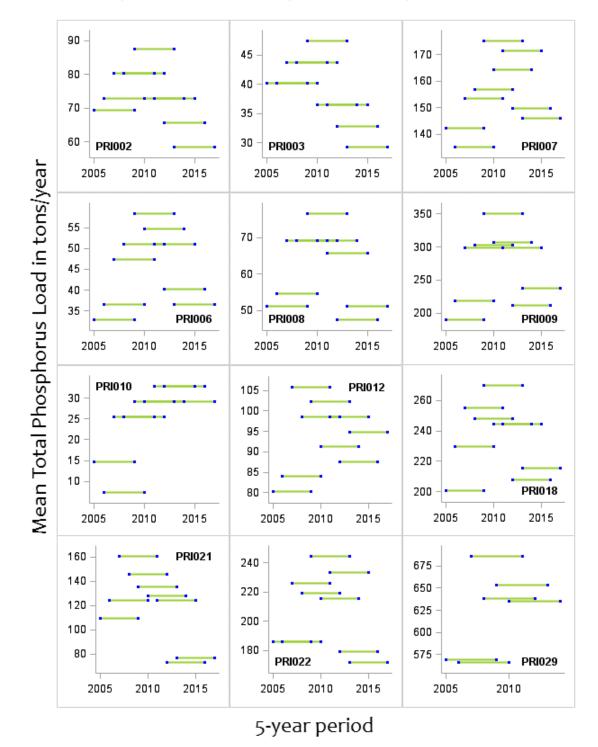
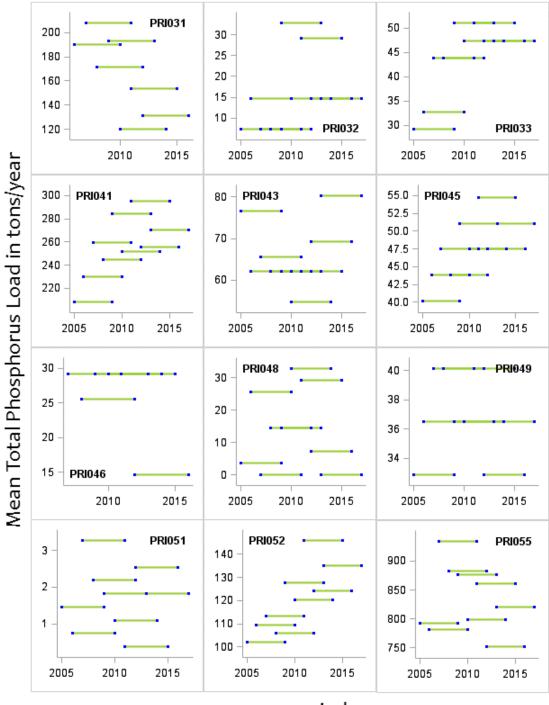
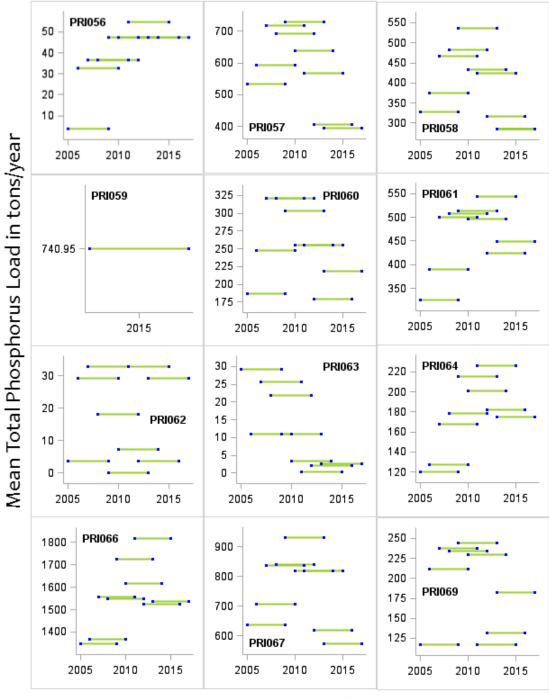
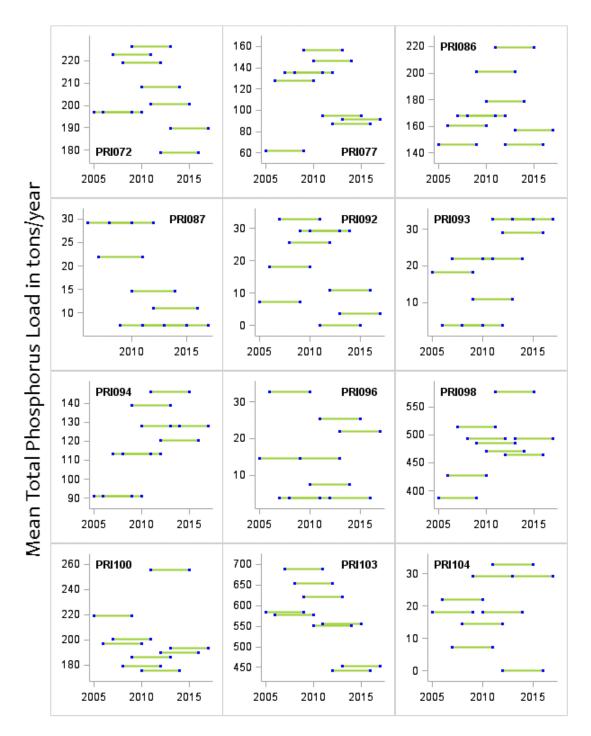
Table 12. Regression equations and model fit for phosphorus loads.

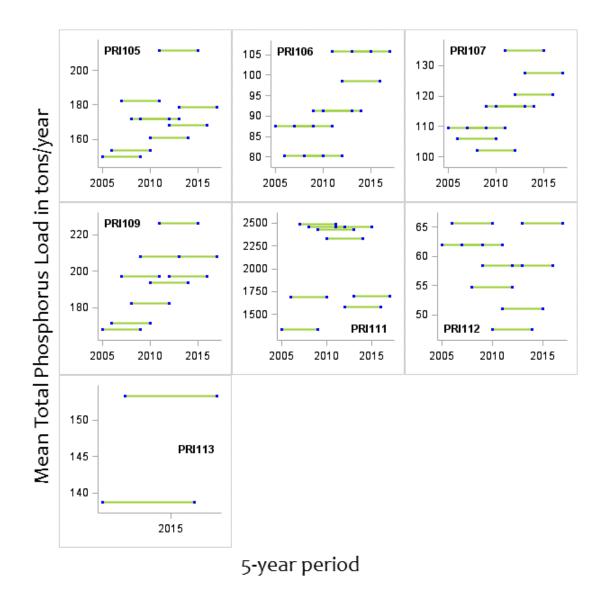

Station	Total phosphorus regression equations		Estimated residual variance		
	Big and Little Sandy, Tygarts				
PRI002	3.78 + 1.5 Ln(Q) + 0.05 Ln(Q)² - 0.11 Sin(2πdt) + 0.35 Cos(2πdt) - 0.08(dt) - 0.01(dt)²	84	0.427		
PRI003	3.01 + 1.43 Ln(Q) + 0.09 Ln(Q)² - 0.4 Sin(2πdt) + 0.25 Cos(2πdt) - 0.08(dt) - 0.01(dt)²	79	0.542		
PRI006	3.93 + 1.27 Ln(Q) + 0.08 Ln(Q)² - 0.07 Sin(2πdt) + 0 Cos(2πdt) - 0.06(dt) - 0.02(dt)²	74	0.675		
PRI048	0.2 + 1.18 Ln(Q) + 0.05 Ln(Q)² - 0.1 Sin(2πdt) + 0.48 Cos(2πdt) - 0.05(dt)	90	0.383		
PRI049	$2.34 + 1.37 \ln(Q) + 0.07 \ln(Q)^2 + 0.04 \sin(2\pi dt) + 0.3 \cos(2\pi dt) - 0.02(dt) + 0.01(dt)^2$	94	0.204		
PRI064	$4.93 + 1.56 \ln(Q) + 0.05 \ln(Q)^2 + 0.31 \sin(2\pi dt) + 0.24 \cos(2\pi dt) - 0.04(dt) - 0.01(dt)^2$	88	0.345		
PRI094	4.5 + 1.51 Ln(Q) + 0.12 Ln(Q)² + 0.27 Sin(2πdt) + 0.52 Cos(2πdt) - 0.03(dt)	86	0.313		
PRI096	1.46 + 1.45 Ln(Q) + 0.06 Ln(Q)² - 0.17 Sin(2πdt) + 0.25 Cos(2πdt) - 0.03(dt) - 0.01(dt)²	82	0.523		
	Four Rivers, Upper & Lower Cumberland				
PRI007	3.23 + 1.07 Ln(Q) - 0.05dt	88	0.541		
PRI008	1.97 + 1.23 Ln(Q) + 0.09 Ln(Q)² - 0.07dt	86	0.541		
PRI009	3.36 + 1.57 Ln(Q) + 0.16 Ln(Q)² - 0.12 Sin(2πdt) - 0.57 Cos(2πdt) - 0.06(dt) + 0.01(dt)²	89	0.330		
PRI010	1.39 + 1.27 Ln(Q)	85	0.714		
PRI043	3.67 + 1.08 Ln(Q) + 0.1 Ln(Q)² + 0.23 Sin(2πdt) - 0.32 Cos(2πdt) + 0(dt) + 0.01(dt)²	86	0.250		
PRI051	-0.74 + 0.96 Ln(Q) - 0.03(dt)	83	0.339		
PRI069	3.59 + 1.45 Ln(Q) + 0.14 Ln(Q)² - 0.01 Sin(2πdt) + 0.62 Cos(2πdt) - 0.03(dt) + 0.01(dt)²	89	0.290		
PRI086	2.92 + 1.84 Ln(Q) + 0.24 Ln(Q)² + 0.63 Sin(2πdt) + 0.72 Cos(2πdt) - 0.07(dt)	81	0.719		
PRI087	1.62 + 1.26 Ln(Q) + 0.37 Sin(2πdt) + 0.06 Cos(2πdt) - 0.08(dt)	85	0.641		
PRI106	4.51 + 1.27 Ln(Q) - 0.05 Ln(Q)² + 0.05 Sin(2πdt) + 0.14 Cos(2πdt) - 0.03(dt)	96	0.149		
PRI107	3.76 + 1.44 Ln(Q) + 0.28 Sin(2πdt) + 0.14 Cos(2πdt) - 0.03dt	93	0.302		
PRI109	5.01 + 1.56 Ln(Q) + 0.22 Sin(2πdt) + 0.19 Cos(2πdt)	89	0.204		
Kentucky River					
PRI022	1.71 + 1.24 Ln(Q) + 0.02 Ln(Q)² - 0.28 Sin(2πdt) - 0.37 Cos(2πdt) - 0.01(dt) - 0.01(dt)²	97	0.201		
PRI031	3.31 + 1.48 Ln(Q) + 0.21 Ln(Q)² - 0.41 Sin(2πdt) + 0.25 Cos(2πdt) - 0.09(dt)	90	0.275		
PRI032	2.39 + 1.32 Ln(Q) + 0.1 Ln(Q)² + 0.15 Sin(2πdt) + 0.14 Cos(2πdt) - 0.05(dt)	93	0.244		
PRI033	1.01 + 0.99 Ln(Q) + 0.1 Ln(Q)² + 0.3 Sin(2πdt) + 0.16 Cos(2πdt)	87	0.451		
PRI045	2.23 + 1.12 Ln(Q) + 0.28 Sin(2πdt) + -0.04 Cos(2πdt)	95	0.278		
PRI046	2.08 + 1.27 Ln(Q) + 0.01 Sin(2πdt) - 0.46 Cos(2πdt) - 0.05(dt)	83	0.552		
PRI058	3.97 + 1.51 Ln(Q) + 0.16 Ln(Q)² + 0.5 Sin(2πdt) + 0.03 Cos(2πdt) - 0.11(dt) - 0.02(dt)²	83	0.493		
PRI066	6.39 + 1.42 Ln(Q) + 0.56 Sin(2πdt) - 0.04 Cos(2πdt) - 0.03(dt)	94	0.155		
PRI067	$5.4 + 1.31 \ln(Q) + 0.08 \ln(Q)^2 + 0.21 \sin(2\pi dt) + 0.52 \cos(2\pi dt) - 0.07(dt) - 0.01(dt)^2$	92	0.178		
PRI092	0.89 + 1.14 Ln(Q) + 0.17 Sin(2πdt) - 0.67 Cos(2πdt) - 0.06(dt)	91	0.266		
PRI098	5.89 + 0.96 Ln(Q) + 0.13 Ln(Q) ²	89	0.207		
PRI104	1.82 + 1.04 Ln(Q) + 0.56 Sin(2πdt) + 0.18 Cos(2πdt) - 0.07(dt)	65	0.724		


Station	Total phosphorus regression equations		Estimated residual variance		
Salt, Licking					
PRI029	5.38 + 1.19 Ln(Q) + 0.09 Ln(Q)² + 0.22 Sin(2πdt) + 0.4 Cos(2πdt)		0.120		
PRI041	1.8 + 1.14 Ln(Q) + 0.02 Ln(Q)² + 0.46 Sin(2πdt) - 0.14 Cos(2πdt)	97	0.176		
PRI052	3.61 + 1.15 Ln(Q) + 0.03 Ln(Q)² - 0.11 Sin(2πdt) - 0.37 Cos(2πdt)	96	0.141		
PRI057	$0.62 + 1.03 \ln(Q) + 0.03 \ln(Q)^2 + 0.49 \sin(2\pi dt) + 0.33 \cos(2\pi dt) - 0.04(dt) - 0.01(dt)^2$	97	0.293		
PRI059	3.89 + 1.35 Ln(Q) + 0.07 Ln(Q)² + 0.45 Sin(2πdt) + 0.27 Cos(2πdt)	97	0.222		
PRI060	0.95 + 1.21 Ln(Q) + 0.05 Ln(Q)² + 0.57 Sin(2πdt) - 0.03 Cos(2πdt) + 0.02(dt)		0.210		
PRI061	4.89 + 1.4 Ln(Q) + 0.11 Ln(Q)² + 0.47 Sin(2πdt) + 0.39 Cos(2πdt)	86	0.517		
PRI062	1.86 + 1.09 Ln(Q) - 0.07(dt)	79	0.677		
PRI063	-0.58 + 1.41 Ln(Q) + 0.76 Sin(2πdt) - 0.15 Cos(2πdt) - 0.1(dt)	75	1.017		
PRI093	$0.57 + 1.08 \ln(Q) + 0 \ln(Q)^2 + 0.6 \sin(2\pi dt) - 0.02 \cos(2\pi dt) - 0.01(dt) + 0.01(dt)^2$	91	0.264		
PRI100	3.63 + 1.21 Ln(Q) + 0.11 Ln(Q) ² + 0.36 Sin(2πdt) + 0.44 Cos(2πdt) - 0.03(dt)	86	0.306		
PRI105	1.96 + 1.22 Ln(Q) + 0.01 Ln(Q)² + 0.48 Sin(2πdt) + 0.03 Cos(2πdt)	95	0.290		
PRI111	5.59 + 1.52 Ln(Q) + 0.13 Ln(Q)² + 0.54 Sin(2πdt) - 0.03 Cos(2πdt)	92	0.398		
Tradewater, Green					
PRI012	1.38 + 1.03 Ln(Q)	95	0.331		
PRI014	4.45 + 1.3 Ln(Q) + 0.42 Sin(2πdt) - 0.21 Cos(2πdt) - 0.38(dt)	86	0.422		
PRI018	4.73 + 1.59 Ln(Q) + 0.32 Sin(2πdt) + 0.45 Cos(2πdt) - 0.04(dt)	89	0.374		
PRI021	$4.43 + 0.98 \ln(Q) + 0.19 \ln(Q)^2 + 0.27 \sin(2\pi dt) + 0.3 \cos(2\pi dt) - 0.04(dt) - 0.01(dt)^2$	81	0.241		
PRI054	4.58 + 1.26 Ln(Q) + 0.44 Sin(2πdt) + 0.36 Cos(2πdt) - 0.36(dt)	88	0.395		
PRI055	$6.05 + 1.37 \ln(Q) + 0.05 \ln(Q)^2 + 0.17 \sin(2\pi dt) + 0.21 \cos(2\pi dt) - 0.03(dt) + 0.01(dt)^2$	96	0.106		
PRI056	3.34 + 1.22 Ln(Q) + 0.03 Ln(Q)² - 0.19 Sin(2πdt) - 0.03 Cos(2πdt) + 0(dt) - 0.04(dt)²	97	0.117		
PRI072	4.82 + 1.12 Ln(Q) - 0.06 Sin(2πdt) + 0.19 Cos(2πdt) - 0.05(dt)	90	0.169		
PRI077	2.06 + 1.37 Ln(Q) + 0.09 Ln(Q)² + 0.37 Sin(2πdt) + 0.68 Cos(2πdt)	89	0.374		
PRI103	5.55 + 1.33 Ln(Q) - 0.22 Sin(2πdt) + 0.3 Cos(2πdt) - 0.07(dt)	83	0.365		
PRI112	2.16 + 1.01 Ln(Q) + -0.01 Ln(Q)² + 0.04 Sin(2πdt) + 0.21 Cos(2πdt) - 0.02(dt)	97	0.178		
PRI113	1.44 + 1.22 Ln(Q) + -0.12 Sin($2\pi dt$) + 0.3 Cos($2\pi dt$)	97	0.318		


Load bias estimate exceeds threshold, do not use model.

5-year period


Figure 12. Mean 5-year averages for total phosphorus averages at each monitoring station.

5-year period

